[1113] | 1 | SUBROUTINE boundary_conds |
---|
[1] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1463] | 22 | ! |
---|
[1354] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 1463 2014-09-04 12:05:50Z heinze $ |
---|
| 27 | ! |
---|
[1463] | 28 | !1410 2014-05-23 12:16:18Z suehring |
---|
| 29 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 30 | ! top |
---|
| 31 | ! |
---|
[1410] | 32 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 33 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 34 | ! is used. |
---|
| 35 | ! |
---|
[1399] | 36 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 37 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 38 | ! for large_scale_forcing |
---|
| 39 | ! |
---|
[1381] | 40 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 41 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 42 | ! |
---|
[1362] | 43 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 44 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 45 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 46 | ! |
---|
[1354] | 47 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 48 | ! REAL constants provided with KIND-attribute |
---|
| 49 | ! |
---|
[1321] | 50 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 51 | ! ONLY-attribute added to USE-statements, |
---|
| 52 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 53 | ! kinds are defined in new module kinds, |
---|
| 54 | ! revision history before 2012 removed, |
---|
| 55 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 56 | ! all variable declaration statements |
---|
[1160] | 57 | ! |
---|
[1258] | 58 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 59 | ! loop independent clauses added |
---|
| 60 | ! |
---|
[1242] | 61 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 62 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 63 | ! |
---|
[1160] | 64 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 65 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 66 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 67 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 68 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 69 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 70 | ! u_p, v_p, w_p |
---|
[1116] | 71 | ! |
---|
| 72 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 73 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 74 | ! boundary-conditions |
---|
| 75 | ! |
---|
[1114] | 76 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 77 | ! GPU-porting |
---|
| 78 | ! dummy argument "range" removed |
---|
| 79 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 80 | ! |
---|
[1054] | 81 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 82 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 83 | ! two-moment cloud scheme |
---|
| 84 | ! |
---|
[1037] | 85 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 86 | ! code put under GPL (PALM 3.9) |
---|
| 87 | ! |
---|
[997] | 88 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 89 | ! little reformatting |
---|
| 90 | ! |
---|
[979] | 91 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 92 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 93 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 94 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 95 | ! velocity. |
---|
| 96 | ! |
---|
[876] | 97 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 98 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 99 | ! |
---|
[1] | 100 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 101 | ! Initial revision |
---|
| 102 | ! |
---|
| 103 | ! |
---|
| 104 | ! Description: |
---|
| 105 | ! ------------ |
---|
[1159] | 106 | ! Boundary conditions for the prognostic quantities. |
---|
[1] | 107 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 108 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 109 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 110 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 111 | !------------------------------------------------------------------------------! |
---|
| 112 | |
---|
[1320] | 113 | USE arrays_3d, & |
---|
| 114 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
| 115 | dzu, e_p, nr_p, pt, pt_p, q, q_p, qr_p, sa, sa_p, & |
---|
| 116 | u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
| 117 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
[1380] | 118 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s,& |
---|
| 119 | pt_init |
---|
[1320] | 120 | |
---|
| 121 | USE control_parameters, & |
---|
| 122 | ONLY: bc_pt_t_val, bc_q_t_val, constant_diffusion, & |
---|
| 123 | cloud_physics, dt_3d, humidity, & |
---|
