[1113] | 1 | SUBROUTINE boundary_conds |
---|
[1] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1354] | 22 | ! |
---|
[1399] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 1399 2014-05-07 11:16:25Z raasch $ |
---|
| 27 | ! |
---|
[1399] | 28 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 29 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 30 | ! for large_scale_forcing |
---|
| 31 | ! |
---|
[1381] | 32 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 33 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 34 | ! |
---|
[1362] | 35 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 36 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 37 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 38 | ! |
---|
[1354] | 39 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 40 | ! REAL constants provided with KIND-attribute |
---|
| 41 | ! |
---|
[1321] | 42 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 43 | ! ONLY-attribute added to USE-statements, |
---|
| 44 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 45 | ! kinds are defined in new module kinds, |
---|
| 46 | ! revision history before 2012 removed, |
---|
| 47 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 48 | ! all variable declaration statements |
---|
[1160] | 49 | ! |
---|
[1258] | 50 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 51 | ! loop independent clauses added |
---|
| 52 | ! |
---|
[1242] | 53 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 54 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 55 | ! |
---|
[1160] | 56 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 57 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 58 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 59 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 60 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 61 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 62 | ! u_p, v_p, w_p |
---|
[1116] | 63 | ! |
---|
| 64 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 65 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 66 | ! boundary-conditions |
---|
| 67 | ! |
---|
[1114] | 68 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 69 | ! GPU-porting |
---|
| 70 | ! dummy argument "range" removed |
---|
| 71 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 72 | ! |
---|
[1054] | 73 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 74 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 75 | ! two-moment cloud scheme |
---|
| 76 | ! |
---|
[1037] | 77 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 78 | ! code put under GPL (PALM 3.9) |
---|
| 79 | ! |
---|
[997] | 80 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 81 | ! little reformatting |
---|
| 82 | ! |
---|
[979] | 83 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 84 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 85 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 86 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 87 | ! velocity. |
---|
| 88 | ! |
---|
[876] | 89 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 90 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 91 | ! |
---|
[1] | 92 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 93 | ! Initial revision |
---|
| 94 | ! |
---|
| 95 | ! |
---|
| 96 | ! Description: |
---|
| 97 | ! ------------ |
---|
[1159] | 98 | ! Boundary conditions for the prognostic quantities. |
---|
[1] | 99 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 100 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 101 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 102 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 103 | !------------------------------------------------------------------------------! |
---|
| 104 | |
---|
[1320] | 105 | USE arrays_3d, & |
---|
| 106 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
| 107 | dzu, e_p, nr_p, pt, pt_p, q, q_p, qr_p, sa, sa_p, & |
---|
| 108 | u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
| 109 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
[1380] | 110 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s,& |
---|
| 111 | pt_init |
---|
[1320] | 112 | |
---|
| 113 | USE control_parameters, & |
---|
| 114 | ONLY: bc_pt_t_val, bc_q_t_val, constant_diffusion, & |
---|
| 115 | cloud_physics, dt_3d, humidity, & |
---|
| 116 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_sa_t, ibc_uv_b, ibc_uv_t, & |
---|
| 117 | icloud_scheme, inflow_l, inflow_n, inflow_r, inflow_s, & |
---|
| 118 | intermediate_timestep_count, large_scale_forcing, ocean, & |
---|
| 119 | outflow_l, outflow_n, outflow_r, outflow_s, passive_scalar, & |
