[1113] | 1 | SUBROUTINE boundary_conds |
---|
[1] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1354] | 22 | ! |
---|
[1410] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 1410 2014-05-23 12:16:18Z maronga $ |
---|
| 27 | ! |
---|
[1410] | 28 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 29 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 30 | ! is used. |
---|
| 31 | ! |
---|
[1399] | 32 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 33 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 34 | ! for large_scale_forcing |
---|
| 35 | ! |
---|
[1381] | 36 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 37 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 38 | ! |
---|
[1362] | 39 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 40 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 41 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 42 | ! |
---|
[1354] | 43 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 44 | ! REAL constants provided with KIND-attribute |
---|
| 45 | ! |
---|
[1321] | 46 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 47 | ! ONLY-attribute added to USE-statements, |
---|
| 48 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 49 | ! kinds are defined in new module kinds, |
---|
| 50 | ! revision history before 2012 removed, |
---|
| 51 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 52 | ! all variable declaration statements |
---|
[1160] | 53 | ! |
---|
[1258] | 54 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 55 | ! loop independent clauses added |
---|
| 56 | ! |
---|
[1242] | 57 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 58 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 59 | ! |
---|
[1160] | 60 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 61 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 62 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 63 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 64 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 65 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 66 | ! u_p, v_p, w_p |
---|
[1116] | 67 | ! |
---|
| 68 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 69 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 70 | ! boundary-conditions |
---|
| 71 | ! |
---|
[1114] | 72 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 73 | ! GPU-porting |
---|
| 74 | ! dummy argument "range" removed |
---|
| 75 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 76 | ! |
---|
[1054] | 77 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 78 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 79 | ! two-moment cloud scheme |
---|
| 80 | ! |
---|
[1037] | 81 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 82 | ! code put under GPL (PALM 3.9) |
---|
| 83 | ! |
---|
[997] | 84 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 85 | ! little reformatting |
---|
| 86 | ! |
---|
[979] | 87 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 88 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 89 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 90 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 91 | ! velocity. |
---|
| 92 | ! |
---|
[876] | 93 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 94 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 95 | ! |
---|
[1] | 96 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 97 | ! Initial revision |
---|
| 98 | ! |
---|
| 99 | ! |
---|
| 100 | ! Description: |
---|
| 101 | ! ------------ |
---|
[1159] | 102 | ! Boundary conditions for the prognostic quantities. |
---|
[1] | 103 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 104 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 105 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 106 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 107 | !------------------------------------------------------------------------------! |
---|
| 108 | |
---|
[1320] | 109 | USE arrays_3d, & |
---|
| 110 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
| 111 | dzu, e_p, nr_p, pt, pt_p, q, q_p, qr_p, sa, sa_p, & |
---|
| 112 | u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
| 113 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
[1380] | 114 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s,& |
---|
| 115 | pt_init |
---|
[1320] | 116 | |
---|
| 117 | USE control_parameters, & |
---|
| 118 | ONLY: bc_pt_t_val, bc_q_t_val, constant_diffusion, & |
---|
| 119 | cloud_physics, dt_3d, humidity, & |
---|
| 120 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_sa_t, ibc_uv_b, ibc_uv_t, & |
---|
| 121 | icloud_scheme, inflow_l, inflow_n, inflow_r, inflow_s, & |