[1462] | 124 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_sa_t, ibc_uv_b, & |
---|
| 125 | ibc_uv_t, icloud_scheme, inflow_l, inflow_n, inflow_r, inflow_s,& |
---|
[1320] | 126 | intermediate_timestep_count, large_scale_forcing, ocean, & |
---|
| 127 | outflow_l, outflow_n, outflow_r, outflow_s, passive_scalar, & |
---|
[1380] | 128 | precipitation, tsc, use_cmax, & |
---|
| 129 | nudging |
---|
[1320] | 130 | |
---|
| 131 | USE grid_variables, & |
---|
| 132 | ONLY: ddx, ddy, dx, dy |
---|
| 133 | |
---|
| 134 | USE indices, & |
---|
| 135 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
| 136 | nzb, nzb_s_inner, nzb_w_inner, nzt |
---|
| 137 | |
---|
| 138 | USE kinds |
---|
| 139 | |
---|
[1] | 140 | USE pegrid |
---|
| 141 | |
---|
[1320] | 142 | |
---|
[1] | 143 | IMPLICIT NONE |
---|
| 144 | |
---|
[1320] | 145 | INTEGER(iwp) :: i !: |
---|
| 146 | INTEGER(iwp) :: j !: |
---|
| 147 | INTEGER(iwp) :: k !: |
---|
[1] | 148 | |
---|
[1320] | 149 | REAL(wp) :: c_max !: |
---|
| 150 | REAL(wp) :: denom !: |
---|
[1] | 151 | |
---|
[73] | 152 | |
---|
[1] | 153 | ! |
---|
[1113] | 154 | !-- Bottom boundary |
---|
| 155 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 156 | !$acc kernels present( u_p, v_p ) |
---|
| 157 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 158 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 159 | !$acc end kernels |
---|
| 160 | ENDIF |
---|
| 161 | |
---|
| 162 | !$acc kernels present( nzb_w_inner, w_p ) |
---|
| 163 | DO i = nxlg, nxrg |
---|
| 164 | DO j = nysg, nyng |
---|
[1353] | 165 | w_p(nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
[1113] | 166 | ENDDO |
---|
| 167 | ENDDO |
---|
| 168 | !$acc end kernels |
---|
| 169 | |
---|
| 170 | ! |
---|
| 171 | !-- Top boundary |
---|
| 172 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 173 | !$acc kernels present( u_init, u_p, v_init, v_p ) |
---|
| 174 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 175 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
| 176 | !$acc end kernels |
---|
| 177 | ELSE |
---|
| 178 | !$acc kernels present( u_p, v_p ) |
---|
| 179 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 180 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 181 | !$acc end kernels |
---|
| 182 | ENDIF |
---|
| 183 | !$acc kernels present( w_p ) |
---|
[1353] | 184 | w_p(nzt:nzt+1,:,:) = 0.0_wp ! nzt is not a prognostic level (but cf. pres) |
---|
[1113] | 185 | !$acc end kernels |
---|
| 186 | |
---|
| 187 | ! |
---|
| 188 | !-- Temperature at bottom boundary. |
---|
| 189 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 190 | !-- the sea surface temperature of the coupled ocean model. |
---|
| 191 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 192 | !$acc kernels present( nzb_s_inner, pt, pt_p ) |
---|
[1257] | 193 | !$acc loop independent |
---|
[667] | 194 | DO i = nxlg, nxrg |
---|
[1257] | 195 | !$acc loop independent |
---|
[667] | 196 | DO j = nysg, nyng |
---|
[1113] | 197 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 198 | ENDDO |
---|
| 199 | ENDDO |
---|
[1113] | 200 | !$acc end kernels |
---|
| 201 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 202 | !$acc kernels present( nzb_s_inner, pt_p ) |
---|
[1257] | 203 | !$acc loop independent |
---|
[1113] | 204 | DO i = nxlg, nxrg |
---|
[1257] | 205 | !$acc loop independent |
---|
[1113] | 206 | DO j = nysg, nyng |
---|
| 207 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 208 | ENDDO |
---|
| 209 | ENDDO |
---|
| 210 | !$acc end kernels |
---|
| 211 | ENDIF |
---|
[1] | 212 | |
---|
| 213 | ! |
---|
[1113] | 214 | !-- Temperature at top boundary |
---|
| 215 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 216 | !$acc kernels present( pt, pt_p ) |
---|
| 217 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[1380] | 218 | ! |
---|
| 219 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 220 | !-- read in from NUDGING-DATA |
---|
| 221 | IF ( nudging ) THEN |
---|
| 222 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 223 | ENDIF |
---|
[1113] | 224 | !$acc end kernels |
---|
| 225 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 226 | !$acc kernels present( pt_p ) |
---|
| 227 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 228 | !$acc end kernels |
---|
| 229 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 230 | !$acc kernels present( dzu, pt_p ) |
---|
| 231 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 232 | !$acc end kernels |
---|
| 233 | ENDIF |
---|
[1] | 234 | |
---|
| 235 | ! |
---|
[1113] | 236 | !-- Boundary conditions for TKE |
---|
| 237 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 238 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 239 | !$acc kernels present( e_p, nzb_s_inner ) |