---|
[1380] | 120 | precipitation, tsc, use_cmax, & |
---|
| 121 | nudging |
---|
[1320] | 122 | |
---|
| 123 | USE grid_variables, & |
---|
| 124 | ONLY: ddx, ddy, dx, dy |
---|
| 125 | |
---|
| 126 | USE indices, & |
---|
| 127 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
| 128 | nzb, nzb_s_inner, nzb_w_inner, nzt |
---|
| 129 | |
---|
| 130 | USE kinds |
---|
| 131 | |
---|
[1] | 132 | USE pegrid |
---|
| 133 | |
---|
[1320] | 134 | |
---|
[1] | 135 | IMPLICIT NONE |
---|
| 136 | |
---|
[1320] | 137 | INTEGER(iwp) :: i !: |
---|
| 138 | INTEGER(iwp) :: j !: |
---|
| 139 | INTEGER(iwp) :: k !: |
---|
[1] | 140 | |
---|
[1320] | 141 | REAL(wp) :: c_max !: |
---|
| 142 | REAL(wp) :: denom !: |
---|
[1] | 143 | |
---|
[73] | 144 | |
---|
[1] | 145 | ! |
---|
[1113] | 146 | !-- Bottom boundary |
---|
| 147 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 148 | !$acc kernels present( u_p, v_p ) |
---|
| 149 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 150 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 151 | !$acc end kernels |
---|
| 152 | ENDIF |
---|
| 153 | |
---|
| 154 | !$acc kernels present( nzb_w_inner, w_p ) |
---|
| 155 | DO i = nxlg, nxrg |
---|
| 156 | DO j = nysg, nyng |
---|
[1353] | 157 | w_p(nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
[1113] | 158 | ENDDO |
---|
| 159 | ENDDO |
---|
| 160 | !$acc end kernels |
---|
| 161 | |
---|
| 162 | ! |
---|
| 163 | !-- Top boundary |
---|
| 164 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 165 | !$acc kernels present( u_init, u_p, v_init, v_p ) |
---|
| 166 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 167 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
| 168 | !$acc end kernels |
---|
| 169 | ELSE |
---|
| 170 | !$acc kernels present( u_p, v_p ) |
---|
| 171 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 172 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 173 | !$acc end kernels |
---|
| 174 | ENDIF |
---|
| 175 | !$acc kernels present( w_p ) |
---|
[1353] | 176 | w_p(nzt:nzt+1,:,:) = 0.0_wp ! nzt is not a prognostic level (but cf. pres) |
---|
[1113] | 177 | !$acc end kernels |
---|
| 178 | |
---|
| 179 | ! |
---|
| 180 | !-- Temperature at bottom boundary. |
---|
| 181 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 182 | !-- the sea surface temperature of the coupled ocean model. |
---|
| 183 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 184 | !$acc kernels present( nzb_s_inner, pt, pt_p ) |
---|
[1257] | 185 | !$acc loop independent |
---|
[667] | 186 | DO i = nxlg, nxrg |
---|
[1257] | 187 | !$acc loop independent |
---|
[667] | 188 | DO j = nysg, nyng |
---|
[1113] | 189 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 190 | ENDDO |
---|
| 191 | ENDDO |
---|
[1113] | 192 | !$acc end kernels |
---|
| 193 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 194 | !$acc kernels present( nzb_s_inner, pt_p ) |
---|
[1257] | 195 | !$acc loop independent |
---|
[1113] | 196 | DO i = nxlg, nxrg |
---|
[1257] | 197 | !$acc loop independent |
---|
[1113] | 198 | DO j = nysg, nyng |
---|
| 199 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 200 | ENDDO |
---|
| 201 | ENDDO |
---|
| 202 | !$acc end kernels |
---|
| 203 | ENDIF |
---|
[1] | 204 | |
---|
| 205 | ! |
---|
[1113] | 206 | !-- Temperature at top boundary |
---|
| 207 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 208 | !$acc kernels present( pt, pt_p ) |
---|
| 209 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[1380] | 210 | ! |
---|
| 211 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 212 | !-- read in from NUDGING-DATA |
---|
| 213 | IF ( nudging ) THEN |
---|
| 214 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 215 | ENDIF |
---|
[1113] | 216 | !$acc end kernels |
---|
| 217 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 218 | !$acc kernels present( pt_p ) |
---|
| 219 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 220 | !$acc end kernels |
---|
| 221 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 222 | !$acc kernels present( dzu, pt_p ) |
---|
| 223 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 224 | !$acc end kernels |
---|
| 225 | ENDIF |
---|
[1] | 226 | |
---|
| 227 | ! |
---|
[1113] | 228 | !-- Boundary conditions for TKE |
---|
| 229 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 230 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 231 | !$acc kernels present( e_p, nzb_s_inner ) |
---|
[1257] | 232 | !$acc loop independent |
---|
[1113] | 233 | DO i = nxlg, nxrg |
---|
[1257] | 234 | !$acc loop independent |
---|
[1113] | 235 | DO j = nysg, nyng |
---|
