[1] | 1 | SUBROUTINE boundary_conds( range ) |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[667] | 6 | ! |
---|
| 7 | ! |
---|
[1] | 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: boundary_conds.f90 668 2010-12-23 13:22:58Z gryschka $ |
---|
[39] | 11 | ! |
---|
[668] | 12 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 13 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 14 | ! Removed mirror boundary conditions for u and v at the bottom in case of |
---|
| 15 | ! ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set |
---|
| 16 | ! in init_3d_model |
---|
| 17 | ! |
---|
[110] | 18 | ! 107 2007-08-17 13:54:45Z raasch |
---|
| 19 | ! Boundary conditions for temperature adjusted for coupled runs, |
---|
| 20 | ! bugfixes for the radiation boundary conditions at the outflow: radiation |
---|
| 21 | ! conditions are used for every substep, phase speeds are calculated for the |
---|
| 22 | ! first Runge-Kutta substep only and then reused, several index values changed |
---|
| 23 | ! |
---|
[98] | 24 | ! 95 2007-06-02 16:48:38Z raasch |
---|
| 25 | ! Boundary conditions for salinity added |
---|
| 26 | ! |
---|
[77] | 27 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 28 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
| 29 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
| 30 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
| 31 | ! |
---|
[39] | 32 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 33 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
| 34 | ! gridpoints are now calculated by the prognostic equation, |
---|
| 35 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
| 36 | ! |
---|
[3] | 37 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 38 | ! |
---|
[1] | 39 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
| 40 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
| 41 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
| 42 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
| 43 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
| 44 | ! |
---|
| 45 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 46 | ! Initial revision |
---|
| 47 | ! |
---|
| 48 | ! |
---|
| 49 | ! Description: |
---|
| 50 | ! ------------ |
---|
| 51 | ! Boundary conditions for the prognostic quantities (range='main'). |
---|
| 52 | ! In case of non-cyclic lateral boundaries the conditions for velocities at |
---|
| 53 | ! the outflow are set after the pressure solver has been called (range= |
---|
| 54 | ! 'outflow_uvw'). |
---|
| 55 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 56 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 57 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 58 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 59 | !------------------------------------------------------------------------------! |
---|
| 60 | |
---|
| 61 | USE arrays_3d |
---|
| 62 | USE control_parameters |
---|
| 63 | USE grid_variables |
---|
| 64 | USE indices |
---|
| 65 | USE pegrid |
---|
| 66 | |
---|
| 67 | IMPLICIT NONE |
---|
| 68 | |
---|
| 69 | CHARACTER (LEN=*) :: range |
---|
| 70 | |
---|
| 71 | INTEGER :: i, j, k |
---|
| 72 | |
---|
[106] | 73 | REAL :: c_max, denom |
---|
[1] | 74 | |
---|
[73] | 75 | |
---|
[1] | 76 | IF ( range == 'main') THEN |
---|
| 77 | ! |
---|
[667] | 78 | !-- Bottom boundary |
---|
| 79 | IF ( ibc_uv_b == 1 ) THEN |
---|
[73] | 80 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 81 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
[1] | 82 | ENDIF |
---|
[667] | 83 | DO i = nxlg, nxrg |
---|
| 84 | DO j = nysg, nyng |
---|
[73] | 85 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
[1] | 86 | ENDDO |
---|
| 87 | ENDDO |
---|
| 88 | |
---|
| 89 | ! |
---|
| 90 | !-- Top boundary |
---|
| 91 | IF ( ibc_uv_t == 0 ) THEN |
---|
[667] | 92 | u_p(nzt+1,:,:) = ug(nzt+1) |
---|
| 93 | v_p(nzt+1,:,:) = vg(nzt+1) |
---|
[1] | 94 | ELSE |
---|
[667] | 95 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 96 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
[1] | 97 | ENDIF |
---|
[73] | 98 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
