[1682] | 1 | !> @file boundary_conds.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1933] | 22 | ! |
---|
[3589] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 4087 2019-07-11 11:35:23Z suehring $ |
---|
[4087] | 27 | ! Add comment |
---|
| 28 | ! |
---|
| 29 | ! 4086 2019-07-11 05:55:44Z gronemeier |
---|
[4086] | 30 | ! Bugfix: use constant-flux layer condition for e in all rans modes |
---|
| 31 | ! |
---|
| 32 | ! 3879 2019-04-08 20:25:23Z knoop |
---|
[3717] | 33 | ! Bugfix, do not set boundary conditions for potential temperature in neutral |
---|
| 34 | ! runs. |
---|
| 35 | ! |
---|
| 36 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 37 | ! OpenACC port for SPEC |
---|
| 38 | ! |
---|
| 39 | ! 3589 2018-11-30 15:09:51Z suehring |
---|
[3589] | 40 | ! Move the control parameter "salsa" from salsa_mod to control_parameters |
---|
| 41 | ! (M. Kurppa) |
---|
| 42 | ! |
---|
| 43 | ! 3582 2018-11-29 19:16:36Z suehring |
---|
[3562] | 44 | ! variables documented |
---|
| 45 | ! |
---|
| 46 | ! 3467 2018-10-30 19:05:21Z suehring |
---|
[3467] | 47 | ! Implementation of a new aerosol module salsa. |
---|
| 48 | ! |
---|
| 49 | ! 3347 2018-10-15 14:21:08Z suehring |
---|
[3347] | 50 | ! Bugfix in setting boundary conditions in offline nesting |
---|
| 51 | ! |
---|
| 52 | ! 3341 2018-10-15 10:31:27Z suehring |
---|
[3294] | 53 | ! changes concerning modularization of ocean option |
---|
| 54 | ! |
---|
| 55 | ! 3274 2018-09-24 15:42:55Z knoop |
---|
[3274] | 56 | ! Modularization of all bulk cloud physics code components |
---|
| 57 | ! |
---|
| 58 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 59 | ! unused variables removed |
---|
| 60 | ! |
---|
| 61 | ! 3183 2018-07-27 14:25:55Z suehring |
---|
[3183] | 62 | ! Rename some variables concerning LES-LES as well as offline nesting |
---|
| 63 | ! |
---|
| 64 | ! 3182 2018-07-27 13:36:03Z suehring |
---|
[3129] | 65 | ! - Use wall function for e_p and diss_p in case of rans_tke_e |
---|
| 66 | ! - move limitation of diss_p from tcm_prognostic |
---|
| 67 | ! |
---|
| 68 | ! 2938 2018-03-27 15:52:42Z suehring |
---|
[2938] | 69 | ! Set boundary condition for TKE and TKE dissipation rate in case of nesting |
---|
| 70 | ! and if parent model operates in RANS mode but child model in LES mode. |
---|
| 71 | ! mode |
---|
| 72 | ! |
---|
| 73 | ! 2793 2018-02-07 10:54:33Z suehring |
---|
[2766] | 74 | ! Removed preprocessor directive __chem |
---|
| 75 | ! |
---|
| 76 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 77 | ! Corrected "Former revisions" section |
---|
| 78 | ! |
---|
| 79 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 80 | ! Change in file header (GPL part) |
---|
[2696] | 81 | ! Adjust boundary conditions for e and diss in case of TKE-e closure (TG) |
---|
| 82 | ! Implementation of chemistry module (FK) |
---|
| 83 | ! |
---|
| 84 | ! 2569 2017-10-20 11:54:42Z kanani |
---|
[2569] | 85 | ! Removed redundant code for ibc_s_b=1 and ibc_q_b=1 |
---|
| 86 | ! |
---|
| 87 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 88 | ! Vertical grid nesting implemented: exclude setting vertical velocity to zero |
---|
| 89 | ! on fine grid (SadiqHuq) |
---|
| 90 | ! |
---|
| 91 | ! 2320 2017-07-21 12:47:43Z suehring |
---|
[2320] | 92 | ! Remove unused control parameter large_scale_forcing from only-list |
---|
| 93 | ! |
---|
| 94 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 95 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 96 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 97 | ! and cloud water content (qc). |
---|
| 98 | ! |
---|
| 99 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[1321] | 100 | ! |
---|
[2233] | 101 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 102 | ! Set boundary conditions on topography top using flag method. |
---|
| 103 | ! |
---|
[2119] | 104 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 105 | ! OpenACC directives removed |
---|
| 106 | ! |
---|
[2001] | 107 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 108 | ! Forced header and separation lines into 80 columns |
---|
| 109 | ! |
---|
[1993] | 110 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
| 111 | ! Adjustments for top boundary condition for passive scalar |
---|
| 112 | ! |
---|
[1961] | 113 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 114 | ! Treat humidity and passive scalar separately |
---|
| 115 | ! |
---|
[1933] | 116 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
| 117 | ! Initial version of purely vertical nesting introduced. |
---|
| 118 | ! |
---|
[1823] | 119 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 120 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
| 121 | ! |
---|
[1765] | 122 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
| 123 | ! index bug for u_p at left outflow removed |
---|
| 124 | ! |
---|
[1763] | 125 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
| 126 | ! Introduction of nested domain feature |
---|
| 127 | ! |
---|
[1744] | 128 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
| 129 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
| 130 | ! |
---|
[1718] | 131 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
| 132 | ! Bugfix: index error in outflow conditions for left boundary |
---|
| 133 | ! |
---|
[1683] | 134 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 135 | ! Code annotations made doxygen readable |
---|
| 136 | ! |
---|
[1717] | 137 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
[1463] | 138 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 139 | ! top |
---|
| 140 | ! |
---|
[1410] | 141 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 142 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 143 | ! is used. |
---|
| 144 | ! |
---|
[1399] | 145 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 146 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 147 | ! for large_scale_forcing |
---|
| 148 | ! |
---|
[1381] | 149 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 150 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 151 | ! |
---|
[1362] | 152 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 153 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 154 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 155 | ! |
---|
[1354] | 156 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 157 | ! REAL constants provided with KIND-attribute |
---|
| 158 | ! |
---|
[1321] | 159 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 160 | ! ONLY-attribute added to USE-statements, |
---|
| 161 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 162 | ! kinds are defined in new module kinds, |
---|
| 163 | ! revision history before 2012 removed, |
---|
| 164 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 165 | ! all variable declaration statements |
---|
[1160] | 166 | ! |
---|
[1258] | 167 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 168 | ! loop independent clauses added |
---|
| 169 | ! |
---|
[1242] | 170 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 171 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 172 | ! |
---|
[1160] | 173 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 174 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 175 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 176 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 177 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 178 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 179 | ! u_p, v_p, w_p |