| 236 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 237 | ENDDO |
---|
[1113] | 238 | ENDDO |
---|
| 239 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 240 | !$acc end kernels |
---|
| 241 | ENDIF |
---|
| 242 | |
---|
| 243 | ! |
---|
| 244 | !-- Boundary conditions for salinity |
---|
| 245 | IF ( ocean ) THEN |
---|
| 246 | ! |
---|
| 247 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 248 | !-- given |
---|
| 249 | DO i = nxlg, nxrg |
---|
| 250 | DO j = nysg, nyng |
---|
| 251 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 252 | ENDDO |
---|
[1113] | 253 | ENDDO |
---|
[1] | 254 | |
---|
| 255 | ! |
---|
[1113] | 256 | !-- Top boundary: Dirichlet or Neumann |
---|
| 257 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 258 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 259 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 260 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 261 | ENDIF |
---|
| 262 | |
---|
[1113] | 263 | ENDIF |
---|
| 264 | |
---|
[1] | 265 | ! |
---|
[1113] | 266 | !-- Boundary conditions for total water content or scalar, |
---|
| 267 | !-- bottom and top boundary (see also temperature) |
---|
| 268 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 269 | ! |
---|
| 270 | !-- Surface conditions for constant_humidity_flux |
---|
| 271 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 272 | DO i = nxlg, nxrg |
---|
| 273 | DO j = nysg, nyng |
---|
[1113] | 274 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 275 | ENDDO |
---|
| 276 | ENDDO |
---|
[1113] | 277 | ELSE |
---|
[667] | 278 | DO i = nxlg, nxrg |
---|
| 279 | DO j = nysg, nyng |
---|
[1113] | 280 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[95] | 281 | ENDDO |
---|
| 282 | ENDDO |
---|
[1113] | 283 | ENDIF |
---|
[95] | 284 | ! |
---|
[1113] | 285 | !-- Top boundary |
---|
| 286 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[95] | 287 | |
---|
[1361] | 288 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
[1113] | 289 | ! |
---|
[1361] | 290 | !-- Surface conditions rain water (Dirichlet) |
---|
[1115] | 291 | DO i = nxlg, nxrg |
---|
| 292 | DO j = nysg, nyng |
---|
[1361] | 293 | qr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
| 294 | nr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
[73] | 295 | ENDDO |
---|
[1115] | 296 | ENDDO |
---|
[1] | 297 | ! |
---|
[1361] | 298 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 299 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 300 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 301 | |
---|
[1] | 302 | ENDIF |
---|
| 303 | ! |
---|
[875] | 304 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
| 305 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
| 306 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
| 307 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
[978] | 308 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
[1] | 309 | IF ( inflow_s ) THEN |
---|
[73] | 310 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[978] | 311 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 312 | ELSEIF ( inflow_n ) THEN |
---|
| 313 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1] | 314 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 315 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[978] | 316 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 317 | ELSEIF ( inflow_r ) THEN |
---|
| 318 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1] | 319 | ENDIF |
---|
| 320 | |
---|
| 321 | ! |
---|
| 322 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 323 | IF ( outflow_s ) THEN |
---|
[73] | 324 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 325 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[1115] | 326 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 327 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1320] | 328 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
[1115] | 329 | precipitation) THEN |
---|
[1053] | 330 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 331 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
| 332 | ENDIF |
---|
| 333 | ENDIF |
---|
[1] | 334 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 335 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 336 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1115] | 337 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 338 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1320] | 339 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
[1115] | 340 | precipitation ) THEN |
---|
[1053] | 341 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 342 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