[1] | 99 | |
---|
| 100 | ! |
---|
[102] | 101 | !-- Temperature at bottom boundary. |
---|
| 102 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 103 | !-- the sea surface temperature of the coupled ocean model. |
---|
[1] | 104 | IF ( ibc_pt_b == 0 ) THEN |
---|
[667] | 105 | DO i = nxlg, nxrg |
---|
| 106 | DO j = nysg, nyng |
---|
[73] | 107 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 108 | ENDDO |
---|
[73] | 109 | ENDDO |
---|
[102] | 110 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
[667] | 111 | DO i = nxlg, nxrg |
---|
| 112 | DO j = nysg, nyng |
---|
[73] | 113 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 114 | ENDDO |
---|
| 115 | ENDDO |
---|
| 116 | ENDIF |
---|
| 117 | |
---|
| 118 | ! |
---|
| 119 | !-- Temperature at top boundary |
---|
[19] | 120 | IF ( ibc_pt_t == 0 ) THEN |
---|
[667] | 121 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[19] | 122 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
[667] | 123 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
[19] | 124 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[667] | 125 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 126 | ENDIF |
---|
| 127 | |
---|
| 128 | ! |
---|
| 129 | !-- Boundary conditions for TKE |
---|
| 130 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 131 | IF ( .NOT. constant_diffusion ) THEN |
---|
[667] | 132 | DO i = nxlg, nxrg |
---|
| 133 | DO j = nysg, nyng |
---|
[73] | 134 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 135 | ENDDO |
---|
| 136 | ENDDO |
---|
[73] | 137 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[1] | 138 | ENDIF |
---|
| 139 | |
---|
| 140 | ! |
---|
[95] | 141 | !-- Boundary conditions for salinity |
---|
| 142 | IF ( ocean ) THEN |
---|
| 143 | ! |
---|
| 144 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 145 | !-- given |
---|
[667] | 146 | DO i = nxlg, nxrg |
---|
| 147 | DO j = nysg, nyng |
---|
[95] | 148 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 149 | ENDDO |
---|
| 150 | ENDDO |
---|
| 151 | |
---|
| 152 | ! |
---|
| 153 | !-- Top boundary: Dirichlet or Neumann |
---|
| 154 | IF ( ibc_sa_t == 0 ) THEN |
---|
[667] | 155 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
[95] | 156 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
[667] | 157 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[95] | 158 | ENDIF |
---|
| 159 | |
---|
| 160 | ENDIF |
---|
| 161 | |
---|
| 162 | ! |
---|
[1] | 163 | !-- Boundary conditions for total water content or scalar, |
---|
[95] | 164 | !-- bottom and top boundary (see also temperature) |
---|
[75] | 165 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 166 | ! |
---|
[75] | 167 | !-- Surface conditions for constant_humidity_flux |
---|
[1] | 168 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 169 | DO i = nxlg, nxrg |
---|
| 170 | DO j = nysg, nyng |
---|
[73] | 171 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 172 | ENDDO |
---|
[73] | 173 | ENDDO |
---|
[1] | 174 | ELSE |
---|
[667] | 175 | DO i = nxlg, nxrg |
---|
| 176 | DO j = nysg, nyng |
---|
[73] | 177 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 178 | ENDDO |
---|
| 179 | ENDDO |
---|
| 180 | ENDIF |
---|
| 181 | ! |
---|
| 182 | !-- Top boundary |
---|
[73] | 183 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[667] | 184 | |
---|
| 185 | |
---|
[1] | 186 | ENDIF |
---|
| 187 | |
---|
| 188 | ! |
---|
| 189 | !-- Lateral boundary conditions at the inflow. Quasi Neumann conditions |
---|
| 190 | !-- are needed for the wall normal velocity in order to ensure zero |
---|
| 191 | !-- divergence. Dirichlet conditions are used for all other quantities. |
---|
| 192 | IF ( inflow_s ) THEN |
---|
[73] | 193 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[1] | 194 | ELSEIF ( inflow_n ) THEN |
---|
[75] | 195 | v_p(:,nyn,:) = v_p(:,nyn+1,:) |
---|
[1] | 196 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 197 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[1] | 198 | ELSEIF ( inflow_r ) THEN |
---|
[75] | 199 | u_p(:,:,nxr) = u_p(:,:,nxr+1) |
---|
[1] | 200 | ENDIF |
