[1682] | 1 | !> @file boundary_conds.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1310] | 16 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[484] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[1718] | 21 | ! |
---|
[1744] | 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: boundary_conds.f90 1744 2016-01-13 10:29:35Z maronga $ |
---|
| 26 | ! |
---|
[1744] | 27 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
| 28 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
| 29 | ! |
---|
[1718] | 30 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
| 31 | ! Bugfix: index error in outflow conditions for left boundary |
---|
| 32 | ! |
---|
[1683] | 33 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 34 | ! Code annotations made doxygen readable |
---|
| 35 | ! |
---|
[1717] | 36 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
[1463] | 37 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 38 | ! top |
---|
| 39 | ! |
---|
[1410] | 40 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 41 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 42 | ! is used. |
---|
| 43 | ! |
---|
[1399] | 44 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 45 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 46 | ! for large_scale_forcing |
---|
| 47 | ! |
---|
[1381] | 48 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 49 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 50 | ! |
---|
[1362] | 51 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 52 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 53 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 54 | ! |
---|
[1354] | 55 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 56 | ! REAL constants provided with KIND-attribute |
---|
| 57 | ! |
---|
[1321] | 58 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 59 | ! ONLY-attribute added to USE-statements, |
---|
| 60 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 61 | ! kinds are defined in new module kinds, |
---|
| 62 | ! revision history before 2012 removed, |
---|
| 63 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 64 | ! all variable declaration statements |
---|
[1160] | 65 | ! |
---|
[1258] | 66 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 67 | ! loop independent clauses added |
---|
| 68 | ! |
---|
[1242] | 69 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 70 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 71 | ! |
---|
[1160] | 72 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 73 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 74 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 75 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 76 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 77 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 78 | ! u_p, v_p, w_p |
---|
[1116] | 79 | ! |
---|
| 80 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 81 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 82 | ! boundary-conditions |
---|
| 83 | ! |
---|
[1114] | 84 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 85 | ! GPU-porting |
---|
| 86 | ! dummy argument "range" removed |
---|
| 87 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 88 | ! |
---|
[1054] | 89 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 90 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 91 | ! two-moment cloud scheme |
---|
| 92 | ! |
---|
[1037] | 93 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 94 | ! code put under GPL (PALM 3.9) |
---|
| 95 | ! |
---|
[997] | 96 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 97 | ! little reformatting |
---|
| 98 | ! |
---|
[979] | 99 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 100 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 101 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 102 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 103 | ! velocity. |
---|
| 104 | ! |
---|
[876] | 105 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 106 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 107 | ! |
---|
[1] | 108 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 109 | ! Initial revision |
---|
| 110 | ! |
---|
| 111 | ! |
---|
| 112 | ! Description: |
---|
| 113 | ! ------------ |
---|
[1682] | 114 | !> Boundary conditions for the prognostic quantities. |
---|
| 115 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 116 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 117 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 118 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 119 | !------------------------------------------------------------------------------! |
---|
[1682] | 120 | SUBROUTINE boundary_conds |
---|
| 121 | |
---|
[1] | 122 | |
---|
[1320] | 123 | USE arrays_3d, & |
