[1682] | 1 | !> @file boundary_conds.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[484] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[1933] | 21 | ! |
---|
| 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: boundary_conds.f90 1933 2016-06-13 07:12:51Z hellstea $ |
---|
| 26 | ! |
---|
[1933] | 27 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
| 28 | ! Initial version of purely vertical nesting introduced. |
---|
| 29 | ! |
---|
[1823] | 30 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 31 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
| 32 | ! |
---|
[1765] | 33 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
| 34 | ! index bug for u_p at left outflow removed |
---|
| 35 | ! |
---|
[1763] | 36 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
| 37 | ! Introduction of nested domain feature |
---|
| 38 | ! |
---|
[1744] | 39 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
| 40 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
| 41 | ! |
---|
[1718] | 42 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
| 43 | ! Bugfix: index error in outflow conditions for left boundary |
---|
| 44 | ! |
---|
[1683] | 45 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 46 | ! Code annotations made doxygen readable |
---|
| 47 | ! |
---|
[1717] | 48 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
[1463] | 49 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 50 | ! top |
---|
| 51 | ! |
---|
[1410] | 52 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 53 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 54 | ! is used. |
---|
| 55 | ! |
---|
[1399] | 56 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 57 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 58 | ! for large_scale_forcing |
---|
| 59 | ! |
---|
[1381] | 60 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 61 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 62 | ! |
---|
[1362] | 63 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 64 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 65 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 66 | ! |
---|
[1354] | 67 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 68 | ! REAL constants provided with KIND-attribute |
---|
| 69 | ! |
---|
[1321] | 70 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 71 | ! ONLY-attribute added to USE-statements, |
---|
| 72 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 73 | ! kinds are defined in new module kinds, |
---|
| 74 | ! revision history before 2012 removed, |
---|
| 75 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 76 | ! all variable declaration statements |
---|
[1160] | 77 | ! |
---|
[1258] | 78 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 79 | ! loop independent clauses added |
---|
| 80 | ! |
---|
[1242] | 81 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 82 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 83 | ! |
---|
[1160] | 84 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 85 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 86 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 87 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 88 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 89 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 90 | ! u_p, v_p, w_p |
---|
[1116] | 91 | ! |
---|
| 92 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 93 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 94 | ! boundary-conditions |
---|
| 95 | ! |
---|
[1114] | 96 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 97 | ! GPU-porting |
---|
| 98 | ! dummy argument "range" removed |
---|
| 99 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 100 | ! |
---|
[1054] | 101 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 102 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 103 | ! two-moment cloud scheme |
---|
| 104 | ! |
---|
[1037] | 105 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 106 | ! code put under GPL (PALM 3.9) |
---|
| 107 | ! |
---|
[997] | 108 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 109 | ! little reformatting |
---|
| 110 | ! |
---|
[979] | 111 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 112 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 113 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 114 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 115 | ! velocity. |
---|
| 116 | ! |
---|
[876] | 117 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 118 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 119 | ! |
---|
[1] | 120 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 121 | ! Initial revision |
---|
| 122 | ! |
---|
| 123 | ! |
---|
| 124 | ! Description: |
---|
| 125 | ! ------------ |
---|
[1682] | 126 | !> Boundary conditions for the prognostic quantities. |
---|
