[1] | 1 | SUBROUTINE boundary_conds( range ) |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[768] | 6 | ! |
---|
[667] | 7 | ! |
---|
[1] | 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: boundary_conds.f90 768 2011-10-14 06:57:15Z maronga $ |
---|
[39] | 11 | ! |
---|
[768] | 12 | ! 767 2011-10-14 06:39:12Z raasch |
---|
| 13 | ! ug,vg replaced by u_init,v_init as the Dirichlet top boundary condition |
---|
| 14 | ! |
---|
[668] | 15 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 16 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 17 | ! Removed mirror boundary conditions for u and v at the bottom in case of |
---|
| 18 | ! ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set |
---|
| 19 | ! in init_3d_model |
---|
| 20 | ! |
---|
[110] | 21 | ! 107 2007-08-17 13:54:45Z raasch |
---|
| 22 | ! Boundary conditions for temperature adjusted for coupled runs, |
---|
| 23 | ! bugfixes for the radiation boundary conditions at the outflow: radiation |
---|
| 24 | ! conditions are used for every substep, phase speeds are calculated for the |
---|
| 25 | ! first Runge-Kutta substep only and then reused, several index values changed |
---|
| 26 | ! |
---|
[98] | 27 | ! 95 2007-06-02 16:48:38Z raasch |
---|
| 28 | ! Boundary conditions for salinity added |
---|
| 29 | ! |
---|
[77] | 30 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 31 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
| 32 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
| 33 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
| 34 | ! |
---|
[39] | 35 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 36 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
| 37 | ! gridpoints are now calculated by the prognostic equation, |
---|
| 38 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
| 39 | ! |
---|
[3] | 40 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 41 | ! |
---|
[1] | 42 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
| 43 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
| 44 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
| 45 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
| 46 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
| 47 | ! |
---|
| 48 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 49 | ! Initial revision |
---|
| 50 | ! |
---|
| 51 | ! |
---|
| 52 | ! Description: |
---|
| 53 | ! ------------ |
---|
| 54 | ! Boundary conditions for the prognostic quantities (range='main'). |
---|
| 55 | ! In case of non-cyclic lateral boundaries the conditions for velocities at |
---|
| 56 | ! the outflow are set after the pressure solver has been called (range= |
---|
| 57 | ! 'outflow_uvw'). |
---|
| 58 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 59 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 60 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 61 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 62 | !------------------------------------------------------------------------------! |
---|
| 63 | |
---|
| 64 | USE arrays_3d |
---|
| 65 | USE control_parameters |
---|
| 66 | USE grid_variables |
---|
| 67 | USE indices |
---|
| 68 | USE pegrid |
---|
| 69 | |
---|
| 70 | IMPLICIT NONE |
---|
| 71 | |
---|
| 72 | CHARACTER (LEN=*) :: range |
---|
| 73 | |
---|
| 74 | INTEGER :: i, j, k |
---|
| 75 | |
---|
[106] | 76 | REAL :: c_max, denom |
---|
[1] | 77 | |
---|
[73] | 78 | |
---|
[1] | 79 | IF ( range == 'main') THEN |
---|
| 80 | ! |
---|
[667] | 81 | !-- Bottom boundary |
---|
| 82 | IF ( ibc_uv_b == 1 ) THEN |
---|
[73] | 83 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 84 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
[1] | 85 | ENDIF |
---|
[667] | 86 | DO i = nxlg, nxrg |
---|
| 87 | DO j = nysg, nyng |
---|
[73] | 88 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
[1] | 89 | ENDDO |
---|
| 90 | ENDDO |
---|
| 91 | |
---|
| 92 | ! |
---|
| 93 | !-- Top boundary |
---|
| 94 | IF ( ibc_uv_t == 0 ) THEN |
---|
[767] | 95 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 96 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[1] | 97 | ELSE |
---|
