[1] | 1 | MODULE diffusion_v_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[392] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: diffusion_v.f90 484 2010-02-05 07:36:54Z helmke $ |
---|
[39] | 11 | ! |
---|
[392] | 12 | ! 366 2009-08-25 08:06:27Z raasch |
---|
| 13 | ! bc_lr replaced by bc_lr_cyc |
---|
| 14 | ! |
---|
[110] | 15 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 16 | ! Momentumflux at top (vswst) included as boundary condition, |
---|
| 17 | ! j loop is starting from nysv (needed for non-cyclic boundary conditions) |
---|
| 18 | ! |
---|
[77] | 19 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 20 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes, |
---|
| 21 | ! z0 removed from argument list, vynp eliminated |
---|
| 22 | ! |
---|
[39] | 23 | ! 20 2007-02-26 00:12:32Z raasch |
---|
| 24 | ! Bugfix: ddzw dimensioned 1:nzt"+1" |
---|
| 25 | ! |
---|
[3] | 26 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 27 | ! |
---|
[1] | 28 | ! Revision 1.15 2006/02/23 10:36:00 raasch |
---|
| 29 | ! nzb_2d replaced by nzb_v_outer in horizontal diffusion and by nzb_v_inner |
---|
| 30 | ! or nzb_diff_v, respectively, in vertical diffusion, |
---|
| 31 | ! wall functions added for north and south walls, +z0 in argument list, |
---|
| 32 | ! terms containing w(k-1,..) are removed from the Prandtl-layer equation |
---|
| 33 | ! because they cause errors at the edges of topography |
---|
| 34 | ! WARNING: loops containing the MAX function are still not properly vectorized! |
---|
| 35 | ! |
---|
| 36 | ! Revision 1.1 1997/09/12 06:24:01 raasch |
---|
| 37 | ! Initial revision |
---|
| 38 | ! |
---|
| 39 | ! |
---|
| 40 | ! Description: |
---|
| 41 | ! ------------ |
---|
| 42 | ! Diffusion term of the v-component |
---|
| 43 | !------------------------------------------------------------------------------! |
---|
| 44 | |
---|
[56] | 45 | USE wall_fluxes_mod |
---|
| 46 | |
---|
[1] | 47 | PRIVATE |
---|
| 48 | PUBLIC diffusion_v |
---|
| 49 | |
---|
| 50 | INTERFACE diffusion_v |
---|
| 51 | MODULE PROCEDURE diffusion_v |
---|
| 52 | MODULE PROCEDURE diffusion_v_ij |
---|
| 53 | END INTERFACE diffusion_v |
---|
| 54 | |
---|
| 55 | CONTAINS |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | !------------------------------------------------------------------------------! |
---|
| 59 | ! Call for all grid points |
---|
| 60 | !------------------------------------------------------------------------------! |
---|
[102] | 61 | SUBROUTINE diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, & |
---|
| 62 | vswst, w ) |
---|
[1] | 63 | |
---|
| 64 | USE control_parameters |
---|
| 65 | USE grid_variables |
---|
| 66 | USE indices |
---|
| 67 | |
---|
| 68 | IMPLICIT NONE |
---|
| 69 | |
---|
| 70 | INTEGER :: i, j, k |
---|
[51] | 71 | REAL :: kmxm_x, kmxm_y, kmxp_x, kmxp_y, kmzm, kmzp |
---|
[20] | 72 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_x(nxl-1:nxr+1) |
---|
[1] | 73 | REAL :: tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
[102] | 74 | REAL, DIMENSION(:,:), POINTER :: vsws, vswst |
---|
[1] | 75 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
[75] | 76 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: vsus |
---|
[1] | 77 | |
---|
[56] | 78 | ! |
---|
| 79 | !-- First calculate horizontal momentum flux v'u' at vertical walls, |
---|
| 80 | !-- if neccessary |
---|
| 81 | IF ( topography /= 'flat' ) THEN |
---|
[75] | 82 | CALL wall_fluxes( vsus, 0.0, 1.0, 0.0, 0.0, nzb_v_inner, & |
---|
[56] | 83 | nzb_v_outer, wall_v ) |
---|
| 84 | ENDIF |
---|
| 85 | |
---|
[1] | 86 | DO i = nxl, nxr |
---|
[106] | 87 | DO j = nysv, nyn |
---|
[1] | 88 | ! |
---|
| 89 | !-- Compute horizontal diffusion |
---|
| 90 | DO k = nzb_v_outer(j,i)+1, nzt |
---|
| 91 | ! |
---|
| 92 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 93 | kmxp_x = 0.25 * & |
---|
| 94 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
| 95 | kmxm_x = 0.25 * & |
---|
| 96 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
| 97 | kmxp_y = kmxp_x |
---|
| 98 | kmxm_y = kmxm_x |
---|
| 99 | ! |
---|
| 100 | !-- Increase diffusion at the outflow boundary in case of |
---|
| 101 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
| 102 | !-- velocity components parallel to the outflow boundary in |
---|
| 103 | !-- the direction normal to the outflow boundary. |
---|