---|
[1257] | 240 | !$acc loop independent |
---|
[1113] | 241 | DO i = nxlg, nxrg |
---|
[1257] | 242 | !$acc loop independent |
---|
[1113] | 243 | DO j = nysg, nyng |
---|
| 244 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 245 | ENDDO |
---|
[1113] | 246 | ENDDO |
---|
| 247 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 248 | !$acc end kernels |
---|
| 249 | ENDIF |
---|
| 250 | |
---|
| 251 | ! |
---|
| 252 | !-- Boundary conditions for salinity |
---|
| 253 | IF ( ocean ) THEN |
---|
| 254 | ! |
---|
| 255 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 256 | !-- given |
---|
| 257 | DO i = nxlg, nxrg |
---|
| 258 | DO j = nysg, nyng |
---|
| 259 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 260 | ENDDO |
---|
[1113] | 261 | ENDDO |
---|
[1] | 262 | |
---|
| 263 | ! |
---|
[1113] | 264 | !-- Top boundary: Dirichlet or Neumann |
---|
| 265 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 266 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 267 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 268 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 269 | ENDIF |
---|
| 270 | |
---|
[1113] | 271 | ENDIF |
---|
| 272 | |
---|
[1] | 273 | ! |
---|
[1113] | 274 | !-- Boundary conditions for total water content or scalar, |
---|
| 275 | !-- bottom and top boundary (see also temperature) |
---|
| 276 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 277 | ! |
---|
| 278 | !-- Surface conditions for constant_humidity_flux |
---|
| 279 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 280 | DO i = nxlg, nxrg |
---|
| 281 | DO j = nysg, nyng |
---|
[1113] | 282 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 283 | ENDDO |
---|
| 284 | ENDDO |
---|
[1113] | 285 | ELSE |
---|
[667] | 286 | DO i = nxlg, nxrg |
---|
| 287 | DO j = nysg, nyng |
---|
[1113] | 288 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[95] | 289 | ENDDO |
---|
| 290 | ENDDO |
---|
[1113] | 291 | ENDIF |
---|
[95] | 292 | ! |
---|
[1113] | 293 | !-- Top boundary |
---|
[1462] | 294 | IF ( ibc_q_t == 0 ) THEN |
---|
| 295 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 296 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
| 297 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
| 298 | ENDIF |
---|
[95] | 299 | |
---|
[1361] | 300 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
[1113] | 301 | ! |
---|
[1361] | 302 | !-- Surface conditions rain water (Dirichlet) |
---|
[1115] | 303 | DO i = nxlg, nxrg |
---|
| 304 | DO j = nysg, nyng |
---|
[1361] | 305 | qr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
| 306 | nr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
[73] | 307 | ENDDO |
---|
[1115] | 308 | ENDDO |
---|
[1] | 309 | ! |
---|
[1361] | 310 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 311 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 312 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 313 | |
---|
[1] | 314 | ENDIF |
---|
[1409] | 315 | ENDIF |
---|
[1] | 316 | ! |
---|
[1409] | 317 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
| 318 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
| 319 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
| 320 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
| 321 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
| 322 | IF ( inflow_s ) THEN |
---|
| 323 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 324 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 325 | ELSEIF ( inflow_n ) THEN |
---|
| 326 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 327 | ELSEIF ( inflow_l ) THEN |
---|
| 328 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 329 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 330 | ELSEIF ( inflow_r ) THEN |
---|
| 331 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 332 | ENDIF |
---|
[1] | 333 | |
---|
| 334 | ! |
---|
[1409] | 335 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 336 | IF ( outflow_s ) THEN |
---|
| 337 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 338 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 339 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 340 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
| 341 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 342 | precipitation) THEN |
---|
| 343 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 344 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 345 | ENDIF |
---|
[1409] | 346 | ENDIF |
---|
| 347 | ELSEIF ( outflow_n ) THEN |
---|
| 348 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 349 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 350 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 351 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
