source: palm/trunk/SOURCE/diffusion_v.f90 @ 667

Last change on this file since 667 was 667, checked in by suehring, 11 years ago

summary:


Gryschka:

  • Coupling with different resolution and different numbers of PEs in ocean and atmosphere is available
  • Exchange of u and v from ocean surface to atmosphere surface
  • Mirror boundary condition for u and v at the bottom are replaced by dirichlet boundary conditions
  • Inflow turbulence is now defined by flucuations around spanwise mean
  • Bugfixes for cyclic_fill and constant_volume_flow

Suehring:

  • New advection added ( Wicker and Skamarock 5th order ), therefore:
    • New module advec_ws.f90
    • Modified exchange of ghost boundaries.
    • Modified evaluation of turbulent fluxes
    • New index bounds nxlg, nxrg, nysg, nyng

advec_ws.f90


Advection scheme for scalars and momentum using the flux formulation of
Wicker and Skamarock 5th order.
Additionally the module contains of a routine using for initialisation and
steering of the statical evaluation. The computation of turbulent fluxes takes
place inside the advection routines.
In case of vector architectures Dirichlet and Radiation boundary conditions are
outstanding and not available. Furthermore simulations within topography are
not possible so far. A further routine local_diss_ij is available and is used
if a control of dissipative fluxes is desired.

check_parameters.f90


Exchange of parameters between ocean and atmosphere via PE0
Check for illegal combination of ws-scheme and timestep scheme.
Check for topography and ws-scheme.
Check for not cyclic boundary conditions in combination with ws-scheme and
loop_optimization = 'vector'.
Check for call_psolver_at_all_substeps and ws-scheme for momentum_advec.

Different processor/grid topology in atmosphere and ocean is now allowed!
Bugfixes in checking for conserve_volume_flow_mode.

exchange_horiz.f90


Dynamic exchange of ghost points with nbgp_local to ensure that no useless
ghost points exchanged in case of multigrid. type_yz(0) and type_xz(0) used for
normal grid, the remaining types used for the several grid levels.
Exchange is done via MPI-Vectors with a dynamic value of ghost points which
depend on the advection scheme. Exchange of left and right PEs is 10% faster
with MPI-Vectors than without.

flow_statistics.f90


When advection is computed with ws-scheme, turbulent fluxes are already
computed in the respective advection routines and buffered in arrays
sums_xxxx_ws_l(). This is due to a consistent treatment of statistics
with the numerics and to avoid unphysical kinks near the surface. So some if-
requests has to be done to dicern between fluxes from ws-scheme other advection
schemes. Furthermore the computation of z_i is only done if the heat flux
exceeds a minimum value. This affects only simulations of a neutral boundary
layer and is due to reasons of computations in the advection scheme.

inflow_turbulence.f90


Using nbgp recycling planes for a better resolution of the turbulent flow near
the inflow.

init_grid.f90


Definition of new array bounds nxlg, nxrg, nysg, nyng on each PE.
Furthermore the allocation of arrays and steering of loops is done with these
parameters. Call of exchange_horiz are modified.
In case of dirichlet bounday condition at the bottom zu(0)=0.0
dzu_mg has to be set explicitly for a equally spaced grid near bottom.
ddzu_pres added to use a equally spaced grid near bottom.

init_pegrid.f90


Moved determination of target_id's from init_coupling
Determination of parameters needed for coupling (coupling_topology, ngp_a, ngp_o)
with different grid/processor-topology in ocean and atmosphere

Adaption of ngp_xy, ngp_y to a dynamic number of ghost points.
The maximum_grid_level changed from 1 to 0. 0 is the normal grid, 1 to
maximum_grid_level the grids for multigrid, in which 0 and 1 are normal grids.
This distinction is due to reasons of data exchange and performance for the
normal grid and grids in poismg.
The definition of MPI-Vectors adapted to a dynamic numer of ghost points.
New MPI-Vectors for data exchange between left and right boundaries added.
This is due to reasons of performance (10% faster).

ATTENTION: nnz_x undefined problem still has to be solved!!!!!!!!
TEST OUTPUT (TO BE REMOVED) logging mpi2 ierr values

parin.f90


Steering parameter dissipation_control added in inipar.

Makefile


Module advec_ws added.