---|
| 124 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
| 125 | dzu, e_p, nr_p, pt, pt_p, q, q_p, qr_p, sa, sa_p, & |
---|
| 126 | u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
| 127 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
[1380] | 128 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s,& |
---|
| 129 | pt_init |
---|
[1320] | 130 | |
---|
| 131 | USE control_parameters, & |
---|
| 132 | ONLY: bc_pt_t_val, bc_q_t_val, constant_diffusion, & |
---|
| 133 | cloud_physics, dt_3d, humidity, & |
---|
[1462] | 134 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_sa_t, ibc_uv_b, & |
---|
| 135 | ibc_uv_t, icloud_scheme, inflow_l, inflow_n, inflow_r, inflow_s,& |
---|
[1320] | 136 | intermediate_timestep_count, large_scale_forcing, ocean, & |
---|
| 137 | outflow_l, outflow_n, outflow_r, outflow_s, passive_scalar, & |
---|
[1380] | 138 | precipitation, tsc, use_cmax, & |
---|
| 139 | nudging |
---|
[1320] | 140 | |
---|
| 141 | USE grid_variables, & |
---|
| 142 | ONLY: ddx, ddy, dx, dy |
---|
| 143 | |
---|
| 144 | USE indices, & |
---|
| 145 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
| 146 | nzb, nzb_s_inner, nzb_w_inner, nzt |
---|
| 147 | |
---|
| 148 | USE kinds |
---|
| 149 | |
---|
[1] | 150 | USE pegrid |
---|
| 151 | |
---|
[1320] | 152 | |
---|
[1] | 153 | IMPLICIT NONE |
---|
| 154 | |
---|
[1682] | 155 | INTEGER(iwp) :: i !< |
---|
| 156 | INTEGER(iwp) :: j !< |
---|
| 157 | INTEGER(iwp) :: k !< |
---|
[1] | 158 | |
---|
[1682] | 159 | REAL(wp) :: c_max !< |
---|
| 160 | REAL(wp) :: denom !< |
---|
[1] | 161 | |
---|
[73] | 162 | |
---|
[1] | 163 | ! |
---|
[1113] | 164 | !-- Bottom boundary |
---|
| 165 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 166 | !$acc kernels present( u_p, v_p ) |
---|
| 167 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 168 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 169 | !$acc end kernels |
---|
| 170 | ENDIF |
---|
| 171 | |
---|
| 172 | !$acc kernels present( nzb_w_inner, w_p ) |
---|
| 173 | DO i = nxlg, nxrg |
---|
| 174 | DO j = nysg, nyng |
---|
[1353] | 175 | w_p(nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
[1113] | 176 | ENDDO |
---|
| 177 | ENDDO |
---|
| 178 | !$acc end kernels |
---|
| 179 | |
---|
| 180 | ! |
---|
| 181 | !-- Top boundary |
---|
| 182 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 183 | !$acc kernels present( u_init, u_p, v_init, v_p ) |
---|
| 184 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 185 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
| 186 | !$acc end kernels |
---|
| 187 | ELSE |
---|
| 188 | !$acc kernels present( u_p, v_p ) |
---|
| 189 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 190 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 191 | !$acc end kernels |
---|
| 192 | ENDIF |
---|
| 193 | !$acc kernels present( w_p ) |
---|
[1353] | 194 | w_p(nzt:nzt+1,:,:) = 0.0_wp ! nzt is not a prognostic level (but cf. pres) |
---|
[1113] | 195 | !$acc end kernels |
---|
| 196 | |
---|
| 197 | ! |
---|
| 198 | !-- Temperature at bottom boundary. |
---|
| 199 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 200 | !-- the sea surface temperature of the coupled ocean model. |
---|
| 201 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 202 | !$acc kernels present( nzb_s_inner, pt, pt_p ) |
---|
[1257] | 203 | !$acc loop independent |
---|
[667] | 204 | DO i = nxlg, nxrg |
---|
[1257] | 205 | !$acc loop independent |
---|
[667] | 206 | DO j = nysg, nyng |
---|
[1113] | 207 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 208 | ENDDO |
---|
| 209 | ENDDO |
---|
[1113] | 210 | !$acc end kernels |
---|
| 211 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 212 | !$acc kernels present( nzb_s_inner, pt_p ) |
---|
[1257] | 213 | !$acc loop independent |
---|
[1113] | 214 | DO i = nxlg, nxrg |
---|
[1257] | 215 | !$acc loop independent |
---|
[1113] | 216 | DO j = nysg, nyng |
---|
| 217 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 218 | ENDDO |
---|
| 219 | ENDDO |
---|
| 220 | !$acc end kernels |
---|
| 221 | ENDIF |
---|
[1] | 222 | |
---|
| 223 | ! |
---|
[1113] | 224 | !-- Temperature at top boundary |
---|
| 225 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 226 | !$acc kernels present( pt, pt_p ) |
---|
| 227 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[1380] | 228 | ! |
---|
| 229 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 230 | !-- read in from NUDGING-DATA |
---|
| 231 | IF ( nudging ) THEN |
---|
| 232 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 233 | ENDIF |
---|
[1113] | 234 | !$acc end kernels |
---|
| 235 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 236 | !$acc kernels present( pt_p ) |
---|