| 352 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 353 | precipitation ) THEN |
---|
| 354 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 355 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 356 | ENDIF |
---|
[1409] | 357 | ENDIF |
---|
| 358 | ELSEIF ( outflow_l ) THEN |
---|
| 359 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 360 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 361 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 362 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
| 363 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 364 | precipitation ) THEN |
---|
| 365 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 366 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 367 | ENDIF |
---|
[1409] | 368 | ENDIF |
---|
| 369 | ELSEIF ( outflow_r ) THEN |
---|
| 370 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 371 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 372 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 373 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
| 374 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 375 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 376 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 377 | ENDIF |
---|
[1] | 378 | ENDIF |
---|
| 379 | ENDIF |
---|
| 380 | |
---|
| 381 | ! |
---|
[1159] | 382 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 383 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 384 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 385 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 386 | IF ( outflow_s ) THEN |
---|
[75] | 387 | |
---|
[1159] | 388 | IF ( use_cmax ) THEN |
---|
| 389 | u_p(:,-1,:) = u(:,0,:) |
---|
| 390 | v_p(:,0,:) = v(:,1,:) |
---|
| 391 | w_p(:,-1,:) = w(:,0,:) |
---|
| 392 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 393 | |
---|
[978] | 394 | c_max = dy / dt_3d |
---|
[75] | 395 | |
---|
[1353] | 396 | c_u_m_l = 0.0_wp |
---|
| 397 | c_v_m_l = 0.0_wp |
---|
| 398 | c_w_m_l = 0.0_wp |
---|
[978] | 399 | |
---|
[1353] | 400 | c_u_m = 0.0_wp |
---|
| 401 | c_v_m = 0.0_wp |
---|
| 402 | c_w_m = 0.0_wp |
---|
[978] | 403 | |
---|
[75] | 404 | ! |
---|
[996] | 405 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 406 | !-- average along the outflow boundary. |
---|
| 407 | DO k = nzb+1, nzt+1 |
---|
| 408 | DO i = nxl, nxr |
---|
[75] | 409 | |
---|
[106] | 410 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 411 | |
---|
[1353] | 412 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 413 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 414 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 415 | c_u(k,i) = 0.0_wp |
---|
[106] | 416 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 417 | c_u(k,i) = c_max |
---|
| 418 | ENDIF |
---|
| 419 | ELSE |
---|
| 420 | c_u(k,i) = c_max |
---|
[75] | 421 | ENDIF |
---|
| 422 | |
---|
[106] | 423 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 424 | |
---|
[1353] | 425 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 426 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 427 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 428 | c_v(k,i) = 0.0_wp |
---|
[106] | 429 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 430 | c_v(k,i) = c_max |
---|
| 431 | ENDIF |
---|
| 432 | ELSE |
---|
| 433 | c_v(k,i) = c_max |
---|
[75] | 434 | ENDIF |
---|
| 435 | |
---|
[106] | 436 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 437 | |
---|
[1353] | 438 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 439 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 440 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 441 | c_w(k,i) = 0.0_wp |
---|
[106] | 442 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 443 | c_w(k,i) = c_max |
---|
| 444 | ENDIF |
---|
| 445 | ELSE |
---|
| 446 | c_w(k,i) = c_max |
---|
[75] | 447 | ENDIF |
---|
[106] | 448 | |
---|
[978] | 449 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 450 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 451 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 452 | |
---|
[978] | 453 | ENDDO |
---|
| 454 | ENDDO |
---|
[75] | 455 | |
---|
[978] | 456 | #if defined( __parallel ) |
---|
| 457 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 458 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 459 | MPI_SUM, comm1dx, ierr ) |
---|
| 460 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 461 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 462 | MPI_SUM, comm1dx, ierr ) |
---|
