1 | MODULE diffusion_v_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: diffusion_v.f90 484 2010-02-05 07:36:54Z weinreis $ |
---|
11 | ! |
---|
12 | ! 366 2009-08-25 08:06:27Z raasch |
---|
13 | ! bc_lr replaced by bc_lr_cyc |
---|
14 | ! |
---|
15 | ! 106 2007-08-16 14:30:26Z raasch |
---|
16 | ! Momentumflux at top (vswst) included as boundary condition, |
---|
17 | ! j loop is starting from nysv (needed for non-cyclic boundary conditions) |
---|
18 | ! |
---|
19 | ! 75 2007-03-22 09:54:05Z raasch |
---|
20 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes, |
---|
21 | ! z0 removed from argument list, vynp eliminated |
---|
22 | ! |
---|
23 | ! 20 2007-02-26 00:12:32Z raasch |
---|
24 | ! Bugfix: ddzw dimensioned 1:nzt"+1" |
---|
25 | ! |
---|
26 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
27 | ! |
---|
28 | ! Revision 1.15 2006/02/23 10:36:00 raasch |
---|
29 | ! nzb_2d replaced by nzb_v_outer in horizontal diffusion and by nzb_v_inner |
---|
30 | ! or nzb_diff_v, respectively, in vertical diffusion, |
---|
31 | ! wall functions added for north and south walls, +z0 in argument list, |
---|
32 | ! terms containing w(k-1,..) are removed from the Prandtl-layer equation |
---|
33 | ! because they cause errors at the edges of topography |
---|
34 | ! WARNING: loops containing the MAX function are still not properly vectorized! |
---|
35 | ! |
---|
36 | ! Revision 1.1 1997/09/12 06:24:01 raasch |
---|
37 | ! Initial revision |
---|
38 | ! |
---|
39 | ! |
---|
40 | ! Description: |
---|
41 | ! ------------ |
---|
42 | ! Diffusion term of the v-component |
---|
43 | !------------------------------------------------------------------------------! |
---|
44 | |
---|
45 | USE wall_fluxes_mod |
---|
46 | |
---|
47 | PRIVATE |
---|
48 | PUBLIC diffusion_v |
---|
49 | |
---|
50 | INTERFACE diffusion_v |
---|
51 | MODULE PROCEDURE diffusion_v |
---|
52 | MODULE PROCEDURE diffusion_v_ij |
---|
53 | END INTERFACE diffusion_v |
---|
54 | |
---|
55 | CONTAINS |
---|
56 | |
---|
57 | |
---|
58 | !------------------------------------------------------------------------------! |
---|
59 | ! Call for all grid points |
---|
60 | !------------------------------------------------------------------------------! |
---|
61 | SUBROUTINE diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, & |
---|
62 | vswst, w ) |
---|
63 | |
---|
64 | USE control_parameters |
---|
65 | USE grid_variables |
---|
66 | USE indices |
---|
67 | |
---|
68 | IMPLICIT NONE |
---|
69 | |
---|
70 | INTEGER :: i, j, k |
---|
71 | REAL :: kmxm_x, kmxm_y, kmxp_x, kmxp_y, kmzm, kmzp |
---|
72 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_x(nxl-1:nxr+1) |
---|
73 | REAL :: tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
74 | REAL, DIMENSION(:,:), POINTER :: vsws, vswst |
---|
75 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
76 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: vsus |
---|
77 | |
---|
78 | ! |
---|
79 | !-- First calculate horizontal momentum flux v'u' at vertical walls, |
---|
80 | !-- if neccessary |
---|
81 | IF ( topography /= 'flat' ) THEN |
---|
82 | CALL wall_fluxes( vsus, 0.0, 1.0, 0.0, 0.0, nzb_v_inner, & |
---|
83 | nzb_v_outer, wall_v ) |
---|
84 | ENDIF |
---|
85 | |
---|
86 | DO i = nxl, nxr |
---|
87 | DO j = nysv, nyn |
---|
88 | ! |
---|
89 | !-- Compute horizontal diffusion |
---|
90 | DO k = nzb_v_outer(j,i)+1, nzt |
---|
91 | ! |
---|
92 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
93 | kmxp_x = 0.25 * & |
---|
94 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
95 | kmxm_x = 0.25 * & |
---|
96 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
97 | kmxp_y = kmxp_x |
---|
98 | kmxm_y = kmxm_x |
---|
99 | ! |
---|
100 | !-- Increase diffusion at the outflow boundary in case of |
---|
101 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
102 | !-- velocity components parallel to the outflow boundary in |
---|
103 | !-- the direction normal to the outflow boundary. |
---|
104 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
105 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
106 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
