[1113] | 1 | SUBROUTINE boundary_conds |
---|
[1] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1116] | 22 | ! |
---|
[667] | 23 | ! |
---|
[1] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
[3] | 26 | ! $Id: boundary_conds.f90 1116 2013-03-26 18:49:55Z raasch $ |
---|
[39] | 27 | ! |
---|
[1116] | 28 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 29 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 30 | ! boundary-conditions |
---|
| 31 | ! |
---|
[1114] | 32 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 33 | ! GPU-porting |
---|
| 34 | ! dummy argument "range" removed |
---|
| 35 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 36 | ! |
---|
[1054] | 37 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 38 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 39 | ! two-moment cloud scheme |
---|
| 40 | ! |
---|
[1037] | 41 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 42 | ! code put under GPL (PALM 3.9) |
---|
| 43 | ! |
---|
[997] | 44 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 45 | ! little reformatting |
---|
| 46 | ! |
---|
[979] | 47 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 48 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 49 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 50 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 51 | ! velocity. |
---|
| 52 | ! |
---|
[876] | 53 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 54 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 55 | ! |
---|
[768] | 56 | ! 767 2011-10-14 06:39:12Z raasch |
---|
| 57 | ! ug,vg replaced by u_init,v_init as the Dirichlet top boundary condition |
---|
| 58 | ! |
---|
[668] | 59 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 60 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 61 | ! Removed mirror boundary conditions for u and v at the bottom in case of |
---|
| 62 | ! ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set |
---|
| 63 | ! in init_3d_model |
---|
| 64 | ! |
---|
[110] | 65 | ! 107 2007-08-17 13:54:45Z raasch |
---|
| 66 | ! Boundary conditions for temperature adjusted for coupled runs, |
---|
| 67 | ! bugfixes for the radiation boundary conditions at the outflow: radiation |
---|
| 68 | ! conditions are used for every substep, phase speeds are calculated for the |
---|
| 69 | ! first Runge-Kutta substep only and then reused, several index values changed |
---|
| 70 | ! |
---|
[98] | 71 | ! 95 2007-06-02 16:48:38Z raasch |
---|
| 72 | ! Boundary conditions for salinity added |
---|
| 73 | ! |
---|
[77] | 74 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 75 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
| 76 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
| 77 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
| 78 | ! |
---|
[39] | 79 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 80 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
| 81 | ! gridpoints are now calculated by the prognostic equation, |
---|
| 82 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
| 83 | ! |
---|
[3] | 84 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 85 | ! |
---|
[1] | 86 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
| 87 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
| 88 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
| 89 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
| 90 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
| 91 | ! |
---|
| 92 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 93 | ! Initial revision |
---|
| 94 | ! |
---|
| 95 | ! |
---|
| 96 | ! Description: |
---|
| 97 | ! ------------ |
---|
| 98 | ! Boundary conditions for the prognostic quantities (range='main'). |
---|
| 99 | ! In case of non-cyclic lateral boundaries the conditions for velocities at |
---|
| 100 | ! the outflow are set after the pressure solver has been called (range= |
---|
| 101 | ! 'outflow_uvw'). |
---|
| 102 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 103 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 104 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 105 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 106 | !------------------------------------------------------------------------------! |
---|
| 107 | |
---|
| 108 | USE arrays_3d |
---|
| 109 | USE control_parameters |
---|
| 110 | USE grid_variables |
---|
| 111 | USE indices |
---|
| 112 | USE pegrid |
---|
| 113 | |
---|
| 114 | IMPLICIT NONE |
---|
| 115 | |
---|
| 116 | INTEGER :: i, j, k |
---|
| 117 | |
---|
[106] | 118 | REAL :: c_max, denom |
---|
[1] | 119 | |
---|
[73] | 120 | |
---|
[1] | 121 | ! |
---|
[1113] | 122 | !-- Bottom boundary |
---|
| 123 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 124 | !$acc kernels present( u_p, v_p ) |
---|
| 125 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 126 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 127 | !$acc end kernels |
---|
| 128 | ENDIF |
---|
| 129 | |
---|
| 130 | !$acc kernels present( nzb_w_inner, w_p ) |
---|
| 131 | DO i = nxlg, nxrg |
---|
| 132 | DO j = nysg, nyng |
---|
| 133 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 134 | ENDDO |
---|
| 135 | ENDDO |
---|
