[1113] | 1 | SUBROUTINE boundary_conds |
---|
[1] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1258] | 22 | ! |
---|
[1160] | 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 1310 2014-03-14 08:01:56Z fricke $ |
---|
| 27 | ! |
---|
[1258] | 28 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 29 | ! loop independent clauses added |
---|
| 30 | ! |
---|
[1242] | 31 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 32 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 33 | ! |
---|
[1160] | 34 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 35 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 36 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 37 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 38 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 39 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 40 | ! u_p, v_p, w_p |
---|
[1116] | 41 | ! |
---|
| 42 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 43 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 44 | ! boundary-conditions |
---|
| 45 | ! |
---|
[1114] | 46 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 47 | ! GPU-porting |
---|
| 48 | ! dummy argument "range" removed |
---|
| 49 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 50 | ! |
---|
[1054] | 51 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 52 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 53 | ! two-moment cloud scheme |
---|
| 54 | ! |
---|
[1037] | 55 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 56 | ! code put under GPL (PALM 3.9) |
---|
| 57 | ! |
---|
[997] | 58 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 59 | ! little reformatting |
---|
| 60 | ! |
---|
[979] | 61 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 62 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 63 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 64 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 65 | ! velocity. |
---|
| 66 | ! |
---|
[876] | 67 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 68 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 69 | ! |
---|
[768] | 70 | ! 767 2011-10-14 06:39:12Z raasch |
---|
| 71 | ! ug,vg replaced by u_init,v_init as the Dirichlet top boundary condition |
---|
| 72 | ! |
---|
[668] | 73 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 74 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 75 | ! Removed mirror boundary conditions for u and v at the bottom in case of |
---|
| 76 | ! ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set |
---|
| 77 | ! in init_3d_model |
---|
| 78 | ! |
---|
[110] | 79 | ! 107 2007-08-17 13:54:45Z raasch |
---|
| 80 | ! Boundary conditions for temperature adjusted for coupled runs, |
---|
| 81 | ! bugfixes for the radiation boundary conditions at the outflow: radiation |
---|
| 82 | ! conditions are used for every substep, phase speeds are calculated for the |
---|
| 83 | ! first Runge-Kutta substep only and then reused, several index values changed |
---|
| 84 | ! |
---|
[98] | 85 | ! 95 2007-06-02 16:48:38Z raasch |
---|
| 86 | ! Boundary conditions for salinity added |
---|
| 87 | ! |
---|
[77] | 88 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 89 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
| 90 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
| 91 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
| 92 | ! |
---|
[39] | 93 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 94 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
| 95 | ! gridpoints are now calculated by the prognostic equation, |
---|
| 96 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
| 97 | ! |
---|
[3] | 98 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 99 | ! |
---|
[1] | 100 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
| 101 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
| 102 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
| 103 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
| 104 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
| 105 | ! |
---|
| 106 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 107 | ! Initial revision |
---|
| 108 | ! |
---|
| 109 | ! |
---|
| 110 | ! Description: |
---|
| 111 | ! ------------ |
---|
[1159] | 112 | ! Boundary conditions for the prognostic quantities. |
---|
[1] | 113 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 114 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 115 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 116 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 117 | !------------------------------------------------------------------------------! |