| 237 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 238 | !$acc end kernels |
---|
| 239 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 240 | !$acc kernels present( dzu, pt_p ) |
---|
| 241 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 242 | !$acc end kernels |
---|
| 243 | ENDIF |
---|
[1] | 244 | |
---|
| 245 | ! |
---|
[1113] | 246 | !-- Boundary conditions for TKE |
---|
| 247 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 248 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 249 | !$acc kernels present( e_p, nzb_s_inner ) |
---|
[1257] | 250 | !$acc loop independent |
---|
[1113] | 251 | DO i = nxlg, nxrg |
---|
[1257] | 252 | !$acc loop independent |
---|
[1113] | 253 | DO j = nysg, nyng |
---|
| 254 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 255 | ENDDO |
---|
[1113] | 256 | ENDDO |
---|
| 257 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 258 | !$acc end kernels |
---|
| 259 | ENDIF |
---|
| 260 | |
---|
| 261 | ! |
---|
| 262 | !-- Boundary conditions for salinity |
---|
| 263 | IF ( ocean ) THEN |
---|
| 264 | ! |
---|
| 265 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 266 | !-- given |
---|
| 267 | DO i = nxlg, nxrg |
---|
| 268 | DO j = nysg, nyng |
---|
| 269 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 270 | ENDDO |
---|
[1113] | 271 | ENDDO |
---|
[1] | 272 | |
---|
| 273 | ! |
---|
[1113] | 274 | !-- Top boundary: Dirichlet or Neumann |
---|
| 275 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 276 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 277 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 278 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 279 | ENDIF |
---|
| 280 | |
---|
[1113] | 281 | ENDIF |
---|
| 282 | |
---|
[1] | 283 | ! |
---|
[1113] | 284 | !-- Boundary conditions for total water content or scalar, |
---|
| 285 | !-- bottom and top boundary (see also temperature) |
---|
| 286 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 287 | ! |
---|
| 288 | !-- Surface conditions for constant_humidity_flux |
---|
| 289 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 290 | DO i = nxlg, nxrg |
---|
| 291 | DO j = nysg, nyng |
---|
[1113] | 292 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 293 | ENDDO |
---|
| 294 | ENDDO |
---|
[1113] | 295 | ELSE |
---|
[667] | 296 | DO i = nxlg, nxrg |
---|
| 297 | DO j = nysg, nyng |
---|
[1113] | 298 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[95] | 299 | ENDDO |
---|
| 300 | ENDDO |
---|
[1113] | 301 | ENDIF |
---|
[95] | 302 | ! |
---|
[1113] | 303 | !-- Top boundary |
---|
[1462] | 304 | IF ( ibc_q_t == 0 ) THEN |
---|
| 305 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 306 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
| 307 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
| 308 | ENDIF |
---|
[95] | 309 | |
---|
[1361] | 310 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
[1113] | 311 | ! |
---|
[1361] | 312 | !-- Surface conditions rain water (Dirichlet) |
---|
[1115] | 313 | DO i = nxlg, nxrg |
---|
| 314 | DO j = nysg, nyng |
---|
[1361] | 315 | qr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
| 316 | nr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
[73] | 317 | ENDDO |
---|
[1115] | 318 | ENDDO |
---|
[1] | 319 | ! |
---|
[1361] | 320 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 321 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 322 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 323 | |
---|
[1] | 324 | ENDIF |
---|
[1409] | 325 | ENDIF |
---|
[1] | 326 | ! |
---|
[1409] | 327 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
| 328 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
| 329 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
| 330 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
| 331 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
| 332 | IF ( inflow_s ) THEN |
---|
| 333 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 334 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 335 | ELSEIF ( inflow_n ) THEN |
---|
| 336 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 337 | ELSEIF ( inflow_l ) THEN |
---|
| 338 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 339 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 340 | ELSEIF ( inflow_r ) THEN |
---|
| 341 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 342 | ENDIF |
---|
[1] | 343 | |
---|
| 344 | ! |
---|
[1409] | 345 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 346 | IF ( outflow_s ) THEN |
---|
| 347 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 348 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 349 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 350 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