Modules


Removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc

For coupling with different resolution in ocean and atmophere:
+nx_a, +nx_o, ny_a, +ny_o, ngp_a, ngp_o, +total_2d_o, +total_2d_a,
+coupling_topology

Buffer arrays for the left sided advective fluxes added in arrays_3d.
+flux_s_u, +flux_s_v, +flux_s_w, +diss_s_u, +diss_s_v, +diss_s_w,
+flux_s_pt, +diss_s_pt, +flux_s_e, +diss_s_e, +flux_s_q, +diss_s_q,
+flux_s_sa, +diss_s_sa
3d arrays for dissipation control added. (only necessary for vector arch.)
+var_x, +var_y, +var_z, +gamma_x, +gamma_y, +gamma_z
Default of momentum_advec and scalar_advec changed to 'ws-scheme' .
+exchange_mg added in control_parameters to steer the data exchange.
Parameters +nbgp, +nxlg, +nxrg, +nysg, +nyng added in indices.
flag array +boundary_flags added in indices to steer the degradation of order
of the advective fluxes when non-cyclic boundaries are used.
MPI-datatypes +type_y, +type_y_int and +type_yz for data_exchange added in
pegrid.
+sums_wsus_ws_l, +sums_wsvs_ws_l, +sums_us2_ws_l, +sums_vs2_ws_l,
+sums_ws2_ws_l, +sums_wspts_ws_l, +sums_wssas_ws_l, +sums_wsqs_ws_l
and +weight_substep added in statistics to steer the statistical evaluation
of turbulent fluxes in the advection routines.
LOGICALS +ws_scheme_sca and +ws_scheme_mom added to get a better performance
in prognostic_equations.
LOGICAL +dissipation_control control added to steer numerical dissipation
in ws-scheme.

Changed length of string run_description_header

pres.f90


New allocation of tend when ws-scheme and multigrid is used. This is due to
reasons of perforance of the data_exchange. The same is done with p after
poismg is called.
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng when no
multigrid is used. Calls of exchange_horiz are modified.

bugfix: After pressure correction no volume flow correction in case of
non-cyclic boundary conditions
(has to be done only before pressure correction)

Call of SOR routine is referenced with ddzu_pres.

prognostic_equations.f90


Calls of the advection routines with WS5 added.
Calls of ws_statistics added to set the statistical arrays to zero after each
time step.

advec_particles.f90


Declaration of de_dx, de_dy, de_dz adapted to additional ghost points.
Furthermore the calls of exchange_horiz were modified.

asselin_filter.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

average_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

boundary_conds.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng
Removed mirror boundary conditions for u and v at the bottom in case of
ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set
in init_3d_model

calc_liquid_water_content.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

calc_spectra.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng for
allocation of tend.

check_open.f90


Output of total array size was adapted to nbgp.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays local_2d and total_2d.
Calls of exchange_horiz are modified.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Skip-value skip_do_avs changed to a dynamic adaption of ghost points.

data_output_mask.f90


Calls of exchange_horiz are modified.

diffusion_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_s.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_u.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_v.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_w.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

exchange_horiz_2d.f90


Dynamic exchange of ghost points with nbgp, which depends on the advection
scheme. Exchange between left and right PEs is now done with MPI-vectors.

global_min_max.f90


Adapting of the index arrays, because MINLOC assumes lowerbound
at 1 and not at nbgp.

init_3d_model.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Call ws_init to initialize arrays needed for statistical evaluation and
optimization when ws-scheme is used.
Initial volume flow is now calculated by using the variable hom_sum.
Therefore the correction of initial volume flow for non-flat topography
removed (removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc)
Changed surface boundary conditions for u and v in case of ibc_uv_b == 0 from
mirror bc to dirichlet boundary conditions (u=v=0), so that k=nzb is
representative for the height z0

Bugfix: type conversion of '1' to 64bit for the MAX function (ngp_3d_inner)

init_coupling.f90


determination of target_id's moved to init_pegrid

init_pt_anomaly.f90


Call of exchange_horiz are modified.

init_rankine.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

init_slope.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

header.f90


Output of advection scheme.

poismg.f90


Calls of exchange_horiz are modified.

prandtl_fluxes.f90


Changed surface boundary conditions for u and v from mirror bc to dirichelt bc,
therefore u(uzb,:,:) and v(nzb,:,:) is now representative for the height z0
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

production_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

read_3d_binary.f90


+/- 1 replaced with +/- nbgp when swapping and allocating variables.