| 463 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 464 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 465 | MPI_SUM, comm1dx, ierr ) |
---|
| 466 | #else |
---|
| 467 | c_u_m = c_u_m_l |
---|
| 468 | c_v_m = c_v_m_l |
---|
| 469 | c_w_m = c_w_m_l |
---|
| 470 | #endif |
---|
| 471 | |
---|
| 472 | c_u_m = c_u_m / (nx+1) |
---|
| 473 | c_v_m = c_v_m / (nx+1) |
---|
| 474 | c_w_m = c_w_m / (nx+1) |
---|
| 475 | |
---|
[75] | 476 | ! |
---|
[978] | 477 | !-- Save old timelevels for the next timestep |
---|
| 478 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 479 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 480 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 481 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 482 | ENDIF |
---|
| 483 | |
---|
| 484 | ! |
---|
| 485 | !-- Calculate the new velocities |
---|
[996] | 486 | DO k = nzb+1, nzt+1 |
---|
| 487 | DO i = nxlg, nxrg |
---|
[978] | 488 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 489 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 490 | |
---|
[978] | 491 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 492 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 493 | |
---|
[978] | 494 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 495 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 496 | ENDDO |
---|
[75] | 497 | ENDDO |
---|
| 498 | |
---|
| 499 | ! |
---|
[978] | 500 | !-- Bottom boundary at the outflow |
---|
| 501 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 502 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 503 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 504 | ELSE |
---|
| 505 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 506 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 507 | ENDIF |
---|
[1353] | 508 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 509 | |
---|
[75] | 510 | ! |
---|
[978] | 511 | !-- Top boundary at the outflow |
---|
| 512 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 513 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 514 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 515 | ELSE |
---|
| 516 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
| 517 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
| 518 | ENDIF |
---|
[1353] | 519 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 520 | |
---|
[75] | 521 | ENDIF |
---|
[73] | 522 | |
---|
[75] | 523 | ENDIF |
---|
[73] | 524 | |
---|
[106] | 525 | IF ( outflow_n ) THEN |
---|
[73] | 526 | |
---|
[1159] | 527 | IF ( use_cmax ) THEN |
---|
| 528 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 529 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 530 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 531 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 532 | |
---|
[978] | 533 | c_max = dy / dt_3d |
---|
[75] | 534 | |
---|
[1353] | 535 | c_u_m_l = 0.0_wp |
---|
| 536 | c_v_m_l = 0.0_wp |
---|
| 537 | c_w_m_l = 0.0_wp |
---|
[978] | 538 | |
---|
[1353] | 539 | c_u_m = 0.0_wp |
---|
| 540 | c_v_m = 0.0_wp |
---|
| 541 | c_w_m = 0.0_wp |
---|
[978] | 542 | |
---|
[1] | 543 | ! |
---|
[996] | 544 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 545 | !-- average along the outflow boundary. |
---|
| 546 | DO k = nzb+1, nzt+1 |
---|
| 547 | DO i = nxl, nxr |
---|
[73] | 548 | |
---|
[106] | 549 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 550 | |
---|
[1353] | 551 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 552 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 553 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 554 | c_u(k,i) = 0.0_wp |
---|
[106] | 555 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 556 | c_u(k,i) = c_max |
---|
| 557 | ENDIF |
---|
| 558 | ELSE |
---|
| 559 | c_u(k,i) = c_max |
---|
[73] | 560 | ENDIF |
---|
| 561 | |
---|
[106] | 562 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 563 | |
---|
[1353] | 564 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 565 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 566 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 567 | c_v(k,i) = 0.0_wp |
---|
[106] | 568 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 569 | c_v(k,i) = c_max |
---|
| 570 | ENDIF |
---|
| 571 | ELSE |
---|
| 572 | c_v(k,i) = c_max |
---|
[73] | 573 | ENDIF |
---|
| 574 | |
---|
[106] | 575 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 576 | |
---|
[1353] | 577 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 578 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 579 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 580 | c_w(k,i) = 0.0_wp |
---|
[106] | 581 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 582 | c_w(k,i) = c_max |
---|
| 583 | ENDIF |
---|