[366] | 104 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1] | 105 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
| 106 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
| 107 | ENDIF |
---|
| 108 | |
---|
| 109 | tend(k,j,i) = tend(k,j,i) & |
---|
| 110 | & + ( kmxp_x * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
| 111 | & + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
| 112 | & - kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 113 | & - kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
| 114 | & ) * ddx & |
---|
| 115 | & + 2.0 * ( & |
---|
| 116 | & km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
| 117 | & - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
| 118 | & ) * ddy2 |
---|
| 119 | ENDDO |
---|
| 120 | |
---|
| 121 | ! |
---|
| 122 | !-- Wall functions at the left and right walls, respectively |
---|
| 123 | IF ( wall_v(j,i) /= 0.0 ) THEN |
---|
[51] | 124 | |
---|
[1] | 125 | DO k = nzb_v_inner(j,i)+1, nzb_v_outer(j,i) |
---|
| 126 | kmxp_x = 0.25 * & |
---|
| 127 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
| 128 | kmxm_x = 0.25 * & |
---|
| 129 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
| 130 | kmxp_y = kmxp_x |
---|
| 131 | kmxm_y = kmxm_x |
---|
| 132 | ! |
---|
| 133 | !-- Increase diffusion at the outflow boundary in case of |
---|
| 134 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
| 135 | !-- velocity components parallel to the outflow boundary in |
---|
| 136 | !-- the direction normal to the outflow boundary. |
---|
[366] | 137 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1] | 138 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
| 139 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
| 140 | ENDIF |
---|
| 141 | |
---|
| 142 | tend(k,j,i) = tend(k,j,i) & |
---|
| 143 | + 2.0 * ( & |
---|
| 144 | km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
| 145 | - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
| 146 | ) * ddy2 & |
---|
| 147 | + ( fxp(j,i) * ( & |
---|
| 148 | kmxp_x * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
| 149 | + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
| 150 | ) & |
---|
| 151 | - fxm(j,i) * ( & |
---|
| 152 | kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 153 | + kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
| 154 | ) & |
---|
[56] | 155 | + wall_v(j,i) * vsus(k,j,i) & |
---|
[1] | 156 | ) * ddx |
---|
| 157 | ENDDO |
---|
| 158 | ENDIF |
---|
| 159 | |
---|
| 160 | ! |
---|
| 161 | !-- Compute vertical diffusion. In case of simulating a Prandtl |
---|
| 162 | !-- layer, index k starts at nzb_v_inner+2. |
---|
[102] | 163 | DO k = nzb_diff_v(j,i), nzt_diff |
---|
[1] | 164 | ! |
---|
| 165 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 166 | kmzp = 0.25 * & |
---|
| 167 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 168 | kmzm = 0.25 * & |
---|
| 169 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 170 | |
---|
| 171 | tend(k,j,i) = tend(k,j,i) & |
---|
| 172 | & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 173 | & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 174 | & ) & |
---|
| 175 | & - kmzm * ( ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
| 176 | & + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
| 177 | & ) & |
---|
| 178 | & ) * ddzw(k) |
---|
| 179 | ENDDO |
---|
| 180 | |
---|
| 181 | ! |
---|
| 182 | !-- Vertical diffusion at the first grid point above the surface, |
---|
| 183 | !-- if the momentum flux at the bottom is given by the Prandtl law |
---|
| 184 | !-- or if it is prescribed by the user. |
---|
| 185 | !-- Difference quotient of the momentum flux is not formed over |
---|
| 186 | !-- half of the grid spacing (2.0*ddzw(k)) any more, since the |
---|
| 187 | !-- comparison with other (LES) modell showed that the values of |
---|
| 188 | !-- the momentum flux becomes too large in this case. |
---|
| 189 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
| 190 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
| 191 | IF ( use_surface_fluxes ) THEN |
---|
| 192 | k = nzb_v_inner(j,i)+1 |
---|
| 193 | ! |
---|
| 194 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 195 | kmzp = 0.25 * & |
---|
| 196 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 197 | kmzm = 0.25 * & |
---|
| 198 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 199 | |
---|
| 200 | tend(k,j,i) = tend(k,j,i) & |
---|