---|
| 118 | |
---|
| 119 | USE arrays_3d |
---|
| 120 | USE control_parameters |
---|
| 121 | USE grid_variables |
---|
| 122 | USE indices |
---|
| 123 | USE pegrid |
---|
| 124 | |
---|
| 125 | IMPLICIT NONE |
---|
| 126 | |
---|
| 127 | INTEGER :: i, j, k |
---|
| 128 | |
---|
[106] | 129 | REAL :: c_max, denom |
---|
[1] | 130 | |
---|
[73] | 131 | |
---|
[1] | 132 | ! |
---|
[1113] | 133 | !-- Bottom boundary |
---|
| 134 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 135 | !$acc kernels present( u_p, v_p ) |
---|
| 136 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 137 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 138 | !$acc end kernels |
---|
| 139 | ENDIF |
---|
| 140 | |
---|
| 141 | !$acc kernels present( nzb_w_inner, w_p ) |
---|
| 142 | DO i = nxlg, nxrg |
---|
| 143 | DO j = nysg, nyng |
---|
| 144 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 145 | ENDDO |
---|
| 146 | ENDDO |
---|
| 147 | !$acc end kernels |
---|
| 148 | |
---|
| 149 | ! |
---|
| 150 | !-- Top boundary |
---|
| 151 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 152 | !$acc kernels present( u_init, u_p, v_init, v_p ) |
---|
| 153 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 154 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[1241] | 155 | IF ( large_scale_forcing) THEN |
---|
| 156 | u_p(nzt+1,:,:) = ug(nzt+1) |
---|
| 157 | v_p(nzt+1,:,:) = vg(nzt+1) |
---|
| 158 | END IF |
---|
[1113] | 159 | !$acc end kernels |
---|
| 160 | ELSE |
---|
| 161 | !$acc kernels present( u_p, v_p ) |
---|
| 162 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 163 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 164 | !$acc end kernels |
---|
| 165 | ENDIF |
---|
| 166 | !$acc kernels present( w_p ) |
---|
| 167 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
| 168 | !$acc end kernels |
---|
| 169 | |
---|
| 170 | ! |
---|
| 171 | !-- Temperature at bottom boundary. |
---|
| 172 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 173 | !-- the sea surface temperature of the coupled ocean model. |
---|
| 174 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 175 | !$acc kernels present( nzb_s_inner, pt, pt_p ) |
---|
[1257] | 176 | !$acc loop independent |
---|
[667] | 177 | DO i = nxlg, nxrg |
---|
[1257] | 178 | !$acc loop independent |
---|
[667] | 179 | DO j = nysg, nyng |
---|
[1113] | 180 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 181 | ENDDO |
---|
| 182 | ENDDO |
---|
[1113] | 183 | !$acc end kernels |
---|
| 184 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 185 | !$acc kernels present( nzb_s_inner, pt_p ) |
---|
[1257] | 186 | !$acc loop independent |
---|
[1113] | 187 | DO i = nxlg, nxrg |
---|
[1257] | 188 | !$acc loop independent |
---|
[1113] | 189 | DO j = nysg, nyng |
---|
| 190 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 191 | ENDDO |
---|
| 192 | ENDDO |
---|
| 193 | !$acc end kernels |
---|
| 194 | ENDIF |
---|
[1] | 195 | |
---|
| 196 | ! |
---|
[1113] | 197 | !-- Temperature at top boundary |
---|
| 198 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 199 | !$acc kernels present( pt, pt_p ) |
---|
| 200 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
| 201 | !$acc end kernels |
---|
| 202 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 203 | !$acc kernels present( pt_p ) |
---|
| 204 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 205 | !$acc end kernels |
---|
| 206 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 207 | !$acc kernels present( dzu, pt_p ) |
---|
| 208 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 209 | !$acc end kernels |
---|
| 210 | ENDIF |
---|
[1] | 211 | |
---|
| 212 | ! |
---|
[1113] | 213 | !-- Boundary conditions for TKE |
---|
| 214 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 215 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 216 | !$acc kernels present( e_p, nzb_s_inner ) |
---|
[1257] | 217 | !$acc loop independent |
---|
[1113] | 218 | DO i = nxlg, nxrg |
---|
[1257] | 219 | !$acc loop independent |
---|
[1113] | 220 | DO j = nysg, nyng |
---|
| 221 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 222 | ENDDO |
---|
[1113] | 223 | ENDDO |
---|
| 224 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 225 | !$acc end kernels |
---|
| 226 | ENDIF |
---|
| 227 | |
---|
| 228 | ! |
---|
| 229 | !-- Boundary conditions for salinity |
---|