107 | ENDIF |
---|
108 | |
---|
109 | tend(k,j,i) = tend(k,j,i) & |
---|
110 | & + ( kmxp_x * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
111 | & + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
112 | & - kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
113 | & - kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
114 | & ) * ddx & |
---|
115 | & + 2.0 * ( & |
---|
116 | & km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
117 | & - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
118 | & ) * ddy2 |
---|
119 | ENDDO |
---|
120 | |
---|
121 | ! |
---|
122 | !-- Wall functions at the left and right walls, respectively |
---|
123 | IF ( wall_v(j,i) /= 0.0 ) THEN |
---|
124 | |
---|
125 | DO k = nzb_v_inner(j,i)+1, nzb_v_outer(j,i) |
---|
126 | kmxp_x = 0.25 * & |
---|
127 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
128 | kmxm_x = 0.25 * & |
---|
129 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
130 | kmxp_y = kmxp_x |
---|
131 | kmxm_y = kmxm_x |
---|
132 | ! |
---|
133 | !-- Increase diffusion at the outflow boundary in case of |
---|
134 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
135 | !-- velocity components parallel to the outflow boundary in |
---|
136 | !-- the direction normal to the outflow boundary. |
---|
137 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
138 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
139 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
140 | ENDIF |
---|
141 | |
---|
142 | tend(k,j,i) = tend(k,j,i) & |
---|
143 | + 2.0 * ( & |
---|
144 | km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
145 | - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
146 | ) * ddy2 & |
---|
147 | + ( fxp(j,i) * ( & |
---|
148 | kmxp_x * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
149 | + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
150 | ) & |
---|
151 | - fxm(j,i) * ( & |
---|
152 | kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
153 | + kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
154 | ) & |
---|
155 | + wall_v(j,i) * vsus(k,j,i) & |
---|
156 | ) * ddx |
---|
157 | ENDDO |
---|
158 | ENDIF |
---|
159 | |
---|
160 | ! |
---|
161 | !-- Compute vertical diffusion. In case of simulating a Prandtl |
---|
162 | !-- layer, index k starts at nzb_v_inner+2. |
---|
163 | DO k = nzb_diff_v(j,i), nzt_diff |
---|
164 | ! |
---|
165 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
166 | kmzp = 0.25 * & |
---|
167 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
168 | kmzm = 0.25 * & |
---|
169 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
170 | |
---|
171 | tend(k,j,i) = tend(k,j,i) & |
---|
172 | & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
173 | & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
174 | & ) & |
---|
175 | & - kmzm * ( ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
176 | & + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
177 | & ) & |
---|
178 | & ) * ddzw(k) |
---|
179 | ENDDO |
---|
180 | |
---|
181 | ! |
---|
182 | !-- Vertical diffusion at the first grid point above the surface, |
---|
183 | !-- if the momentum flux at the bottom is given by the Prandtl law |
---|
184 | !-- or if it is prescribed by the user. |
---|
185 | !-- Difference quotient of the momentum flux is not formed over |
---|
186 | !-- half of the grid spacing (2.0*ddzw(k)) any more, since the |
---|
187 | !-- comparison with other (LES) modell showed that the values of |
---|
188 | !-- the momentum flux becomes too large in this case. |
---|
189 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
190 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
191 | IF ( use_surface_fluxes ) THEN |
---|
192 | k = nzb_v_inner(j,i)+1 |
---|
193 | ! |
---|
194 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
195 | kmzp = 0.25 * & |
---|
196 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
197 | kmzm = 0.25 * & |
---|
198 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
199 | |
---|
200 | tend(k,j,i) = tend(k,j,i) & |
---|
201 | & + ( kmzp * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