| 201 | & + ( kmzp * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 202 | & ) * ddzw(k) & |
---|
[102] | 203 | & + ( kmzp * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
[1] | 204 | & + vsws(j,i) & |
---|
| 205 | & ) * ddzw(k) |
---|
| 206 | ENDIF |
---|
| 207 | |
---|
[102] | 208 | ! |
---|
| 209 | !-- Vertical diffusion at the first gridpoint below the top boundary, |
---|
| 210 | !-- if the momentum flux at the top is prescribed by the user |
---|
[103] | 211 | IF ( use_top_fluxes .AND. constant_top_momentumflux ) THEN |
---|
[102] | 212 | k = nzt |
---|
| 213 | ! |
---|
| 214 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 215 | kmzp = 0.25 * & |
---|
| 216 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 217 | kmzm = 0.25 * & |
---|
| 218 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 219 | |
---|
| 220 | tend(k,j,i) = tend(k,j,i) & |
---|
| 221 | & - ( kmzm * ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
| 222 | & ) * ddzw(k) & |
---|
| 223 | & + ( -vswst(j,i) & |
---|
| 224 | & - kmzm * ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
| 225 | & ) * ddzw(k) |
---|
| 226 | ENDIF |
---|
| 227 | |
---|
[1] | 228 | ENDDO |
---|
| 229 | ENDDO |
---|
| 230 | |
---|
| 231 | END SUBROUTINE diffusion_v |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | !------------------------------------------------------------------------------! |
---|
| 235 | ! Call for grid point i,j |
---|
| 236 | !------------------------------------------------------------------------------! |
---|
| 237 | SUBROUTINE diffusion_v_ij( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 238 | vsws, vswst, w ) |
---|
[1] | 239 | |
---|
| 240 | USE control_parameters |
---|
| 241 | USE grid_variables |
---|
| 242 | USE indices |
---|
| 243 | |
---|
| 244 | IMPLICIT NONE |
---|
| 245 | |
---|
| 246 | INTEGER :: i, j, k |
---|
[51] | 247 | REAL :: kmxm_x, kmxm_y, kmxp_x, kmxp_y, kmzm, kmzp |
---|
[20] | 248 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_x(nxl-1:nxr+1) |
---|
[1] | 249 | REAL :: tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
[51] | 250 | REAL, DIMENSION(nzb:nzt+1) :: vsus |
---|
[102] | 251 | REAL, DIMENSION(:,:), POINTER :: vsws, vswst |
---|
[1] | 252 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
| 253 | |
---|
| 254 | ! |
---|
| 255 | !-- Compute horizontal diffusion |
---|
| 256 | DO k = nzb_v_outer(j,i)+1, nzt |
---|
| 257 | ! |
---|
| 258 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 259 | kmxp_x = 0.25 * ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
| 260 | kmxm_x = 0.25 * ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
| 261 | kmxp_y = kmxp_x |
---|
| 262 | kmxm_y = kmxm_x |
---|
| 263 | ! |
---|
| 264 | !-- Increase diffusion at the outflow boundary in case of non-cyclic |
---|
| 265 | !-- lateral boundaries. Damping is only needed for velocity components |
---|
| 266 | !-- parallel to the outflow boundary in the direction normal to the |
---|
| 267 | !-- outflow boundary. |
---|
[366] | 268 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1] | 269 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
| 270 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
| 271 | ENDIF |
---|
| 272 | |
---|
| 273 | tend(k,j,i) = tend(k,j,i) & |
---|
| 274 | & + ( kmxp_x * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
| 275 | & + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
| 276 | & - kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 277 | & - kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
| 278 | & ) * ddx & |
---|
| 279 | & + 2.0 * ( & |
---|
| 280 | & km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
| 281 | & - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
| 282 | & ) * ddy2 |
---|
| 283 | ENDDO |
---|
| 284 | |
---|
| 285 | ! |
---|
| 286 | !-- Wall functions at the left and right walls, respectively |
---|
| 287 | IF ( wall_v(j,i) /= 0.0 ) THEN |
---|
[51] | 288 | |
---|
| 289 | ! |
---|
| 290 | !-- Calculate the horizontal momentum flux v'u' |
---|
| 291 | CALL wall_fluxes( i, j, nzb_v_inner(j,i)+1, nzb_v_outer(j,i), & |
---|
| 292 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
| 293 | |
---|
[1] | 294 | DO k = nzb_v_inner(j,i)+1, nzb_v_outer(j,i) |
---|
| 295 | kmxp_x = 0.25 * & |
---|
| 296 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
| 297 | kmxm_x = 0.25 * & |
---|
| 298 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