---|
| 122 | intermediate_timestep_count, large_scale_forcing, ocean, & |
---|
| 123 | outflow_l, outflow_n, outflow_r, outflow_s, passive_scalar, & |
---|
[1380] | 124 | precipitation, tsc, use_cmax, & |
---|
| 125 | nudging |
---|
[1320] | 126 | |
---|
| 127 | USE grid_variables, & |
---|
| 128 | ONLY: ddx, ddy, dx, dy |
---|
| 129 | |
---|
| 130 | USE indices, & |
---|
| 131 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
| 132 | nzb, nzb_s_inner, nzb_w_inner, nzt |
---|
| 133 | |
---|
| 134 | USE kinds |
---|
| 135 | |
---|
[1] | 136 | USE pegrid |
---|
| 137 | |
---|
[1320] | 138 | |
---|
[1] | 139 | IMPLICIT NONE |
---|
| 140 | |
---|
[1320] | 141 | INTEGER(iwp) :: i !: |
---|
| 142 | INTEGER(iwp) :: j !: |
---|
| 143 | INTEGER(iwp) :: k !: |
---|
[1] | 144 | |
---|
[1320] | 145 | REAL(wp) :: c_max !: |
---|
| 146 | REAL(wp) :: denom !: |
---|
[1] | 147 | |
---|
[73] | 148 | |
---|
[1] | 149 | ! |
---|
[1113] | 150 | !-- Bottom boundary |
---|
| 151 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 152 | !$acc kernels present( u_p, v_p ) |
---|
| 153 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 154 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 155 | !$acc end kernels |
---|
| 156 | ENDIF |
---|
| 157 | |
---|
| 158 | !$acc kernels present( nzb_w_inner, w_p ) |
---|
| 159 | DO i = nxlg, nxrg |
---|
| 160 | DO j = nysg, nyng |
---|
[1353] | 161 | w_p(nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
[1113] | 162 | ENDDO |
---|
| 163 | ENDDO |
---|
| 164 | !$acc end kernels |
---|
| 165 | |
---|
| 166 | ! |
---|
| 167 | !-- Top boundary |
---|
| 168 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 169 | !$acc kernels present( u_init, u_p, v_init, v_p ) |
---|
| 170 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 171 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
| 172 | !$acc end kernels |
---|
| 173 | ELSE |
---|
| 174 | !$acc kernels present( u_p, v_p ) |
---|
| 175 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 176 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 177 | !$acc end kernels |
---|
| 178 | ENDIF |
---|
| 179 | !$acc kernels present( w_p ) |
---|
[1353] | 180 | w_p(nzt:nzt+1,:,:) = 0.0_wp ! nzt is not a prognostic level (but cf. pres) |
---|
[1113] | 181 | !$acc end kernels |
---|
| 182 | |
---|
| 183 | ! |
---|
| 184 | !-- Temperature at bottom boundary. |
---|
| 185 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 186 | !-- the sea surface temperature of the coupled ocean model. |
---|
| 187 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 188 | !$acc kernels present( nzb_s_inner, pt, pt_p ) |
---|
[1257] | 189 | !$acc loop independent |
---|
[667] | 190 | DO i = nxlg, nxrg |
---|
[1257] | 191 | !$acc loop independent |
---|
[667] | 192 | DO j = nysg, nyng |
---|
[1113] | 193 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 194 | ENDDO |
---|
| 195 | ENDDO |
---|
[1113] | 196 | !$acc end kernels |
---|
| 197 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 198 | !$acc kernels present( nzb_s_inner, pt_p ) |
---|
[1257] | 199 | !$acc loop independent |
---|
[1113] | 200 | DO i = nxlg, nxrg |
---|
[1257] | 201 | !$acc loop independent |
---|
[1113] | 202 | DO j = nysg, nyng |
---|
| 203 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 204 | ENDDO |
---|
| 205 | ENDDO |
---|
| 206 | !$acc end kernels |
---|
| 207 | ENDIF |
---|
[1] | 208 | |
---|
| 209 | ! |
---|
[1113] | 210 | !-- Temperature at top boundary |
---|
| 211 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 212 | !$acc kernels present( pt, pt_p ) |
---|
| 213 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[1380] | 214 | ! |
---|
| 215 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 216 | !-- read in from NUDGING-DATA |
---|
| 217 | IF ( nudging ) THEN |
---|
| 218 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 219 | ENDIF |
---|
[1113] | 220 | !$acc end kernels |
---|
| 221 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 222 | !$acc kernels present( pt_p ) |
---|
| 223 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 224 | !$acc end kernels |
---|
| 225 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 226 | !$acc kernels present( dzu, pt_p ) |
---|
| 227 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 228 | !$acc end kernels |
---|
| 229 | ENDIF |
---|
[1] | 230 | |
---|
| 231 | ! |
---|
[1113] | 232 | !-- Boundary conditions for TKE |
---|
| 233 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 234 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 235 | !$acc kernels present( e_p, nzb_s_inner ) |
---|