sor.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Call of exchange_horiz are modified.
bug removed in declaration of ddzw(), nz replaced by nzt+1

subsidence.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

sum_up_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

surface_coupler.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in
MPI_SEND() and MPI_RECV.
additional case for nonequivalent processor and grid topopolgy in ocean and
atmosphere added (coupling_topology = 1)

Added exchange of u and v from Ocean to Atmosphere

time_integration.f90


Calls of exchange_horiz are modified.
Adaption to slooping surface.

timestep.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_3d_data_averaging.f90, user_data_output_2d.f90, user_data_output_3d.f90,
user_actions.f90, user_init.f90, user_init_plant_canopy.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_read_restart_data.f90


Allocation with nbgp.

wall_fluxes.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

write_compressed.f90


Array bounds and nx, ny adapted with nbgp.

sor.f90


bug removed in declaration of ddzw(), nz replaced by nzt+1

  • Property svn:keywords set to Id
File size: 17.7 KB
Line 
1 MODULE diffusion_v_mod
2
3!------------------------------------------------------------------------------!
4! Current revisions:
5! -----------------
6! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng
7!
8! Former revisions:
9! -----------------
10! $Id: diffusion_v.f90 667 2010-12-23 12:06:00Z suehring $
11!
12! 366 2009-08-25 08:06:27Z raasch
13! bc_lr replaced by bc_lr_cyc
14!
15! 106 2007-08-16 14:30:26Z raasch
16! Momentumflux at top (vswst) included as boundary condition,
17! j loop is starting from nysv (needed for non-cyclic boundary conditions)
18!
19! 75 2007-03-22 09:54:05Z raasch
20! Wall functions now include diabatic conditions, call of routine wall_fluxes,
21! z0 removed from argument list, vynp eliminated
22!
23! 20 2007-02-26 00:12:32Z raasch
24! Bugfix: ddzw dimensioned 1:nzt"+1"
25!
26! RCS Log replace by Id keyword, revision history cleaned up
27!
28! Revision 1.15  2006/02/23 10:36:00  raasch
29! nzb_2d replaced by nzb_v_outer in horizontal diffusion and by nzb_v_inner
30! or nzb_diff_v, respectively, in vertical diffusion,
31! wall functions added for north and south walls, +z0 in argument list,
32! terms containing w(k-1,..) are removed from the Prandtl-layer equation
33! because they cause errors at the edges of topography
34! WARNING: loops containing the MAX function are still not properly vectorized!
35!
36! Revision 1.1  1997/09/12 06:24:01  raasch
37! Initial revision
38!
39!
40! Description:
41! ------------
42! Diffusion term of the v-component
43!------------------------------------------------------------------------------!
44
45    USE wall_fluxes_mod
46
47    PRIVATE
48    PUBLIC diffusion_v
49
50    INTERFACE diffusion_v
51       MODULE PROCEDURE diffusion_v
52       MODULE PROCEDURE diffusion_v_ij
53    END INTERFACE diffusion_v
54
55 CONTAINS
56
57
58!------------------------------------------------------------------------------!
59! Call for all grid points
60!------------------------------------------------------------------------------!
61    SUBROUTINE diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, &
62                            vswst, w )
63
64       USE control_parameters
65       USE grid_variables
66       USE indices
67
68       IMPLICIT NONE
69
70       INTEGER ::  i, j, k
71       REAL    ::  kmxm_x, kmxm_y, kmxp_x, kmxp_y, kmzm, kmzp
72       REAL    ::  ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_x(nxlg:nxrg)
73       REAL    ::  tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)
74       REAL, DIMENSION(:,:),   POINTER ::  vsws, vswst
75       REAL, DIMENSION(:,:,:), POINTER ::  km, u, v, w
76       REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) ::  vsus
77
78!
79!--    First calculate horizontal momentum flux v'u' at vertical walls,
80!--    if neccessary
81       IF ( topography /= 'flat' )  THEN
82          CALL wall_fluxes( vsus, 0.0, 1.0, 0.0, 0.0, nzb_v_inner, &
83                            nzb_v_outer, wall_v )
84       ENDIF
85
86       DO  i = nxl, nxr
87          DO  j = nysv, nyn
88!
89!--          Compute horizontal diffusion
90             DO  k = nzb_v_outer(j,i)+1, nzt
91!
92!--             Interpolate eddy diffusivities on staggered gridpoints
93                kmxp_x = 0.25 * &
94                         ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) )
95                kmxm_x = 0.25 * &
96                         ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) )
97                kmxp_y = kmxp_x
98                kmxm_y = kmxm_x
99!
100!--             Increase diffusion at the outflow boundary in case of
101!--             non-cyclic lateral boundaries. Damping is only needed for
102!--             velocity components parallel to the outflow boundary in
103!--             the direction normal to the outflow boundary.
104                IF ( .NOT. bc_lr_cyc )  THEN
105                   kmxp_x = MAX( kmxp_x, km_damp_x(i) )
106                   kmxm_x = MAX( kmxm_x, km_damp_x(i) )
107                ENDIF
108