---|
[1116] | 180 | ! |
---|
| 181 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 182 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 183 | ! boundary-conditions |
---|
| 184 | ! |
---|
[1114] | 185 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 186 | ! GPU-porting |
---|
| 187 | ! dummy argument "range" removed |
---|
| 188 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 189 | ! |
---|
[1054] | 190 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 191 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 192 | ! two-moment cloud scheme |
---|
| 193 | ! |
---|
[1037] | 194 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 195 | ! code put under GPL (PALM 3.9) |
---|
| 196 | ! |
---|
[997] | 197 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 198 | ! little reformatting |
---|
| 199 | ! |
---|
[979] | 200 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 201 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 202 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 203 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 204 | ! velocity. |
---|
| 205 | ! |
---|
[876] | 206 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 207 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 208 | ! |
---|
[1] | 209 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 210 | ! Initial revision |
---|
| 211 | ! |
---|
| 212 | ! |
---|
| 213 | ! Description: |
---|
| 214 | ! ------------ |
---|
[1682] | 215 | !> Boundary conditions for the prognostic quantities. |
---|
| 216 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 217 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 218 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 219 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 220 | !------------------------------------------------------------------------------! |
---|
[1682] | 221 | SUBROUTINE boundary_conds |
---|
| 222 | |
---|
[1] | 223 | |
---|
[1320] | 224 | USE arrays_3d, & |
---|
| 225 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
[3241] | 226 | diss, diss_p, dzu, e_p, nc_p, nr_p, pt, pt_init, pt_p, q, & |
---|
| 227 | q_p, qc_p, qr_p, s, s_p, sa, sa_p, u, u_init, u_m_l, u_m_n, & |
---|
| 228 | u_m_r, u_m_s, u_p, v, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
| 229 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s |
---|
[2696] | 230 | |
---|
[3274] | 231 | USE basic_constants_and_equations_mod, & |
---|
| 232 | ONLY: kappa |
---|
| 233 | |
---|
[3294] | 234 | USE bulk_cloud_model_mod, & |
---|
| 235 | ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert |
---|
| 236 | |
---|
[2696] | 237 | USE chemistry_model_mod, & |
---|
[3879] | 238 | ONLY: chem_boundary_conds |
---|
| 239 | |
---|
[1320] | 240 | USE control_parameters, & |
---|
[3182] | 241 | ONLY: air_chemistry, bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, & |
---|
| 242 | bc_dirichlet_s, bc_radiation_l, bc_radiation_n, bc_radiation_r, & |
---|
| 243 | bc_radiation_s, bc_pt_t_val, bc_q_t_val, bc_s_t_val, & |
---|
[3582] | 244 | child_domain, constant_diffusion, coupling_mode, dt_3d, & |
---|
| 245 | humidity, ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, & |
---|
| 246 | ibc_s_t, ibc_uv_b, ibc_uv_t, intermediate_timestep_count, & |
---|
[3717] | 247 | nesting_offline, neutral, nudging, ocean_mode, passive_scalar, & |
---|
| 248 | rans_mode, rans_tke_e, tsc, salsa, use_cmax |
---|
[1320] | 249 | |
---|
| 250 | USE grid_variables, & |
---|
| 251 | ONLY: ddx, ddy, dx, dy |
---|
| 252 | |
---|
| 253 | USE indices, & |
---|
[3294] | 254 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 255 | |
---|
| 256 | USE kinds |
---|
| 257 | |
---|
[3294] | 258 | USE ocean_mod, & |
---|
| 259 | ONLY: ibc_sa_t |
---|
[3274] | 260 | |
---|
[1] | 261 | USE pegrid |
---|
| 262 | |
---|
[1933] | 263 | USE pmc_interface, & |
---|
[2938] | 264 | ONLY : nesting_mode, rans_mode_parent |
---|
[3467] | 265 | |
---|
| 266 | USE salsa_mod, & |
---|
[3582] | 267 | ONLY: salsa_boundary_conds |
---|
[1320] | 268 | |
---|
[2232] | 269 | USE surface_mod, & |
---|
[3129] | 270 | ONLY : bc_h, surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, & |
---|
| 271 | surf_usm_h, surf_usm_v |
---|
[1933] | 272 | |
---|
[3129] | 273 | USE turbulence_closure_mod, & |
---|
| 274 | ONLY: c_0 |
---|
| 275 | |
---|
[1] | 276 | IMPLICIT NONE |
---|
| 277 | |
---|
[2232] | 278 | INTEGER(iwp) :: i !< grid index x direction |
---|
| 279 | INTEGER(iwp) :: j !< grid index y direction |
---|
| 280 | INTEGER(iwp) :: k !< grid index z direction |
---|
| 281 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 282 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 283 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1] | 284 | |
---|
[3562] | 285 | REAL(wp) :: c_max !< maximum phase velocity allowed by CFL criterion, used for outflow boundary condition |
---|
| 286 | REAL(wp) :: denom !< horizontal gradient of velocity component normal to the outflow boundary |
---|
[1] | 287 | |
---|
[73] | 288 | |
---|
[1] | 289 | ! |
---|
[1113] | 290 | !-- Bottom boundary |
---|
| 291 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 292 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 293 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 294 | ENDIF |
---|
[2232] | 295 | ! |
---|
| 296 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
| 297 | !-- of downward-facing surfaces. |
---|
| 298 | DO l = 0, 1 |
---|
| 299 | ! |
---|
| 300 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 301 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 302 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 303 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 304 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 305 | !$ACC PRESENT(bc_h, w_p) |
---|
[2232] | 306 | DO m = 1, bc_h(l)%ns |
---|
| 307 | i = bc_h(l)%i(m) |
---|
| 308 | j = bc_h(l)%j(m) |
---|
| 309 | k = bc_h(l)%k(m) |
---|
| 310 | w_p(k+kb,j,i) = 0.0_wp |
---|
[1113] | 311 | ENDDO |
---|
| 312 | ENDDO |
---|
| 313 | |
---|
| 314 | ! |
---|
[1762] | 315 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
[1113] | 316 | IF ( ibc_uv_t == 0 ) THEN |
---|
[3634] | 317 | !$ACC KERNELS PRESENT(u_p, v_p, u_init, v_init) |
---|
[1113] | 318 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 319 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[3634] | 320 | !$ACC END KERNELS |
---|
[1762] | 321 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
[1113] | 322 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 323 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 324 | ENDIF |
---|
| 325 | |
---|
[2365] | 326 | ! |
---|
| 327 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
[3347] | 328 | IF ( .NOT. child_domain .AND. .NOT. nesting_offline .AND. & |
---|
[2365] | 329 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
[3634] | 330 | !$ACC KERNELS PRESENT(w_p) |
---|
[2365] | 331 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
[3634] | 332 | !$ACC END KERNELS |
---|
[1762] | 333 | ENDIF |
---|
| 334 | |
---|
[1113] | 335 | ! |
---|
[2232] | 336 | !-- Temperature at bottom and top boundary. |
---|
[1113] | 337 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 338 | !-- the sea surface temperature of the coupled ocean model. |
---|
[2232] | 339 | !-- Dirichlet |
---|