| 230 | IF ( ocean ) THEN |
---|
| 231 | ! |
---|
| 232 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 233 | !-- given |
---|
| 234 | DO i = nxlg, nxrg |
---|
| 235 | DO j = nysg, nyng |
---|
| 236 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 237 | ENDDO |
---|
[1113] | 238 | ENDDO |
---|
[1] | 239 | |
---|
| 240 | ! |
---|
[1113] | 241 | !-- Top boundary: Dirichlet or Neumann |
---|
| 242 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 243 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 244 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 245 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 246 | ENDIF |
---|
| 247 | |
---|
[1113] | 248 | ENDIF |
---|
| 249 | |
---|
[1] | 250 | ! |
---|
[1113] | 251 | !-- Boundary conditions for total water content or scalar, |
---|
| 252 | !-- bottom and top boundary (see also temperature) |
---|
| 253 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 254 | ! |
---|
| 255 | !-- Surface conditions for constant_humidity_flux |
---|
| 256 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 257 | DO i = nxlg, nxrg |
---|
| 258 | DO j = nysg, nyng |
---|
[1113] | 259 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 260 | ENDDO |
---|
| 261 | ENDDO |
---|
[1113] | 262 | ELSE |
---|
[667] | 263 | DO i = nxlg, nxrg |
---|
| 264 | DO j = nysg, nyng |
---|
[1113] | 265 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[95] | 266 | ENDDO |
---|
| 267 | ENDDO |
---|
[1113] | 268 | ENDIF |
---|
[95] | 269 | ! |
---|
[1113] | 270 | !-- Top boundary |
---|
| 271 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[95] | 272 | |
---|
[1115] | 273 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 274 | precipitation ) THEN |
---|
[1113] | 275 | ! |
---|
[1115] | 276 | !-- Surface conditions rain water (Neumann) |
---|
| 277 | DO i = nxlg, nxrg |
---|
| 278 | DO j = nysg, nyng |
---|
| 279 | qr_p(nzb_s_inner(j,i),j,i) = qr_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 280 | nr_p(nzb_s_inner(j,i),j,i) = nr_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 281 | ENDDO |
---|
[1115] | 282 | ENDDO |
---|
[1] | 283 | ! |
---|
[1115] | 284 | !-- Top boundary condition for rain water (Neumann) |
---|
| 285 | qr_p(nzt+1,:,:) = qr_p(nzt,:,:) |
---|
| 286 | nr_p(nzt+1,:,:) = nr_p(nzt,:,:) |
---|
| 287 | |
---|
[1] | 288 | ENDIF |
---|
| 289 | ! |
---|
[875] | 290 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
| 291 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
| 292 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
| 293 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
[978] | 294 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
[1] | 295 | IF ( inflow_s ) THEN |
---|
[73] | 296 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[978] | 297 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 298 | ELSEIF ( inflow_n ) THEN |
---|
| 299 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1] | 300 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 301 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[978] | 302 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 303 | ELSEIF ( inflow_r ) THEN |
---|
| 304 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1] | 305 | ENDIF |
---|
| 306 | |
---|
| 307 | ! |
---|
| 308 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 309 | IF ( outflow_s ) THEN |
---|
[73] | 310 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 311 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[1115] | 312 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 313 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1115] | 314 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 315 | precipitation) THEN |
---|
[1053] | 316 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 317 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
| 318 | ENDIF |
---|
| 319 | ENDIF |
---|
[1] | 320 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 321 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 322 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1115] | 323 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 324 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1115] | 325 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 326 | precipitation ) THEN |
---|
[1053] | 327 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 328 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
| 329 | ENDIF |
---|
| 330 | ENDIF |
---|