| 127 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 128 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 129 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 130 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 131 | !------------------------------------------------------------------------------! |
---|
[1682] | 132 | SUBROUTINE boundary_conds |
---|
| 133 | |
---|
[1] | 134 | |
---|
[1320] | 135 | USE arrays_3d, & |
---|
| 136 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
| 137 | dzu, e_p, nr_p, pt, pt_p, q, q_p, qr_p, sa, sa_p, & |
---|
| 138 | u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
| 139 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
[1380] | 140 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s,& |
---|
| 141 | pt_init |
---|
[1320] | 142 | |
---|
| 143 | USE control_parameters, & |
---|
| 144 | ONLY: bc_pt_t_val, bc_q_t_val, constant_diffusion, & |
---|
| 145 | cloud_physics, dt_3d, humidity, & |
---|
[1462] | 146 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_sa_t, ibc_uv_b, & |
---|
[1822] | 147 | ibc_uv_t, inflow_l, inflow_n, inflow_r, inflow_s, & |
---|
| 148 | intermediate_timestep_count, large_scale_forcing, & |
---|
| 149 | microphysics_seifert, nest_domain, nest_bound_l, nest_bound_s, & |
---|
| 150 | nudging, ocean, outflow_l, outflow_n, outflow_r, outflow_s, & |
---|
| 151 | passive_scalar, tsc, use_cmax |
---|
[1320] | 152 | |
---|
| 153 | USE grid_variables, & |
---|
| 154 | ONLY: ddx, ddy, dx, dy |
---|
| 155 | |
---|
| 156 | USE indices, & |
---|
| 157 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
| 158 | nzb, nzb_s_inner, nzb_w_inner, nzt |
---|
| 159 | |
---|
| 160 | USE kinds |
---|
| 161 | |
---|
[1] | 162 | USE pegrid |
---|
| 163 | |
---|
[1933] | 164 | USE pmc_interface, & |
---|
| 165 | ONLY : nesting_mode |
---|
[1320] | 166 | |
---|
[1933] | 167 | |
---|
[1] | 168 | IMPLICIT NONE |
---|
| 169 | |
---|
[1682] | 170 | INTEGER(iwp) :: i !< |
---|
| 171 | INTEGER(iwp) :: j !< |
---|
| 172 | INTEGER(iwp) :: k !< |
---|
[1] | 173 | |
---|
[1682] | 174 | REAL(wp) :: c_max !< |
---|
| 175 | REAL(wp) :: denom !< |
---|
[1] | 176 | |
---|
[73] | 177 | |
---|
[1] | 178 | ! |
---|
[1113] | 179 | !-- Bottom boundary |
---|
| 180 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 181 | !$acc kernels present( u_p, v_p ) |
---|
| 182 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 183 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 184 | !$acc end kernels |
---|
| 185 | ENDIF |
---|
| 186 | |
---|
| 187 | !$acc kernels present( nzb_w_inner, w_p ) |
---|
| 188 | DO i = nxlg, nxrg |
---|
| 189 | DO j = nysg, nyng |
---|
[1353] | 190 | w_p(nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
[1113] | 191 | ENDDO |
---|
| 192 | ENDDO |
---|
| 193 | !$acc end kernels |
---|
| 194 | |
---|
| 195 | ! |
---|
[1762] | 196 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
[1113] | 197 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 198 | !$acc kernels present( u_init, u_p, v_init, v_p ) |
---|
| 199 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 200 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
| 201 | !$acc end kernels |
---|
[1762] | 202 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
[1113] | 203 | !$acc kernels present( u_p, v_p ) |
---|
| 204 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 205 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 206 | !$acc end kernels |
---|
| 207 | ENDIF |
---|
| 208 | |
---|
[1762] | 209 | IF ( .NOT. nest_domain ) THEN |
---|
| 210 | !$acc kernels present( w_p ) |
---|
| 211 | w_p(nzt:nzt+1,:,:) = 0.0_wp ! nzt is not a prognostic level (but cf. pres) |
---|
| 212 | !$acc end kernels |
---|
| 213 | ENDIF |
---|
| 214 | |
---|
[1113] | 215 | ! |
---|
| 216 | !-- Temperature at bottom boundary. |
---|
| 217 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 218 | !-- the sea surface temperature of the coupled ocean model. |
---|
| 219 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 220 | !$acc kernels present( nzb_s_inner, pt, pt_p ) |
---|
[1257] | 221 | !$acc loop independent |
---|
[667] | 222 | DO i = nxlg, nxrg |
---|
[1257] | 223 | !$acc loop independent |
---|
[667] | 224 | DO j = nysg, nyng |
---|
[1113] | 225 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 226 | ENDDO |
---|
| 227 | ENDDO |
---|
[1113] | 228 | !$acc end kernels |
---|
| 229 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 230 | !$acc kernels present( nzb_s_inner, pt_p ) |
---|
[1257] | 231 | !$acc loop independent |
---|
[1113] | 232 | DO i = nxlg, nxrg |
---|
[1257] | 233 | !$acc loop independent |
---|
[1113] | 234 | DO j = nysg, nyng |
---|
| 235 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 236 | ENDDO |
---|
| 237 | ENDDO |
---|
| 238 | !$acc end kernels |
---|
| 239 | ENDIF |
---|
[1] | 240 | |
---|
| 241 | ! |
---|
[1113] | 242 | !-- Temperature at top boundary |
---|
| 243 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 244 | !$acc kernels present( pt, pt_p ) |
---|