| 299 | kmxp_y = kmxp_x |
---|
| 300 | kmxm_y = kmxm_x |
---|
| 301 | ! |
---|
| 302 | !-- Increase diffusion at the outflow boundary in case of |
---|
| 303 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
| 304 | !-- velocity components parallel to the outflow boundary in |
---|
| 305 | !-- the direction normal to the outflow boundary. |
---|
[366] | 306 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1] | 307 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
| 308 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
| 309 | ENDIF |
---|
| 310 | |
---|
| 311 | tend(k,j,i) = tend(k,j,i) & |
---|
| 312 | + 2.0 * ( & |
---|
| 313 | km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
| 314 | - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
| 315 | ) * ddy2 & |
---|
| 316 | + ( fxp(j,i) * ( & |
---|
| 317 | kmxp_x * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
| 318 | + kmxp_y * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
| 319 | ) & |
---|
| 320 | - fxm(j,i) * ( & |
---|
| 321 | kmxm_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 322 | + kmxm_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
| 323 | ) & |
---|
[51] | 324 | + wall_v(j,i) * vsus(k) & |
---|
[1] | 325 | ) * ddx |
---|
| 326 | ENDDO |
---|
| 327 | ENDIF |
---|
| 328 | |
---|
| 329 | ! |
---|
| 330 | !-- Compute vertical diffusion. In case of simulating a Prandtl layer, |
---|
| 331 | !-- index k starts at nzb_v_inner+2. |
---|
[102] | 332 | DO k = nzb_diff_v(j,i), nzt_diff |
---|
[1] | 333 | ! |
---|
| 334 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 335 | kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 336 | kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 337 | |
---|
| 338 | tend(k,j,i) = tend(k,j,i) & |
---|
| 339 | & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 340 | & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 341 | & ) & |
---|
| 342 | & - kmzm * ( ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
| 343 | & + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
| 344 | & ) & |
---|
| 345 | & ) * ddzw(k) |
---|
| 346 | ENDDO |
---|
| 347 | |
---|
| 348 | ! |
---|
| 349 | !-- Vertical diffusion at the first grid point above the surface, if the |
---|
| 350 | !-- momentum flux at the bottom is given by the Prandtl law or if it is |
---|
| 351 | !-- prescribed by the user. |
---|
| 352 | !-- Difference quotient of the momentum flux is not formed over half of |
---|
| 353 | !-- the grid spacing (2.0*ddzw(k)) any more, since the comparison with |
---|
| 354 | !-- other (LES) modell showed that the values of the momentum flux becomes |
---|
| 355 | !-- too large in this case. |
---|
| 356 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
| 357 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
| 358 | IF ( use_surface_fluxes ) THEN |
---|
| 359 | k = nzb_v_inner(j,i)+1 |
---|
| 360 | ! |
---|
| 361 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 362 | kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 363 | kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 364 | |
---|
| 365 | tend(k,j,i) = tend(k,j,i) & |
---|
| 366 | & + ( kmzp * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 367 | & ) * ddzw(k) & |
---|
[102] | 368 | & + ( kmzp * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
[1] | 369 | & + vsws(j,i) & |
---|
| 370 | & ) * ddzw(k) |
---|
| 371 | ENDIF |
---|
| 372 | |
---|
[102] | 373 | ! |
---|
| 374 | !-- Vertical diffusion at the first gridpoint below the top boundary, |
---|
| 375 | !-- if the momentum flux at the top is prescribed by the user |
---|
[103] | 376 | IF ( use_top_fluxes .AND. constant_top_momentumflux ) THEN |
---|
[102] | 377 | k = nzt |
---|
| 378 | ! |
---|
| 379 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 380 | kmzp = 0.25 * & |
---|
| 381 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 382 | kmzm = 0.25 * & |
---|
| 383 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 384 | |
---|
| 385 | tend(k,j,i) = tend(k,j,i) & |
---|
| 386 | & - ( kmzm * ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
| 387 | & ) * ddzw(k) & |
---|
| 388 | & + ( -vswst(j,i) & |
---|
| 389 | & - kmzm * ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
| 390 | & ) * ddzw(k) |
---|
| 391 | ENDIF |
---|
| 392 | |
---|
[1] | 393 | END SUBROUTINE diffusion_v_ij |
---|
| 394 | |
---|
| 395 | END MODULE diffusion_v_mod |
---|