| 343 | ENDIF |
---|
| 344 | ENDIF |
---|
[1] | 345 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 346 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 347 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[1115] | 348 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 349 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1320] | 350 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
[1115] | 351 | precipitation ) THEN |
---|
[1053] | 352 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 353 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
| 354 | ENDIF |
---|
| 355 | ENDIF |
---|
[1] | 356 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 357 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 358 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1053] | 359 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 360 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1115] | 361 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
[1053] | 362 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 363 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
| 364 | ENDIF |
---|
| 365 | ENDIF |
---|
[1] | 366 | ENDIF |
---|
| 367 | |
---|
| 368 | ENDIF |
---|
| 369 | |
---|
| 370 | ! |
---|
[1159] | 371 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 372 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 373 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 374 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 375 | IF ( outflow_s ) THEN |
---|
[75] | 376 | |
---|
[1159] | 377 | IF ( use_cmax ) THEN |
---|
| 378 | u_p(:,-1,:) = u(:,0,:) |
---|
| 379 | v_p(:,0,:) = v(:,1,:) |
---|
| 380 | w_p(:,-1,:) = w(:,0,:) |
---|
| 381 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 382 | |
---|
[978] | 383 | c_max = dy / dt_3d |
---|
[75] | 384 | |
---|
[1353] | 385 | c_u_m_l = 0.0_wp |
---|
| 386 | c_v_m_l = 0.0_wp |
---|
| 387 | c_w_m_l = 0.0_wp |
---|
[978] | 388 | |
---|
[1353] | 389 | c_u_m = 0.0_wp |
---|
| 390 | c_v_m = 0.0_wp |
---|
| 391 | c_w_m = 0.0_wp |
---|
[978] | 392 | |
---|
[75] | 393 | ! |
---|
[996] | 394 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 395 | !-- average along the outflow boundary. |
---|
| 396 | DO k = nzb+1, nzt+1 |
---|
| 397 | DO i = nxl, nxr |
---|
[75] | 398 | |
---|
[106] | 399 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 400 | |
---|
[1353] | 401 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 402 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 403 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 404 | c_u(k,i) = 0.0_wp |
---|
[106] | 405 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 406 | c_u(k,i) = c_max |
---|
| 407 | ENDIF |
---|
| 408 | ELSE |
---|
| 409 | c_u(k,i) = c_max |
---|
[75] | 410 | ENDIF |
---|
| 411 | |
---|
[106] | 412 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 413 | |
---|
[1353] | 414 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 415 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 416 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 417 | c_v(k,i) = 0.0_wp |
---|
[106] | 418 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 419 | c_v(k,i) = c_max |
---|
| 420 | ENDIF |
---|
| 421 | ELSE |
---|
| 422 | c_v(k,i) = c_max |
---|
[75] | 423 | ENDIF |
---|
| 424 | |
---|
[106] | 425 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 426 | |
---|
[1353] | 427 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 428 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 429 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 430 | c_w(k,i) = 0.0_wp |
---|
[106] | 431 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 432 | c_w(k,i) = c_max |
---|
| 433 | ENDIF |
---|
| 434 | ELSE |
---|
| 435 | c_w(k,i) = c_max |
---|
[75] | 436 | ENDIF |
---|
[106] | 437 | |
---|
[978] | 438 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 439 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 440 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 441 | |
---|
[978] | 442 | ENDDO |
---|
| 443 | ENDDO |
---|
[75] | 444 | |
---|
[978] | 445 | #if defined( __parallel ) |
---|
| 446 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 447 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 448 | MPI_SUM, comm1dx, ierr ) |
---|
| 449 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 450 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 451 | MPI_SUM, comm1dx, ierr ) |
---|
| 452 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 453 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 454 | MPI_SUM, comm1dx, ierr ) |
---|
| 455 | #else |
---|
| 456 | c_u_m = c_u_m_l |
---|