| 245 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[1380] | 246 | ! |
---|
| 247 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 248 | !-- read in from NUDGING-DATA |
---|
| 249 | IF ( nudging ) THEN |
---|
| 250 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 251 | ENDIF |
---|
[1113] | 252 | !$acc end kernels |
---|
| 253 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 254 | !$acc kernels present( pt_p ) |
---|
| 255 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 256 | !$acc end kernels |
---|
| 257 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 258 | !$acc kernels present( dzu, pt_p ) |
---|
| 259 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 260 | !$acc end kernels |
---|
| 261 | ENDIF |
---|
[1] | 262 | |
---|
| 263 | ! |
---|
[1113] | 264 | !-- Boundary conditions for TKE |
---|
| 265 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 266 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 267 | !$acc kernels present( e_p, nzb_s_inner ) |
---|
[1257] | 268 | !$acc loop independent |
---|
[1113] | 269 | DO i = nxlg, nxrg |
---|
[1257] | 270 | !$acc loop independent |
---|
[1113] | 271 | DO j = nysg, nyng |
---|
| 272 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 273 | ENDDO |
---|
[1113] | 274 | ENDDO |
---|
[1762] | 275 | IF ( .NOT. nest_domain ) THEN |
---|
| 276 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 277 | ENDIF |
---|
[1113] | 278 | !$acc end kernels |
---|
| 279 | ENDIF |
---|
| 280 | |
---|
| 281 | ! |
---|
| 282 | !-- Boundary conditions for salinity |
---|
| 283 | IF ( ocean ) THEN |
---|
| 284 | ! |
---|
| 285 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 286 | !-- given |
---|
| 287 | DO i = nxlg, nxrg |
---|
| 288 | DO j = nysg, nyng |
---|
| 289 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 290 | ENDDO |
---|
[1113] | 291 | ENDDO |
---|
[1] | 292 | |
---|
| 293 | ! |
---|
[1113] | 294 | !-- Top boundary: Dirichlet or Neumann |
---|
| 295 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 296 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 297 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 298 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 299 | ENDIF |
---|
| 300 | |
---|
[1113] | 301 | ENDIF |
---|
| 302 | |
---|
[1] | 303 | ! |
---|
[1113] | 304 | !-- Boundary conditions for total water content or scalar, |
---|
| 305 | !-- bottom and top boundary (see also temperature) |
---|
| 306 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 307 | ! |
---|
| 308 | !-- Surface conditions for constant_humidity_flux |
---|
| 309 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 310 | DO i = nxlg, nxrg |
---|
| 311 | DO j = nysg, nyng |
---|
[1113] | 312 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 313 | ENDDO |
---|
| 314 | ENDDO |
---|
[1113] | 315 | ELSE |
---|
[667] | 316 | DO i = nxlg, nxrg |
---|
| 317 | DO j = nysg, nyng |
---|
[1113] | 318 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[95] | 319 | ENDDO |
---|
| 320 | ENDDO |
---|
[1113] | 321 | ENDIF |
---|
[95] | 322 | ! |
---|
[1113] | 323 | !-- Top boundary |
---|
[1462] | 324 | IF ( ibc_q_t == 0 ) THEN |
---|
| 325 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 326 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
| 327 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
| 328 | ENDIF |
---|
[95] | 329 | |
---|
[1822] | 330 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1113] | 331 | ! |
---|
[1361] | 332 | !-- Surface conditions rain water (Dirichlet) |
---|
[1115] | 333 | DO i = nxlg, nxrg |
---|
| 334 | DO j = nysg, nyng |
---|
[1361] | 335 | qr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
| 336 | nr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
[73] | 337 | ENDDO |
---|
[1115] | 338 | ENDDO |
---|
[1] | 339 | ! |
---|
[1361] | 340 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 341 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 342 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 343 | |
---|
[1] | 344 | ENDIF |
---|
[1409] | 345 | ENDIF |
---|
[1] | 346 | ! |
---|
[1762] | 347 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
| 348 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
| 349 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
| 350 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
| 351 | !-- have to be restored here. |
---|
[1409] | 352 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
| 353 | IF ( inflow_s ) THEN |
---|
| 354 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 355 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 356 | ELSEIF ( inflow_n ) THEN |
---|
| 357 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 358 | ELSEIF ( inflow_l ) THEN |
---|
| 359 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 360 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 361 | ELSEIF ( inflow_r ) THEN |
---|
| 362 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 363 | ENDIF |