[667] | 98 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 99 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
[1] | 100 | ENDIF |
---|
[73] | 101 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
[1] | 102 | |
---|
| 103 | ! |
---|
[102] | 104 | !-- Temperature at bottom boundary. |
---|
| 105 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 106 | !-- the sea surface temperature of the coupled ocean model. |
---|
[1] | 107 | IF ( ibc_pt_b == 0 ) THEN |
---|
[667] | 108 | DO i = nxlg, nxrg |
---|
| 109 | DO j = nysg, nyng |
---|
[73] | 110 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 111 | ENDDO |
---|
[73] | 112 | ENDDO |
---|
[102] | 113 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
[667] | 114 | DO i = nxlg, nxrg |
---|
| 115 | DO j = nysg, nyng |
---|
[73] | 116 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 117 | ENDDO |
---|
| 118 | ENDDO |
---|
| 119 | ENDIF |
---|
| 120 | |
---|
| 121 | ! |
---|
| 122 | !-- Temperature at top boundary |
---|
[19] | 123 | IF ( ibc_pt_t == 0 ) THEN |
---|
[667] | 124 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[19] | 125 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
[667] | 126 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
[19] | 127 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[667] | 128 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 129 | ENDIF |
---|
| 130 | |
---|
| 131 | ! |
---|
| 132 | !-- Boundary conditions for TKE |
---|
| 133 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 134 | IF ( .NOT. constant_diffusion ) THEN |
---|
[667] | 135 | DO i = nxlg, nxrg |
---|
| 136 | DO j = nysg, nyng |
---|
[73] | 137 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 138 | ENDDO |
---|
| 139 | ENDDO |
---|
[73] | 140 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[1] | 141 | ENDIF |
---|
| 142 | |
---|
| 143 | ! |
---|
[95] | 144 | !-- Boundary conditions for salinity |
---|
| 145 | IF ( ocean ) THEN |
---|
| 146 | ! |
---|
| 147 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 148 | !-- given |
---|
[667] | 149 | DO i = nxlg, nxrg |
---|
| 150 | DO j = nysg, nyng |
---|
[95] | 151 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 152 | ENDDO |
---|
| 153 | ENDDO |
---|
| 154 | |
---|
| 155 | ! |
---|
| 156 | !-- Top boundary: Dirichlet or Neumann |
---|
| 157 | IF ( ibc_sa_t == 0 ) THEN |
---|
[667] | 158 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
[95] | 159 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
[667] | 160 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[95] | 161 | ENDIF |
---|
| 162 | |
---|
| 163 | ENDIF |
---|
| 164 | |
---|
| 165 | ! |
---|
[1] | 166 | !-- Boundary conditions for total water content or scalar, |
---|
[95] | 167 | !-- bottom and top boundary (see also temperature) |
---|
[75] | 168 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 169 | ! |
---|
[75] | 170 | !-- Surface conditions for constant_humidity_flux |
---|
[1] | 171 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 172 | DO i = nxlg, nxrg |
---|
| 173 | DO j = nysg, nyng |
---|
[73] | 174 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 175 | ENDDO |
---|
[73] | 176 | ENDDO |
---|
[1] | 177 | ELSE |
---|
[667] | 178 | DO i = nxlg, nxrg |
---|
| 179 | DO j = nysg, nyng |
---|
[73] | 180 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 181 | ENDDO |
---|
| 182 | ENDDO |
---|
| 183 | ENDIF |
---|
| 184 | ! |
---|
| 185 | !-- Top boundary |
---|
[73] | 186 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[667] | 187 | |
---|
| 188 | |
---|
[1] | 189 | ENDIF |
---|
| 190 | |
---|
| 191 | ! |
---|
| 192 | !-- Lateral boundary conditions at the inflow. Quasi Neumann conditions |
---|
| 193 | !-- are needed for the wall normal velocity in order to ensure zero |
---|
| 194 | !-- divergence. Dirichlet conditions are used for all other quantities. |
---|
| 195 | IF ( inflow_s ) THEN |
---|
[73] | 196 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[1] | 197 | ELSEIF ( inflow_n ) THEN |
---|
[75] | 198 | v_p(:,nyn,:) = v_p(:,nyn+1,:) |
---|
[1] | 199 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 200 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[1] | 201 | ELSEIF ( inflow_r ) THEN |