109                tend(k,j,i) = tend(k,j,i)                                    &
110                      & + ( kmxp_x * ( v(k,j,i+1) - v(k,j,i)     ) * ddx     &
111                      &   + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy     &
112                      &   - kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx         &
113                      &   - kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy         &
114                      &   ) * ddx                                            &
115                      & + 2.0 * (                                            &
116                      &           km(k,j,i)   * ( v(k,j+1,i) - v(k,j,i) )    &
117                      &         - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) )    &
118                      &         ) * ddy2
119             ENDDO
120
121!
122!--          Wall functions at the left and right walls, respectively
123             IF ( wall_v(j,i) /= 0.0 )  THEN
124
125                DO  k = nzb_v_inner(j,i)+1, nzb_v_outer(j,i)
126                   kmxp_x = 0.25 * &
127                            ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) )
128                   kmxm_x = 0.25 * &
129                            ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) )
130                   kmxp_y = kmxp_x
131                   kmxm_y = kmxm_x
132!
133!--                Increase diffusion at the outflow boundary in case of
134!--                non-cyclic lateral boundaries. Damping is only needed for
135!--                velocity components parallel to the outflow boundary in
136!--                the direction normal to the outflow boundary.
137                   IF ( .NOT. bc_lr_cyc )  THEN
138                      kmxp_x = MAX( kmxp_x, km_damp_x(i) )
139                      kmxm_x = MAX( kmxm_x, km_damp_x(i) )
140                   ENDIF
141
142                   tend(k,j,i) = tend(k,j,i)                                   &
143                                 + 2.0 * (                                     &
144                                       km(k,j,i)   * ( v(k,j+1,i) - v(k,j,i) ) &
145                                     - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) &
146                                         ) * ddy2                              &
147                                 + (   fxp(j,i) * (                            &
148                                  kmxp_x * ( v(k,j,i+1) - v(k,j,i)     ) * ddx &
149                                + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy &
150                                                  )                            &
151                                     - fxm(j,i) * (                            &
152                                  kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx     &
153                                + kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy     &
154                                                  )                            &
155                                     + wall_v(j,i) * vsus(k,j,i)               &
156                                   ) * ddx
157                ENDDO
158             ENDIF
159
160!
161!--          Compute vertical diffusion. In case of simulating a Prandtl
162!--          layer, index k starts at nzb_v_inner+2.
163             DO  k = nzb_diff_v(j,i), nzt_diff
164!
165!--             Interpolate eddy diffusivities on staggered gridpoints
166                kmzp = 0.25 * &
167                       ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) )
168                kmzm = 0.25 * &
169                       ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) )
170
171                tend(k,j,i) = tend(k,j,i)                                    &
172                      & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1)   &
173                      &            + ( w(k,j,i) - w(k,j-1,i) ) * ddy         &
174                      &            )                                         &
175                      &   - kmzm * ( ( v(k,j,i)   - v(k-1,j,i)   ) * ddzu(k) &
176                      &            + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy     &
177                      &            )                                         &
178                      &   ) * ddzw(k)
179             ENDDO
180
181!
182!--          Vertical diffusion at the first grid point above the surface,
183!--          if the momentum flux at the bottom is given by the Prandtl law
184!--          or if it is prescribed by the user.
185!--          Difference quotient of the momentum flux is not formed over
186!--          half of the grid spacing (2.0*ddzw(k)) any more, since the
187!--          comparison with other (LES) modell showed that the values of
188!--          the momentum flux becomes too large in this case.
189!--          The term containing w(k-1,..) (see above equation) is removed here
190!--          because the vertical velocity is assumed to be zero at the surface.
191             IF ( use_surface_fluxes )  THEN
192                k = nzb_v_inner(j,i)+1
193!
194!--             Interpolate eddy diffusivities on staggered gridpoints
195                kmzp = 0.25 * &