[1257] | 236 | !$acc loop independent |
---|
[1113] | 237 | DO i = nxlg, nxrg |
---|
[1257] | 238 | !$acc loop independent |
---|
[1113] | 239 | DO j = nysg, nyng |
---|
| 240 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 241 | ENDDO |
---|
[1113] | 242 | ENDDO |
---|
| 243 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 244 | !$acc end kernels |
---|
| 245 | ENDIF |
---|
| 246 | |
---|
| 247 | ! |
---|
| 248 | !-- Boundary conditions for salinity |
---|
| 249 | IF ( ocean ) THEN |
---|
| 250 | ! |
---|
| 251 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 252 | !-- given |
---|
| 253 | DO i = nxlg, nxrg |
---|
| 254 | DO j = nysg, nyng |
---|
| 255 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 256 | ENDDO |
---|
[1113] | 257 | ENDDO |
---|
[1] | 258 | |
---|
| 259 | ! |
---|
[1113] | 260 | !-- Top boundary: Dirichlet or Neumann |
---|
| 261 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 262 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 263 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 264 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 265 | ENDIF |
---|
| 266 | |
---|
[1113] | 267 | ENDIF |
---|
| 268 | |
---|
[1] | 269 | ! |
---|
[1113] | 270 | !-- Boundary conditions for total water content or scalar, |
---|
| 271 | !-- bottom and top boundary (see also temperature) |
---|
| 272 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 273 | ! |
---|
| 274 | !-- Surface conditions for constant_humidity_flux |
---|
| 275 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 276 | DO i = nxlg, nxrg |
---|
| 277 | DO j = nysg, nyng |
---|
[1113] | 278 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 279 | ENDDO |
---|
| 280 | ENDDO |
---|
[1113] | 281 | ELSE |
---|
[667] | 282 | DO i = nxlg, nxrg |
---|
| 283 | DO j = nysg, nyng |
---|
[1113] | 284 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[95] | 285 | ENDDO |
---|
| 286 | ENDDO |
---|
[1113] | 287 | ENDIF |
---|
[95] | 288 | ! |
---|
[1113] | 289 | !-- Top boundary |
---|
| 290 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[95] | 291 | |
---|
[1361] | 292 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
[1113] | 293 | ! |
---|
[1361] | 294 | !-- Surface conditions rain water (Dirichlet) |
---|
[1115] | 295 | DO i = nxlg, nxrg |
---|
| 296 | DO j = nysg, nyng |
---|
[1361] | 297 | qr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
| 298 | nr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
[73] | 299 | ENDDO |
---|
[1115] | 300 | ENDDO |
---|
[1] | 301 | ! |
---|
[1361] | 302 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 303 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 304 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 305 | |
---|
[1] | 306 | ENDIF |
---|
[1409] | 307 | ENDIF |
---|
[1] | 308 | ! |
---|
[1409] | 309 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
| 310 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
| 311 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
| 312 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
| 313 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
| 314 | IF ( inflow_s ) THEN |
---|
| 315 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 316 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 317 | ELSEIF ( inflow_n ) THEN |
---|
| 318 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 319 | ELSEIF ( inflow_l ) THEN |
---|
| 320 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 321 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 322 | ELSEIF ( inflow_r ) THEN |
---|
| 323 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 324 | ENDIF |
---|
[1] | 325 | |
---|
| 326 | ! |
---|
[1409] | 327 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 328 | IF ( outflow_s ) THEN |
---|
| 329 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 330 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 331 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 332 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
| 333 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 334 | precipitation) THEN |
---|
| 335 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 336 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 337 | ENDIF |
---|
[1409] | 338 | ENDIF |
---|
| 339 | ELSEIF ( outflow_n ) THEN |
---|
| 340 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 341 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 342 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 343 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
| 344 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 345 | precipitation ) THEN |
---|