[3717] | 340 | IF ( .NOT. neutral ) THEN |
---|
| 341 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 342 | DO l = 0, 1 |
---|
| 343 | ! |
---|
| 344 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) |
---|
| 345 | !-- is set, for downward-facing surfaces at topography bottom (k+1). |
---|
| 346 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 347 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 348 | DO m = 1, bc_h(l)%ns |
---|
| 349 | i = bc_h(l)%i(m) |
---|
| 350 | j = bc_h(l)%j(m) |
---|
| 351 | k = bc_h(l)%k(m) |
---|
| 352 | pt_p(k+kb,j,i) = pt(k+kb,j,i) |
---|
| 353 | ENDDO |
---|
[1] | 354 | ENDDO |
---|
[3717] | 355 | ! |
---|
| 356 | !-- Neumann, zero-gradient |
---|
| 357 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 358 | DO l = 0, 1 |
---|
| 359 | ! |
---|
| 360 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) |
---|
| 361 | !-- is set, for downward-facing surfaces at topography bottom (k+1). |
---|
| 362 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 363 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 364 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 365 | !$ACC PRESENT(bc_h, pt_p) |
---|
| 366 | DO m = 1, bc_h(l)%ns |
---|
| 367 | i = bc_h(l)%i(m) |
---|
| 368 | j = bc_h(l)%j(m) |
---|
| 369 | k = bc_h(l)%k(m) |
---|
| 370 | pt_p(k+kb,j,i) = pt_p(k,j,i) |
---|
| 371 | ENDDO |
---|
[1113] | 372 | ENDDO |
---|
[3717] | 373 | ENDIF |
---|
| 374 | |
---|
| 375 | ! |
---|
| 376 | !-- Temperature at top boundary |
---|
| 377 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 378 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
| 379 | ! |
---|
| 380 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 381 | !-- read in from NUDGING-DATA |
---|
| 382 | IF ( nudging ) THEN |
---|
| 383 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 384 | ENDIF |
---|
| 385 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 386 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 387 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 388 | !$ACC KERNELS PRESENT(pt_p, dzu) |
---|
| 389 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 390 | !$ACC END KERNELS |
---|
| 391 | ENDIF |
---|
[1113] | 392 | ENDIF |
---|
[1] | 393 | |
---|
| 394 | ! |
---|
[2938] | 395 | !-- Boundary conditions for TKE. |
---|
| 396 | !-- Generally Neumann conditions with de/dz=0 are assumed. |
---|
[1113] | 397 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2232] | 398 | |
---|
[4086] | 399 | IF ( .NOT. rans_mode ) THEN |
---|
[2696] | 400 | DO l = 0, 1 |
---|
[2232] | 401 | ! |
---|
[2696] | 402 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 403 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 404 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 405 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 406 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 407 | !$ACC PRESENT(bc_h, e_p) |
---|
[2696] | 408 | DO m = 1, bc_h(l)%ns |
---|
| 409 | i = bc_h(l)%i(m) |
---|
| 410 | j = bc_h(l)%j(m) |
---|
| 411 | k = bc_h(l)%k(m) |
---|
| 412 | e_p(k+kb,j,i) = e_p(k,j,i) |
---|
| 413 | ENDDO |
---|
[73] | 414 | ENDDO |
---|
[3129] | 415 | ELSE |
---|
| 416 | ! |
---|
| 417 | !-- Use wall function within constant-flux layer |
---|
[4087] | 418 | !-- Note, grid points listed in bc_h are not included in any calculations in RANS mode and |
---|
| 419 | !-- are therefore not set here. |
---|
| 420 | ! |
---|
[3129] | 421 | !-- Upward-facing surfaces |
---|
| 422 | !-- Default surfaces |
---|
| 423 | DO m = 1, surf_def_h(0)%ns |
---|
| 424 | i = surf_def_h(0)%i(m) |
---|
| 425 | j = surf_def_h(0)%j(m) |
---|
| 426 | k = surf_def_h(0)%k(m) |
---|
| 427 | e_p(k,j,i) = ( surf_def_h(0)%us(m) / c_0 )**2 |
---|
| 428 | ENDDO |
---|
| 429 | ! |
---|
| 430 | !-- Natural surfaces |
---|
| 431 | DO m = 1, surf_lsm_h%ns |
---|
| 432 | i = surf_lsm_h%i(m) |
---|
| 433 | j = surf_lsm_h%j(m) |
---|
| 434 | k = surf_lsm_h%k(m) |
---|
| 435 | e_p(k,j,i) = ( surf_lsm_h%us(m) / c_0 )**2 |
---|
| 436 | ENDDO |
---|
| 437 | ! |
---|
| 438 | !-- Urban surfaces |
---|
| 439 | DO m = 1, surf_usm_h%ns |
---|
| 440 | i = surf_usm_h%i(m) |
---|
| 441 | j = surf_usm_h%j(m) |
---|
| 442 | k = surf_usm_h%k(m) |
---|
| 443 | e_p(k,j,i) = ( surf_usm_h%us(m) / c_0 )**2 |
---|
| 444 | ENDDO |
---|
| 445 | ! |
---|
| 446 | !-- Vertical surfaces |
---|
| 447 | DO l = 0, 3 |
---|
| 448 | ! |
---|
| 449 | !-- Default surfaces |
---|
| 450 | DO m = 1, surf_def_v(l)%ns |
---|
| 451 | i = surf_def_v(l)%i(m) |
---|
| 452 | j = surf_def_v(l)%j(m) |
---|
| 453 | k = surf_def_v(l)%k(m) |
---|
| 454 | e_p(k,j,i) = ( surf_def_v(l)%us(m) / c_0 )**2 |
---|
| 455 | ENDDO |
---|
| 456 | ! |
---|
| 457 | !-- Natural surfaces |
---|
| 458 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 459 | i = surf_lsm_v(l)%i(m) |
---|
| 460 | j = surf_lsm_v(l)%j(m) |
---|
| 461 | k = surf_lsm_v(l)%k(m) |
---|
| 462 | e_p(k,j,i) = ( surf_lsm_v(l)%us(m) / c_0 )**2 |
---|
| 463 | ENDDO |
---|
| 464 | ! |
---|
| 465 | !-- Urban surfaces |
---|
| 466 | DO m = 1, surf_usm_v(l)%ns |
---|
| 467 | i = surf_usm_v(l)%i(m) |
---|
| 468 | j = surf_usm_v(l)%j(m) |
---|
| 469 | k = surf_usm_v(l)%k(m) |
---|
| 470 | e_p(k,j,i) = ( surf_usm_v(l)%us(m) / c_0 )**2 |
---|
| 471 | ENDDO |
---|
| 472 | ENDDO |
---|
[2696] | 473 | ENDIF |
---|
[2232] | 474 | |
---|
[3182] | 475 | IF ( .NOT. child_domain ) THEN |
---|
[3634] | 476 | !$ACC KERNELS PRESENT(e_p) |
---|
[1762] | 477 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[3634] | 478 | !$ACC END KERNELS |
---|
[2938] | 479 | ! |
---|
| 480 | !-- Nesting case: if parent operates in RANS mode and child in LES mode, |
---|
| 481 | !-- no TKE is transfered. This case, set Neumann conditions at lateral and |
---|
| 482 | !-- top child boundaries. |
---|
| 483 | !-- If not ( both either in RANS or in LES mode ), TKE boundary condition |
---|
| 484 | !-- is treated in the nesting. |
---|
| 485 | ELSE |
---|
| 486 | |
---|
| 487 | IF ( rans_mode_parent .AND. .NOT. rans_mode ) THEN |
---|
| 488 | |
---|
| 489 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[3182] | 490 | IF ( bc_dirichlet_l ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 491 | IF ( bc_dirichlet_r ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 492 | IF ( bc_dirichlet_s ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 493 | IF ( bc_dirichlet_n ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[2938] | 494 | |
---|
| 495 | ENDIF |
---|
[1762] | 496 | ENDIF |
---|
[1113] | 497 | ENDIF |
---|
| 498 | |
---|
| 499 | ! |
---|
[2938] | 500 | !-- Boundary conditions for TKE dissipation rate. |
---|
[3129] | 501 | IF ( rans_tke_e ) THEN |
---|
| 502 | ! |
---|
| 503 | !-- Use wall function within constant-flux layer |
---|
| 504 | !-- Upward-facing surfaces |
---|
| 505 | !-- Default surfaces |
---|
| 506 | DO m = 1, surf_def_h(0)%ns |
---|
| 507 | i = surf_def_h(0)%i(m) |
---|
| 508 | j = surf_def_h(0)%j(m) |
---|
| 509 | k = surf_def_h(0)%k(m) |
---|
| 510 | diss_p(k,j,i) = surf_def_h(0)%us(m)**3 & |
---|
| 511 | / ( kappa * surf_def_h(0)%z_mo(m) ) |
---|
| 512 | ENDDO |
---|
| 513 | ! |
---|
| 514 | !-- Natural surfaces |
---|
| 515 | DO m = 1, surf_lsm_h%ns |
---|
| 516 | i = surf_lsm_h%i(m) |
---|
| 517 | j = surf_lsm_h%j(m) |
---|
| 518 | k = surf_lsm_h%k(m) |
---|
| 519 | diss_p(k,j,i) = surf_lsm_h%us(m)**3 & |
---|
| 520 | / ( kappa * surf_lsm_h%z_mo(m) ) |
---|
| 521 | ENDDO |