202 | & ) * ddzw(k) & |
---|
203 | & + ( kmzp * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
204 | & + vsws(j,i) & |
---|
205 | & ) * ddzw(k) |
---|
206 | ENDIF |
---|
207 | |
---|
208 | ! |
---|
209 | !-- Vertical diffusion at the first gridpoint below the top boundary, |
---|
210 | !-- if the momentum flux at the top is prescribed by the user |
---|
211 | IF ( use_top_fluxes .AND. constant_top_momentumflux ) THEN |
---|
212 | k = nzt |
---|
213 | ! |
---|
214 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
215 | kmzp = 0.25 * & |
---|
216 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
217 | kmzm = 0.25 * & |
---|
218 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
219 | |
---|
220 | tend(k,j,i) = tend(k,j,i) & |
---|
221 | & - ( kmzm * ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
222 | & ) * ddzw(k) & |
---|
223 | & + ( -vswst(j,i) & |
---|
224 | & - kmzm * ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
225 | & ) * ddzw(k) |
---|
226 | ENDIF |
---|
227 | |
---|
228 | ENDDO |
---|
229 | ENDDO |
---|
230 | |
---|
231 | END SUBROUTINE diffusion_v |
---|
232 | |
---|
233 | |
---|
234 | !------------------------------------------------------------------------------! |
---|
235 | ! Call for grid point i,j |
---|
236 | !------------------------------------------------------------------------------! |
---|
237 | SUBROUTINE diffusion_v_ij( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
238 | vsws, vswst, w ) |
---|
239 | |
---|
240 | USE control_parameters |
---|
241 | USE grid_variables |
---|
242 | USE indices |
---|
243 | |
---|
244 | IMPLICIT NONE |
---|
245 | |
---|
246 | INTEGER :: i, j, k |
---|
247 | REAL :: kmxm_x, kmxm_y, kmxp_x, kmxp_y, kmzm, kmzp |
---|
248 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_x(nxl-1:nxr+1) |
---|
249 | REAL :: tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
250 | REAL, DIMENSION(nzb:nzt+1) :: vsus |
---|
251 | REAL, DIMENSION(:,:), POINTER :: vsws, vswst |
---|
252 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
253 | |
---|
254 | ! |
---|
255 | !-- Compute horizontal diffusion |
---|
256 | DO k = nzb_v_outer(j,i)+1, nzt |
---|
257 | ! |
---|
258 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
259 | kmxp_x = 0.25 * ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
260 | kmxm_x = 0.25 * ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
261 | kmxp_y = kmxp_x |
---|
262 | kmxm_y = kmxm_x |
---|
263 | ! |
---|
264 | !-- Increase diffusion at the outflow boundary in case of non-cyclic |
---|
265 | !-- lateral boundaries. Damping is only needed for velocity components |
---|
266 | !-- parallel to the outflow boundary in the direction normal to the |
---|
267 | !-- outflow boundary. |
---|
268 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
269 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
270 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
271 | ENDIF |
---|
272 | |
---|
273 | tend(k,j,i) = tend(k,j,i) & |
---|
274 | & + ( kmxp_x * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
275 | & + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
276 | & - kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
277 | & - kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
278 | & ) * ddx & |
---|
279 | & + 2.0 * ( & |
---|
280 | & km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
281 | & - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
282 | & ) * ddy2 |
---|
283 | ENDDO |
---|
284 | |
---|
285 | ! |
---|
286 | !-- Wall functions at the left and right walls, respectively |
---|
287 | IF ( wall_v(j,i) /= 0.0 ) THEN |
---|
288 | |
---|
289 | ! |
---|
290 | !-- Calculate the horizontal momentum flux v'u' |
---|
291 | CALL wall_fluxes( i, j, nzb_v_inner(j,i)+1, nzb_v_outer(j,i), & |
---|
292 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
293 | |
---|
294 | DO k = nzb_v_inner(j,i)+1, nzb_v_outer(j,i) |
---|
295 | kmxp_x = 0.25 * & |
---|
296 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
297 | kmxm_x = 0.25 * & |
---|
298 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
299 | kmxp_y = kmxp_x |
---|