| 346 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 347 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 348 | ENDIF |
---|
[1409] | 349 | ENDIF |
---|
| 350 | ELSEIF ( outflow_l ) THEN |
---|
| 351 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 352 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 353 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 354 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
| 355 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 356 | precipitation ) THEN |
---|
| 357 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 358 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 359 | ENDIF |
---|
[1409] | 360 | ENDIF |
---|
| 361 | ELSEIF ( outflow_r ) THEN |
---|
| 362 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 363 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 364 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 365 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
| 366 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 367 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 368 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 369 | ENDIF |
---|
[1] | 370 | ENDIF |
---|
| 371 | ENDIF |
---|
| 372 | |
---|
| 373 | ! |
---|
[1159] | 374 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 375 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 376 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 377 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 378 | IF ( outflow_s ) THEN |
---|
[75] | 379 | |
---|
[1159] | 380 | IF ( use_cmax ) THEN |
---|
| 381 | u_p(:,-1,:) = u(:,0,:) |
---|
| 382 | v_p(:,0,:) = v(:,1,:) |
---|
| 383 | w_p(:,-1,:) = w(:,0,:) |
---|
| 384 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 385 | |
---|
[978] | 386 | c_max = dy / dt_3d |
---|
[75] | 387 | |
---|
[1353] | 388 | c_u_m_l = 0.0_wp |
---|
| 389 | c_v_m_l = 0.0_wp |
---|
| 390 | c_w_m_l = 0.0_wp |
---|
[978] | 391 | |
---|
[1353] | 392 | c_u_m = 0.0_wp |
---|
| 393 | c_v_m = 0.0_wp |
---|
| 394 | c_w_m = 0.0_wp |
---|
[978] | 395 | |
---|
[75] | 396 | ! |
---|
[996] | 397 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 398 | !-- average along the outflow boundary. |
---|
| 399 | DO k = nzb+1, nzt+1 |
---|
| 400 | DO i = nxl, nxr |
---|
[75] | 401 | |
---|
[106] | 402 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 403 | |
---|
[1353] | 404 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 405 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 406 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 407 | c_u(k,i) = 0.0_wp |
---|
[106] | 408 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 409 | c_u(k,i) = c_max |
---|
| 410 | ENDIF |
---|
| 411 | ELSE |
---|
| 412 | c_u(k,i) = c_max |
---|
[75] | 413 | ENDIF |
---|
| 414 | |
---|
[106] | 415 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 416 | |
---|
[1353] | 417 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 418 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 419 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 420 | c_v(k,i) = 0.0_wp |
---|
[106] | 421 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 422 | c_v(k,i) = c_max |
---|
| 423 | ENDIF |
---|
| 424 | ELSE |
---|
| 425 | c_v(k,i) = c_max |
---|
[75] | 426 | ENDIF |
---|
| 427 | |
---|
[106] | 428 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 429 | |
---|
[1353] | 430 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 431 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 432 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 433 | c_w(k,i) = 0.0_wp |
---|
[106] | 434 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 435 | c_w(k,i) = c_max |
---|
| 436 | ENDIF |
---|
| 437 | ELSE |
---|
| 438 | c_w(k,i) = c_max |
---|
[75] | 439 | ENDIF |
---|
[106] | 440 | |
---|
[978] | 441 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 442 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 443 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 444 | |
---|
[978] | 445 | ENDDO |
---|
| 446 | ENDDO |
---|
[75] | 447 | |
---|
[978] | 448 | #if defined( __parallel ) |
---|
| 449 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 450 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 451 | MPI_SUM, comm1dx, ierr ) |
---|
| 452 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 453 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 454 | MPI_SUM, comm1dx, ierr ) |
---|
| 455 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 456 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 457 | MPI_SUM, comm1dx, ierr ) |
---|
| 458 | #else |
---|
| 459 | c_u_m = c_u_m_l |
---|
| 460 | c_v_m = c_v_m_l |