---|
| 522 | ! |
---|
| 523 | !-- Urban surfaces |
---|
| 524 | DO m = 1, surf_usm_h%ns |
---|
| 525 | i = surf_usm_h%i(m) |
---|
| 526 | j = surf_usm_h%j(m) |
---|
| 527 | k = surf_usm_h%k(m) |
---|
| 528 | diss_p(k,j,i) = surf_usm_h%us(m)**3 & |
---|
| 529 | / ( kappa * surf_usm_h%z_mo(m) ) |
---|
| 530 | ENDDO |
---|
| 531 | ! |
---|
| 532 | !-- Vertical surfaces |
---|
| 533 | DO l = 0, 3 |
---|
| 534 | ! |
---|
| 535 | !-- Default surfaces |
---|
| 536 | DO m = 1, surf_def_v(l)%ns |
---|
| 537 | i = surf_def_v(l)%i(m) |
---|
| 538 | j = surf_def_v(l)%j(m) |
---|
| 539 | k = surf_def_v(l)%k(m) |
---|
| 540 | diss_p(k,j,i) = surf_def_v(l)%us(m)**3 & |
---|
| 541 | / ( kappa * surf_def_v(l)%z_mo(m) ) |
---|
| 542 | ENDDO |
---|
| 543 | ! |
---|
| 544 | !-- Natural surfaces |
---|
| 545 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 546 | i = surf_lsm_v(l)%i(m) |
---|
| 547 | j = surf_lsm_v(l)%j(m) |
---|
| 548 | k = surf_lsm_v(l)%k(m) |
---|
| 549 | diss_p(k,j,i) = surf_lsm_v(l)%us(m)**3 & |
---|
| 550 | / ( kappa * surf_lsm_v(l)%z_mo(m) ) |
---|
| 551 | ENDDO |
---|
| 552 | ! |
---|
| 553 | !-- Urban surfaces |
---|
| 554 | DO m = 1, surf_usm_v(l)%ns |
---|
| 555 | i = surf_usm_v(l)%i(m) |
---|
| 556 | j = surf_usm_v(l)%j(m) |
---|
| 557 | k = surf_usm_v(l)%k(m) |
---|
| 558 | diss_p(k,j,i) = surf_usm_v(l)%us(m)**3 & |
---|
| 559 | / ( kappa * surf_usm_v(l)%z_mo(m) ) |
---|
| 560 | ENDDO |
---|
| 561 | ENDDO |
---|
| 562 | ! |
---|
| 563 | !-- Limit change of diss to be between -90% and +100%. Also, set an absolute |
---|
| 564 | !-- minimum value |
---|
| 565 | DO i = nxl, nxr |
---|
| 566 | DO j = nys, nyn |
---|
| 567 | DO k = nzb, nzt+1 |
---|
| 568 | diss_p(k,j,i) = MAX( MIN( diss_p(k,j,i), & |
---|
| 569 | 2.0_wp * diss(k,j,i) ), & |
---|
| 570 | 0.1_wp * diss(k,j,i), & |
---|
| 571 | 0.0001_wp ) |
---|
| 572 | ENDDO |
---|
| 573 | ENDDO |
---|
| 574 | ENDDO |
---|
| 575 | |
---|
[3182] | 576 | IF ( .NOT. child_domain ) THEN |
---|
[3129] | 577 | diss_p(nzt+1,:,:) = diss_p(nzt,:,:) |
---|
| 578 | ENDIF |
---|
[2696] | 579 | ENDIF |
---|
| 580 | |
---|
| 581 | ! |
---|
[1113] | 582 | !-- Boundary conditions for salinity |
---|
[3294] | 583 | IF ( ocean_mode ) THEN |
---|
[1113] | 584 | ! |
---|
| 585 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
[2232] | 586 | !-- given. |
---|
| 587 | DO l = 0, 1 |
---|
| 588 | ! |
---|
| 589 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 590 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 591 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 592 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 593 | DO m = 1, bc_h(l)%ns |
---|
| 594 | i = bc_h(l)%i(m) |
---|
| 595 | j = bc_h(l)%j(m) |
---|
| 596 | k = bc_h(l)%k(m) |
---|
| 597 | sa_p(k+kb,j,i) = sa_p(k,j,i) |
---|
[1] | 598 | ENDDO |
---|
[1113] | 599 | ENDDO |
---|
[1] | 600 | ! |
---|
[1113] | 601 | !-- Top boundary: Dirichlet or Neumann |
---|
| 602 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 603 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 604 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 605 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 606 | ENDIF |
---|
| 607 | |
---|
[1113] | 608 | ENDIF |
---|
| 609 | |
---|
[1] | 610 | ! |
---|
[1960] | 611 | !-- Boundary conditions for total water content, |
---|
[1113] | 612 | !-- bottom and top boundary (see also temperature) |
---|
[1960] | 613 | IF ( humidity ) THEN |
---|
[1113] | 614 | ! |
---|
| 615 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 616 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 617 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 618 | !-- q_p at k-1 |
---|
[1113] | 619 | IF ( ibc_q_b == 0 ) THEN |
---|
[2232] | 620 | |
---|
| 621 | DO l = 0, 1 |
---|
| 622 | ! |
---|
| 623 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 624 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 625 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 626 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 627 | DO m = 1, bc_h(l)%ns |
---|
| 628 | i = bc_h(l)%i(m) |
---|
| 629 | j = bc_h(l)%j(m) |
---|
| 630 | k = bc_h(l)%k(m) |
---|
| 631 | q_p(k+kb,j,i) = q(k+kb,j,i) |
---|
[1] | 632 | ENDDO |
---|
| 633 | ENDDO |
---|
[2232] | 634 | |
---|
[1113] | 635 | ELSE |
---|
[2232] | 636 | |
---|
| 637 | DO l = 0, 1 |
---|
| 638 | ! |
---|
| 639 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 640 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 641 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 642 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 643 | DO m = 1, bc_h(l)%ns |
---|
| 644 | i = bc_h(l)%i(m) |
---|
| 645 | j = bc_h(l)%j(m) |
---|
| 646 | k = bc_h(l)%k(m) |
---|
| 647 | q_p(k+kb,j,i) = q_p(k,j,i) |
---|
[95] | 648 | ENDDO |
---|
| 649 | ENDDO |
---|
[1113] | 650 | ENDIF |
---|
[95] | 651 | ! |
---|
[1113] | 652 | !-- Top boundary |
---|
[1462] | 653 | IF ( ibc_q_t == 0 ) THEN |
---|
| 654 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 655 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
[1992] | 656 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1462] | 657 | ENDIF |
---|
[95] | 658 | |
---|
[3274] | 659 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 660 | ! |
---|
| 661 | !-- Surface conditions cloud water (Dirichlet) |
---|
| 662 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 663 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 664 | !-- qr_p and nr_p at k-1 |
---|
| 665 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 666 | DO m = 1, bc_h(0)%ns |
---|
| 667 | i = bc_h(0)%i(m) |
---|
| 668 | j = bc_h(0)%j(m) |
---|
| 669 | k = bc_h(0)%k(m) |
---|
| 670 | qc_p(k-1,j,i) = 0.0_wp |
---|
| 671 | nc_p(k-1,j,i) = 0.0_wp |
---|
| 672 | ENDDO |
---|
| 673 | ! |
---|
| 674 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
| 675 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
| 676 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
| 677 | |
---|
| 678 | ENDIF |
---|
| 679 | |
---|
[3274] | 680 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1113] | 681 | ! |
---|
[1361] | 682 | !-- Surface conditions rain water (Dirichlet) |
---|
[2232] | 683 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 684 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 685 | !-- qr_p and nr_p at k-1 |
---|
| 686 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 687 | DO m = 1, bc_h(0)%ns |
---|
| 688 | i = bc_h(0)%i(m) |
---|
| 689 | j = bc_h(0)%j(m) |
---|
| 690 | k = bc_h(0)%k(m) |
---|
| 691 | qr_p(k-1,j,i) = 0.0_wp |
---|
| 692 | nr_p(k-1,j,i) = 0.0_wp |
---|
[1115] | 693 | ENDDO |
---|
[1] | 694 | ! |
---|
[1361] | 695 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 696 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 697 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 698 | |
---|
[1] | 699 | ENDIF |
---|
[1409] | 700 | ENDIF |
---|
[1] | 701 | ! |
---|
[1960] | 702 | !-- Boundary conditions for scalar, |
---|
| 703 | !-- bottom and top boundary (see also temperature) |
---|
| 704 | IF ( passive_scalar ) THEN |
---|
| 705 | ! |
---|
| 706 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 707 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 708 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 709 | !-- s_p at k-1 |
---|
[1960] | 710 | IF ( ibc_s_b == 0 ) THEN |
---|
[2232] | 711 | |
---|
| 712 | DO l = 0, 1 |
---|
| 713 | ! |
---|
