Ignore:
Timestamp:
Dec 23, 2010 12:06:00 PM (13 years ago)
Author:
suehring
Message:

summary:


Gryschka:

  • Coupling with different resolution and different numbers of PEs in ocean and atmosphere is available
  • Exchange of u and v from ocean surface to atmosphere surface
  • Mirror boundary condition for u and v at the bottom are replaced by dirichlet boundary conditions
  • Inflow turbulence is now defined by flucuations around spanwise mean
  • Bugfixes for cyclic_fill and constant_volume_flow

Suehring:

  • New advection added ( Wicker and Skamarock 5th order ), therefore:
    • New module advec_ws.f90
    • Modified exchange of ghost boundaries.
    • Modified evaluation of turbulent fluxes
    • New index bounds nxlg, nxrg, nysg, nyng

advec_ws.f90


Advection scheme for scalars and momentum using the flux formulation of
Wicker and Skamarock 5th order.
Additionally the module contains of a routine using for initialisation and
steering of the statical evaluation. The computation of turbulent fluxes takes
place inside the advection routines.
In case of vector architectures Dirichlet and Radiation boundary conditions are
outstanding and not available. Furthermore simulations within topography are
not possible so far. A further routine local_diss_ij is available and is used
if a control of dissipative fluxes is desired.

check_parameters.f90


Exchange of parameters between ocean and atmosphere via PE0
Check for illegal combination of ws-scheme and timestep scheme.
Check for topography and ws-scheme.
Check for not cyclic boundary conditions in combination with ws-scheme and
loop_optimization = 'vector'.
Check for call_psolver_at_all_substeps and ws-scheme for momentum_advec.

Different processor/grid topology in atmosphere and ocean is now allowed!
Bugfixes in checking for conserve_volume_flow_mode.

exchange_horiz.f90


Dynamic exchange of ghost points with nbgp_local to ensure that no useless
ghost points exchanged in case of multigrid. type_yz(0) and type_xz(0) used for
normal grid, the remaining types used for the several grid levels.
Exchange is done via MPI-Vectors with a dynamic value of ghost points which
depend on the advection scheme. Exchange of left and right PEs is 10% faster
with MPI-Vectors than without.

flow_statistics.f90


When advection is computed with ws-scheme, turbulent fluxes are already
computed in the respective advection routines and buffered in arrays
sums_xxxx_ws_l(). This is due to a consistent treatment of statistics
with the numerics and to avoid unphysical kinks near the surface. So some if-
requests has to be done to dicern between fluxes from ws-scheme other advection
schemes. Furthermore the computation of z_i is only done if the heat flux
exceeds a minimum value. This affects only simulations of a neutral boundary
layer and is due to reasons of computations in the advection scheme.

inflow_turbulence.f90


Using nbgp recycling planes for a better resolution of the turbulent flow near
the inflow.

init_grid.f90


Definition of new array bounds nxlg, nxrg, nysg, nyng on each PE.
Furthermore the allocation of arrays and steering of loops is done with these
parameters. Call of exchange_horiz are modified.
In case of dirichlet bounday condition at the bottom zu(0)=0.0
dzu_mg has to be set explicitly for a equally spaced grid near bottom.
ddzu_pres added to use a equally spaced grid near bottom.

init_pegrid.f90


Moved determination of target_id's from init_coupling
Determination of parameters needed for coupling (coupling_topology, ngp_a, ngp_o)
with different grid/processor-topology in ocean and atmosphere

Adaption of ngp_xy, ngp_y to a dynamic number of ghost points.
The maximum_grid_level changed from 1 to 0. 0 is the normal grid, 1 to
maximum_grid_level the grids for multigrid, in which 0 and 1 are normal grids.
This distinction is due to reasons of data exchange and performance for the
normal grid and grids in poismg.
The definition of MPI-Vectors adapted to a dynamic numer of ghost points.
New MPI-Vectors for data exchange between left and right boundaries added.
This is due to reasons of performance (10% faster).

ATTENTION: nnz_x undefined problem still has to be solved!!!!!!!!
TEST OUTPUT (TO BE REMOVED) logging mpi2 ierr values

parin.f90


Steering parameter dissipation_control added in inipar.

Makefile


Module advec_ws added.