[1] | 331 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 332 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 333 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[1115] | 334 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 335 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1115] | 336 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 337 | precipitation ) THEN |
---|
[1053] | 338 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 339 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
| 340 | ENDIF |
---|
| 341 | ENDIF |
---|
[1] | 342 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 343 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 344 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1053] | 345 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 346 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1115] | 347 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
[1053] | 348 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 349 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
| 350 | ENDIF |
---|
| 351 | ENDIF |
---|
[1] | 352 | ENDIF |
---|
| 353 | |
---|
| 354 | ENDIF |
---|
| 355 | |
---|
| 356 | ! |
---|
[1159] | 357 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 358 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 359 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 360 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 361 | IF ( outflow_s ) THEN |
---|
[75] | 362 | |
---|
[1159] | 363 | IF ( use_cmax ) THEN |
---|
| 364 | u_p(:,-1,:) = u(:,0,:) |
---|
| 365 | v_p(:,0,:) = v(:,1,:) |
---|
| 366 | w_p(:,-1,:) = w(:,0,:) |
---|
| 367 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 368 | |
---|
[978] | 369 | c_max = dy / dt_3d |
---|
[75] | 370 | |
---|
[978] | 371 | c_u_m_l = 0.0 |
---|
| 372 | c_v_m_l = 0.0 |
---|
| 373 | c_w_m_l = 0.0 |
---|
| 374 | |
---|
| 375 | c_u_m = 0.0 |
---|
| 376 | c_v_m = 0.0 |
---|
| 377 | c_w_m = 0.0 |
---|
| 378 | |
---|
[75] | 379 | ! |
---|
[996] | 380 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 381 | !-- average along the outflow boundary. |
---|
| 382 | DO k = nzb+1, nzt+1 |
---|
| 383 | DO i = nxl, nxr |
---|
[75] | 384 | |
---|
[106] | 385 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 386 | |
---|
| 387 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 388 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[106] | 389 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 390 | c_u(k,i) = 0.0 |
---|
| 391 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 392 | c_u(k,i) = c_max |
---|
| 393 | ENDIF |
---|
| 394 | ELSE |
---|
| 395 | c_u(k,i) = c_max |
---|
[75] | 396 | ENDIF |
---|
| 397 | |
---|
[106] | 398 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 399 | |
---|
| 400 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 401 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[106] | 402 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 403 | c_v(k,i) = 0.0 |
---|
| 404 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 405 | c_v(k,i) = c_max |
---|
| 406 | ENDIF |
---|
| 407 | ELSE |
---|
| 408 | c_v(k,i) = c_max |
---|
[75] | 409 | ENDIF |
---|
| 410 | |
---|
[106] | 411 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 412 | |
---|
[106] | 413 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 414 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[106] | 415 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 416 | c_w(k,i) = 0.0 |
---|
| 417 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 418 | c_w(k,i) = c_max |
---|
| 419 | ENDIF |
---|
| 420 | ELSE |
---|
| 421 | c_w(k,i) = c_max |
---|
[75] | 422 | ENDIF |
---|
[106] | 423 | |
---|
[978] | 424 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 425 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 426 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 427 | |
---|
[978] | 428 | ENDDO |
---|
| 429 | ENDDO |
---|
[75] | 430 | |
---|
[978] | 431 | #if defined( __parallel ) |
---|
| 432 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 433 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 434 | MPI_SUM, comm1dx, ierr ) |
---|
| 435 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 436 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 437 | MPI_SUM, comm1dx, ierr ) |
---|
| 438 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 439 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 440 | MPI_SUM, comm1dx, ierr ) |
---|
| 441 | #else |
---|
| 442 | c_u_m = c_u_m_l |
---|
| 443 | c_v_m = c_v_m_l |
---|
| 444 | c_w_m = c_w_m_l |
---|