| 714 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 715 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 716 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 717 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 718 | DO m = 1, bc_h(l)%ns |
---|
| 719 | i = bc_h(l)%i(m) |
---|
| 720 | j = bc_h(l)%j(m) |
---|
| 721 | k = bc_h(l)%k(m) |
---|
| 722 | s_p(k+kb,j,i) = s(k+kb,j,i) |
---|
[1960] | 723 | ENDDO |
---|
| 724 | ENDDO |
---|
[2232] | 725 | |
---|
[1960] | 726 | ELSE |
---|
[2232] | 727 | |
---|
| 728 | DO l = 0, 1 |
---|
| 729 | ! |
---|
| 730 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 731 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 732 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 733 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 734 | DO m = 1, bc_h(l)%ns |
---|
| 735 | i = bc_h(l)%i(m) |
---|
| 736 | j = bc_h(l)%j(m) |
---|
| 737 | k = bc_h(l)%k(m) |
---|
| 738 | s_p(k+kb,j,i) = s_p(k,j,i) |
---|
[1960] | 739 | ENDDO |
---|
| 740 | ENDDO |
---|
| 741 | ENDIF |
---|
| 742 | ! |
---|
[1992] | 743 | !-- Top boundary condition |
---|
| 744 | IF ( ibc_s_t == 0 ) THEN |
---|
[1960] | 745 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
[1992] | 746 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
| 747 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
| 748 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
| 749 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
[1960] | 750 | ENDIF |
---|
| 751 | |
---|
| 752 | ENDIF |
---|
| 753 | ! |
---|
[2696] | 754 | !-- Top/bottom boundary conditions for chemical species |
---|
| 755 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_bottomtop' ) |
---|
| 756 | ! |
---|
[1762] | 757 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
| 758 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
| 759 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
| 760 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
| 761 | !-- have to be restored here. |
---|
[1409] | 762 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
[3182] | 763 | IF ( bc_dirichlet_s ) THEN |
---|
[1409] | 764 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 765 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[3182] | 766 | ELSEIF ( bc_dirichlet_n ) THEN |
---|
[1409] | 767 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[3182] | 768 | ELSEIF ( bc_dirichlet_l ) THEN |
---|
[1409] | 769 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 770 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[3182] | 771 | ELSEIF ( bc_dirichlet_r ) THEN |
---|
[1409] | 772 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 773 | ENDIF |
---|
[1] | 774 | |
---|
| 775 | ! |
---|
[1762] | 776 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
[1933] | 777 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
[3182] | 778 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
| 779 | IF ( nesting_mode /= 'vertical' .OR. nesting_offline ) THEN |
---|
| 780 | IF ( bc_dirichlet_s ) THEN |
---|
[1933] | 781 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 782 | ENDIF |
---|
[3182] | 783 | IF ( bc_dirichlet_l ) THEN |
---|
[1933] | 784 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 785 | ENDIF |
---|
[1762] | 786 | ENDIF |
---|
| 787 | |
---|
| 788 | ! |
---|
[1409] | 789 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
[3182] | 790 | IF ( bc_radiation_s ) THEN |
---|
[1409] | 791 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
[2232] | 792 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[2696] | 793 | IF ( rans_tke_e ) diss_p(:,nys-1,:) = diss_p(:,nys,:) |
---|
[1960] | 794 | IF ( humidity ) THEN |
---|
[1409] | 795 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[3274] | 796 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 797 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
| 798 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
| 799 | ENDIF |
---|
[3274] | 800 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 801 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 802 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 803 | ENDIF |
---|
[1409] | 804 | ENDIF |
---|
[1960] | 805 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
[3182] | 806 | ELSEIF ( bc_radiation_n ) THEN |
---|
[1409] | 807 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
[2696] | 808 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 809 | IF ( rans_tke_e ) diss_p(:,nyn+1,:) = diss_p(:,nyn,:) |
---|
[1960] | 810 | IF ( humidity ) THEN |
---|
[1409] | 811 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[3274] | 812 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 813 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
| 814 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
| 815 | ENDIF |
---|
[3274] | 816 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 817 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 818 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 819 | ENDIF |
---|
[1409] | 820 | ENDIF |
---|
[1960] | 821 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
[3182] | 822 | ELSEIF ( bc_radiation_l ) THEN |
---|
[1409] | 823 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
[2696] | 824 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 825 | IF ( rans_tke_e ) diss_p(:,:,nxl-1) = diss_p(:,:,nxl) |
---|
[1960] | 826 | IF ( humidity ) THEN |
---|
[1409] | 827 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[3274] | 828 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 829 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
| 830 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
| 831 | ENDIF |
---|
[3274] | 832 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 833 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 834 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 835 | ENDIF |
---|
[1409] | 836 | ENDIF |
---|
[1960] | 837 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
[3182] | 838 | ELSEIF ( bc_radiation_r ) THEN |
---|
[1409] | 839 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
[2696] | 840 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 841 | IF ( rans_tke_e ) diss_p(:,:,nxr+1) = diss_p(:,:,nxr) |
---|
[1960] | 842 | IF ( humidity ) THEN |
---|
[1409] | 843 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[3274] | 844 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 845 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
| 846 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
| 847 | ENDIF |
---|
[3274] | 848 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 849 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 850 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 851 | ENDIF |
---|
[1] | 852 | ENDIF |
---|
[1960] | 853 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
[1] | 854 | ENDIF |
---|
| 855 | |
---|
| 856 | ! |
---|
[2696] | 857 | !-- Lateral boundary conditions for chemical species |
---|
| 858 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_lateral' ) |
---|
| 859 | |
---|
| 860 | ! |
---|
[1159] | 861 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 862 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 863 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 864 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[3182] | 865 | IF ( bc_radiation_s ) THEN |
---|
[75] | 866 | |
---|
[1159] | 867 | IF ( use_cmax ) THEN |