| 457 | c_v_m = c_v_m_l |
---|
| 458 | c_w_m = c_w_m_l |
---|
| 459 | #endif |
---|
| 460 | |
---|
| 461 | c_u_m = c_u_m / (nx+1) |
---|
| 462 | c_v_m = c_v_m / (nx+1) |
---|
| 463 | c_w_m = c_w_m / (nx+1) |
---|
| 464 | |
---|
[75] | 465 | ! |
---|
[978] | 466 | !-- Save old timelevels for the next timestep |
---|
| 467 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 468 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 469 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 470 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 471 | ENDIF |
---|
| 472 | |
---|
| 473 | ! |
---|
| 474 | !-- Calculate the new velocities |
---|
[996] | 475 | DO k = nzb+1, nzt+1 |
---|
| 476 | DO i = nxlg, nxrg |
---|
[978] | 477 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 478 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 479 | |
---|
[978] | 480 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 481 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 482 | |
---|
[978] | 483 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 484 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 485 | ENDDO |
---|
[75] | 486 | ENDDO |
---|
| 487 | |
---|
| 488 | ! |
---|
[978] | 489 | !-- Bottom boundary at the outflow |
---|
| 490 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 491 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 492 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 493 | ELSE |
---|
| 494 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 495 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 496 | ENDIF |
---|
[1353] | 497 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 498 | |
---|
[75] | 499 | ! |
---|
[978] | 500 | !-- Top boundary at the outflow |
---|
| 501 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 502 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 503 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 504 | ELSE |
---|
| 505 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
| 506 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
| 507 | ENDIF |
---|
[1353] | 508 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 509 | |
---|
[75] | 510 | ENDIF |
---|
[73] | 511 | |
---|
[75] | 512 | ENDIF |
---|
[73] | 513 | |
---|
[106] | 514 | IF ( outflow_n ) THEN |
---|
[73] | 515 | |
---|
[1159] | 516 | IF ( use_cmax ) THEN |
---|
| 517 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 518 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 519 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 520 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 521 | |
---|
[978] | 522 | c_max = dy / dt_3d |
---|
[75] | 523 | |
---|
[1353] | 524 | c_u_m_l = 0.0_wp |
---|
| 525 | c_v_m_l = 0.0_wp |
---|
| 526 | c_w_m_l = 0.0_wp |
---|
[978] | 527 | |
---|
[1353] | 528 | c_u_m = 0.0_wp |
---|
| 529 | c_v_m = 0.0_wp |
---|
| 530 | c_w_m = 0.0_wp |
---|
[978] | 531 | |
---|
[1] | 532 | ! |
---|
[996] | 533 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 534 | !-- average along the outflow boundary. |
---|
| 535 | DO k = nzb+1, nzt+1 |
---|
| 536 | DO i = nxl, nxr |
---|
[73] | 537 | |
---|
[106] | 538 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 539 | |
---|
[1353] | 540 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 541 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 542 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 543 | c_u(k,i) = 0.0_wp |
---|
[106] | 544 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 545 | c_u(k,i) = c_max |
---|
| 546 | ENDIF |
---|
| 547 | ELSE |
---|
| 548 | c_u(k,i) = c_max |
---|
[73] | 549 | ENDIF |
---|
| 550 | |
---|
[106] | 551 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 552 | |
---|
[1353] | 553 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 554 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 555 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 556 | c_v(k,i) = 0.0_wp |
---|
[106] | 557 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 558 | c_v(k,i) = c_max |
---|
| 559 | ENDIF |
---|
| 560 | ELSE |
---|
| 561 | c_v(k,i) = c_max |
---|
[73] | 562 | ENDIF |
---|
| 563 | |
---|
[106] | 564 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 565 | |
---|
[1353] | 566 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 567 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 568 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 569 | c_w(k,i) = 0.0_wp |
---|
[106] | 570 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 571 | c_w(k,i) = c_max |
---|
| 572 | ENDIF |
---|
| 573 | ELSE |
---|
| 574 | c_w(k,i) = c_max |
---|
[73] | 575 | ENDIF |
---|
[106] | 576 | |
---|