---|
[1] | 364 | |
---|
| 365 | ! |
---|
[1762] | 366 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
[1933] | 367 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
| 368 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
| 369 | IF ( nesting_mode /= 'vertical' ) THEN |
---|
| 370 | IF ( nest_bound_s ) THEN |
---|
| 371 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 372 | ENDIF |
---|
| 373 | IF ( nest_bound_l ) THEN |
---|
| 374 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 375 | ENDIF |
---|
[1762] | 376 | ENDIF |
---|
| 377 | |
---|
| 378 | ! |
---|
[1409] | 379 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 380 | IF ( outflow_s ) THEN |
---|
| 381 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 382 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 383 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 384 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1822] | 385 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 386 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 387 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 388 | ENDIF |
---|
[1409] | 389 | ENDIF |
---|
| 390 | ELSEIF ( outflow_n ) THEN |
---|
| 391 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 392 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 393 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 394 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1822] | 395 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 396 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 397 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 398 | ENDIF |
---|
[1409] | 399 | ENDIF |
---|
| 400 | ELSEIF ( outflow_l ) THEN |
---|
| 401 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 402 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 403 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 404 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1822] | 405 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 406 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 407 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 408 | ENDIF |
---|
[1409] | 409 | ENDIF |
---|
| 410 | ELSEIF ( outflow_r ) THEN |
---|
| 411 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 412 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 413 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 414 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1822] | 415 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 416 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 417 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 418 | ENDIF |
---|
[1] | 419 | ENDIF |
---|
| 420 | ENDIF |
---|
| 421 | |
---|
| 422 | ! |
---|
[1159] | 423 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 424 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 425 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 426 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 427 | IF ( outflow_s ) THEN |
---|
[75] | 428 | |
---|
[1159] | 429 | IF ( use_cmax ) THEN |
---|
| 430 | u_p(:,-1,:) = u(:,0,:) |
---|
| 431 | v_p(:,0,:) = v(:,1,:) |
---|
| 432 | w_p(:,-1,:) = w(:,0,:) |
---|
| 433 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 434 | |
---|
[978] | 435 | c_max = dy / dt_3d |
---|
[75] | 436 | |
---|
[1353] | 437 | c_u_m_l = 0.0_wp |
---|
| 438 | c_v_m_l = 0.0_wp |
---|
| 439 | c_w_m_l = 0.0_wp |
---|
[978] | 440 | |
---|
[1353] | 441 | c_u_m = 0.0_wp |
---|
| 442 | c_v_m = 0.0_wp |
---|
| 443 | c_w_m = 0.0_wp |
---|
[978] | 444 | |
---|
[75] | 445 | ! |
---|
[996] | 446 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 447 | !-- average along the outflow boundary. |
---|
| 448 | DO k = nzb+1, nzt+1 |
---|
| 449 | DO i = nxl, nxr |
---|
[75] | 450 | |
---|
[106] | 451 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 452 | |
---|
[1353] | 453 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 454 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 455 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 456 | c_u(k,i) = 0.0_wp |
---|
[106] | 457 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 458 | c_u(k,i) = c_max |
---|
| 459 | ENDIF |
---|
| 460 | ELSE |
---|
| 461 | c_u(k,i) = c_max |
---|
[75] | 462 | ENDIF |
---|
| 463 | |
---|
[106] | 464 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 465 | |
---|
[1353] | 466 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 467 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 468 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 469 | c_v(k,i) = 0.0_wp |
---|
[106] | 470 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 471 | c_v(k,i) = c_max |
---|
| 472 | ENDIF |
---|
| 473 | ELSE |
---|
| 474 | c_v(k,i) = c_max |
---|
[75] | 475 | ENDIF |
---|
| 476 | |
---|
[106] | 477 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 478 | |
---|