196                       ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) )
197                kmzm = 0.25 * &
198                       ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) )
199
200                tend(k,j,i) = tend(k,j,i)                                    &
201                      & + ( kmzp * ( w(k,j,i) - w(k,j-1,i)     ) * ddy       &
202                      &   ) * ddzw(k)                                        &
203                      & + ( kmzp * ( v(k+1,j,i) - v(k,j,i)     ) * ddzu(k+1) &
204                      &   + vsws(j,i)                                        &
205                      &   ) * ddzw(k)
206             ENDIF
207
208!
209!--          Vertical diffusion at the first gridpoint below the top boundary,
210!--          if the momentum flux at the top is prescribed by the user
211             IF ( use_top_fluxes  .AND.  constant_top_momentumflux )  THEN
212                k = nzt
213!
214!--             Interpolate eddy diffusivities on staggered gridpoints
215                kmzp = 0.25 * &
216                       ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) )
217                kmzm = 0.25 * &
218                       ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) )
219
220                tend(k,j,i) = tend(k,j,i)                                    &
221                      & - ( kmzm *  ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy      &
222                      &   ) * ddzw(k)                                        &
223                      & + ( -vswst(j,i)                                      &
224                      &   - kmzm * ( v(k,j,i)   - v(k-1,j,i)    ) * ddzu(k)  &
225                      &   ) * ddzw(k)
226             ENDIF
227
228          ENDDO
229       ENDDO
230
231    END SUBROUTINE diffusion_v
232
233
234!------------------------------------------------------------------------------!
235! Call for grid point i,j
236!------------------------------------------------------------------------------!
237    SUBROUTINE diffusion_v_ij( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, &
238                               vsws, vswst, w )
239
240       USE control_parameters
241       USE grid_variables
242       USE indices
243
244       IMPLICIT NONE
245
246       INTEGER ::  i, j, k
247       REAL    ::  kmxm_x, kmxm_y, kmxp_x, kmxp_y, kmzm, kmzp
248       REAL    ::  ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_x(nxlg:nxrg)
249       REAL    ::  tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)
250       REAL, DIMENSION(nzb:nzt+1)      ::  vsus
251       REAL, DIMENSION(:,:),   POINTER ::  vsws, vswst
252       REAL, DIMENSION(:,:,:), POINTER ::  km, u, v, w
253
254!
255!--    Compute horizontal diffusion
256       DO  k = nzb_v_outer(j,i)+1, nzt
257!
258!--       Interpolate eddy diffusivities on staggered gridpoints
259          kmxp_x = 0.25 * ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) )
260          kmxm_x = 0.25 * ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) )
261          kmxp_y = kmxp_x
262          kmxm_y = kmxm_x
263!
264!--       Increase diffusion at the outflow boundary in case of non-cyclic
265!--       lateral boundaries. Damping is only needed for velocity components
266!--       parallel to the outflow boundary in the direction normal to the
267!--       outflow boundary.
268          IF ( .NOT. bc_lr_cyc )  THEN
269             kmxp_x = MAX( kmxp_x, km_damp_x(i) )
270             kmxm_x = MAX( kmxm_x, km_damp_x(i) )
271          ENDIF
272
273          tend(k,j,i) = tend(k,j,i)                                          &
274                      & + ( kmxp_x * ( v(k,j,i+1) - v(k,j,i)     ) * ddx     &
275                      &   + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy     &
276                      &   - kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx         &
277                      &   - kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy         &
278                      &   ) * ddx                                            &
279                      & + 2.0 * (                                            &
280                      &           km(k,j,i)   * ( v(k,j+1,i) - v(k,j,i) )    &
281                      &         - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) )    &
282                      &         ) * ddy2
283       ENDDO
284
285!
286!--    Wall functions at the left and right walls, respectively
287       IF ( wall_v(j,i) /= 0.0 )  THEN
288
289!
290!--       Calculate the horizontal momentum flux v'u'
291          CALL wall_fluxes( i, j, nzb_v_inner(j,i)+1, nzb_v_outer(j,i), &
292                            vsus, 0.0, 1.0, 0.0, 0.0 )
293
294          DO  k = nzb_v_inner(j,i)+1, nzb_v_outer(j,i)
295             kmxp_x = 0.25 * &
296                      ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) )
297             kmxm_x = 0.25 * &
298                      ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) )
299             kmxp_y = kmxp_x
300             kmxm_y = kmxm_x
301!
302!--          Increase diffusion at the outflow boundary in case of
303!--          non-cyclic lateral boundaries. Damping is only needed for