---|
| 201 | |
---|
| 202 | ! |
---|
| 203 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 204 | IF ( outflow_s ) THEN |
---|
[73] | 205 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 206 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[75] | 207 | IF ( humidity .OR. passive_scalar ) q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1] | 208 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 209 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 210 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[75] | 211 | IF ( humidity .OR. passive_scalar ) q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1] | 212 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 213 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 214 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[75] | 215 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1] | 216 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 217 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 218 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[75] | 219 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1] | 220 | ENDIF |
---|
| 221 | |
---|
| 222 | ENDIF |
---|
| 223 | |
---|
| 224 | ! |
---|
[75] | 225 | !-- Radiation boundary condition for the velocities at the respective outflow |
---|
[106] | 226 | IF ( outflow_s ) THEN |
---|
[75] | 227 | |
---|
| 228 | c_max = dy / dt_3d |
---|
| 229 | |
---|
[667] | 230 | DO i = nxlg, nxrg |
---|
[75] | 231 | DO k = nzb+1, nzt+1 |
---|
| 232 | |
---|
| 233 | ! |
---|
[106] | 234 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 235 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 236 | !-- reuse this values for the further substeps. |
---|
| 237 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[75] | 238 | |
---|
[106] | 239 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 240 | |
---|
| 241 | IF ( denom /= 0.0 ) THEN |
---|
| 242 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / denom |
---|
| 243 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 244 | c_u(k,i) = 0.0 |
---|
| 245 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 246 | c_u(k,i) = c_max |
---|
| 247 | ENDIF |
---|
| 248 | ELSE |
---|
| 249 | c_u(k,i) = c_max |
---|
[75] | 250 | ENDIF |
---|
| 251 | |
---|
[106] | 252 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 253 | |
---|
| 254 | IF ( denom /= 0.0 ) THEN |
---|
| 255 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / denom |
---|
| 256 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 257 | c_v(k,i) = 0.0 |
---|
| 258 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 259 | c_v(k,i) = c_max |
---|
| 260 | ENDIF |
---|
| 261 | ELSE |
---|
| 262 | c_v(k,i) = c_max |
---|
[75] | 263 | ENDIF |
---|
| 264 | |
---|
[106] | 265 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 266 | |
---|
[106] | 267 | IF ( denom /= 0.0 ) THEN |
---|
| 268 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / denom |
---|
| 269 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 270 | c_w(k,i) = 0.0 |
---|
| 271 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 272 | c_w(k,i) = c_max |
---|
| 273 | ENDIF |
---|
| 274 | ELSE |
---|
| 275 | c_w(k,i) = c_max |
---|
[75] | 276 | ENDIF |
---|
[106] | 277 | |
---|
| 278 | ! |
---|
| 279 | !-- Save old timelevels for the next timestep |
---|
| 280 | u_m_s(k,:,i) = u(k,0:1,i) |
---|
| 281 | v_m_s(k,:,i) = v(k,1:2,i) |
---|
| 282 | w_m_s(k,:,i) = w(k,0:1,i) |
---|
| 283 | |
---|
[75] | 284 | ENDIF |
---|
| 285 | |
---|
| 286 | ! |
---|
| 287 | !-- Calculate the new velocities |
---|
[106] | 288 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u(k,i) * & |
---|
[75] | 289 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 290 | |
---|
[107] | 291 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v(k,i) * & |
---|
[106] | 292 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 293 | |
---|
[106] | 294 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w(k,i) * & |
---|
[75] | 295 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
| 296 | |
---|
| 297 | ENDDO |
---|
| 298 | ENDDO |
---|