[978] | 577 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 578 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 579 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 580 | |
---|
[978] | 581 | ENDDO |
---|
| 582 | ENDDO |
---|
[73] | 583 | |
---|
[978] | 584 | #if defined( __parallel ) |
---|
| 585 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 586 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 587 | MPI_SUM, comm1dx, ierr ) |
---|
| 588 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 589 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 590 | MPI_SUM, comm1dx, ierr ) |
---|
| 591 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 592 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 593 | MPI_SUM, comm1dx, ierr ) |
---|
| 594 | #else |
---|
| 595 | c_u_m = c_u_m_l |
---|
| 596 | c_v_m = c_v_m_l |
---|
| 597 | c_w_m = c_w_m_l |
---|
| 598 | #endif |
---|
| 599 | |
---|
| 600 | c_u_m = c_u_m / (nx+1) |
---|
| 601 | c_v_m = c_v_m / (nx+1) |
---|
| 602 | c_w_m = c_w_m / (nx+1) |
---|
| 603 | |
---|
[73] | 604 | ! |
---|
[978] | 605 | !-- Save old timelevels for the next timestep |
---|
| 606 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 607 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 608 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 609 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 610 | ENDIF |
---|
[73] | 611 | |
---|
[978] | 612 | ! |
---|
| 613 | !-- Calculate the new velocities |
---|
[996] | 614 | DO k = nzb+1, nzt+1 |
---|
| 615 | DO i = nxlg, nxrg |
---|
[978] | 616 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 617 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 618 | |
---|
[978] | 619 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 620 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 621 | |
---|
[978] | 622 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 623 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 624 | ENDDO |
---|
[1] | 625 | ENDDO |
---|
| 626 | |
---|
| 627 | ! |
---|
[978] | 628 | !-- Bottom boundary at the outflow |
---|
| 629 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 630 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 631 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 632 | ELSE |
---|
| 633 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 634 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 635 | ENDIF |
---|
[1353] | 636 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 637 | |
---|
| 638 | ! |
---|
[978] | 639 | !-- Top boundary at the outflow |
---|
| 640 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 641 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 642 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 643 | ELSE |
---|
| 644 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 645 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 646 | ENDIF |
---|
[1353] | 647 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 648 | |
---|
[1] | 649 | ENDIF |
---|
| 650 | |
---|
[75] | 651 | ENDIF |
---|
| 652 | |
---|
[106] | 653 | IF ( outflow_l ) THEN |
---|
[75] | 654 | |
---|
[1159] | 655 | IF ( use_cmax ) THEN |
---|
| 656 | u_p(:,:,-1) = u(:,:,0) |
---|
| 657 | v_p(:,:,0) = v(:,:,1) |
---|
| 658 | w_p(:,:,-1) = w(:,:,0) |
---|
| 659 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 660 | |
---|
[978] | 661 | c_max = dx / dt_3d |
---|
[75] | 662 | |
---|
[1353] | 663 | c_u_m_l = 0.0_wp |
---|
| 664 | c_v_m_l = 0.0_wp |
---|
| 665 | c_w_m_l = 0.0_wp |
---|
[978] | 666 | |
---|
[1353] | 667 | c_u_m = 0.0_wp |
---|
| 668 | c_v_m = 0.0_wp |
---|
| 669 | c_w_m = 0.0_wp |
---|
[978] | 670 | |
---|
[1] | 671 | ! |
---|
[996] | 672 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 673 | !-- average along the outflow boundary. |
---|
| 674 | DO k = nzb+1, nzt+1 |
---|
| 675 | DO j = nys, nyn |
---|
[75] | 676 | |
---|
[106] | 677 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 678 | |
---|
[1353] | 679 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 680 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 681 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 682 | c_u(k,j) = 0.0_wp |
---|
[107] | 683 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 684 | c_u(k,j) = c_max |
---|
[106] | 685 | ENDIF |
---|
| 686 | ELSE |
---|
[107] | 687 | c_u(k,j) = c_max |
---|
[75] | 688 | ENDIF |
---|
| 689 | |
---|
[106] | 690 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 691 | |
---|
[1353] | 692 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 693 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 694 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 695 | c_v(k,j) = 0.0_wp |