| 351 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 352 | precipitation) THEN |
---|
| 353 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 354 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 355 | ENDIF |
---|
[1409] | 356 | ENDIF |
---|
| 357 | ELSEIF ( outflow_n ) THEN |
---|
| 358 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 359 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 360 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 361 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
| 362 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 363 | precipitation ) THEN |
---|
| 364 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 365 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 366 | ENDIF |
---|
[1409] | 367 | ENDIF |
---|
| 368 | ELSEIF ( outflow_l ) THEN |
---|
| 369 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 370 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 371 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 372 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
| 373 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 374 | precipitation ) THEN |
---|
| 375 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 376 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 377 | ENDIF |
---|
[1409] | 378 | ENDIF |
---|
| 379 | ELSEIF ( outflow_r ) THEN |
---|
| 380 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 381 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 382 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 383 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
| 384 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 385 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 386 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 387 | ENDIF |
---|
[1] | 388 | ENDIF |
---|
| 389 | ENDIF |
---|
| 390 | |
---|
| 391 | ! |
---|
[1159] | 392 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 393 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 394 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 395 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 396 | IF ( outflow_s ) THEN |
---|
[75] | 397 | |
---|
[1159] | 398 | IF ( use_cmax ) THEN |
---|
| 399 | u_p(:,-1,:) = u(:,0,:) |
---|
| 400 | v_p(:,0,:) = v(:,1,:) |
---|
| 401 | w_p(:,-1,:) = w(:,0,:) |
---|
| 402 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 403 | |
---|
[978] | 404 | c_max = dy / dt_3d |
---|
[75] | 405 | |
---|
[1353] | 406 | c_u_m_l = 0.0_wp |
---|
| 407 | c_v_m_l = 0.0_wp |
---|
| 408 | c_w_m_l = 0.0_wp |
---|
[978] | 409 | |
---|
[1353] | 410 | c_u_m = 0.0_wp |
---|
| 411 | c_v_m = 0.0_wp |
---|
| 412 | c_w_m = 0.0_wp |
---|
[978] | 413 | |
---|
[75] | 414 | ! |
---|
[996] | 415 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 416 | !-- average along the outflow boundary. |
---|
| 417 | DO k = nzb+1, nzt+1 |
---|
| 418 | DO i = nxl, nxr |
---|
[75] | 419 | |
---|
[106] | 420 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 421 | |
---|
[1353] | 422 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 423 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 424 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 425 | c_u(k,i) = 0.0_wp |
---|
[106] | 426 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 427 | c_u(k,i) = c_max |
---|
| 428 | ENDIF |
---|
| 429 | ELSE |
---|
| 430 | c_u(k,i) = c_max |
---|
[75] | 431 | ENDIF |
---|
| 432 | |
---|
[106] | 433 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 434 | |
---|
[1353] | 435 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 436 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 437 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 438 | c_v(k,i) = 0.0_wp |
---|
[106] | 439 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 440 | c_v(k,i) = c_max |
---|
| 441 | ENDIF |
---|
| 442 | ELSE |
---|
| 443 | c_v(k,i) = c_max |
---|
[75] | 444 | ENDIF |
---|
| 445 | |
---|
[106] | 446 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 447 | |
---|
[1353] | 448 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 449 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 450 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 451 | c_w(k,i) = 0.0_wp |
---|
[106] | 452 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 453 | c_w(k,i) = c_max |
---|
| 454 | ENDIF |
---|
| 455 | ELSE |
---|
| 456 | c_w(k,i) = c_max |
---|
[75] | 457 | ENDIF |
---|
[106] | 458 | |
---|
[978] | 459 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 460 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 461 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 462 | |
---|
[978] | 463 | ENDDO |
---|
| 464 | ENDDO |
---|
[75] | 465 | |
---|
[978] | 466 | #if defined( __parallel ) |
---|