---|
[75] | 202 | u_p(:,:,nxr) = u_p(:,:,nxr+1) |
---|
[1] | 203 | ENDIF |
---|
| 204 | |
---|
| 205 | ! |
---|
| 206 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 207 | IF ( outflow_s ) THEN |
---|
[73] | 208 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 209 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[75] | 210 | IF ( humidity .OR. passive_scalar ) q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1] | 211 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 212 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 213 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[75] | 214 | IF ( humidity .OR. passive_scalar ) q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1] | 215 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 216 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 217 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[75] | 218 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1] | 219 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 220 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 221 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[75] | 222 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1] | 223 | ENDIF |
---|
| 224 | |
---|
| 225 | ENDIF |
---|
| 226 | |
---|
| 227 | ! |
---|
[75] | 228 | !-- Radiation boundary condition for the velocities at the respective outflow |
---|
[106] | 229 | IF ( outflow_s ) THEN |
---|
[75] | 230 | |
---|
| 231 | c_max = dy / dt_3d |
---|
| 232 | |
---|
[667] | 233 | DO i = nxlg, nxrg |
---|
[75] | 234 | DO k = nzb+1, nzt+1 |
---|
| 235 | |
---|
| 236 | ! |
---|
[106] | 237 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 238 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 239 | !-- reuse this values for the further substeps. |
---|
| 240 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[75] | 241 | |
---|
[106] | 242 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 243 | |
---|
| 244 | IF ( denom /= 0.0 ) THEN |
---|
| 245 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / denom |
---|
| 246 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 247 | c_u(k,i) = 0.0 |
---|
| 248 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 249 | c_u(k,i) = c_max |
---|
| 250 | ENDIF |
---|
| 251 | ELSE |
---|
| 252 | c_u(k,i) = c_max |
---|
[75] | 253 | ENDIF |
---|
| 254 | |
---|
[106] | 255 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 256 | |
---|
| 257 | IF ( denom /= 0.0 ) THEN |
---|
| 258 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / denom |
---|
| 259 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 260 | c_v(k,i) = 0.0 |
---|
| 261 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 262 | c_v(k,i) = c_max |
---|
| 263 | ENDIF |
---|
| 264 | ELSE |
---|
| 265 | c_v(k,i) = c_max |
---|
[75] | 266 | ENDIF |
---|
| 267 | |
---|
[106] | 268 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 269 | |
---|
[106] | 270 | IF ( denom /= 0.0 ) THEN |
---|
| 271 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / denom |
---|
| 272 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 273 | c_w(k,i) = 0.0 |
---|
| 274 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 275 | c_w(k,i) = c_max |
---|
| 276 | ENDIF |
---|
| 277 | ELSE |
---|
| 278 | c_w(k,i) = c_max |
---|
[75] | 279 | ENDIF |
---|
[106] | 280 | |
---|
| 281 | ! |
---|
| 282 | !-- Save old timelevels for the next timestep |
---|
| 283 | u_m_s(k,:,i) = u(k,0:1,i) |
---|
| 284 | v_m_s(k,:,i) = v(k,1:2,i) |
---|
| 285 | w_m_s(k,:,i) = w(k,0:1,i) |
---|
| 286 | |
---|
[75] | 287 | ENDIF |
---|
| 288 | |
---|
| 289 | ! |
---|
| 290 | !-- Calculate the new velocities |
---|
[106] | 291 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u(k,i) * & |
---|
[75] | 292 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 293 | |
---|
[107] | 294 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v(k,i) * & |
---|
[106] | 295 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 296 | |
---|
[106] | 297 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w(k,i) * & |
---|
[75] | 298 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