---|
| 868 | u_p(:,-1,:) = u(:,0,:) |
---|
| 869 | v_p(:,0,:) = v(:,1,:) |
---|
| 870 | w_p(:,-1,:) = w(:,0,:) |
---|
| 871 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 872 | |
---|
[978] | 873 | c_max = dy / dt_3d |
---|
[75] | 874 | |
---|
[1353] | 875 | c_u_m_l = 0.0_wp |
---|
| 876 | c_v_m_l = 0.0_wp |
---|
| 877 | c_w_m_l = 0.0_wp |
---|
[978] | 878 | |
---|
[1353] | 879 | c_u_m = 0.0_wp |
---|
| 880 | c_v_m = 0.0_wp |
---|
| 881 | c_w_m = 0.0_wp |
---|
[978] | 882 | |
---|
[75] | 883 | ! |
---|
[996] | 884 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 885 | !-- average along the outflow boundary. |
---|
| 886 | DO k = nzb+1, nzt+1 |
---|
| 887 | DO i = nxl, nxr |
---|
[75] | 888 | |
---|
[106] | 889 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 890 | |
---|
[1353] | 891 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 892 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 893 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 894 | c_u(k,i) = 0.0_wp |
---|
[106] | 895 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 896 | c_u(k,i) = c_max |
---|
| 897 | ENDIF |
---|
| 898 | ELSE |
---|
| 899 | c_u(k,i) = c_max |
---|
[75] | 900 | ENDIF |
---|
| 901 | |
---|
[106] | 902 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 903 | |
---|
[1353] | 904 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 905 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 906 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 907 | c_v(k,i) = 0.0_wp |
---|
[106] | 908 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 909 | c_v(k,i) = c_max |
---|
| 910 | ENDIF |
---|
| 911 | ELSE |
---|
| 912 | c_v(k,i) = c_max |
---|
[75] | 913 | ENDIF |
---|
| 914 | |
---|
[106] | 915 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 916 | |
---|
[1353] | 917 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 918 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 919 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 920 | c_w(k,i) = 0.0_wp |
---|
[106] | 921 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 922 | c_w(k,i) = c_max |
---|
| 923 | ENDIF |
---|
| 924 | ELSE |
---|
| 925 | c_w(k,i) = c_max |
---|
[75] | 926 | ENDIF |
---|
[106] | 927 | |
---|
[978] | 928 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 929 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 930 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 931 | |
---|
[978] | 932 | ENDDO |
---|
| 933 | ENDDO |
---|
[75] | 934 | |
---|
[978] | 935 | #if defined( __parallel ) |
---|
| 936 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 937 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 938 | MPI_SUM, comm1dx, ierr ) |
---|
| 939 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 940 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 941 | MPI_SUM, comm1dx, ierr ) |
---|
| 942 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 943 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 944 | MPI_SUM, comm1dx, ierr ) |
---|
| 945 | #else |
---|
| 946 | c_u_m = c_u_m_l |
---|
| 947 | c_v_m = c_v_m_l |
---|
| 948 | c_w_m = c_w_m_l |
---|
| 949 | #endif |
---|
| 950 | |
---|
| 951 | c_u_m = c_u_m / (nx+1) |
---|
| 952 | c_v_m = c_v_m / (nx+1) |
---|
| 953 | c_w_m = c_w_m / (nx+1) |
---|
| 954 | |
---|
[75] | 955 | ! |
---|
[978] | 956 | !-- Save old timelevels for the next timestep |
---|
| 957 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 958 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 959 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 960 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 961 | ENDIF |
---|
| 962 | |
---|
| 963 | ! |
---|
| 964 | !-- Calculate the new velocities |
---|
[996] | 965 | DO k = nzb+1, nzt+1 |
---|
| 966 | DO i = nxlg, nxrg |
---|
[978] | 967 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 968 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 969 | |
---|
[978] | 970 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 971 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 972 | |
---|
[978] | 973 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 974 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 975 | ENDDO |
---|
[75] | 976 | ENDDO |
---|
| 977 | |
---|
| 978 | ! |
---|
[978] | 979 | !-- Bottom boundary at the outflow |
---|
| 980 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 981 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 982 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 983 | ELSE |
---|
| 984 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 985 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 986 | ENDIF |
---|
[1353] | 987 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 988 | |
---|
[75] | 989 | ! |
---|
[978] | 990 | !-- Top boundary at the outflow |
---|
| 991 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 992 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 993 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 994 | ELSE |
---|
[1742] | 995 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 996 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 997 | ENDIF |
---|
[1353] | 998 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 999 | |
---|
[75] | 1000 | ENDIF |
---|
[73] | 1001 | |
---|
[75] | 1002 | ENDIF |
---|
[73] | 1003 | |
---|
[3182] | 1004 | IF ( bc_radiation_n ) THEN |
---|
[73] | 1005 | |
---|
[1159] | 1006 | IF ( use_cmax ) THEN |
---|
| 1007 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 1008 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 1009 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 1010 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1011 | |
---|
[978] | 1012 | c_max = dy / dt_3d |
---|
[75] | 1013 | |
---|
[1353] | 1014 | c_u_m_l = 0.0_wp |
---|
| 1015 | c_v_m_l = 0.0_wp |
---|
| 1016 | c_w_m_l = 0.0_wp |
---|
[978] | 1017 | |
---|
[1353] | 1018 | c_u_m = 0.0_wp |
---|
| 1019 | c_v_m = 0.0_wp |
---|
| 1020 | c_w_m = 0.0_wp |
---|
[978] | 1021 | |
---|
[1] | 1022 | ! |
---|
[996] | 1023 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1024 | !-- average along the outflow boundary. |
---|
| 1025 | DO k = nzb+1, nzt+1 |
---|
| 1026 | DO i = nxl, nxr |
---|
[73] | 1027 | |
---|
[106] | 1028 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 1029 | |
---|
[1353] | 1030 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1031 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 1032 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 1033 | c_u(k,i) = 0.0_wp |
---|
[106] | 1034 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 1035 | c_u(k,i) = c_max |
---|
| 1036 | ENDIF |
---|
| 1037 | ELSE |
---|
| 1038 | c_u(k,i) = c_max |
---|
[73] | 1039 | ENDIF |
---|
| 1040 | |
---|
[106] | 1041 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 1042 | |
---|
[1353] | 1043 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1044 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 1045 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 1046 | c_v(k,i) = 0.0_wp |
---|
[106] | 1047 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 1048 | c_v(k,i) = c_max |
---|
| 1049 | ENDIF |
---|
| 1050 | ELSE |
---|
| 1051 | c_v(k,i) = c_max |
---|
[73] | 1052 | ENDIF |
---|
| 1053 | |
---|
[106] | 1054 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 1055 | |
---|