| 445 | #endif |
---|
| 446 | |
---|
| 447 | c_u_m = c_u_m / (nx+1) |
---|
| 448 | c_v_m = c_v_m / (nx+1) |
---|
| 449 | c_w_m = c_w_m / (nx+1) |
---|
| 450 | |
---|
[75] | 451 | ! |
---|
[978] | 452 | !-- Save old timelevels for the next timestep |
---|
| 453 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 454 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 455 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 456 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 457 | ENDIF |
---|
| 458 | |
---|
| 459 | ! |
---|
| 460 | !-- Calculate the new velocities |
---|
[996] | 461 | DO k = nzb+1, nzt+1 |
---|
| 462 | DO i = nxlg, nxrg |
---|
[978] | 463 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 464 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 465 | |
---|
[978] | 466 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 467 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 468 | |
---|
[978] | 469 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 470 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 471 | ENDDO |
---|
[75] | 472 | ENDDO |
---|
| 473 | |
---|
| 474 | ! |
---|
[978] | 475 | !-- Bottom boundary at the outflow |
---|
| 476 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 477 | u_p(nzb,-1,:) = 0.0 |
---|
| 478 | v_p(nzb,0,:) = 0.0 |
---|
| 479 | ELSE |
---|
| 480 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 481 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 482 | ENDIF |
---|
| 483 | w_p(nzb,-1,:) = 0.0 |
---|
[73] | 484 | |
---|
[75] | 485 | ! |
---|
[978] | 486 | !-- Top boundary at the outflow |
---|
| 487 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 488 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 489 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 490 | ELSE |
---|
| 491 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
| 492 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
| 493 | ENDIF |
---|
| 494 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
| 495 | |
---|
[75] | 496 | ENDIF |
---|
[73] | 497 | |
---|
[75] | 498 | ENDIF |
---|
[73] | 499 | |
---|
[106] | 500 | IF ( outflow_n ) THEN |
---|
[73] | 501 | |
---|
[1159] | 502 | IF ( use_cmax ) THEN |
---|
| 503 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 504 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 505 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 506 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 507 | |
---|
[978] | 508 | c_max = dy / dt_3d |
---|
[75] | 509 | |
---|
[978] | 510 | c_u_m_l = 0.0 |
---|
| 511 | c_v_m_l = 0.0 |
---|
| 512 | c_w_m_l = 0.0 |
---|
| 513 | |
---|
| 514 | c_u_m = 0.0 |
---|
| 515 | c_v_m = 0.0 |
---|
| 516 | c_w_m = 0.0 |
---|
| 517 | |
---|
[1] | 518 | ! |
---|
[996] | 519 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 520 | !-- average along the outflow boundary. |
---|
| 521 | DO k = nzb+1, nzt+1 |
---|
| 522 | DO i = nxl, nxr |
---|
[73] | 523 | |
---|
[106] | 524 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 525 | |
---|
| 526 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 527 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 528 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 529 | c_u(k,i) = 0.0 |
---|
| 530 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 531 | c_u(k,i) = c_max |
---|
| 532 | ENDIF |
---|
| 533 | ELSE |
---|
| 534 | c_u(k,i) = c_max |
---|
[73] | 535 | ENDIF |
---|
| 536 | |
---|
[106] | 537 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 538 | |
---|
[106] | 539 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 540 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 541 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 542 | c_v(k,i) = 0.0 |
---|
| 543 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 544 | c_v(k,i) = c_max |
---|
| 545 | ENDIF |
---|
| 546 | ELSE |
---|
| 547 | c_v(k,i) = c_max |
---|
[73] | 548 | ENDIF |
---|
| 549 | |
---|
[106] | 550 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 551 | |
---|
[106] | 552 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 553 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 554 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 555 | c_w(k,i) = 0.0 |
---|
| 556 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 557 | c_w(k,i) = c_max |
---|
| 558 | ENDIF |
---|
| 559 | ELSE |
---|
| 560 | c_w(k,i) = c_max |
---|
[73] | 561 | ENDIF |
---|
[106] | 562 | |
---|
[978] | 563 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 564 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 565 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 566 | |