| 584 | ELSE |
---|
| 585 | c_w(k,i) = c_max |
---|
[73] | 586 | ENDIF |
---|
[106] | 587 | |
---|
[978] | 588 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 589 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 590 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 591 | |
---|
[978] | 592 | ENDDO |
---|
| 593 | ENDDO |
---|
[73] | 594 | |
---|
[978] | 595 | #if defined( __parallel ) |
---|
| 596 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 597 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 598 | MPI_SUM, comm1dx, ierr ) |
---|
| 599 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 600 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 601 | MPI_SUM, comm1dx, ierr ) |
---|
| 602 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 603 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 604 | MPI_SUM, comm1dx, ierr ) |
---|
| 605 | #else |
---|
| 606 | c_u_m = c_u_m_l |
---|
| 607 | c_v_m = c_v_m_l |
---|
| 608 | c_w_m = c_w_m_l |
---|
| 609 | #endif |
---|
| 610 | |
---|
| 611 | c_u_m = c_u_m / (nx+1) |
---|
| 612 | c_v_m = c_v_m / (nx+1) |
---|
| 613 | c_w_m = c_w_m / (nx+1) |
---|
| 614 | |
---|
[73] | 615 | ! |
---|
[978] | 616 | !-- Save old timelevels for the next timestep |
---|
| 617 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 618 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 619 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 620 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 621 | ENDIF |
---|
[73] | 622 | |
---|
[978] | 623 | ! |
---|
| 624 | !-- Calculate the new velocities |
---|
[996] | 625 | DO k = nzb+1, nzt+1 |
---|
| 626 | DO i = nxlg, nxrg |
---|
[978] | 627 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 628 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 629 | |
---|
[978] | 630 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 631 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 632 | |
---|
[978] | 633 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 634 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 635 | ENDDO |
---|
[1] | 636 | ENDDO |
---|
| 637 | |
---|
| 638 | ! |
---|
[978] | 639 | !-- Bottom boundary at the outflow |
---|
| 640 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 641 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 642 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 643 | ELSE |
---|
| 644 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 645 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 646 | ENDIF |
---|
[1353] | 647 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 648 | |
---|
| 649 | ! |
---|
[978] | 650 | !-- Top boundary at the outflow |
---|
| 651 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 652 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 653 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 654 | ELSE |
---|
| 655 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 656 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 657 | ENDIF |
---|
[1353] | 658 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 659 | |
---|
[1] | 660 | ENDIF |
---|
| 661 | |
---|
[75] | 662 | ENDIF |
---|
| 663 | |
---|
[106] | 664 | IF ( outflow_l ) THEN |
---|
[75] | 665 | |
---|
[1159] | 666 | IF ( use_cmax ) THEN |
---|
| 667 | u_p(:,:,-1) = u(:,:,0) |
---|
| 668 | v_p(:,:,0) = v(:,:,1) |
---|
| 669 | w_p(:,:,-1) = w(:,:,0) |
---|
| 670 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 671 | |
---|
[978] | 672 | c_max = dx / dt_3d |
---|
[75] | 673 | |
---|
[1353] | 674 | c_u_m_l = 0.0_wp |
---|
| 675 | c_v_m_l = 0.0_wp |
---|
| 676 | c_w_m_l = 0.0_wp |
---|
[978] | 677 | |
---|
[1353] | 678 | c_u_m = 0.0_wp |
---|
| 679 | c_v_m = 0.0_wp |
---|
| 680 | c_w_m = 0.0_wp |
---|
[978] | 681 | |
---|
[1] | 682 | ! |
---|
[996] | 683 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 684 | !-- average along the outflow boundary. |
---|
| 685 | DO k = nzb+1, nzt+1 |
---|
| 686 | DO j = nys, nyn |
---|
[75] | 687 | |
---|
[106] | 688 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 689 | |
---|
[1353] | 690 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 691 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 692 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 693 | c_u(k,j) = 0.0_wp |
---|
[107] | 694 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 695 | c_u(k,j) = c_max |
---|
[106] | 696 | ENDIF |
---|
| 697 | ELSE |
---|
[107] | 698 | c_u(k,j) = c_max |
---|
[75] | 699 | ENDIF |
---|
| 700 | |
---|
[106] | 701 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 702 | |
---|
[1353] | 703 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 704 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 705 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 706 | c_v(k,j) = 0.0_wp |