| 467 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 468 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 469 | MPI_SUM, comm1dx, ierr ) |
---|
| 470 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 471 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 472 | MPI_SUM, comm1dx, ierr ) |
---|
| 473 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 474 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 475 | MPI_SUM, comm1dx, ierr ) |
---|
| 476 | #else |
---|
| 477 | c_u_m = c_u_m_l |
---|
| 478 | c_v_m = c_v_m_l |
---|
| 479 | c_w_m = c_w_m_l |
---|
| 480 | #endif |
---|
| 481 | |
---|
| 482 | c_u_m = c_u_m / (nx+1) |
---|
| 483 | c_v_m = c_v_m / (nx+1) |
---|
| 484 | c_w_m = c_w_m / (nx+1) |
---|
| 485 | |
---|
[75] | 486 | ! |
---|
[978] | 487 | !-- Save old timelevels for the next timestep |
---|
| 488 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 489 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 490 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 491 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 492 | ENDIF |
---|
| 493 | |
---|
| 494 | ! |
---|
| 495 | !-- Calculate the new velocities |
---|
[996] | 496 | DO k = nzb+1, nzt+1 |
---|
| 497 | DO i = nxlg, nxrg |
---|
[978] | 498 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 499 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 500 | |
---|
[978] | 501 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 502 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 503 | |
---|
[978] | 504 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 505 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 506 | ENDDO |
---|
[75] | 507 | ENDDO |
---|
| 508 | |
---|
| 509 | ! |
---|
[978] | 510 | !-- Bottom boundary at the outflow |
---|
| 511 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 512 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 513 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 514 | ELSE |
---|
| 515 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 516 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 517 | ENDIF |
---|
[1353] | 518 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 519 | |
---|
[75] | 520 | ! |
---|
[978] | 521 | !-- Top boundary at the outflow |
---|
| 522 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 523 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 524 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 525 | ELSE |
---|
[1742] | 526 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 527 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 528 | ENDIF |
---|
[1353] | 529 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 530 | |
---|
[75] | 531 | ENDIF |
---|
[73] | 532 | |
---|
[75] | 533 | ENDIF |
---|
[73] | 534 | |
---|
[106] | 535 | IF ( outflow_n ) THEN |
---|
[73] | 536 | |
---|
[1159] | 537 | IF ( use_cmax ) THEN |
---|
| 538 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 539 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 540 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 541 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 542 | |
---|
[978] | 543 | c_max = dy / dt_3d |
---|
[75] | 544 | |
---|
[1353] | 545 | c_u_m_l = 0.0_wp |
---|
| 546 | c_v_m_l = 0.0_wp |
---|
| 547 | c_w_m_l = 0.0_wp |
---|
[978] | 548 | |
---|
[1353] | 549 | c_u_m = 0.0_wp |
---|
| 550 | c_v_m = 0.0_wp |
---|
| 551 | c_w_m = 0.0_wp |
---|
[978] | 552 | |
---|
[1] | 553 | ! |
---|
[996] | 554 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 555 | !-- average along the outflow boundary. |
---|
| 556 | DO k = nzb+1, nzt+1 |
---|
| 557 | DO i = nxl, nxr |
---|
[73] | 558 | |
---|
[106] | 559 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 560 | |
---|
[1353] | 561 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 562 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 563 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 564 | c_u(k,i) = 0.0_wp |
---|
[106] | 565 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 566 | c_u(k,i) = c_max |
---|
| 567 | ENDIF |
---|
| 568 | ELSE |
---|
| 569 | c_u(k,i) = c_max |
---|
[73] | 570 | ENDIF |
---|
| 571 | |
---|
[106] | 572 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 573 | |
---|
[1353] | 574 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 575 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 576 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 577 | c_v(k,i) = 0.0_wp |
---|
[106] | 578 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 579 | c_v(k,i) = c_max |
---|
| 580 | ENDIF |
---|
| 581 | ELSE |
---|
| 582 | c_v(k,i) = c_max |
---|
[73] | 583 | ENDIF |
---|
| 584 | |
---|
[106] | 585 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 586 | |
---|