---|
[978] | 567 | ENDDO |
---|
| 568 | ENDDO |
---|
[73] | 569 | |
---|
[978] | 570 | #if defined( __parallel ) |
---|
| 571 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 572 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 573 | MPI_SUM, comm1dx, ierr ) |
---|
| 574 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 575 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 576 | MPI_SUM, comm1dx, ierr ) |
---|
| 577 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 578 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 579 | MPI_SUM, comm1dx, ierr ) |
---|
| 580 | #else |
---|
| 581 | c_u_m = c_u_m_l |
---|
| 582 | c_v_m = c_v_m_l |
---|
| 583 | c_w_m = c_w_m_l |
---|
| 584 | #endif |
---|
| 585 | |
---|
| 586 | c_u_m = c_u_m / (nx+1) |
---|
| 587 | c_v_m = c_v_m / (nx+1) |
---|
| 588 | c_w_m = c_w_m / (nx+1) |
---|
| 589 | |
---|
[73] | 590 | ! |
---|
[978] | 591 | !-- Save old timelevels for the next timestep |
---|
| 592 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 593 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 594 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 595 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 596 | ENDIF |
---|
[73] | 597 | |
---|
[978] | 598 | ! |
---|
| 599 | !-- Calculate the new velocities |
---|
[996] | 600 | DO k = nzb+1, nzt+1 |
---|
| 601 | DO i = nxlg, nxrg |
---|
[978] | 602 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 603 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 604 | |
---|
[978] | 605 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 606 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 607 | |
---|
[978] | 608 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 609 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 610 | ENDDO |
---|
[1] | 611 | ENDDO |
---|
| 612 | |
---|
| 613 | ! |
---|
[978] | 614 | !-- Bottom boundary at the outflow |
---|
| 615 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 616 | u_p(nzb,ny+1,:) = 0.0 |
---|
| 617 | v_p(nzb,ny+1,:) = 0.0 |
---|
| 618 | ELSE |
---|
| 619 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 620 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 621 | ENDIF |
---|
| 622 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 623 | |
---|
| 624 | ! |
---|
[978] | 625 | !-- Top boundary at the outflow |
---|
| 626 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 627 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 628 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 629 | ELSE |
---|
| 630 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 631 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 632 | ENDIF |
---|
| 633 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
| 634 | |
---|
[1] | 635 | ENDIF |
---|
| 636 | |
---|
[75] | 637 | ENDIF |
---|
| 638 | |
---|
[106] | 639 | IF ( outflow_l ) THEN |
---|
[75] | 640 | |
---|
[1159] | 641 | IF ( use_cmax ) THEN |
---|
| 642 | u_p(:,:,-1) = u(:,:,0) |
---|
| 643 | v_p(:,:,0) = v(:,:,1) |
---|
| 644 | w_p(:,:,-1) = w(:,:,0) |
---|
| 645 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 646 | |
---|
[978] | 647 | c_max = dx / dt_3d |
---|
[75] | 648 | |
---|
[978] | 649 | c_u_m_l = 0.0 |
---|
| 650 | c_v_m_l = 0.0 |
---|
| 651 | c_w_m_l = 0.0 |
---|
| 652 | |
---|
| 653 | c_u_m = 0.0 |
---|
| 654 | c_v_m = 0.0 |
---|
| 655 | c_w_m = 0.0 |
---|
| 656 | |
---|
[1] | 657 | ! |
---|
[996] | 658 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 659 | !-- average along the outflow boundary. |
---|
| 660 | DO k = nzb+1, nzt+1 |
---|
| 661 | DO j = nys, nyn |
---|
[75] | 662 | |
---|
[106] | 663 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 664 | |
---|
| 665 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 666 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[107] | 667 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
[106] | 668 | c_u(k,j) = 0.0 |
---|
[107] | 669 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 670 | c_u(k,j) = c_max |
---|
[106] | 671 | ENDIF |
---|
| 672 | ELSE |
---|
[107] | 673 | c_u(k,j) = c_max |
---|
[75] | 674 | ENDIF |
---|
| 675 | |
---|
[106] | 676 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 677 | |
---|
[106] | 678 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 679 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[106] | 680 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 681 | c_v(k,j) = 0.0 |
---|