---|
[106] | 696 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 697 | c_v(k,j) = c_max |
---|
| 698 | ENDIF |
---|
| 699 | ELSE |
---|
| 700 | c_v(k,j) = c_max |
---|
[75] | 701 | ENDIF |
---|
| 702 | |
---|
[106] | 703 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 704 | |
---|
[1353] | 705 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 706 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 707 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 708 | c_w(k,j) = 0.0_wp |
---|
[106] | 709 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 710 | c_w(k,j) = c_max |
---|
| 711 | ENDIF |
---|
| 712 | ELSE |
---|
| 713 | c_w(k,j) = c_max |
---|
[75] | 714 | ENDIF |
---|
[106] | 715 | |
---|
[978] | 716 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 717 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 718 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 719 | |
---|
[978] | 720 | ENDDO |
---|
| 721 | ENDDO |
---|
[75] | 722 | |
---|
[978] | 723 | #if defined( __parallel ) |
---|
| 724 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 725 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 726 | MPI_SUM, comm1dy, ierr ) |
---|
| 727 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 728 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 729 | MPI_SUM, comm1dy, ierr ) |
---|
| 730 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 731 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 732 | MPI_SUM, comm1dy, ierr ) |
---|
| 733 | #else |
---|
| 734 | c_u_m = c_u_m_l |
---|
| 735 | c_v_m = c_v_m_l |
---|
| 736 | c_w_m = c_w_m_l |
---|
| 737 | #endif |
---|
| 738 | |
---|
| 739 | c_u_m = c_u_m / (ny+1) |
---|
| 740 | c_v_m = c_v_m / (ny+1) |
---|
| 741 | c_w_m = c_w_m / (ny+1) |
---|
| 742 | |
---|
[73] | 743 | ! |
---|
[978] | 744 | !-- Save old timelevels for the next timestep |
---|
| 745 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 746 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 747 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 748 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 749 | ENDIF |
---|
| 750 | |
---|
| 751 | ! |
---|
| 752 | !-- Calculate the new velocities |
---|
[996] | 753 | DO k = nzb+1, nzt+1 |
---|
[1113] | 754 | DO j = nysg, nyng |
---|
[978] | 755 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 756 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 757 | |
---|
[978] | 758 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 759 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 760 | |
---|
[978] | 761 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 762 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 763 | ENDDO |
---|
[75] | 764 | ENDDO |
---|
| 765 | |
---|
| 766 | ! |
---|
[978] | 767 | !-- Bottom boundary at the outflow |
---|
| 768 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 769 | u_p(nzb,:,0) = 0.0_wp |
---|
| 770 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 771 | ELSE |
---|
| 772 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 773 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 774 | ENDIF |
---|
[1353] | 775 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 776 | |
---|
[75] | 777 | ! |
---|
[978] | 778 | !-- Top boundary at the outflow |
---|
| 779 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 780 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
| 781 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 782 | ELSE |
---|
| 783 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 784 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 785 | ENDIF |
---|
[1353] | 786 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 787 | |
---|
[75] | 788 | ENDIF |
---|
[73] | 789 | |
---|
[75] | 790 | ENDIF |
---|
[73] | 791 | |
---|
[106] | 792 | IF ( outflow_r ) THEN |
---|
[73] | 793 | |
---|
[1159] | 794 | IF ( use_cmax ) THEN |
---|
| 795 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 796 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 797 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 798 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 799 | |
---|
[978] | 800 | c_max = dx / dt_3d |
---|
[75] | 801 | |
---|
[1353] | 802 | c_u_m_l = 0.0_wp |
---|
| 803 | c_v_m_l = 0.0_wp |
---|
| 804 | c_w_m_l = 0.0_wp |
---|
[978] | 805 | |
---|
[1353] | 806 | c_u_m = 0.0_wp |
---|
| 807 | c_v_m = 0.0_wp |
---|
| 808 | c_w_m = 0.0_wp |
---|
[978] | 809 | |
---|
[1] | 810 | ! |
---|
[996] | 811 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 812 | !-- average along the outflow boundary. |
---|
| 813 | DO k = nzb+1, nzt+1 |
---|
| 814 | DO j = nys, nyn |