[1353] | 479 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 480 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 481 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 482 | c_w(k,i) = 0.0_wp |
---|
[106] | 483 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 484 | c_w(k,i) = c_max |
---|
| 485 | ENDIF |
---|
| 486 | ELSE |
---|
| 487 | c_w(k,i) = c_max |
---|
[75] | 488 | ENDIF |
---|
[106] | 489 | |
---|
[978] | 490 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 491 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 492 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 493 | |
---|
[978] | 494 | ENDDO |
---|
| 495 | ENDDO |
---|
[75] | 496 | |
---|
[978] | 497 | #if defined( __parallel ) |
---|
| 498 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 499 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 500 | MPI_SUM, comm1dx, ierr ) |
---|
| 501 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 502 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 503 | MPI_SUM, comm1dx, ierr ) |
---|
| 504 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 505 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 506 | MPI_SUM, comm1dx, ierr ) |
---|
| 507 | #else |
---|
| 508 | c_u_m = c_u_m_l |
---|
| 509 | c_v_m = c_v_m_l |
---|
| 510 | c_w_m = c_w_m_l |
---|
| 511 | #endif |
---|
| 512 | |
---|
| 513 | c_u_m = c_u_m / (nx+1) |
---|
| 514 | c_v_m = c_v_m / (nx+1) |
---|
| 515 | c_w_m = c_w_m / (nx+1) |
---|
| 516 | |
---|
[75] | 517 | ! |
---|
[978] | 518 | !-- Save old timelevels for the next timestep |
---|
| 519 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 520 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 521 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 522 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 523 | ENDIF |
---|
| 524 | |
---|
| 525 | ! |
---|
| 526 | !-- Calculate the new velocities |
---|
[996] | 527 | DO k = nzb+1, nzt+1 |
---|
| 528 | DO i = nxlg, nxrg |
---|
[978] | 529 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 530 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 531 | |
---|
[978] | 532 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 533 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 534 | |
---|
[978] | 535 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 536 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 537 | ENDDO |
---|
[75] | 538 | ENDDO |
---|
| 539 | |
---|
| 540 | ! |
---|
[978] | 541 | !-- Bottom boundary at the outflow |
---|
| 542 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 543 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 544 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 545 | ELSE |
---|
| 546 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 547 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 548 | ENDIF |
---|
[1353] | 549 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 550 | |
---|
[75] | 551 | ! |
---|
[978] | 552 | !-- Top boundary at the outflow |
---|
| 553 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 554 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 555 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 556 | ELSE |
---|
[1742] | 557 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 558 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 559 | ENDIF |
---|
[1353] | 560 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 561 | |
---|
[75] | 562 | ENDIF |
---|
[73] | 563 | |
---|
[75] | 564 | ENDIF |
---|
[73] | 565 | |
---|
[106] | 566 | IF ( outflow_n ) THEN |
---|
[73] | 567 | |
---|
[1159] | 568 | IF ( use_cmax ) THEN |
---|
| 569 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 570 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 571 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 572 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 573 | |
---|
[978] | 574 | c_max = dy / dt_3d |
---|
[75] | 575 | |
---|
[1353] | 576 | c_u_m_l = 0.0_wp |
---|
| 577 | c_v_m_l = 0.0_wp |
---|
| 578 | c_w_m_l = 0.0_wp |
---|
[978] | 579 | |
---|
[1353] | 580 | c_u_m = 0.0_wp |
---|
| 581 | c_v_m = 0.0_wp |
---|
| 582 | c_w_m = 0.0_wp |
---|
[978] | 583 | |
---|
[1] | 584 | ! |
---|
[996] | 585 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 586 | !-- average along the outflow boundary. |
---|
| 587 | DO k = nzb+1, nzt+1 |
---|
| 588 | DO i = nxl, nxr |
---|
[73] | 589 | |
---|
[106] | 590 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 591 | |
---|
[1353] | 592 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 593 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 594 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 595 | c_u(k,i) = 0.0_wp |
---|
[106] | 596 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 597 | c_u(k,i) = c_max |
---|
| 598 | ENDIF |
---|
| 599 | ELSE |
---|
| 600 | c_u(k,i) = c_max |
---|
[73] | 601 | ENDIF |
---|
| 602 | |
---|
[106] | 603 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 604 | |
---|