---|
[106] | 707 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 708 | c_v(k,j) = c_max |
---|
| 709 | ENDIF |
---|
| 710 | ELSE |
---|
| 711 | c_v(k,j) = c_max |
---|
[75] | 712 | ENDIF |
---|
| 713 | |
---|
[106] | 714 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 715 | |
---|
[1353] | 716 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 717 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 718 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 719 | c_w(k,j) = 0.0_wp |
---|
[106] | 720 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 721 | c_w(k,j) = c_max |
---|
| 722 | ENDIF |
---|
| 723 | ELSE |
---|
| 724 | c_w(k,j) = c_max |
---|
[75] | 725 | ENDIF |
---|
[106] | 726 | |
---|
[978] | 727 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 728 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 729 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 730 | |
---|
[978] | 731 | ENDDO |
---|
| 732 | ENDDO |
---|
[75] | 733 | |
---|
[978] | 734 | #if defined( __parallel ) |
---|
| 735 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 736 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 737 | MPI_SUM, comm1dy, ierr ) |
---|
| 738 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 739 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 740 | MPI_SUM, comm1dy, ierr ) |
---|
| 741 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 742 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 743 | MPI_SUM, comm1dy, ierr ) |
---|
| 744 | #else |
---|
| 745 | c_u_m = c_u_m_l |
---|
| 746 | c_v_m = c_v_m_l |
---|
| 747 | c_w_m = c_w_m_l |
---|
| 748 | #endif |
---|
| 749 | |
---|
| 750 | c_u_m = c_u_m / (ny+1) |
---|
| 751 | c_v_m = c_v_m / (ny+1) |
---|
| 752 | c_w_m = c_w_m / (ny+1) |
---|
| 753 | |
---|
[73] | 754 | ! |
---|
[978] | 755 | !-- Save old timelevels for the next timestep |
---|
| 756 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 757 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 758 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 759 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 760 | ENDIF |
---|
| 761 | |
---|
| 762 | ! |
---|
| 763 | !-- Calculate the new velocities |
---|
[996] | 764 | DO k = nzb+1, nzt+1 |
---|
[1113] | 765 | DO j = nysg, nyng |
---|
[978] | 766 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 767 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 768 | |
---|
[978] | 769 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 770 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 771 | |
---|
[978] | 772 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 773 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 774 | ENDDO |
---|
[75] | 775 | ENDDO |
---|
| 776 | |
---|
| 777 | ! |
---|
[978] | 778 | !-- Bottom boundary at the outflow |
---|
| 779 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 780 | u_p(nzb,:,0) = 0.0_wp |
---|
| 781 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 782 | ELSE |
---|
| 783 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 784 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 785 | ENDIF |
---|
[1353] | 786 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 787 | |
---|
[75] | 788 | ! |
---|
[978] | 789 | !-- Top boundary at the outflow |
---|
| 790 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 791 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
| 792 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 793 | ELSE |
---|
| 794 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 795 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 796 | ENDIF |
---|
[1353] | 797 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 798 | |
---|
[75] | 799 | ENDIF |
---|
[73] | 800 | |
---|
[75] | 801 | ENDIF |
---|
[73] | 802 | |
---|
[106] | 803 | IF ( outflow_r ) THEN |
---|
[73] | 804 | |
---|
[1159] | 805 | IF ( use_cmax ) THEN |
---|
| 806 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 807 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 808 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 809 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 810 | |
---|
[978] | 811 | c_max = dx / dt_3d |
---|
[75] | 812 | |
---|
[1353] | 813 | c_u_m_l = 0.0_wp |
---|
| 814 | c_v_m_l = 0.0_wp |
---|
| 815 | c_w_m_l = 0.0_wp |
---|
[978] | 816 | |
---|
[1353] | 817 | c_u_m = 0.0_wp |
---|
| 818 | c_v_m = 0.0_wp |
---|
| 819 | c_w_m = 0.0_wp |
---|
[978] | 820 | |
---|
[1] | 821 | ! |
---|
[996] | 822 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 823 | !-- average along the outflow boundary. |
---|
| 824 | DO k = nzb+1, nzt+1 |