---|
[73] | 815 | |
---|
[106] | 816 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 817 | |
---|
[1353] | 818 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 819 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 820 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 821 | c_u(k,j) = 0.0_wp |
---|
[106] | 822 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 823 | c_u(k,j) = c_max |
---|
| 824 | ENDIF |
---|
| 825 | ELSE |
---|
| 826 | c_u(k,j) = c_max |
---|
[73] | 827 | ENDIF |
---|
| 828 | |
---|
[106] | 829 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 830 | |
---|
[1353] | 831 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 832 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 833 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 834 | c_v(k,j) = 0.0_wp |
---|
[106] | 835 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 836 | c_v(k,j) = c_max |
---|
| 837 | ENDIF |
---|
| 838 | ELSE |
---|
| 839 | c_v(k,j) = c_max |
---|
[73] | 840 | ENDIF |
---|
| 841 | |
---|
[106] | 842 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 843 | |
---|
[1353] | 844 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 845 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 846 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 847 | c_w(k,j) = 0.0_wp |
---|
[106] | 848 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 849 | c_w(k,j) = c_max |
---|
| 850 | ENDIF |
---|
| 851 | ELSE |
---|
| 852 | c_w(k,j) = c_max |
---|
[73] | 853 | ENDIF |
---|
[106] | 854 | |
---|
[978] | 855 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 856 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 857 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 858 | |
---|
[978] | 859 | ENDDO |
---|
| 860 | ENDDO |
---|
[73] | 861 | |
---|
[978] | 862 | #if defined( __parallel ) |
---|
| 863 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 864 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 865 | MPI_SUM, comm1dy, ierr ) |
---|
| 866 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 867 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 868 | MPI_SUM, comm1dy, ierr ) |
---|
| 869 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 870 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 871 | MPI_SUM, comm1dy, ierr ) |
---|
| 872 | #else |
---|
| 873 | c_u_m = c_u_m_l |
---|
| 874 | c_v_m = c_v_m_l |
---|
| 875 | c_w_m = c_w_m_l |
---|
| 876 | #endif |
---|
| 877 | |
---|
| 878 | c_u_m = c_u_m / (ny+1) |
---|
| 879 | c_v_m = c_v_m / (ny+1) |
---|
| 880 | c_w_m = c_w_m / (ny+1) |
---|
| 881 | |
---|
[73] | 882 | ! |
---|
[978] | 883 | !-- Save old timelevels for the next timestep |
---|
| 884 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 885 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 886 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 887 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 888 | ENDIF |
---|
[73] | 889 | |
---|
[978] | 890 | ! |
---|
| 891 | !-- Calculate the new velocities |
---|
[996] | 892 | DO k = nzb+1, nzt+1 |
---|
[1113] | 893 | DO j = nysg, nyng |
---|
[978] | 894 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 895 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 896 | |
---|
[978] | 897 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 898 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 899 | |
---|
[978] | 900 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 901 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 902 | ENDDO |
---|
[73] | 903 | ENDDO |
---|
| 904 | |
---|
| 905 | ! |
---|
[978] | 906 | !-- Bottom boundary at the outflow |
---|
| 907 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 908 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 909 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 910 | ELSE |
---|
| 911 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 912 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 913 | ENDIF |
---|
[1353] | 914 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 915 | |
---|
| 916 | ! |
---|
[978] | 917 | !-- Top boundary at the outflow |
---|
| 918 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 919 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 920 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 921 | ELSE |
---|
| 922 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 923 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 924 | ENDIF |
---|
[1353] | 925 | w(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 926 | |
---|
[1] | 927 | ENDIF |
---|
| 928 | |
---|
| 929 | ENDIF |
---|
| 930 | |
---|
| 931 | END SUBROUTINE boundary_conds |
---|