Modules


Removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc

For coupling with different resolution in ocean and atmophere:
+nx_a, +nx_o, ny_a, +ny_o, ngp_a, ngp_o, +total_2d_o, +total_2d_a,
+coupling_topology

Buffer arrays for the left sided advective fluxes added in arrays_3d.
+flux_s_u, +flux_s_v, +flux_s_w, +diss_s_u, +diss_s_v, +diss_s_w,
+flux_s_pt, +diss_s_pt, +flux_s_e, +diss_s_e, +flux_s_q, +diss_s_q,
+flux_s_sa, +diss_s_sa
3d arrays for dissipation control added. (only necessary for vector arch.)
+var_x, +var_y, +var_z, +gamma_x, +gamma_y, +gamma_z
Default of momentum_advec and scalar_advec changed to 'ws-scheme' .
+exchange_mg added in control_parameters to steer the data exchange.
Parameters +nbgp, +nxlg, +nxrg, +nysg, +nyng added in indices.
flag array +boundary_flags added in indices to steer the degradation of order
of the advective fluxes when non-cyclic boundaries are used.
MPI-datatypes +type_y, +type_y_int and +type_yz for data_exchange added in
pegrid.
+sums_wsus_ws_l, +sums_wsvs_ws_l, +sums_us2_ws_l, +sums_vs2_ws_l,
+sums_ws2_ws_l, +sums_wspts_ws_l, +sums_wssas_ws_l, +sums_wsqs_ws_l
and +weight_substep added in statistics to steer the statistical evaluation
of turbulent fluxes in the advection routines.
LOGICALS +ws_scheme_sca and +ws_scheme_mom added to get a better performance
in prognostic_equations.
LOGICAL +dissipation_control control added to steer numerical dissipation
in ws-scheme.

Changed length of string run_description_header

pres.f90


New allocation of tend when ws-scheme and multigrid is used. This is due to
reasons of perforance of the data_exchange. The same is done with p after
poismg is called.
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng when no
multigrid is used. Calls of exchange_horiz are modified.

bugfix: After pressure correction no volume flow correction in case of
non-cyclic boundary conditions
(has to be done only before pressure correction)

Call of SOR routine is referenced with ddzu_pres.

prognostic_equations.f90


Calls of the advection routines with WS5 added.
Calls of ws_statistics added to set the statistical arrays to zero after each
time step.

advec_particles.f90


Declaration of de_dx, de_dy, de_dz adapted to additional ghost points.
Furthermore the calls of exchange_horiz were modified.

asselin_filter.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

average_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

boundary_conds.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng
Removed mirror boundary conditions for u and v at the bottom in case of
ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set
in init_3d_model

calc_liquid_water_content.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

calc_spectra.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng for
allocation of tend.

check_open.f90


Output of total array size was adapted to nbgp.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays local_2d and total_2d.
Calls of exchange_horiz are modified.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Skip-value skip_do_avs changed to a dynamic adaption of ghost points.

data_output_mask.f90


Calls of exchange_horiz are modified.

diffusion_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_s.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_u.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_v.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_w.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

exchange_horiz_2d.f90


Dynamic exchange of ghost points with nbgp, which depends on the advection
scheme. Exchange between left and right PEs is now done with MPI-vectors.

global_min_max.f90


Adapting of the index arrays, because MINLOC assumes lowerbound
at 1 and not at nbgp.

init_3d_model.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Call ws_init to initialize arrays needed for statistical evaluation and
optimization when ws-scheme is used.
Initial volume flow is now calculated by using the variable hom_sum.
Therefore the correction of initial volume flow for non-flat topography
removed (removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc)
Changed surface boundary conditions for u and v in case of ibc_uv_b == 0 from
mirror bc to dirichlet boundary conditions (u=v=0), so that k=nzb is
representative for the height z0

Bugfix: type conversion of '1' to 64bit for the MAX function (ngp_3d_inner)

init_coupling.f90


determination of target_id's moved to init_pegrid

init_pt_anomaly.f90


Call of exchange_horiz are modified.

init_rankine.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

init_slope.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

header.f90


Output of advection scheme.

poismg.f90


Calls of exchange_horiz are modified.

prandtl_fluxes.f90


Changed surface boundary conditions for u and v from mirror bc to dirichelt bc,
therefore u(uzb,:,:) and v(nzb,:,:) is now representative for the height z0
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

production_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

read_3d_binary.f90


+/- 1 replaced with +/- nbgp when swapping and allocating variables.

sor.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Call of exchange_horiz are modified.
bug removed in declaration of ddzw(), nz replaced by nzt+1

subsidence.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

sum_up_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

surface_coupler.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in
MPI_SEND() and MPI_RECV.
additional case for nonequivalent processor and grid topopolgy in ocean and
atmosphere added (coupling_topology = 1)

Added exchange of u and v from Ocean to Atmosphere

time_integration.f90


Calls of exchange_horiz are modified.
Adaption to slooping surface.

timestep.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_3d_data_averaging.f90, user_data_output_2d.f90, user_data_output_3d.f90,
user_actions.f90, user_init.f90, user_init_plant_canopy.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_read_restart_data.f90


Allocation with nbgp.

wall_fluxes.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

write_compressed.f90


Array bounds and nx, ny adapted with nbgp.