[1353] | 587 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 588 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 589 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 590 | c_w(k,i) = 0.0_wp |
---|
[106] | 591 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 592 | c_w(k,i) = c_max |
---|
| 593 | ENDIF |
---|
| 594 | ELSE |
---|
| 595 | c_w(k,i) = c_max |
---|
[73] | 596 | ENDIF |
---|
[106] | 597 | |
---|
[978] | 598 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 599 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 600 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 601 | |
---|
[978] | 602 | ENDDO |
---|
| 603 | ENDDO |
---|
[73] | 604 | |
---|
[978] | 605 | #if defined( __parallel ) |
---|
| 606 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 607 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 608 | MPI_SUM, comm1dx, ierr ) |
---|
| 609 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 610 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 611 | MPI_SUM, comm1dx, ierr ) |
---|
| 612 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 613 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 614 | MPI_SUM, comm1dx, ierr ) |
---|
| 615 | #else |
---|
| 616 | c_u_m = c_u_m_l |
---|
| 617 | c_v_m = c_v_m_l |
---|
| 618 | c_w_m = c_w_m_l |
---|
| 619 | #endif |
---|
| 620 | |
---|
| 621 | c_u_m = c_u_m / (nx+1) |
---|
| 622 | c_v_m = c_v_m / (nx+1) |
---|
| 623 | c_w_m = c_w_m / (nx+1) |
---|
| 624 | |
---|
[73] | 625 | ! |
---|
[978] | 626 | !-- Save old timelevels for the next timestep |
---|
| 627 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 628 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 629 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 630 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 631 | ENDIF |
---|
[73] | 632 | |
---|
[978] | 633 | ! |
---|
| 634 | !-- Calculate the new velocities |
---|
[996] | 635 | DO k = nzb+1, nzt+1 |
---|
| 636 | DO i = nxlg, nxrg |
---|
[978] | 637 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 638 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 639 | |
---|
[978] | 640 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 641 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 642 | |
---|
[978] | 643 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 644 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 645 | ENDDO |
---|
[1] | 646 | ENDDO |
---|
| 647 | |
---|
| 648 | ! |
---|
[978] | 649 | !-- Bottom boundary at the outflow |
---|
| 650 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 651 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 652 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 653 | ELSE |
---|
| 654 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 655 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 656 | ENDIF |
---|
[1353] | 657 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 658 | |
---|
| 659 | ! |
---|
[978] | 660 | !-- Top boundary at the outflow |
---|
| 661 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 662 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 663 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 664 | ELSE |
---|
| 665 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 666 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 667 | ENDIF |
---|
[1353] | 668 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 669 | |
---|
[1] | 670 | ENDIF |
---|
| 671 | |
---|
[75] | 672 | ENDIF |
---|
| 673 | |
---|
[106] | 674 | IF ( outflow_l ) THEN |
---|
[75] | 675 | |
---|
[1159] | 676 | IF ( use_cmax ) THEN |
---|
[1717] | 677 | u_p(:,:,0) = u(:,:,1) |
---|
| 678 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 679 | w_p(:,:,-1) = w(:,:,0) |
---|
| 680 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 681 | |
---|
[978] | 682 | c_max = dx / dt_3d |
---|
[75] | 683 | |
---|
[1353] | 684 | c_u_m_l = 0.0_wp |
---|
| 685 | c_v_m_l = 0.0_wp |
---|
| 686 | c_w_m_l = 0.0_wp |
---|
[978] | 687 | |
---|
[1353] | 688 | c_u_m = 0.0_wp |
---|
| 689 | c_v_m = 0.0_wp |
---|
| 690 | c_w_m = 0.0_wp |
---|
[978] | 691 | |
---|
[1] | 692 | ! |
---|
[996] | 693 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 694 | !-- average along the outflow boundary. |
---|
| 695 | DO k = nzb+1, nzt+1 |
---|
| 696 | DO j = nys, nyn |
---|
[75] | 697 | |
---|
[106] | 698 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 699 | |
---|
[1353] | 700 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 701 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 702 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 703 | c_u(k,j) = 0.0_wp |
---|
[107] | 704 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 705 | c_u(k,j) = c_max |
---|
[106] | 706 | ENDIF |
---|
| 707 | ELSE |
---|
[107] | 708 | c_u(k,j) = c_max |
---|
[75] | 709 | ENDIF |
---|
| 710 | |
---|