| 299 | |
---|
| 300 | ! |
---|
| 301 | !-- Bottom boundary at the outflow |
---|
| 302 | IF ( ibc_uv_b == 0 ) THEN |
---|
[667] | 303 | u_p(nzb,-1,:) = 0.0 |
---|
| 304 | v_p(nzb,0,:) = 0.0 |
---|
[75] | 305 | ELSE |
---|
| 306 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
[106] | 307 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
[73] | 308 | ENDIF |
---|
[106] | 309 | w_p(nzb,-1,:) = 0.0 |
---|
[73] | 310 | |
---|
[75] | 311 | ! |
---|
| 312 | !-- Top boundary at the outflow |
---|
| 313 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 314 | u_p(nzt+1,-1,:) = ug(nzt+1) |
---|
[106] | 315 | v_p(nzt+1,0,:) = vg(nzt+1) |
---|
[75] | 316 | ELSE |
---|
| 317 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
[106] | 318 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
[75] | 319 | ENDIF |
---|
| 320 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
[73] | 321 | |
---|
[75] | 322 | ENDIF |
---|
[73] | 323 | |
---|
[106] | 324 | IF ( outflow_n ) THEN |
---|
[73] | 325 | |
---|
[75] | 326 | c_max = dy / dt_3d |
---|
| 327 | |
---|
[667] | 328 | DO i = nxlg, nxrg |
---|
[75] | 329 | DO k = nzb+1, nzt+1 |
---|
| 330 | |
---|
[1] | 331 | ! |
---|
[106] | 332 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 333 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 334 | !-- reuse this values for the further substeps. |
---|
| 335 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[73] | 336 | |
---|
[106] | 337 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 338 | |
---|
| 339 | IF ( denom /= 0.0 ) THEN |
---|
| 340 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / denom |
---|
| 341 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 342 | c_u(k,i) = 0.0 |
---|
| 343 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 344 | c_u(k,i) = c_max |
---|
| 345 | ENDIF |
---|
| 346 | ELSE |
---|
| 347 | c_u(k,i) = c_max |
---|
[73] | 348 | ENDIF |
---|
| 349 | |
---|
[106] | 350 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 351 | |
---|
[106] | 352 | IF ( denom /= 0.0 ) THEN |
---|
| 353 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / denom |
---|
| 354 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 355 | c_v(k,i) = 0.0 |
---|
| 356 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 357 | c_v(k,i) = c_max |
---|
| 358 | ENDIF |
---|
| 359 | ELSE |
---|
| 360 | c_v(k,i) = c_max |
---|
[73] | 361 | ENDIF |
---|
| 362 | |
---|
[106] | 363 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 364 | |
---|
[106] | 365 | IF ( denom /= 0.0 ) THEN |
---|
| 366 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / denom |
---|
| 367 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 368 | c_w(k,i) = 0.0 |
---|
| 369 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 370 | c_w(k,i) = c_max |
---|
| 371 | ENDIF |
---|
| 372 | ELSE |
---|
| 373 | c_w(k,i) = c_max |
---|
[73] | 374 | ENDIF |
---|
[106] | 375 | |
---|
| 376 | ! |
---|
| 377 | !-- Swap timelevels for the next timestep |
---|
| 378 | u_m_n(k,:,i) = u(k,ny-1:ny,i) |
---|
| 379 | v_m_n(k,:,i) = v(k,ny-1:ny,i) |
---|
| 380 | w_m_n(k,:,i) = w(k,ny-1:ny,i) |
---|
| 381 | |
---|
[75] | 382 | ENDIF |
---|
[73] | 383 | |
---|
| 384 | ! |
---|
[75] | 385 | !-- Calculate the new velocities |
---|
[106] | 386 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u(k,i) * & |
---|
[75] | 387 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 388 | |
---|
[106] | 389 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v(k,i) * & |
---|
[75] | 390 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 391 | |
---|
[106] | 392 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w(k,i) * & |
---|
[75] | 393 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
[73] | 394 | |
---|
[1] | 395 | ENDDO |
---|
[75] | 396 | ENDDO |
---|
[1] | 397 | |
---|
| 398 | ! |
---|
[75] | 399 | !-- Bottom boundary at the outflow |
---|
| 400 | IF ( ibc_uv_b == 0 ) THEN |
---|
[667] | 401 | u_p(nzb,ny+1,:) = 0.0 |
---|
| 402 | v_p(nzb,ny+1,:) = 0.0 |
---|
[75] | 403 | ELSE |
---|
| 404 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 405 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 406 | ENDIF |