---|
| 461 | c_w_m = c_w_m_l |
---|
| 462 | #endif |
---|
| 463 | |
---|
| 464 | c_u_m = c_u_m / (nx+1) |
---|
| 465 | c_v_m = c_v_m / (nx+1) |
---|
| 466 | c_w_m = c_w_m / (nx+1) |
---|
| 467 | |
---|
[75] | 468 | ! |
---|
[978] | 469 | !-- Save old timelevels for the next timestep |
---|
| 470 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 471 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 472 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 473 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 474 | ENDIF |
---|
| 475 | |
---|
| 476 | ! |
---|
| 477 | !-- Calculate the new velocities |
---|
[996] | 478 | DO k = nzb+1, nzt+1 |
---|
| 479 | DO i = nxlg, nxrg |
---|
[978] | 480 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 481 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 482 | |
---|
[978] | 483 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 484 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 485 | |
---|
[978] | 486 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 487 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 488 | ENDDO |
---|
[75] | 489 | ENDDO |
---|
| 490 | |
---|
| 491 | ! |
---|
[978] | 492 | !-- Bottom boundary at the outflow |
---|
| 493 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 494 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 495 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 496 | ELSE |
---|
| 497 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 498 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 499 | ENDIF |
---|
[1353] | 500 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 501 | |
---|
[75] | 502 | ! |
---|
[978] | 503 | !-- Top boundary at the outflow |
---|
| 504 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 505 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 506 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 507 | ELSE |
---|
| 508 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
| 509 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
| 510 | ENDIF |
---|
[1353] | 511 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 512 | |
---|
[75] | 513 | ENDIF |
---|
[73] | 514 | |
---|
[75] | 515 | ENDIF |
---|
[73] | 516 | |
---|
[106] | 517 | IF ( outflow_n ) THEN |
---|
[73] | 518 | |
---|
[1159] | 519 | IF ( use_cmax ) THEN |
---|
| 520 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 521 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 522 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 523 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 524 | |
---|
[978] | 525 | c_max = dy / dt_3d |
---|
[75] | 526 | |
---|
[1353] | 527 | c_u_m_l = 0.0_wp |
---|
| 528 | c_v_m_l = 0.0_wp |
---|
| 529 | c_w_m_l = 0.0_wp |
---|
[978] | 530 | |
---|
[1353] | 531 | c_u_m = 0.0_wp |
---|
| 532 | c_v_m = 0.0_wp |
---|
| 533 | c_w_m = 0.0_wp |
---|
[978] | 534 | |
---|
[1] | 535 | ! |
---|
[996] | 536 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 537 | !-- average along the outflow boundary. |
---|
| 538 | DO k = nzb+1, nzt+1 |
---|
| 539 | DO i = nxl, nxr |
---|
[73] | 540 | |
---|
[106] | 541 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 542 | |
---|
[1353] | 543 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 544 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 545 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 546 | c_u(k,i) = 0.0_wp |
---|
[106] | 547 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 548 | c_u(k,i) = c_max |
---|
| 549 | ENDIF |
---|
| 550 | ELSE |
---|
| 551 | c_u(k,i) = c_max |
---|
[73] | 552 | ENDIF |
---|
| 553 | |
---|
[106] | 554 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 555 | |
---|
[1353] | 556 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 557 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 558 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 559 | c_v(k,i) = 0.0_wp |
---|
[106] | 560 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 561 | c_v(k,i) = c_max |
---|
| 562 | ENDIF |
---|
| 563 | ELSE |
---|
| 564 | c_v(k,i) = c_max |
---|
[73] | 565 | ENDIF |
---|
| 566 | |
---|
[106] | 567 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 568 | |
---|
[1353] | 569 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 570 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 571 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 572 | c_w(k,i) = 0.0_wp |
---|
[106] | 573 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 574 | c_w(k,i) = c_max |
---|
| 575 | ENDIF |
---|
| 576 | ELSE |
---|
| 577 | c_w(k,i) = c_max |
---|
[73] | 578 | ENDIF |
---|
[106] | 579 | |
---|