| 299 | |
---|
| 300 | ENDDO |
---|
| 301 | ENDDO |
---|
| 302 | |
---|
| 303 | ! |
---|
| 304 | !-- Bottom boundary at the outflow |
---|
| 305 | IF ( ibc_uv_b == 0 ) THEN |
---|
[667] | 306 | u_p(nzb,-1,:) = 0.0 |
---|
| 307 | v_p(nzb,0,:) = 0.0 |
---|
[75] | 308 | ELSE |
---|
| 309 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
[106] | 310 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
[73] | 311 | ENDIF |
---|
[106] | 312 | w_p(nzb,-1,:) = 0.0 |
---|
[73] | 313 | |
---|
[75] | 314 | ! |
---|
| 315 | !-- Top boundary at the outflow |
---|
| 316 | IF ( ibc_uv_t == 0 ) THEN |
---|
[767] | 317 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 318 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
[75] | 319 | ELSE |
---|
| 320 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
[106] | 321 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
[75] | 322 | ENDIF |
---|
| 323 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
[73] | 324 | |
---|
[75] | 325 | ENDIF |
---|
[73] | 326 | |
---|
[106] | 327 | IF ( outflow_n ) THEN |
---|
[73] | 328 | |
---|
[75] | 329 | c_max = dy / dt_3d |
---|
| 330 | |
---|
[667] | 331 | DO i = nxlg, nxrg |
---|
[75] | 332 | DO k = nzb+1, nzt+1 |
---|
| 333 | |
---|
[1] | 334 | ! |
---|
[106] | 335 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 336 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 337 | !-- reuse this values for the further substeps. |
---|
| 338 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[73] | 339 | |
---|
[106] | 340 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 341 | |
---|
| 342 | IF ( denom /= 0.0 ) THEN |
---|
| 343 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / denom |
---|
| 344 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 345 | c_u(k,i) = 0.0 |
---|
| 346 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 347 | c_u(k,i) = c_max |
---|
| 348 | ENDIF |
---|
| 349 | ELSE |
---|
| 350 | c_u(k,i) = c_max |
---|
[73] | 351 | ENDIF |
---|
| 352 | |
---|
[106] | 353 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 354 | |
---|
[106] | 355 | IF ( denom /= 0.0 ) THEN |
---|
| 356 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / denom |
---|
| 357 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 358 | c_v(k,i) = 0.0 |
---|
| 359 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 360 | c_v(k,i) = c_max |
---|
| 361 | ENDIF |
---|
| 362 | ELSE |
---|
| 363 | c_v(k,i) = c_max |
---|
[73] | 364 | ENDIF |
---|
| 365 | |
---|
[106] | 366 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 367 | |
---|
[106] | 368 | IF ( denom /= 0.0 ) THEN |
---|
| 369 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / denom |
---|
| 370 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 371 | c_w(k,i) = 0.0 |
---|
| 372 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 373 | c_w(k,i) = c_max |
---|
| 374 | ENDIF |
---|
| 375 | ELSE |
---|
| 376 | c_w(k,i) = c_max |
---|
[73] | 377 | ENDIF |
---|
[106] | 378 | |
---|
| 379 | ! |
---|
| 380 | !-- Swap timelevels for the next timestep |
---|
| 381 | u_m_n(k,:,i) = u(k,ny-1:ny,i) |
---|
| 382 | v_m_n(k,:,i) = v(k,ny-1:ny,i) |
---|
| 383 | w_m_n(k,:,i) = w(k,ny-1:ny,i) |
---|
| 384 | |
---|
[75] | 385 | ENDIF |
---|
[73] | 386 | |
---|
| 387 | ! |
---|
[75] | 388 | !-- Calculate the new velocities |
---|
[106] | 389 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u(k,i) * & |
---|
[75] | 390 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 391 | |
---|
[106] | 392 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v(k,i) * & |
---|
[75] | 393 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 394 | |
---|
[106] | 395 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w(k,i) * & |
---|
[75] | 396 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
[73] | 397 | |
---|
[1] | 398 | ENDDO |
---|
[75] | 399 | ENDDO |
---|
[1] | 400 | |
---|
| 401 | ! |
---|
[75] | 402 | !-- Bottom boundary at the outflow |
---|
| 403 | IF ( ibc_uv_b == 0 ) THEN |
---|
[667] | 404 | u_p(nzb,ny+1,:) = 0.0 |
---|
| 405 | v_p(nzb,ny+1,:) = 0.0 |
---|
[75] | 406 | ELSE |
---|