| 682 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 683 | c_v(k,j) = c_max |
---|
| 684 | ENDIF |
---|
| 685 | ELSE |
---|
| 686 | c_v(k,j) = c_max |
---|
[75] | 687 | ENDIF |
---|
| 688 | |
---|
[106] | 689 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 690 | |
---|
[106] | 691 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 692 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[106] | 693 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 694 | c_w(k,j) = 0.0 |
---|
| 695 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 696 | c_w(k,j) = c_max |
---|
| 697 | ENDIF |
---|
| 698 | ELSE |
---|
| 699 | c_w(k,j) = c_max |
---|
[75] | 700 | ENDIF |
---|
[106] | 701 | |
---|
[978] | 702 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 703 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 704 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 705 | |
---|
[978] | 706 | ENDDO |
---|
| 707 | ENDDO |
---|
[75] | 708 | |
---|
[978] | 709 | #if defined( __parallel ) |
---|
| 710 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 711 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 712 | MPI_SUM, comm1dy, ierr ) |
---|
| 713 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 714 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 715 | MPI_SUM, comm1dy, ierr ) |
---|
| 716 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 717 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 718 | MPI_SUM, comm1dy, ierr ) |
---|
| 719 | #else |
---|
| 720 | c_u_m = c_u_m_l |
---|
| 721 | c_v_m = c_v_m_l |
---|
| 722 | c_w_m = c_w_m_l |
---|
| 723 | #endif |
---|
| 724 | |
---|
| 725 | c_u_m = c_u_m / (ny+1) |
---|
| 726 | c_v_m = c_v_m / (ny+1) |
---|
| 727 | c_w_m = c_w_m / (ny+1) |
---|
| 728 | |
---|
[73] | 729 | ! |
---|
[978] | 730 | !-- Save old timelevels for the next timestep |
---|
| 731 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 732 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 733 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 734 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 735 | ENDIF |
---|
| 736 | |
---|
| 737 | ! |
---|
| 738 | !-- Calculate the new velocities |
---|
[996] | 739 | DO k = nzb+1, nzt+1 |
---|
[1113] | 740 | DO j = nysg, nyng |
---|
[978] | 741 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 742 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 743 | |
---|
[978] | 744 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 745 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 746 | |
---|
[978] | 747 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 748 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 749 | ENDDO |
---|
[75] | 750 | ENDDO |
---|
| 751 | |
---|
| 752 | ! |
---|
[978] | 753 | !-- Bottom boundary at the outflow |
---|
| 754 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 755 | u_p(nzb,:,0) = 0.0 |
---|
| 756 | v_p(nzb,:,-1) = 0.0 |
---|
| 757 | ELSE |
---|
| 758 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 759 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 760 | ENDIF |
---|
| 761 | w_p(nzb,:,-1) = 0.0 |
---|
[1] | 762 | |
---|
[75] | 763 | ! |
---|
[978] | 764 | !-- Top boundary at the outflow |
---|
| 765 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 766 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
| 767 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 768 | ELSE |
---|
| 769 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 770 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 771 | ENDIF |
---|
| 772 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
| 773 | |
---|
[75] | 774 | ENDIF |
---|
[73] | 775 | |
---|
[75] | 776 | ENDIF |
---|
[73] | 777 | |
---|
[106] | 778 | IF ( outflow_r ) THEN |
---|
[73] | 779 | |
---|
[1159] | 780 | IF ( use_cmax ) THEN |
---|
| 781 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 782 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 783 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 784 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 785 | |
---|
[978] | 786 | c_max = dx / dt_3d |
---|
[75] | 787 | |
---|
[978] | 788 | c_u_m_l = 0.0 |
---|
| 789 | c_v_m_l = 0.0 |
---|
| 790 | c_w_m_l = 0.0 |
---|
| 791 | |
---|
| 792 | c_u_m = 0.0 |
---|
| 793 | c_v_m = 0.0 |
---|
| 794 | c_w_m = 0.0 |
---|
| 795 | |
---|
[1] | 796 | ! |
---|
[996] | 797 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 798 | !-- average along the outflow boundary. |
---|
| 799 | DO k = nzb+1, nzt+1 |
---|
| 800 | DO j = nys, nyn |
---|
[73] | 801 | |