[978] | 580 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 581 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 582 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 583 | |
---|
[978] | 584 | ENDDO |
---|
| 585 | ENDDO |
---|
[73] | 586 | |
---|
[978] | 587 | #if defined( __parallel ) |
---|
| 588 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 589 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 590 | MPI_SUM, comm1dx, ierr ) |
---|
| 591 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 592 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 593 | MPI_SUM, comm1dx, ierr ) |
---|
| 594 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 595 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 596 | MPI_SUM, comm1dx, ierr ) |
---|
| 597 | #else |
---|
| 598 | c_u_m = c_u_m_l |
---|
| 599 | c_v_m = c_v_m_l |
---|
| 600 | c_w_m = c_w_m_l |
---|
| 601 | #endif |
---|
| 602 | |
---|
| 603 | c_u_m = c_u_m / (nx+1) |
---|
| 604 | c_v_m = c_v_m / (nx+1) |
---|
| 605 | c_w_m = c_w_m / (nx+1) |
---|
| 606 | |
---|
[73] | 607 | ! |
---|
[978] | 608 | !-- Save old timelevels for the next timestep |
---|
| 609 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 610 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 611 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 612 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 613 | ENDIF |
---|
[73] | 614 | |
---|
[978] | 615 | ! |
---|
| 616 | !-- Calculate the new velocities |
---|
[996] | 617 | DO k = nzb+1, nzt+1 |
---|
| 618 | DO i = nxlg, nxrg |
---|
[978] | 619 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 620 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 621 | |
---|
[978] | 622 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 623 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 624 | |
---|
[978] | 625 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 626 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 627 | ENDDO |
---|
[1] | 628 | ENDDO |
---|
| 629 | |
---|
| 630 | ! |
---|
[978] | 631 | !-- Bottom boundary at the outflow |
---|
| 632 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 633 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 634 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 635 | ELSE |
---|
| 636 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 637 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 638 | ENDIF |
---|
[1353] | 639 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 640 | |
---|
| 641 | ! |
---|
[978] | 642 | !-- Top boundary at the outflow |
---|
| 643 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 644 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 645 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 646 | ELSE |
---|
| 647 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 648 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 649 | ENDIF |
---|
[1353] | 650 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 651 | |
---|
[1] | 652 | ENDIF |
---|
| 653 | |
---|
[75] | 654 | ENDIF |
---|
| 655 | |
---|
[106] | 656 | IF ( outflow_l ) THEN |
---|
[75] | 657 | |
---|
[1159] | 658 | IF ( use_cmax ) THEN |
---|
| 659 | u_p(:,:,-1) = u(:,:,0) |
---|
| 660 | v_p(:,:,0) = v(:,:,1) |
---|
| 661 | w_p(:,:,-1) = w(:,:,0) |
---|
| 662 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 663 | |
---|
[978] | 664 | c_max = dx / dt_3d |
---|
[75] | 665 | |
---|
[1353] | 666 | c_u_m_l = 0.0_wp |
---|
| 667 | c_v_m_l = 0.0_wp |
---|
| 668 | c_w_m_l = 0.0_wp |
---|
[978] | 669 | |
---|
[1353] | 670 | c_u_m = 0.0_wp |
---|
| 671 | c_v_m = 0.0_wp |
---|
| 672 | c_w_m = 0.0_wp |
---|
[978] | 673 | |
---|
[1] | 674 | ! |
---|
[996] | 675 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 676 | !-- average along the outflow boundary. |
---|
| 677 | DO k = nzb+1, nzt+1 |
---|
| 678 | DO j = nys, nyn |
---|
[75] | 679 | |
---|
[106] | 680 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 681 | |
---|
[1353] | 682 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 683 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 684 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 685 | c_u(k,j) = 0.0_wp |
---|
[107] | 686 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 687 | c_u(k,j) = c_max |
---|
[106] | 688 | ENDIF |
---|
| 689 | ELSE |
---|
[107] | 690 | c_u(k,j) = c_max |
---|
[75] | 691 | ENDIF |
---|
| 692 | |
---|
[106] | 693 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 694 | |
---|
[1353] | 695 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 696 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 697 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 698 | c_v(k,j) = 0.0_wp |