[1353] | 605 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 606 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 607 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 608 | c_v(k,i) = 0.0_wp |
---|
[106] | 609 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 610 | c_v(k,i) = c_max |
---|
| 611 | ENDIF |
---|
| 612 | ELSE |
---|
| 613 | c_v(k,i) = c_max |
---|
[73] | 614 | ENDIF |
---|
| 615 | |
---|
[106] | 616 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 617 | |
---|
[1353] | 618 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 619 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 620 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 621 | c_w(k,i) = 0.0_wp |
---|
[106] | 622 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 623 | c_w(k,i) = c_max |
---|
| 624 | ENDIF |
---|
| 625 | ELSE |
---|
| 626 | c_w(k,i) = c_max |
---|
[73] | 627 | ENDIF |
---|
[106] | 628 | |
---|
[978] | 629 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 630 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 631 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 632 | |
---|
[978] | 633 | ENDDO |
---|
| 634 | ENDDO |
---|
[73] | 635 | |
---|
[978] | 636 | #if defined( __parallel ) |
---|
| 637 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 638 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 639 | MPI_SUM, comm1dx, ierr ) |
---|
| 640 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 641 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 642 | MPI_SUM, comm1dx, ierr ) |
---|
| 643 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 644 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 645 | MPI_SUM, comm1dx, ierr ) |
---|
| 646 | #else |
---|
| 647 | c_u_m = c_u_m_l |
---|
| 648 | c_v_m = c_v_m_l |
---|
| 649 | c_w_m = c_w_m_l |
---|
| 650 | #endif |
---|
| 651 | |
---|
| 652 | c_u_m = c_u_m / (nx+1) |
---|
| 653 | c_v_m = c_v_m / (nx+1) |
---|
| 654 | c_w_m = c_w_m / (nx+1) |
---|
| 655 | |
---|
[73] | 656 | ! |
---|
[978] | 657 | !-- Save old timelevels for the next timestep |
---|
| 658 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 659 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 660 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 661 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 662 | ENDIF |
---|
[73] | 663 | |
---|
[978] | 664 | ! |
---|
| 665 | !-- Calculate the new velocities |
---|
[996] | 666 | DO k = nzb+1, nzt+1 |
---|
| 667 | DO i = nxlg, nxrg |
---|
[978] | 668 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 669 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 670 | |
---|
[978] | 671 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 672 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 673 | |
---|
[978] | 674 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 675 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 676 | ENDDO |
---|
[1] | 677 | ENDDO |
---|
| 678 | |
---|
| 679 | ! |
---|
[978] | 680 | !-- Bottom boundary at the outflow |
---|
| 681 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 682 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 683 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 684 | ELSE |
---|
| 685 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 686 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 687 | ENDIF |
---|
[1353] | 688 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 689 | |
---|
| 690 | ! |
---|
[978] | 691 | !-- Top boundary at the outflow |
---|
| 692 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 693 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 694 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 695 | ELSE |
---|
| 696 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 697 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 698 | ENDIF |
---|
[1353] | 699 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 700 | |
---|
[1] | 701 | ENDIF |
---|
| 702 | |
---|
[75] | 703 | ENDIF |
---|
| 704 | |
---|
[106] | 705 | IF ( outflow_l ) THEN |
---|
[75] | 706 | |
---|
[1159] | 707 | IF ( use_cmax ) THEN |
---|
[1717] | 708 | u_p(:,:,0) = u(:,:,1) |
---|
| 709 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 710 | w_p(:,:,-1) = w(:,:,0) |
---|
| 711 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 712 | |
---|
[978] | 713 | c_max = dx / dt_3d |
---|
[75] | 714 | |
---|
[1353] | 715 | c_u_m_l = 0.0_wp |
---|
| 716 | c_v_m_l = 0.0_wp |
---|
| 717 | c_w_m_l = 0.0_wp |
---|
[978] | 718 | |
---|
[1353] | 719 | c_u_m = 0.0_wp |
---|
| 720 | c_v_m = 0.0_wp |
---|
| 721 | c_w_m = 0.0_wp |
---|
[978] | 722 | |
---|
[1] | 723 | ! |
---|
[996] | 724 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 725 | !-- average along the outflow boundary. |
---|
| 726 | DO k = nzb+1, nzt+1 |
---|
| 727 | DO j = nys, nyn |
---|
[75] | 728 | |
---|
[106] | 729 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 730 | |
---|
[1353] | 731 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 732 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 733 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 734 | c_u(k,j) = 0.0_wp |