sor.f90


bug removed in declaration of ddzw(), nz replaced by nzt+1

Location:
palm/trunk/SOURCE
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/SOURCE

    • Property svn:mergeinfo set to (toggle deleted branches)
      /palm/branches/suehring423-666
      /palm/branches/letzel/masked_output/SOURCE296-409
  • palm/trunk/SOURCE/boundary_conds.f90

    r484 r667  
    44! Current revisions:
    55! -----------------
     6!
     7! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng
     8!
    69!
    7 !
     10! Removed mirror boundary conditions for u and v at the bottom in case of
     11! ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set
     12! in init_3d_model
     13
    814! Former revisions:
    915! -----------------
     
    7076    IF ( range == 'main')  THEN
    7177!
    72 !--    Bottom boundary
    73        IF ( ibc_uv_b == 0 )  THEN
    74 !
    75 !--       Satisfying the Dirichlet condition with an extra layer below the
    76 !--       surface where the u and v component change their sign
    77           u_p(nzb,:,:) = -u_p(nzb+1,:,:)
    78           v_p(nzb,:,:) = -v_p(nzb+1,:,:)
    79        ELSE
     78!--    Bottom boundary
     79       IF ( ibc_uv_b == 1 )  THEN
    8080          u_p(nzb,:,:) = u_p(nzb+1,:,:)
    8181          v_p(nzb,:,:) = v_p(nzb+1,:,:)
    8282       ENDIF
    83        DO  i = nxl-1, nxr+1
    84           DO  j = nys-1, nyn+1
     83       DO  i = nxlg, nxrg
     84          DO  j = nysg, nyng
    8585             w_p(nzb_w_inner(j,i),j,i) = 0.0
    8686          ENDDO
     
    9090!--    Top boundary
    9191       IF ( ibc_uv_t == 0 )  THEN
    92           u_p(nzt+1,:,:) = ug(nzt+1)
    93           v_p(nzt+1,:,:) = vg(nzt+1)
     92           u_p(nzt+1,:,:) = ug(nzt+1)
     93           v_p(nzt+1,:,:) = vg(nzt+1)
    9494       ELSE
    95           u_p(nzt+1,:,:) = u_p(nzt,:,:)
    96           v_p(nzt+1,:,:) = v_p(nzt,:,:)
     95           u_p(nzt+1,:,:) = u_p(nzt,:,:)
     96           v_p(nzt+1,:,:) = v_p(nzt,:,:)
    9797       ENDIF
    9898       w_p(nzt:nzt+1,:,:) = 0.0  ! nzt is not a prognostic level (but cf. pres)
     
    103103!--    the sea surface temperature of the coupled ocean model.
    104104       IF ( ibc_pt_b == 0 )  THEN
    105           DO  i = nxl-1, nxr+1
    106              DO  j = nys-1, nyn+1
     105          DO  i = nxlg, nxrg
     106             DO  j = nysg, nyng
    107107                pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i)
    108108             ENDDO
    109109          ENDDO
    110110       ELSEIF ( ibc_pt_b == 1 )  THEN
    111           DO  i = nxl-1, nxr+1
    112              DO  j = nys-1, nyn+1
     111          DO  i = nxlg, nxrg
     112             DO  j = nysg, nyng
    113113                pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i)
    114114             ENDDO
     
    119119!--    Temperature at top boundary
    120120       IF ( ibc_pt_t == 0 )  THEN
    121           pt_p(nzt+1,:,:) = pt(nzt+1,:,:)
     121           pt_p(nzt+1,:,:) = pt(nzt+1,:,:)
    122122       ELSEIF ( ibc_pt_t == 1 )  THEN
    123           pt_p(nzt+1,:,:) = pt_p(nzt,:,:)
     123           pt_p(nzt+1,:,:) = pt_p(nzt,:,:)
    124124       ELSEIF ( ibc_pt_t == 2 )  THEN
    125           pt_p(nzt+1,:,:) = pt_p(nzt,:,:)   + bc_pt_t_val * dzu(nzt+1)
     125           pt_p(nzt+1,:,:) = pt_p(nzt,:,:)   + bc_pt_t_val * dzu(nzt+1)
    126126       ENDIF
    127127
     
    130130!--    Generally Neumann conditions with de/dz=0 are assumed
    131131       IF ( .NOT. constant_diffusion )  THEN
    132           DO  i = nxl-1, nxr+1
    133              DO  j = nys-1, nyn+1
     132          DO  i = nxlg, nxrg
     133             DO  j = nysg, nyng
    134134                e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i)
    135135             ENDDO
     
    144144!--       Bottom boundary: Neumann condition because salinity flux is always
    145145!--       given
    146           DO  i = nxl-1, nxr+1
    147              DO  j = nys-1, nyn+1
     146          DO  i = nxlg, nxrg
     147             DO  j = nysg, nyng
    148148                sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i)
    149149             ENDDO
     