[1353] | 1056 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1057 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 1058 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 1059 | c_w(k,i) = 0.0_wp |
---|
[106] | 1060 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 1061 | c_w(k,i) = c_max |
---|
| 1062 | ENDIF |
---|
| 1063 | ELSE |
---|
| 1064 | c_w(k,i) = c_max |
---|
[73] | 1065 | ENDIF |
---|
[106] | 1066 | |
---|
[978] | 1067 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 1068 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 1069 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 1070 | |
---|
[978] | 1071 | ENDDO |
---|
| 1072 | ENDDO |
---|
[73] | 1073 | |
---|
[978] | 1074 | #if defined( __parallel ) |
---|
| 1075 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1076 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1077 | MPI_SUM, comm1dx, ierr ) |
---|
| 1078 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1079 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1080 | MPI_SUM, comm1dx, ierr ) |
---|
| 1081 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1082 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1083 | MPI_SUM, comm1dx, ierr ) |
---|
| 1084 | #else |
---|
| 1085 | c_u_m = c_u_m_l |
---|
| 1086 | c_v_m = c_v_m_l |
---|
| 1087 | c_w_m = c_w_m_l |
---|
| 1088 | #endif |
---|
| 1089 | |
---|
| 1090 | c_u_m = c_u_m / (nx+1) |
---|
| 1091 | c_v_m = c_v_m / (nx+1) |
---|
| 1092 | c_w_m = c_w_m / (nx+1) |
---|
| 1093 | |
---|
[73] | 1094 | ! |
---|
[978] | 1095 | !-- Save old timelevels for the next timestep |
---|
| 1096 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1097 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1098 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1099 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1100 | ENDIF |
---|
[73] | 1101 | |
---|
[978] | 1102 | ! |
---|
| 1103 | !-- Calculate the new velocities |
---|
[996] | 1104 | DO k = nzb+1, nzt+1 |
---|
| 1105 | DO i = nxlg, nxrg |
---|
[978] | 1106 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1107 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 1108 | |
---|
[978] | 1109 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1110 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 1111 | |
---|
[978] | 1112 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1113 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 1114 | ENDDO |
---|
[1] | 1115 | ENDDO |
---|
| 1116 | |
---|
| 1117 | ! |
---|
[978] | 1118 | !-- Bottom boundary at the outflow |
---|
| 1119 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1120 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 1121 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 1122 | ELSE |
---|
| 1123 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 1124 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 1125 | ENDIF |
---|
[1353] | 1126 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 1127 | |
---|
| 1128 | ! |
---|
[978] | 1129 | !-- Top boundary at the outflow |
---|
| 1130 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1131 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 1132 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 1133 | ELSE |
---|
| 1134 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 1135 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 1136 | ENDIF |
---|
[1353] | 1137 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 1138 | |
---|
[1] | 1139 | ENDIF |
---|
| 1140 | |
---|
[75] | 1141 | ENDIF |
---|
| 1142 | |
---|
[3182] | 1143 | IF ( bc_radiation_l ) THEN |
---|
[75] | 1144 | |
---|
[1159] | 1145 | IF ( use_cmax ) THEN |
---|
[1717] | 1146 | u_p(:,:,0) = u(:,:,1) |
---|
| 1147 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 1148 | w_p(:,:,-1) = w(:,:,0) |
---|
| 1149 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1150 | |
---|
[978] | 1151 | c_max = dx / dt_3d |
---|
[75] | 1152 | |
---|
[1353] | 1153 | c_u_m_l = 0.0_wp |
---|
| 1154 | c_v_m_l = 0.0_wp |
---|
| 1155 | c_w_m_l = 0.0_wp |
---|
[978] | 1156 | |
---|
[1353] | 1157 | c_u_m = 0.0_wp |
---|
| 1158 | c_v_m = 0.0_wp |
---|
| 1159 | c_w_m = 0.0_wp |
---|
[978] | 1160 | |
---|
[1] | 1161 | ! |
---|
[996] | 1162 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1163 | !-- average along the outflow boundary. |
---|
| 1164 | DO k = nzb+1, nzt+1 |
---|
| 1165 | DO j = nys, nyn |
---|
[75] | 1166 | |
---|
[106] | 1167 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 1168 | |
---|
[1353] | 1169 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1170 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 1171 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1172 | c_u(k,j) = 0.0_wp |
---|
[107] | 1173 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1174 | c_u(k,j) = c_max |
---|
[106] | 1175 | ENDIF |
---|
| 1176 | ELSE |
---|
[107] | 1177 | c_u(k,j) = c_max |
---|
[75] | 1178 | ENDIF |
---|
| 1179 | |
---|
[106] | 1180 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 1181 | |
---|
[1353] | 1182 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1183 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 1184 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1185 | c_v(k,j) = 0.0_wp |
---|
[106] | 1186 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1187 | c_v(k,j) = c_max |
---|
| 1188 | ENDIF |
---|
| 1189 | ELSE |
---|
| 1190 | c_v(k,j) = c_max |
---|
[75] | 1191 | ENDIF |
---|
| 1192 | |
---|
[106] | 1193 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 1194 | |
---|
[1353] | 1195 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1196 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 1197 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1198 | c_w(k,j) = 0.0_wp |
---|
[106] | 1199 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1200 | c_w(k,j) = c_max |
---|
| 1201 | ENDIF |
---|
| 1202 | ELSE |
---|
| 1203 | c_w(k,j) = c_max |
---|
[75] | 1204 | ENDIF |
---|
[106] | 1205 | |
---|
[978] | 1206 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1207 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1208 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1209 | |
---|
[978] | 1210 | ENDDO |
---|
| 1211 | ENDDO |
---|
[75] | 1212 | |
---|
[978] | 1213 | #if defined( __parallel ) |
---|
| 1214 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1215 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1216 | MPI_SUM, comm1dy, ierr ) |
---|
| 1217 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1218 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1219 | MPI_SUM, comm1dy, ierr ) |
---|
| 1220 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1221 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1222 | MPI_SUM, comm1dy, ierr ) |
---|
| 1223 | #else |
---|
| 1224 | c_u_m = c_u_m_l |
---|
| 1225 | c_v_m = c_v_m_l |
---|
| 1226 | c_w_m = c_w_m_l |
---|
| 1227 | #endif |
---|
| 1228 | |
---|
| 1229 | c_u_m = c_u_m / (ny+1) |
---|
| 1230 | c_v_m = c_v_m / (ny+1) |
---|
| 1231 | c_w_m = c_w_m / (ny+1) |
---|
| 1232 | |
---|
[73] | 1233 | ! |
---|
[978] | 1234 | !-- Save old timelevels for the next timestep |
---|
| 1235 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1236 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1237 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1238 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1239 | ENDIF |
---|
| 1240 | |
---|
| 1241 | ! |
---|
| 1242 | !-- Calculate the new velocities |