300 | kmxm_y = kmxm_x |
---|
301 | ! |
---|
302 | !-- Increase diffusion at the outflow boundary in case of |
---|
303 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
304 | !-- velocity components parallel to the outflow boundary in |
---|
305 | !-- the direction normal to the outflow boundary. |
---|
306 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
307 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
308 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
309 | ENDIF |
---|
310 | |
---|
311 | tend(k,j,i) = tend(k,j,i) & |
---|
312 | + 2.0 * ( & |
---|
313 | km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
314 | - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
315 | ) * ddy2 & |
---|
316 | + ( fxp(j,i) * ( & |
---|
317 | kmxp_x * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
318 | + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
319 | ) & |
---|
320 | - fxm(j,i) * ( & |
---|
321 | kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
322 | + kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
323 | ) & |
---|
324 | + wall_v(j,i) * vsus(k) & |
---|
325 | ) * ddx |
---|
326 | ENDDO |
---|
327 | ENDIF |
---|
328 | |
---|
329 | ! |
---|
330 | !-- Compute vertical diffusion. In case of simulating a Prandtl layer, |
---|
331 | !-- index k starts at nzb_v_inner+2. |
---|
332 | DO k = nzb_diff_v(j,i), nzt_diff |
---|
333 | ! |
---|
334 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
335 | kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
336 | kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
337 | |
---|
338 | tend(k,j,i) = tend(k,j,i) & |
---|
339 | & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
340 | & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
341 | & ) & |
---|
342 | & - kmzm * ( ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
343 | & + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
344 | & ) & |
---|
345 | & ) * ddzw(k) |
---|
346 | ENDDO |
---|
347 | |
---|
348 | ! |
---|
349 | !-- Vertical diffusion at the first grid point above the surface, if the |
---|
350 | !-- momentum flux at the bottom is given by the Prandtl law or if it is |
---|
351 | !-- prescribed by the user. |
---|
352 | !-- Difference quotient of the momentum flux is not formed over half of |
---|
353 | !-- the grid spacing (2.0*ddzw(k)) any more, since the comparison with |
---|
354 | !-- other (LES) modell showed that the values of the momentum flux becomes |
---|
355 | !-- too large in this case. |
---|
356 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
357 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
358 | IF ( use_surface_fluxes ) THEN |
---|
359 | k = nzb_v_inner(j,i)+1 |
---|
360 | ! |
---|
361 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
362 | kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
363 | kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
364 | |
---|
365 | tend(k,j,i) = tend(k,j,i) & |
---|
366 | & + ( kmzp * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
367 | & ) * ddzw(k) & |
---|
368 | & + ( kmzp * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
369 | & + vsws(j,i) & |
---|
370 | & ) * ddzw(k) |
---|
371 | ENDIF |
---|
372 | |
---|
373 | ! |
---|
374 | !-- Vertical diffusion at the first gridpoint below the top boundary, |
---|
375 | !-- if the momentum flux at the top is prescribed by the user |
---|
376 | IF ( use_top_fluxes .AND. constant_top_momentumflux ) THEN |
---|
377 | k = nzt |
---|
378 | ! |
---|
379 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
380 | kmzp = 0.25 * & |
---|
381 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
382 | kmzm = 0.25 * & |
---|
383 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
384 | |
---|
385 | tend(k,j,i) = tend(k,j,i) & |
---|
386 | & - ( kmzm * ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
387 | & ) * ddzw(k) & |
---|
388 | & + ( -vswst(j,i) & |
---|
389 | & - kmzm * ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
390 | & ) * ddzw(k) |
---|
391 | ENDIF |
---|
392 | |
---|
393 | END SUBROUTINE diffusion_v_ij |
---|
394 | |
---|
395 | END MODULE diffusion_v_mod |
---|