---|
[106] | 802 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 803 | |
---|
| 804 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 805 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 806 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
| 807 | c_u(k,j) = 0.0 |
---|
| 808 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 809 | c_u(k,j) = c_max |
---|
| 810 | ENDIF |
---|
| 811 | ELSE |
---|
| 812 | c_u(k,j) = c_max |
---|
[73] | 813 | ENDIF |
---|
| 814 | |
---|
[106] | 815 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 816 | |
---|
[106] | 817 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 818 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 819 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 820 | c_v(k,j) = 0.0 |
---|
| 821 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 822 | c_v(k,j) = c_max |
---|
| 823 | ENDIF |
---|
| 824 | ELSE |
---|
| 825 | c_v(k,j) = c_max |
---|
[73] | 826 | ENDIF |
---|
| 827 | |
---|
[106] | 828 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 829 | |
---|
[106] | 830 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 831 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 832 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 833 | c_w(k,j) = 0.0 |
---|
| 834 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 835 | c_w(k,j) = c_max |
---|
| 836 | ENDIF |
---|
| 837 | ELSE |
---|
| 838 | c_w(k,j) = c_max |
---|
[73] | 839 | ENDIF |
---|
[106] | 840 | |
---|
[978] | 841 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 842 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 843 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 844 | |
---|
[978] | 845 | ENDDO |
---|
| 846 | ENDDO |
---|
[73] | 847 | |
---|
[978] | 848 | #if defined( __parallel ) |
---|
| 849 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 850 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 851 | MPI_SUM, comm1dy, ierr ) |
---|
| 852 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 853 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 854 | MPI_SUM, comm1dy, ierr ) |
---|
| 855 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 856 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 857 | MPI_SUM, comm1dy, ierr ) |
---|
| 858 | #else |
---|
| 859 | c_u_m = c_u_m_l |
---|
| 860 | c_v_m = c_v_m_l |
---|
| 861 | c_w_m = c_w_m_l |
---|
| 862 | #endif |
---|
| 863 | |
---|
| 864 | c_u_m = c_u_m / (ny+1) |
---|
| 865 | c_v_m = c_v_m / (ny+1) |
---|
| 866 | c_w_m = c_w_m / (ny+1) |
---|
| 867 | |
---|
[73] | 868 | ! |
---|
[978] | 869 | !-- Save old timelevels for the next timestep |
---|
| 870 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 871 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 872 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 873 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 874 | ENDIF |
---|
[73] | 875 | |
---|
[978] | 876 | ! |
---|
| 877 | !-- Calculate the new velocities |
---|
[996] | 878 | DO k = nzb+1, nzt+1 |
---|
[1113] | 879 | DO j = nysg, nyng |
---|
[978] | 880 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 881 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 882 | |
---|
[978] | 883 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 884 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 885 | |
---|
[978] | 886 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 887 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 888 | ENDDO |
---|
[73] | 889 | ENDDO |
---|
| 890 | |
---|
| 891 | ! |
---|
[978] | 892 | !-- Bottom boundary at the outflow |
---|
| 893 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 894 | u_p(nzb,:,nx+1) = 0.0 |
---|
| 895 | v_p(nzb,:,nx+1) = 0.0 |
---|
| 896 | ELSE |
---|
| 897 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 898 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 899 | ENDIF |
---|
| 900 | w_p(nzb,:,nx+1) = 0.0 |
---|
[73] | 901 | |
---|
| 902 | ! |
---|
[978] | 903 | !-- Top boundary at the outflow |
---|
| 904 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 905 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 906 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 907 | ELSE |
---|
| 908 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 909 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 910 | ENDIF |
---|
| 911 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
| 912 | |
---|
[1] | 913 | ENDIF |
---|
| 914 | |
---|
| 915 | ENDIF |
---|
| 916 | |
---|
| 917 | END SUBROUTINE boundary_conds |
---|