---|
[996] | 1243 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1244 | DO j = nysg, nyng |
---|
[978] | 1245 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 1246 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 1247 | |
---|
[978] | 1248 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 1249 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 1250 | |
---|
[978] | 1251 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 1252 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 1253 | ENDDO |
---|
[75] | 1254 | ENDDO |
---|
| 1255 | |
---|
| 1256 | ! |
---|
[978] | 1257 | !-- Bottom boundary at the outflow |
---|
| 1258 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1259 | u_p(nzb,:,0) = 0.0_wp |
---|
| 1260 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 1261 | ELSE |
---|
| 1262 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 1263 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 1264 | ENDIF |
---|
[1353] | 1265 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 1266 | |
---|
[75] | 1267 | ! |
---|
[978] | 1268 | !-- Top boundary at the outflow |
---|
| 1269 | IF ( ibc_uv_t == 0 ) THEN |
---|
[1764] | 1270 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
[978] | 1271 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 1272 | ELSE |
---|
[1764] | 1273 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
[978] | 1274 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 1275 | ENDIF |
---|
[1353] | 1276 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 1277 | |
---|
[75] | 1278 | ENDIF |
---|
[73] | 1279 | |
---|
[75] | 1280 | ENDIF |
---|
[73] | 1281 | |
---|
[3182] | 1282 | IF ( bc_radiation_r ) THEN |
---|
[73] | 1283 | |
---|
[1159] | 1284 | IF ( use_cmax ) THEN |
---|
| 1285 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 1286 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 1287 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 1288 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1289 | |
---|
[978] | 1290 | c_max = dx / dt_3d |
---|
[75] | 1291 | |
---|
[1353] | 1292 | c_u_m_l = 0.0_wp |
---|
| 1293 | c_v_m_l = 0.0_wp |
---|
| 1294 | c_w_m_l = 0.0_wp |
---|
[978] | 1295 | |
---|
[1353] | 1296 | c_u_m = 0.0_wp |
---|
| 1297 | c_v_m = 0.0_wp |
---|
| 1298 | c_w_m = 0.0_wp |
---|
[978] | 1299 | |
---|
[1] | 1300 | ! |
---|
[996] | 1301 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1302 | !-- average along the outflow boundary. |
---|
| 1303 | DO k = nzb+1, nzt+1 |
---|
| 1304 | DO j = nys, nyn |
---|
[73] | 1305 | |
---|
[106] | 1306 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 1307 | |
---|
[1353] | 1308 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1309 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1310 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1311 | c_u(k,j) = 0.0_wp |
---|
[106] | 1312 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1313 | c_u(k,j) = c_max |
---|
| 1314 | ENDIF |
---|
| 1315 | ELSE |
---|
| 1316 | c_u(k,j) = c_max |
---|
[73] | 1317 | ENDIF |
---|
| 1318 | |
---|
[106] | 1319 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 1320 | |
---|
[1353] | 1321 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1322 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1323 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1324 | c_v(k,j) = 0.0_wp |
---|
[106] | 1325 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1326 | c_v(k,j) = c_max |
---|
| 1327 | ENDIF |
---|
| 1328 | ELSE |
---|
| 1329 | c_v(k,j) = c_max |
---|
[73] | 1330 | ENDIF |
---|
| 1331 | |
---|
[106] | 1332 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 1333 | |
---|
[1353] | 1334 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1335 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1336 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1337 | c_w(k,j) = 0.0_wp |
---|
[106] | 1338 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1339 | c_w(k,j) = c_max |
---|
| 1340 | ENDIF |
---|
| 1341 | ELSE |
---|
| 1342 | c_w(k,j) = c_max |
---|
[73] | 1343 | ENDIF |
---|
[106] | 1344 | |
---|
[978] | 1345 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1346 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1347 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1348 | |
---|
[978] | 1349 | ENDDO |
---|
| 1350 | ENDDO |
---|
[73] | 1351 | |
---|
[978] | 1352 | #if defined( __parallel ) |
---|
| 1353 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1354 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1355 | MPI_SUM, comm1dy, ierr ) |
---|
| 1356 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1357 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1358 | MPI_SUM, comm1dy, ierr ) |
---|
| 1359 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1360 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1361 | MPI_SUM, comm1dy, ierr ) |
---|
| 1362 | #else |
---|
| 1363 | c_u_m = c_u_m_l |
---|
| 1364 | c_v_m = c_v_m_l |
---|
| 1365 | c_w_m = c_w_m_l |
---|
| 1366 | #endif |
---|
| 1367 | |
---|
| 1368 | c_u_m = c_u_m / (ny+1) |
---|
| 1369 | c_v_m = c_v_m / (ny+1) |
---|
| 1370 | c_w_m = c_w_m / (ny+1) |
---|
| 1371 | |
---|
[73] | 1372 | ! |
---|
[978] | 1373 | !-- Save old timelevels for the next timestep |
---|
| 1374 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1375 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1376 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1377 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1378 | ENDIF |
---|
[73] | 1379 | |
---|
[978] | 1380 | ! |
---|
| 1381 | !-- Calculate the new velocities |
---|
[996] | 1382 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1383 | DO j = nysg, nyng |
---|
[978] | 1384 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1385 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 1386 | |
---|
[978] | 1387 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1388 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 1389 | |
---|
[978] | 1390 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1391 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 1392 | ENDDO |
---|
[73] | 1393 | ENDDO |
---|
| 1394 | |
---|
| 1395 | ! |
---|
[978] | 1396 | !-- Bottom boundary at the outflow |
---|
| 1397 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1398 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 1399 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 1400 | ELSE |
---|
| 1401 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 1402 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 1403 | ENDIF |
---|
[1353] | 1404 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 1405 | |
---|
| 1406 | ! |
---|
[978] | 1407 | !-- Top boundary at the outflow |
---|
| 1408 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1409 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 1410 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 1411 | ELSE |
---|
| 1412 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 1413 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 1414 | ENDIF |
---|
[1742] | 1415 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 1416 | |
---|
[1] | 1417 | ENDIF |
---|
| 1418 | |
---|
| 1419 | ENDIF |
---|
[3864] | 1420 | |
---|
[3467] | 1421 | IF ( salsa ) THEN |
---|
| 1422 | CALL salsa_boundary_conds |
---|
[3864] | 1423 | ENDIF |
---|
[1] | 1424 | |
---|
| 1425 | END SUBROUTINE boundary_conds |
---|