| 407 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 408 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 409 | ENDIF |
---|
| 410 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 411 | |
---|
| 412 | ! |
---|
[75] | 413 | !-- Top boundary at the outflow |
---|
| 414 | IF ( ibc_uv_t == 0 ) THEN |
---|
[767] | 415 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 416 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
[75] | 417 | ELSE |
---|
| 418 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 419 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
[1] | 420 | ENDIF |
---|
[75] | 421 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
[1] | 422 | |
---|
[75] | 423 | ENDIF |
---|
| 424 | |
---|
[106] | 425 | IF ( outflow_l ) THEN |
---|
[75] | 426 | |
---|
| 427 | c_max = dx / dt_3d |
---|
| 428 | |
---|
[667] | 429 | DO j = nysg, nyng |
---|
[75] | 430 | DO k = nzb+1, nzt+1 |
---|
| 431 | |
---|
[1] | 432 | ! |
---|
[106] | 433 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 434 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 435 | !-- reuse this values for the further substeps. |
---|
| 436 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[75] | 437 | |
---|
[106] | 438 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 439 | |
---|
| 440 | IF ( denom /= 0.0 ) THEN |
---|
| 441 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / denom |
---|
[107] | 442 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
[106] | 443 | c_u(k,j) = 0.0 |
---|
[107] | 444 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 445 | c_u(k,j) = c_max |
---|
[106] | 446 | ENDIF |
---|
| 447 | ELSE |
---|
[107] | 448 | c_u(k,j) = c_max |
---|
[75] | 449 | ENDIF |
---|
| 450 | |
---|
[106] | 451 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 452 | |
---|
[106] | 453 | IF ( denom /= 0.0 ) THEN |
---|
| 454 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / denom |
---|
| 455 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 456 | c_v(k,j) = 0.0 |
---|
| 457 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 458 | c_v(k,j) = c_max |
---|
| 459 | ENDIF |
---|
| 460 | ELSE |
---|
| 461 | c_v(k,j) = c_max |
---|
[75] | 462 | ENDIF |
---|
| 463 | |
---|
[106] | 464 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 465 | |
---|
[106] | 466 | IF ( denom /= 0.0 ) THEN |
---|
| 467 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / denom |
---|
| 468 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 469 | c_w(k,j) = 0.0 |
---|
| 470 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 471 | c_w(k,j) = c_max |
---|
| 472 | ENDIF |
---|
| 473 | ELSE |
---|
| 474 | c_w(k,j) = c_max |
---|
[75] | 475 | ENDIF |
---|
[106] | 476 | |
---|
| 477 | ! |
---|
| 478 | !-- Swap timelevels for the next timestep |
---|
| 479 | u_m_l(k,j,:) = u(k,j,1:2) |
---|
| 480 | v_m_l(k,j,:) = v(k,j,0:1) |
---|
| 481 | w_m_l(k,j,:) = w(k,j,0:1) |
---|
| 482 | |
---|
[75] | 483 | ENDIF |
---|
| 484 | |
---|
[73] | 485 | ! |
---|
[75] | 486 | !-- Calculate the new velocities |
---|
[106] | 487 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u(k,j) * & |
---|
| 488 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 489 | |
---|
[106] | 490 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v(k,j) * & |
---|
[75] | 491 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 492 | |
---|
[106] | 493 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w(k,j) * & |
---|
[75] | 494 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
| 495 | |
---|
| 496 | ENDDO |
---|
| 497 | ENDDO |
---|
| 498 | |
---|
| 499 | ! |
---|
| 500 | !-- Bottom boundary at the outflow |
---|
| 501 | IF ( ibc_uv_b == 0 ) THEN |
---|
[667] | 502 | u_p(nzb,:,0) = 0.0 |
---|
| 503 | v_p(nzb,:,-1) = 0.0 |
---|
[75] | 504 | ELSE |
---|
[667] | 505 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
[75] | 506 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
[1] | 507 | ENDIF |
---|
[75] | 508 | w_p(nzb,:,-1) = 0.0 |
---|
[1] | 509 | |
---|
[75] | 510 | ! |
---|
| 511 | !-- Top boundary at the outflow |
---|
| 512 | IF ( ibc_uv_t == 0 ) THEN |
---|
[767] | 513 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
| 514 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