[106] | 711 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 712 | |
---|
[1353] | 713 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 714 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 715 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 716 | c_v(k,j) = 0.0_wp |
---|
[106] | 717 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 718 | c_v(k,j) = c_max |
---|
| 719 | ENDIF |
---|
| 720 | ELSE |
---|
| 721 | c_v(k,j) = c_max |
---|
[75] | 722 | ENDIF |
---|
| 723 | |
---|
[106] | 724 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 725 | |
---|
[1353] | 726 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 727 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 728 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 729 | c_w(k,j) = 0.0_wp |
---|
[106] | 730 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 731 | c_w(k,j) = c_max |
---|
| 732 | ENDIF |
---|
| 733 | ELSE |
---|
| 734 | c_w(k,j) = c_max |
---|
[75] | 735 | ENDIF |
---|
[106] | 736 | |
---|
[978] | 737 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 738 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 739 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 740 | |
---|
[978] | 741 | ENDDO |
---|
| 742 | ENDDO |
---|
[75] | 743 | |
---|
[978] | 744 | #if defined( __parallel ) |
---|
| 745 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 746 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 747 | MPI_SUM, comm1dy, ierr ) |
---|
| 748 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 749 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 750 | MPI_SUM, comm1dy, ierr ) |
---|
| 751 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 752 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 753 | MPI_SUM, comm1dy, ierr ) |
---|
| 754 | #else |
---|
| 755 | c_u_m = c_u_m_l |
---|
| 756 | c_v_m = c_v_m_l |
---|
| 757 | c_w_m = c_w_m_l |
---|
| 758 | #endif |
---|
| 759 | |
---|
| 760 | c_u_m = c_u_m / (ny+1) |
---|
| 761 | c_v_m = c_v_m / (ny+1) |
---|
| 762 | c_w_m = c_w_m / (ny+1) |
---|
| 763 | |
---|
[73] | 764 | ! |
---|
[978] | 765 | !-- Save old timelevels for the next timestep |
---|
| 766 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 767 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 768 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 769 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 770 | ENDIF |
---|
| 771 | |
---|
| 772 | ! |
---|
| 773 | !-- Calculate the new velocities |
---|
[996] | 774 | DO k = nzb+1, nzt+1 |
---|
[1113] | 775 | DO j = nysg, nyng |
---|
[978] | 776 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 777 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 778 | |
---|
[978] | 779 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 780 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 781 | |
---|
[978] | 782 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 783 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 784 | ENDDO |
---|
[75] | 785 | ENDDO |
---|
| 786 | |
---|
| 787 | ! |
---|
[978] | 788 | !-- Bottom boundary at the outflow |
---|
| 789 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 790 | u_p(nzb,:,0) = 0.0_wp |
---|
| 791 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 792 | ELSE |
---|
| 793 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 794 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 795 | ENDIF |
---|
[1353] | 796 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 797 | |
---|
[75] | 798 | ! |
---|
[978] | 799 | !-- Top boundary at the outflow |
---|
| 800 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 801 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
| 802 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 803 | ELSE |
---|
| 804 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 805 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 806 | ENDIF |
---|
[1353] | 807 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 808 | |
---|
[75] | 809 | ENDIF |
---|
[73] | 810 | |
---|
[75] | 811 | ENDIF |
---|
[73] | 812 | |
---|
[106] | 813 | IF ( outflow_r ) THEN |
---|
[73] | 814 | |
---|
[1159] | 815 | IF ( use_cmax ) THEN |
---|
| 816 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 817 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 818 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 819 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 820 | |
---|
[978] | 821 | c_max = dx / dt_3d |
---|
[75] | 822 | |
---|
[1353] | 823 | c_u_m_l = 0.0_wp |
---|
| 824 | c_v_m_l = 0.0_wp |
---|
| 825 | c_w_m_l = 0.0_wp |
---|
[978] | 826 | |
---|
[1353] | 827 | c_u_m = 0.0_wp |
---|
| 828 | c_v_m = 0.0_wp |
---|
| 829 | c_w_m = 0.0_wp |
---|
[978] | 830 | |
---|
[1] | 831 | ! |
---|