---|
| 407 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 408 | |
---|
| 409 | ! |
---|
[75] | 410 | !-- Top boundary at the outflow |
---|
| 411 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 412 | u_p(nzt+1,ny+1,:) = ug(nzt+1) |
---|
| 413 | v_p(nzt+1,ny+1,:) = vg(nzt+1) |
---|
| 414 | ELSE |
---|
| 415 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 416 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
[1] | 417 | ENDIF |
---|
[75] | 418 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
[1] | 419 | |
---|
[75] | 420 | ENDIF |
---|
| 421 | |
---|
[106] | 422 | IF ( outflow_l ) THEN |
---|
[75] | 423 | |
---|
| 424 | c_max = dx / dt_3d |
---|
| 425 | |
---|
[667] | 426 | DO j = nysg, nyng |
---|
[75] | 427 | DO k = nzb+1, nzt+1 |
---|
| 428 | |
---|
[1] | 429 | ! |
---|
[106] | 430 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 431 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 432 | !-- reuse this values for the further substeps. |
---|
| 433 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[75] | 434 | |
---|
[106] | 435 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 436 | |
---|
| 437 | IF ( denom /= 0.0 ) THEN |
---|
| 438 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / denom |
---|
[107] | 439 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
[106] | 440 | c_u(k,j) = 0.0 |
---|
[107] | 441 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 442 | c_u(k,j) = c_max |
---|
[106] | 443 | ENDIF |
---|
| 444 | ELSE |
---|
[107] | 445 | c_u(k,j) = c_max |
---|
[75] | 446 | ENDIF |
---|
| 447 | |
---|
[106] | 448 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 449 | |
---|
[106] | 450 | IF ( denom /= 0.0 ) THEN |
---|
| 451 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / denom |
---|
| 452 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 453 | c_v(k,j) = 0.0 |
---|
| 454 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 455 | c_v(k,j) = c_max |
---|
| 456 | ENDIF |
---|
| 457 | ELSE |
---|
| 458 | c_v(k,j) = c_max |
---|
[75] | 459 | ENDIF |
---|
| 460 | |
---|
[106] | 461 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 462 | |
---|
[106] | 463 | IF ( denom /= 0.0 ) THEN |
---|
| 464 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / denom |
---|
| 465 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 466 | c_w(k,j) = 0.0 |
---|
| 467 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 468 | c_w(k,j) = c_max |
---|
| 469 | ENDIF |
---|
| 470 | ELSE |
---|
| 471 | c_w(k,j) = c_max |
---|
[75] | 472 | ENDIF |
---|
[106] | 473 | |
---|
| 474 | ! |
---|
| 475 | !-- Swap timelevels for the next timestep |
---|
| 476 | u_m_l(k,j,:) = u(k,j,1:2) |
---|
| 477 | v_m_l(k,j,:) = v(k,j,0:1) |
---|
| 478 | w_m_l(k,j,:) = w(k,j,0:1) |
---|
| 479 | |
---|
[75] | 480 | ENDIF |
---|
| 481 | |
---|
[73] | 482 | ! |
---|
[75] | 483 | !-- Calculate the new velocities |
---|
[106] | 484 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u(k,j) * & |
---|
| 485 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 486 | |
---|
[106] | 487 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v(k,j) * & |
---|
[75] | 488 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 489 | |
---|
[106] | 490 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w(k,j) * & |
---|
[75] | 491 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
| 492 | |
---|
| 493 | ENDDO |
---|
| 494 | ENDDO |
---|
| 495 | |
---|
| 496 | ! |
---|
| 497 | !-- Bottom boundary at the outflow |
---|
| 498 | IF ( ibc_uv_b == 0 ) THEN |
---|
[667] | 499 | u_p(nzb,:,0) = 0.0 |
---|
| 500 | v_p(nzb,:,-1) = 0.0 |
---|
[75] | 501 | ELSE |
---|
[667] | 502 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
[75] | 503 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
[1] | 504 | ENDIF |
---|
[75] | 505 | w_p(nzb,:,-1) = 0.0 |
---|
[1] | 506 | |
---|
[75] | 507 | ! |
---|
| 508 | !-- Top boundary at the outflow |
---|
| 509 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 510 | u_p(nzt+1,:,-1) = ug(nzt+1) |
---|
| 511 | v_p(nzt+1,:,-1) = vg(nzt+1) |