---|
[106] | 699 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 700 | c_v(k,j) = c_max |
---|
| 701 | ENDIF |
---|
| 702 | ELSE |
---|
| 703 | c_v(k,j) = c_max |
---|
[75] | 704 | ENDIF |
---|
| 705 | |
---|
[106] | 706 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 707 | |
---|
[1353] | 708 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 709 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 710 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 711 | c_w(k,j) = 0.0_wp |
---|
[106] | 712 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 713 | c_w(k,j) = c_max |
---|
| 714 | ENDIF |
---|
| 715 | ELSE |
---|
| 716 | c_w(k,j) = c_max |
---|
[75] | 717 | ENDIF |
---|
[106] | 718 | |
---|
[978] | 719 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 720 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 721 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 722 | |
---|
[978] | 723 | ENDDO |
---|
| 724 | ENDDO |
---|
[75] | 725 | |
---|
[978] | 726 | #if defined( __parallel ) |
---|
| 727 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 728 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 729 | MPI_SUM, comm1dy, ierr ) |
---|
| 730 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 731 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 732 | MPI_SUM, comm1dy, ierr ) |
---|
| 733 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 734 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 735 | MPI_SUM, comm1dy, ierr ) |
---|
| 736 | #else |
---|
| 737 | c_u_m = c_u_m_l |
---|
| 738 | c_v_m = c_v_m_l |
---|
| 739 | c_w_m = c_w_m_l |
---|
| 740 | #endif |
---|
| 741 | |
---|
| 742 | c_u_m = c_u_m / (ny+1) |
---|
| 743 | c_v_m = c_v_m / (ny+1) |
---|
| 744 | c_w_m = c_w_m / (ny+1) |
---|
| 745 | |
---|
[73] | 746 | ! |
---|
[978] | 747 | !-- Save old timelevels for the next timestep |
---|
| 748 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 749 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 750 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 751 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 752 | ENDIF |
---|
| 753 | |
---|
| 754 | ! |
---|
| 755 | !-- Calculate the new velocities |
---|
[996] | 756 | DO k = nzb+1, nzt+1 |
---|
[1113] | 757 | DO j = nysg, nyng |
---|
[978] | 758 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 759 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 760 | |
---|
[978] | 761 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 762 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 763 | |
---|
[978] | 764 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 765 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 766 | ENDDO |
---|
[75] | 767 | ENDDO |
---|
| 768 | |
---|
| 769 | ! |
---|
[978] | 770 | !-- Bottom boundary at the outflow |
---|
| 771 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 772 | u_p(nzb,:,0) = 0.0_wp |
---|
| 773 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 774 | ELSE |
---|
| 775 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 776 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 777 | ENDIF |
---|
[1353] | 778 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 779 | |
---|
[75] | 780 | ! |
---|
[978] | 781 | !-- Top boundary at the outflow |
---|
| 782 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 783 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
| 784 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 785 | ELSE |
---|
| 786 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 787 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 788 | ENDIF |
---|
[1353] | 789 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 790 | |
---|
[75] | 791 | ENDIF |
---|
[73] | 792 | |
---|
[75] | 793 | ENDIF |
---|
[73] | 794 | |
---|
[106] | 795 | IF ( outflow_r ) THEN |
---|
[73] | 796 | |
---|
[1159] | 797 | IF ( use_cmax ) THEN |
---|
| 798 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 799 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 800 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 801 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 802 | |
---|
[978] | 803 | c_max = dx / dt_3d |
---|
[75] | 804 | |
---|
[1353] | 805 | c_u_m_l = 0.0_wp |
---|
| 806 | c_v_m_l = 0.0_wp |
---|
| 807 | c_w_m_l = 0.0_wp |
---|
[978] | 808 | |
---|
[1353] | 809 | c_u_m = 0.0_wp |
---|
| 810 | c_v_m = 0.0_wp |
---|
| 811 | c_w_m = 0.0_wp |
---|
[978] | 812 | |
---|
[1] | 813 | ! |
---|
[996] | 814 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 815 | !-- average along the outflow boundary. |
---|
| 816 | DO k = nzb+1, nzt+1 |
---|
| 817 | DO j = nys, nyn |
---|