---|
[107] | 735 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 736 | c_u(k,j) = c_max |
---|
[106] | 737 | ENDIF |
---|
| 738 | ELSE |
---|
[107] | 739 | c_u(k,j) = c_max |
---|
[75] | 740 | ENDIF |
---|
| 741 | |
---|
[106] | 742 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 743 | |
---|
[1353] | 744 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 745 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 746 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 747 | c_v(k,j) = 0.0_wp |
---|
[106] | 748 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 749 | c_v(k,j) = c_max |
---|
| 750 | ENDIF |
---|
| 751 | ELSE |
---|
| 752 | c_v(k,j) = c_max |
---|
[75] | 753 | ENDIF |
---|
| 754 | |
---|
[106] | 755 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 756 | |
---|
[1353] | 757 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 758 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 759 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 760 | c_w(k,j) = 0.0_wp |
---|
[106] | 761 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 762 | c_w(k,j) = c_max |
---|
| 763 | ENDIF |
---|
| 764 | ELSE |
---|
| 765 | c_w(k,j) = c_max |
---|
[75] | 766 | ENDIF |
---|
[106] | 767 | |
---|
[978] | 768 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 769 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 770 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 771 | |
---|
[978] | 772 | ENDDO |
---|
| 773 | ENDDO |
---|
[75] | 774 | |
---|
[978] | 775 | #if defined( __parallel ) |
---|
| 776 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 777 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 778 | MPI_SUM, comm1dy, ierr ) |
---|
| 779 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 780 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 781 | MPI_SUM, comm1dy, ierr ) |
---|
| 782 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 783 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 784 | MPI_SUM, comm1dy, ierr ) |
---|
| 785 | #else |
---|
| 786 | c_u_m = c_u_m_l |
---|
| 787 | c_v_m = c_v_m_l |
---|
| 788 | c_w_m = c_w_m_l |
---|
| 789 | #endif |
---|
| 790 | |
---|
| 791 | c_u_m = c_u_m / (ny+1) |
---|
| 792 | c_v_m = c_v_m / (ny+1) |
---|
| 793 | c_w_m = c_w_m / (ny+1) |
---|
| 794 | |
---|
[73] | 795 | ! |
---|
[978] | 796 | !-- Save old timelevels for the next timestep |
---|
| 797 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 798 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 799 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 800 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 801 | ENDIF |
---|
| 802 | |
---|
| 803 | ! |
---|
| 804 | !-- Calculate the new velocities |
---|
[996] | 805 | DO k = nzb+1, nzt+1 |
---|
[1113] | 806 | DO j = nysg, nyng |
---|
[978] | 807 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 808 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 809 | |
---|
[978] | 810 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 811 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 812 | |
---|
[978] | 813 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 814 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 815 | ENDDO |
---|
[75] | 816 | ENDDO |
---|
| 817 | |
---|
| 818 | ! |
---|
[978] | 819 | !-- Bottom boundary at the outflow |
---|
| 820 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 821 | u_p(nzb,:,0) = 0.0_wp |
---|
| 822 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 823 | ELSE |
---|
| 824 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 825 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 826 | ENDIF |
---|
[1353] | 827 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 828 | |
---|
[75] | 829 | ! |
---|
[978] | 830 | !-- Top boundary at the outflow |
---|
| 831 | IF ( ibc_uv_t == 0 ) THEN |
---|
[1764] | 832 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
[978] | 833 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 834 | ELSE |
---|
[1764] | 835 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
[978] | 836 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 837 | ENDIF |
---|
[1353] | 838 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 839 | |
---|
[75] | 840 | ENDIF |
---|
[73] | 841 | |
---|
[75] | 842 | ENDIF |
---|
[73] | 843 | |
---|
[106] | 844 | IF ( outflow_r ) THEN |
---|
[73] | 845 | |
---|
[1159] | 846 | IF ( use_cmax ) THEN |
---|
| 847 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 848 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 849 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 850 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 851 | |
---|
[978] | 852 | c_max = dx / dt_3d |
---|
[75] | 853 | |
---|
[1353] | 854 | c_u_m_l = 0.0_wp |
---|
| 855 | c_v_m_l = 0.0_wp |
---|
| 856 | c_w_m_l = 0.0_wp |
---|
[978] | 857 | |
---|