[996] | 832 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 833 | !-- average along the outflow boundary. |
---|
| 834 | DO k = nzb+1, nzt+1 |
---|
| 835 | DO j = nys, nyn |
---|
[73] | 836 | |
---|
[106] | 837 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 838 | |
---|
[1353] | 839 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 840 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 841 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 842 | c_u(k,j) = 0.0_wp |
---|
[106] | 843 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 844 | c_u(k,j) = c_max |
---|
| 845 | ENDIF |
---|
| 846 | ELSE |
---|
| 847 | c_u(k,j) = c_max |
---|
[73] | 848 | ENDIF |
---|
| 849 | |
---|
[106] | 850 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 851 | |
---|
[1353] | 852 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 853 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 854 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 855 | c_v(k,j) = 0.0_wp |
---|
[106] | 856 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 857 | c_v(k,j) = c_max |
---|
| 858 | ENDIF |
---|
| 859 | ELSE |
---|
| 860 | c_v(k,j) = c_max |
---|
[73] | 861 | ENDIF |
---|
| 862 | |
---|
[106] | 863 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 864 | |
---|
[1353] | 865 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 866 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 867 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 868 | c_w(k,j) = 0.0_wp |
---|
[106] | 869 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 870 | c_w(k,j) = c_max |
---|
| 871 | ENDIF |
---|
| 872 | ELSE |
---|
| 873 | c_w(k,j) = c_max |
---|
[73] | 874 | ENDIF |
---|
[106] | 875 | |
---|
[978] | 876 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 877 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 878 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 879 | |
---|
[978] | 880 | ENDDO |
---|
| 881 | ENDDO |
---|
[73] | 882 | |
---|
[978] | 883 | #if defined( __parallel ) |
---|
| 884 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 885 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 886 | MPI_SUM, comm1dy, ierr ) |
---|
| 887 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 888 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 889 | MPI_SUM, comm1dy, ierr ) |
---|
| 890 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 891 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 892 | MPI_SUM, comm1dy, ierr ) |
---|
| 893 | #else |
---|
| 894 | c_u_m = c_u_m_l |
---|
| 895 | c_v_m = c_v_m_l |
---|
| 896 | c_w_m = c_w_m_l |
---|
| 897 | #endif |
---|
| 898 | |
---|
| 899 | c_u_m = c_u_m / (ny+1) |
---|
| 900 | c_v_m = c_v_m / (ny+1) |
---|
| 901 | c_w_m = c_w_m / (ny+1) |
---|
| 902 | |
---|
[73] | 903 | ! |
---|
[978] | 904 | !-- Save old timelevels for the next timestep |
---|
| 905 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 906 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 907 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 908 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 909 | ENDIF |
---|
[73] | 910 | |
---|
[978] | 911 | ! |
---|
| 912 | !-- Calculate the new velocities |
---|
[996] | 913 | DO k = nzb+1, nzt+1 |
---|
[1113] | 914 | DO j = nysg, nyng |
---|
[978] | 915 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 916 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 917 | |
---|
[978] | 918 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 919 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 920 | |
---|
[978] | 921 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 922 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 923 | ENDDO |
---|
[73] | 924 | ENDDO |
---|
| 925 | |
---|
| 926 | ! |
---|
[978] | 927 | !-- Bottom boundary at the outflow |
---|
| 928 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 929 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 930 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 931 | ELSE |
---|
| 932 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 933 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 934 | ENDIF |
---|
[1353] | 935 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 936 | |
---|
| 937 | ! |
---|
[978] | 938 | !-- Top boundary at the outflow |
---|
| 939 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 940 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 941 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 942 | ELSE |
---|
| 943 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 944 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 945 | ENDIF |
---|
[1742] | 946 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 947 | |
---|
[1] | 948 | ENDIF |
---|
| 949 | |
---|
| 950 | ENDIF |
---|
| 951 | |
---|
| 952 | END SUBROUTINE boundary_conds |
---|