---|
| 512 | ELSE |
---|
| 513 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 514 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 515 | ENDIF |
---|
| 516 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
[73] | 517 | |
---|
[75] | 518 | ENDIF |
---|
[73] | 519 | |
---|
[106] | 520 | IF ( outflow_r ) THEN |
---|
[73] | 521 | |
---|
[75] | 522 | c_max = dx / dt_3d |
---|
| 523 | |
---|
[667] | 524 | DO j = nysg, nyng |
---|
[75] | 525 | DO k = nzb+1, nzt+1 |
---|
| 526 | |
---|
[1] | 527 | ! |
---|
[106] | 528 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 529 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 530 | !-- reuse this values for the further substeps. |
---|
| 531 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[73] | 532 | |
---|
[106] | 533 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 534 | |
---|
| 535 | IF ( denom /= 0.0 ) THEN |
---|
| 536 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / denom |
---|
| 537 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
| 538 | c_u(k,j) = 0.0 |
---|
| 539 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 540 | c_u(k,j) = c_max |
---|
| 541 | ENDIF |
---|
| 542 | ELSE |
---|
| 543 | c_u(k,j) = c_max |
---|
[73] | 544 | ENDIF |
---|
| 545 | |
---|
[106] | 546 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 547 | |
---|
[106] | 548 | IF ( denom /= 0.0 ) THEN |
---|
| 549 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / denom |
---|
| 550 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 551 | c_v(k,j) = 0.0 |
---|
| 552 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 553 | c_v(k,j) = c_max |
---|
| 554 | ENDIF |
---|
| 555 | ELSE |
---|
| 556 | c_v(k,j) = c_max |
---|
[73] | 557 | ENDIF |
---|
| 558 | |
---|
[106] | 559 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 560 | |
---|
[106] | 561 | IF ( denom /= 0.0 ) THEN |
---|
| 562 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / denom |
---|
| 563 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 564 | c_w(k,j) = 0.0 |
---|
| 565 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 566 | c_w(k,j) = c_max |
---|
| 567 | ENDIF |
---|
| 568 | ELSE |
---|
| 569 | c_w(k,j) = c_max |
---|
[73] | 570 | ENDIF |
---|
[106] | 571 | |
---|
| 572 | ! |
---|
| 573 | !-- Swap timelevels for the next timestep |
---|
| 574 | u_m_r(k,j,:) = u(k,j,nx-1:nx) |
---|
| 575 | v_m_r(k,j,:) = v(k,j,nx-1:nx) |
---|
| 576 | w_m_r(k,j,:) = w(k,j,nx-1:nx) |
---|
| 577 | |
---|
[75] | 578 | ENDIF |
---|
[73] | 579 | |
---|
| 580 | ! |
---|
[75] | 581 | !-- Calculate the new velocities |
---|
[106] | 582 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u(k,j) * & |
---|
[75] | 583 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 584 | |
---|
[106] | 585 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v(k,j) * & |
---|
[75] | 586 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 587 | |
---|
[106] | 588 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w(k,j) * & |
---|
[75] | 589 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
[73] | 590 | |
---|
| 591 | ENDDO |
---|
[75] | 592 | ENDDO |
---|
[73] | 593 | |
---|
| 594 | ! |
---|
[75] | 595 | !-- Bottom boundary at the outflow |
---|
| 596 | IF ( ibc_uv_b == 0 ) THEN |
---|
[667] | 597 | u_p(nzb,:,nx+1) = 0.0 |
---|
| 598 | v_p(nzb,:,nx+1) = 0.0 |
---|
[75] | 599 | ELSE |
---|
| 600 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 601 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 602 | ENDIF |
---|
| 603 | w_p(nzb,:,nx+1) = 0.0 |
---|
[73] | 604 | |
---|
| 605 | ! |
---|
[75] | 606 | !-- Top boundary at the outflow |
---|
| 607 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 608 | u_p(nzt+1,:,nx+1) = ug(nzt+1) |
---|
| 609 | v_p(nzt+1,:,nx+1) = vg(nzt+1) |
---|
| 610 | ELSE |
---|
| 611 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 612 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
[1] | 613 | ENDIF |
---|
[75] | 614 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
[1] | 615 | |
---|
| 616 | ENDIF |
---|
| 617 | |
---|
| 618 | |
---|
| 619 | END SUBROUTINE boundary_conds |
---|