---|
| 825 | DO j = nys, nyn |
---|
[73] | 826 | |
---|
[106] | 827 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 828 | |
---|
[1353] | 829 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 830 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 831 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 832 | c_u(k,j) = 0.0_wp |
---|
[106] | 833 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 834 | c_u(k,j) = c_max |
---|
| 835 | ENDIF |
---|
| 836 | ELSE |
---|
| 837 | c_u(k,j) = c_max |
---|
[73] | 838 | ENDIF |
---|
| 839 | |
---|
[106] | 840 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 841 | |
---|
[1353] | 842 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 843 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 844 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 845 | c_v(k,j) = 0.0_wp |
---|
[106] | 846 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 847 | c_v(k,j) = c_max |
---|
| 848 | ENDIF |
---|
| 849 | ELSE |
---|
| 850 | c_v(k,j) = c_max |
---|
[73] | 851 | ENDIF |
---|
| 852 | |
---|
[106] | 853 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 854 | |
---|
[1353] | 855 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 856 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 857 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 858 | c_w(k,j) = 0.0_wp |
---|
[106] | 859 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 860 | c_w(k,j) = c_max |
---|
| 861 | ENDIF |
---|
| 862 | ELSE |
---|
| 863 | c_w(k,j) = c_max |
---|
[73] | 864 | ENDIF |
---|
[106] | 865 | |
---|
[978] | 866 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 867 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 868 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 869 | |
---|
[978] | 870 | ENDDO |
---|
| 871 | ENDDO |
---|
[73] | 872 | |
---|
[978] | 873 | #if defined( __parallel ) |
---|
| 874 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 875 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 876 | MPI_SUM, comm1dy, ierr ) |
---|
| 877 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 878 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 879 | MPI_SUM, comm1dy, ierr ) |
---|
| 880 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 881 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 882 | MPI_SUM, comm1dy, ierr ) |
---|
| 883 | #else |
---|
| 884 | c_u_m = c_u_m_l |
---|
| 885 | c_v_m = c_v_m_l |
---|
| 886 | c_w_m = c_w_m_l |
---|
| 887 | #endif |
---|
| 888 | |
---|
| 889 | c_u_m = c_u_m / (ny+1) |
---|
| 890 | c_v_m = c_v_m / (ny+1) |
---|
| 891 | c_w_m = c_w_m / (ny+1) |
---|
| 892 | |
---|
[73] | 893 | ! |
---|
[978] | 894 | !-- Save old timelevels for the next timestep |
---|
| 895 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 896 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 897 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 898 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 899 | ENDIF |
---|
[73] | 900 | |
---|
[978] | 901 | ! |
---|
| 902 | !-- Calculate the new velocities |
---|
[996] | 903 | DO k = nzb+1, nzt+1 |
---|
[1113] | 904 | DO j = nysg, nyng |
---|
[978] | 905 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 906 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 907 | |
---|
[978] | 908 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 909 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 910 | |
---|
[978] | 911 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 912 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 913 | ENDDO |
---|
[73] | 914 | ENDDO |
---|
| 915 | |
---|
| 916 | ! |
---|
[978] | 917 | !-- Bottom boundary at the outflow |
---|
| 918 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 919 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 920 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 921 | ELSE |
---|
| 922 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 923 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 924 | ENDIF |
---|
[1353] | 925 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 926 | |
---|
| 927 | ! |
---|
[978] | 928 | !-- Top boundary at the outflow |
---|
| 929 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 930 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 931 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 932 | ELSE |
---|
| 933 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 934 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 935 | ENDIF |
---|
[1353] | 936 | w(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 937 | |
---|
[1] | 938 | ENDIF |
---|
| 939 | |
---|
| 940 | ENDIF |
---|
| 941 | |
---|
| 942 | END SUBROUTINE boundary_conds |
---|