    153153!--       Top boundary: Dirichlet or Neumann
    154154          IF ( ibc_sa_t == 0 )  THEN
    155              sa_p(nzt+1,:,:) = sa(nzt+1,:,:)
     155              sa_p(nzt+1,:,:) = sa(nzt+1,:,:)
    156156          ELSEIF ( ibc_sa_t == 1 )  THEN
    157              sa_p(nzt+1,:,:) = sa_p(nzt,:,:)
     157              sa_p(nzt+1,:,:) = sa_p(nzt,:,:)
    158158          ENDIF
    159159
     
    167167!--       Surface conditions for constant_humidity_flux
    168168          IF ( ibc_q_b == 0 ) THEN
    169              DO  i = nxl-1, nxr+1
    170                 DO  j = nys-1, nyn+1
     169             DO  i = nxlg, nxrg
     170                DO  j = nysg, nyng
    171171                   q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i)
    172172                ENDDO
    173173             ENDDO
    174174          ELSE
    175              DO  i = nxl-1, nxr+1
    176                 DO  j = nys-1, nyn+1
     175             DO  i = nxlg, nxrg
     176                DO  j = nysg, nyng
    177177                   q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i)
    178178                ENDDO
     
    182182!--       Top boundary
    183183          q_p(nzt+1,:,:) = q_p(nzt,:,:)   + bc_q_t_val * dzu(nzt+1)
     184
     185
    184186       ENDIF
    185187
     
    226228       c_max = dy / dt_3d
    227229
    228        DO i = nxl-1, nxr+1
     230       DO i = nxlg, nxrg
    229231          DO k = nzb+1, nzt+1
    230232
     
    299301!--    Bottom boundary at the outflow
    300302       IF ( ibc_uv_b == 0 )  THEN
    301           u_p(nzb,-1,:) = -u_p(nzb+1,-1,:)
    302           v_p(nzb,0,:)  = -v_p(nzb+1,0,:) 
     303          u_p(nzb,-1,:) = 0.0
     304          v_p(nzb,0,:)  = 0.0 
    303305       ELSE                   
    304306          u_p(nzb,-1,:) =  u_p(nzb+1,-1,:)
     
    324326       c_max = dy / dt_3d
    325327
    326        DO i = nxl-1, nxr+1
     328       DO i = nxlg, nxrg
    327329          DO k = nzb+1, nzt+1
    328330
     
    397399!--    Bottom boundary at the outflow
    398400       IF ( ibc_uv_b == 0 )  THEN
    399           u_p(nzb,ny+1,:) = -u_p(nzb+1,ny+1,:)
    400           v_p(nzb,ny+1,:) = -v_p(nzb+1,ny+1,:) 
     401          u_p(nzb,ny+1,:) = 0.0
     402          v_p(nzb,ny+1,:) = 0.0  
    401403       ELSE                   
    402404          u_p(nzb,ny+1,:) =  u_p(nzb+1,ny+1,:)
     
    422424       c_max = dx / dt_3d
    423425
    424        DO j = nys-1, nyn+1
     426       DO j = nysg, nyng
    425427          DO k = nzb+1, nzt+1
    426428
     
    495497!--    Bottom boundary at the outflow
    496498       IF ( ibc_uv_b == 0 )  THEN
    497           u_p(nzb,:,-1) = -u_p(nzb+1,:,-1)
    498           v_p(nzb,:,-1) = -v_p(nzb+1,:,-1) 
     499          u_p(nzb,:,0)  = 0.0
     500          v_p(nzb,:,-1) = 0.0
    499501       ELSE                   
    500           u_p(nzb,:,-1) =  u_p(nzb+1,:,-1)
     502          u_p(nzb,:,0)  =  u_p(nzb+1,:,0)
    501503          v_p(nzb,:,-1) =  v_p(nzb+1,:,-1)
    502504       ENDIF
     
    520522       c_max = dx / dt_3d
    521523
    522        DO j = nys-1, nyn+1
     524       DO j = nysg, nyng
    523525          DO k = nzb+1, nzt+1
    524526
     
    593595!--    Bottom boundary at the outflow
    594596       IF ( ibc_uv_b == 0 )  THEN
    595           u_p(nzb,:,nx+1) = -u_p(nzb+1,:,nx+1)
    596           v_p(nzb,:,nx+1) = -v_p(nzb+1,:,nx+1)
     597          u_p(nzb,:,nx+1) = 0.0
     598          v_p(nzb,:,nx+1) = 0.0
    597599       ELSE                   
    598600          u_p(nzb,:,nx+1) =  u_p(nzb+1,:,nx+1)
Note: See TracChangeset for help on using the changeset viewer.