[75] | 515 | ELSE |
---|
| 516 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 517 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 518 | ENDIF |
---|
| 519 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
[73] | 520 | |
---|
[75] | 521 | ENDIF |
---|
[73] | 522 | |
---|
[106] | 523 | IF ( outflow_r ) THEN |
---|
[73] | 524 | |
---|
[75] | 525 | c_max = dx / dt_3d |
---|
| 526 | |
---|
[667] | 527 | DO j = nysg, nyng |
---|
[75] | 528 | DO k = nzb+1, nzt+1 |
---|
| 529 | |
---|
[1] | 530 | ! |
---|
[106] | 531 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 532 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 533 | !-- reuse this values for the further substeps. |
---|
| 534 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[73] | 535 | |
---|
[106] | 536 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 537 | |
---|
| 538 | IF ( denom /= 0.0 ) THEN |
---|
| 539 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / denom |
---|
| 540 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
| 541 | c_u(k,j) = 0.0 |
---|
| 542 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 543 | c_u(k,j) = c_max |
---|
| 544 | ENDIF |
---|
| 545 | ELSE |
---|
| 546 | c_u(k,j) = c_max |
---|
[73] | 547 | ENDIF |
---|
| 548 | |
---|
[106] | 549 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 550 | |
---|
[106] | 551 | IF ( denom /= 0.0 ) THEN |
---|
| 552 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / denom |
---|
| 553 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 554 | c_v(k,j) = 0.0 |
---|
| 555 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 556 | c_v(k,j) = c_max |
---|
| 557 | ENDIF |
---|
| 558 | ELSE |
---|
| 559 | c_v(k,j) = c_max |
---|
[73] | 560 | ENDIF |
---|
| 561 | |
---|
[106] | 562 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 563 | |
---|
[106] | 564 | IF ( denom /= 0.0 ) THEN |
---|
| 565 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / denom |
---|
| 566 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 567 | c_w(k,j) = 0.0 |
---|
| 568 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 569 | c_w(k,j) = c_max |
---|
| 570 | ENDIF |
---|
| 571 | ELSE |
---|
| 572 | c_w(k,j) = c_max |
---|
[73] | 573 | ENDIF |
---|
[106] | 574 | |
---|
| 575 | ! |
---|
| 576 | !-- Swap timelevels for the next timestep |
---|
| 577 | u_m_r(k,j,:) = u(k,j,nx-1:nx) |
---|
| 578 | v_m_r(k,j,:) = v(k,j,nx-1:nx) |
---|
| 579 | w_m_r(k,j,:) = w(k,j,nx-1:nx) |
---|
| 580 | |
---|
[75] | 581 | ENDIF |
---|
[73] | 582 | |
---|
| 583 | ! |
---|
[75] | 584 | !-- Calculate the new velocities |
---|
[106] | 585 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u(k,j) * & |
---|
[75] | 586 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 587 | |
---|
[106] | 588 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v(k,j) * & |
---|
[75] | 589 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 590 | |
---|
[106] | 591 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w(k,j) * & |
---|
[75] | 592 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
[73] | 593 | |
---|
| 594 | ENDDO |
---|
[75] | 595 | ENDDO |
---|
[73] | 596 | |
---|
| 597 | ! |
---|
[75] | 598 | !-- Bottom boundary at the outflow |
---|
| 599 | IF ( ibc_uv_b == 0 ) THEN |
---|
[667] | 600 | u_p(nzb,:,nx+1) = 0.0 |
---|
| 601 | v_p(nzb,:,nx+1) = 0.0 |
---|
[75] | 602 | ELSE |
---|
| 603 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 604 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 605 | ENDIF |
---|
| 606 | w_p(nzb,:,nx+1) = 0.0 |
---|
[73] | 607 | |
---|
| 608 | ! |
---|
[75] | 609 | !-- Top boundary at the outflow |
---|
| 610 | IF ( ibc_uv_t == 0 ) THEN |
---|
[767] | 611 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 612 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
[75] | 613 | ELSE |
---|
| 614 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 615 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
[1] | 616 | ENDIF |
---|
[75] | 617 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
[1] | 618 | |
---|
| 619 | ENDIF |
---|
| 620 | |
---|
| 621 | |
---|
| 622 | END SUBROUTINE boundary_conds |
---|