304!--          velocity components parallel to the outflow boundary in
305!--          the direction normal to the outflow boundary.
306             IF ( .NOT. bc_lr_cyc )  THEN
307                kmxp_x = MAX( kmxp_x, km_damp_x(i) )
308                kmxm_x = MAX( kmxm_x, km_damp_x(i) )
309             ENDIF
310
311             tend(k,j,i) = tend(k,j,i)                                         &
312                                 + 2.0 * (                                     &
313                                       km(k,j,i)   * ( v(k,j+1,i) - v(k,j,i) ) &
314                                     - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) &
315                                         ) * ddy2                              &
316                                 + (   fxp(j,i) * (                            &
317                                  kmxp_x * ( v(k,j,i+1) - v(k,j,i)     ) * ddx &
318                                + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy &
319                                                  )                            &
320                                     - fxm(j,i) * (                            &
321                                  kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx     &
322                                + kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy     &
323                                                  )                            &
324                                     + wall_v(j,i) * vsus(k)                   &
325                                   ) * ddx
326          ENDDO
327       ENDIF
328
329!
330!--    Compute vertical diffusion. In case of simulating a Prandtl layer,
331!--    index k starts at nzb_v_inner+2.
332       DO  k = nzb_diff_v(j,i), nzt_diff
333!
334!--       Interpolate eddy diffusivities on staggered gridpoints
335          kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) )
336          kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) )
337
338          tend(k,j,i) = tend(k,j,i)                                          &
339                      & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1)   &
340                      &            + ( w(k,j,i) - w(k,j-1,i) ) * ddy         &
341                      &            )                                         &
342                      &   - kmzm * ( ( v(k,j,i)   - v(k-1,j,i)   ) * ddzu(k) &
343                      &            + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy     &
344                      &            )                                         &
345                      &   ) * ddzw(k)
346       ENDDO
347
348!
349!--    Vertical diffusion at the first grid point above the surface, if the
350!--    momentum flux at the bottom is given by the Prandtl law or if it is
351!--    prescribed by the user.
352!--    Difference quotient of the momentum flux is not formed over half of
353!--    the grid spacing (2.0*ddzw(k)) any more, since the comparison with
354!--    other (LES) modell showed that the values of the momentum flux becomes
355!--    too large in this case.
356!--    The term containing w(k-1,..) (see above equation) is removed here
357!--    because the vertical velocity is assumed to be zero at the surface.
358       IF ( use_surface_fluxes )  THEN
359          k = nzb_v_inner(j,i)+1
360!
361!--       Interpolate eddy diffusivities on staggered gridpoints
362          kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) )
363          kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) )
364
365          tend(k,j,i) = tend(k,j,i)                                          &
366                      & + ( kmzp * ( w(k,j,i) - w(k,j-1,i)     ) * ddy       &
367                      &   ) * ddzw(k)                                        &
368                      & + ( kmzp * ( v(k+1,j,i) - v(k,j,i)     ) * ddzu(k+1) &
369                      &   + vsws(j,i)                                        &
370                      &   ) * ddzw(k)
371       ENDIF
372
373!
374!--    Vertical diffusion at the first gridpoint below the top boundary,
375!--    if the momentum flux at the top is prescribed by the user
376       IF ( use_top_fluxes  .AND.  constant_top_momentumflux )  THEN
377          k = nzt
378!
379!--       Interpolate eddy diffusivities on staggered gridpoints
380          kmzp = 0.25 * &
381                 ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) )
382          kmzm = 0.25 * &
383                 ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) )
384
385          tend(k,j,i) = tend(k,j,i)                                          &
386                      & - ( kmzm *  ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy      &
387                      &   ) * ddzw(k)                                        &
388                      & + ( -vswst(j,i)                                      &
389                      &   - kmzm * ( v(k,j,i)   - v(k-1,j,i)    ) * ddzu(k)  &
390                      &   ) * ddzw(k)
391       ENDIF
392
393    END SUBROUTINE diffusion_v_ij
394
395 END MODULE diffusion_v_mod
Note: See TracBrowser for help on using the repository browser.