[1353] | 858 | c_u_m = 0.0_wp |
---|
| 859 | c_v_m = 0.0_wp |
---|
| 860 | c_w_m = 0.0_wp |
---|
[978] | 861 | |
---|
[1] | 862 | ! |
---|
[996] | 863 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 864 | !-- average along the outflow boundary. |
---|
| 865 | DO k = nzb+1, nzt+1 |
---|
| 866 | DO j = nys, nyn |
---|
[73] | 867 | |
---|
[106] | 868 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 869 | |
---|
[1353] | 870 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 871 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 872 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 873 | c_u(k,j) = 0.0_wp |
---|
[106] | 874 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 875 | c_u(k,j) = c_max |
---|
| 876 | ENDIF |
---|
| 877 | ELSE |
---|
| 878 | c_u(k,j) = c_max |
---|
[73] | 879 | ENDIF |
---|
| 880 | |
---|
[106] | 881 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 882 | |
---|
[1353] | 883 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 884 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 885 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 886 | c_v(k,j) = 0.0_wp |
---|
[106] | 887 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 888 | c_v(k,j) = c_max |
---|
| 889 | ENDIF |
---|
| 890 | ELSE |
---|
| 891 | c_v(k,j) = c_max |
---|
[73] | 892 | ENDIF |
---|
| 893 | |
---|
[106] | 894 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 895 | |
---|
[1353] | 896 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 897 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 898 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 899 | c_w(k,j) = 0.0_wp |
---|
[106] | 900 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 901 | c_w(k,j) = c_max |
---|
| 902 | ENDIF |
---|
| 903 | ELSE |
---|
| 904 | c_w(k,j) = c_max |
---|
[73] | 905 | ENDIF |
---|
[106] | 906 | |
---|
[978] | 907 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 908 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 909 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 910 | |
---|
[978] | 911 | ENDDO |
---|
| 912 | ENDDO |
---|
[73] | 913 | |
---|
[978] | 914 | #if defined( __parallel ) |
---|
| 915 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 916 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 917 | MPI_SUM, comm1dy, ierr ) |
---|
| 918 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 919 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 920 | MPI_SUM, comm1dy, ierr ) |
---|
| 921 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 922 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 923 | MPI_SUM, comm1dy, ierr ) |
---|
| 924 | #else |
---|
| 925 | c_u_m = c_u_m_l |
---|
| 926 | c_v_m = c_v_m_l |
---|
| 927 | c_w_m = c_w_m_l |
---|
| 928 | #endif |
---|
| 929 | |
---|
| 930 | c_u_m = c_u_m / (ny+1) |
---|
| 931 | c_v_m = c_v_m / (ny+1) |
---|
| 932 | c_w_m = c_w_m / (ny+1) |
---|
| 933 | |
---|
[73] | 934 | ! |
---|
[978] | 935 | !-- Save old timelevels for the next timestep |
---|
| 936 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 937 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 938 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 939 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 940 | ENDIF |
---|
[73] | 941 | |
---|
[978] | 942 | ! |
---|
| 943 | !-- Calculate the new velocities |
---|
[996] | 944 | DO k = nzb+1, nzt+1 |
---|
[1113] | 945 | DO j = nysg, nyng |
---|
[978] | 946 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 947 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 948 | |
---|
[978] | 949 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 950 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 951 | |
---|
[978] | 952 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 953 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 954 | ENDDO |
---|
[73] | 955 | ENDDO |
---|
| 956 | |
---|
| 957 | ! |
---|
[978] | 958 | !-- Bottom boundary at the outflow |
---|
| 959 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 960 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 961 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 962 | ELSE |
---|
| 963 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 964 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 965 | ENDIF |
---|
[1353] | 966 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 967 | |
---|
| 968 | ! |
---|
[978] | 969 | !-- Top boundary at the outflow |
---|
| 970 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 971 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 972 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 973 | ELSE |
---|
| 974 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 975 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 976 | ENDIF |
---|
[1742] | 977 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 978 | |
---|
[1] | 979 | ENDIF |
---|
| 980 | |
---|
| 981 | ENDIF |
---|
| 982 | |
---|
| 983 | END SUBROUTINE boundary_conds |
---|