[73] | 818 | |
---|
[106] | 819 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 820 | |
---|
[1353] | 821 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 822 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 823 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 824 | c_u(k,j) = 0.0_wp |
---|
[106] | 825 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 826 | c_u(k,j) = c_max |
---|
| 827 | ENDIF |
---|
| 828 | ELSE |
---|
| 829 | c_u(k,j) = c_max |
---|
[73] | 830 | ENDIF |
---|
| 831 | |
---|
[106] | 832 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 833 | |
---|
[1353] | 834 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 835 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 836 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 837 | c_v(k,j) = 0.0_wp |
---|
[106] | 838 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 839 | c_v(k,j) = c_max |
---|
| 840 | ENDIF |
---|
| 841 | ELSE |
---|
| 842 | c_v(k,j) = c_max |
---|
[73] | 843 | ENDIF |
---|
| 844 | |
---|
[106] | 845 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 846 | |
---|
[1353] | 847 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 848 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 849 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 850 | c_w(k,j) = 0.0_wp |
---|
[106] | 851 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 852 | c_w(k,j) = c_max |
---|
| 853 | ENDIF |
---|
| 854 | ELSE |
---|
| 855 | c_w(k,j) = c_max |
---|
[73] | 856 | ENDIF |
---|
[106] | 857 | |
---|
[978] | 858 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 859 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 860 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 861 | |
---|
[978] | 862 | ENDDO |
---|
| 863 | ENDDO |
---|
[73] | 864 | |
---|
[978] | 865 | #if defined( __parallel ) |
---|
| 866 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 867 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 868 | MPI_SUM, comm1dy, ierr ) |
---|
| 869 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 870 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 871 | MPI_SUM, comm1dy, ierr ) |
---|
| 872 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 873 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 874 | MPI_SUM, comm1dy, ierr ) |
---|
| 875 | #else |
---|
| 876 | c_u_m = c_u_m_l |
---|
| 877 | c_v_m = c_v_m_l |
---|
| 878 | c_w_m = c_w_m_l |
---|
| 879 | #endif |
---|
| 880 | |
---|
| 881 | c_u_m = c_u_m / (ny+1) |
---|
| 882 | c_v_m = c_v_m / (ny+1) |
---|
| 883 | c_w_m = c_w_m / (ny+1) |
---|
| 884 | |
---|
[73] | 885 | ! |
---|
[978] | 886 | !-- Save old timelevels for the next timestep |
---|
| 887 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 888 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 889 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 890 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 891 | ENDIF |
---|
[73] | 892 | |
---|
[978] | 893 | ! |
---|
| 894 | !-- Calculate the new velocities |
---|
[996] | 895 | DO k = nzb+1, nzt+1 |
---|
[1113] | 896 | DO j = nysg, nyng |
---|
[978] | 897 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 898 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 899 | |
---|
[978] | 900 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 901 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 902 | |
---|
[978] | 903 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 904 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 905 | ENDDO |
---|
[73] | 906 | ENDDO |
---|
| 907 | |
---|
| 908 | ! |
---|
[978] | 909 | !-- Bottom boundary at the outflow |
---|
| 910 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 911 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 912 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 913 | ELSE |
---|
| 914 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 915 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 916 | ENDIF |
---|
[1353] | 917 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 918 | |
---|
| 919 | ! |
---|
[978] | 920 | !-- Top boundary at the outflow |
---|
| 921 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 922 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 923 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 924 | ELSE |
---|
| 925 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 926 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 927 | ENDIF |
---|
[1353] | 928 | w(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 929 | |
---|
[1] | 930 | ENDIF |
---|
| 931 | |
---|
| 932 | ENDIF |
---|
| 933 | |
---|
| 934 | END SUBROUTINE boundary_conds |
---|