| 136 | !$acc end kernels |
---|
| 137 | |
---|
| 138 | ! |
---|
| 139 | !-- Top boundary |
---|
| 140 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 141 | !$acc kernels present( u_init, u_p, v_init, v_p ) |
---|
| 142 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 143 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
| 144 | !$acc end kernels |
---|
| 145 | ELSE |
---|
| 146 | !$acc kernels present( u_p, v_p ) |
---|
| 147 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 148 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 149 | !$acc end kernels |
---|
| 150 | ENDIF |
---|
| 151 | !$acc kernels present( w_p ) |
---|
| 152 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
| 153 | !$acc end kernels |
---|
| 154 | |
---|
| 155 | ! |
---|
| 156 | !-- Temperature at bottom boundary. |
---|
| 157 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 158 | !-- the sea surface temperature of the coupled ocean model. |
---|
| 159 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 160 | !$acc kernels present( nzb_s_inner, pt, pt_p ) |
---|
[667] | 161 | DO i = nxlg, nxrg |
---|
| 162 | DO j = nysg, nyng |
---|
[1113] | 163 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 164 | ENDDO |
---|
| 165 | ENDDO |
---|
[1113] | 166 | !$acc end kernels |
---|
| 167 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 168 | !$acc kernels present( nzb_s_inner, pt_p ) |
---|
| 169 | DO i = nxlg, nxrg |
---|
| 170 | DO j = nysg, nyng |
---|
| 171 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 172 | ENDDO |
---|
| 173 | ENDDO |
---|
| 174 | !$acc end kernels |
---|
| 175 | ENDIF |
---|
[1] | 176 | |
---|
| 177 | ! |
---|
[1113] | 178 | !-- Temperature at top boundary |
---|
| 179 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 180 | !$acc kernels present( pt, pt_p ) |
---|
| 181 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
| 182 | !$acc end kernels |
---|
| 183 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 184 | !$acc kernels present( pt_p ) |
---|
| 185 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 186 | !$acc end kernels |
---|
| 187 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 188 | !$acc kernels present( dzu, pt_p ) |
---|
| 189 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 190 | !$acc end kernels |
---|
| 191 | ENDIF |
---|
[1] | 192 | |
---|
| 193 | ! |
---|
[1113] | 194 | !-- Boundary conditions for TKE |
---|
| 195 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 196 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 197 | !$acc kernels present( e_p, nzb_s_inner ) |
---|
| 198 | DO i = nxlg, nxrg |
---|
| 199 | DO j = nysg, nyng |
---|
| 200 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 201 | ENDDO |
---|
[1113] | 202 | ENDDO |
---|
| 203 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 204 | !$acc end kernels |
---|
| 205 | ENDIF |
---|
| 206 | |
---|
| 207 | ! |
---|
| 208 | !-- Boundary conditions for salinity |
---|
| 209 | IF ( ocean ) THEN |
---|
| 210 | ! |
---|
| 211 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 212 | !-- given |
---|
| 213 | DO i = nxlg, nxrg |
---|
| 214 | DO j = nysg, nyng |
---|
| 215 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 216 | ENDDO |
---|
[1113] | 217 | ENDDO |
---|
[1] | 218 | |
---|
| 219 | ! |
---|
[1113] | 220 | !-- Top boundary: Dirichlet or Neumann |
---|
| 221 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 222 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 223 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 224 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 225 | ENDIF |
---|
| 226 | |
---|
[1113] | 227 | ENDIF |
---|
| 228 | |
---|
[1] | 229 | ! |
---|
[1113] | 230 | !-- Boundary conditions for total water content or scalar, |
---|
| 231 | !-- bottom and top boundary (see also temperature) |
---|
| 232 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 233 | ! |
---|
| 234 | !-- Surface conditions for constant_humidity_flux |
---|
| 235 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 236 | DO i = nxlg, nxrg |
---|
| 237 | DO j = nysg, nyng |
---|
[1113] | 238 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 239 | ENDDO |
---|
| 240 | ENDDO |
---|
[1113] | 241 | ELSE |
---|
[667] | 242 | DO i = nxlg, nxrg |
---|
| 243 | DO j = nysg, nyng |
---|
[1113] | 244 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[95] | 245 | ENDDO |
---|
| 246 | ENDDO |
---|
[1113] | 247 | ENDIF |
---|
[95] | 248 | ! |
---|
[1113] | 249 | !-- Top boundary |
---|
| 250 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[95] | 251 | |
---|
[1115] | 252 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 253 | precipitation ) THEN |
---|
[1113] | 254 | ! |
---|
[1115] | 255 | !-- Surface conditions rain water (Neumann) |
---|
| 256 | DO i = nxlg, nxrg |
---|
| 257 | DO j = nysg, nyng |
---|
| 258 | qr_p(nzb_s_inner(j,i),j,i) = qr_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 259 | nr_p(nzb_s_inner(j,i),j,i) = nr_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 260 | ENDDO |
---|
[1115] | 261 | ENDDO |
---|
[1] | 262 | ! |
---|
[1115] | 263 | !-- Top boundary condition for rain water (Neumann) |
---|
| 264 | qr_p(nzt+1,:,:) = qr_p(nzt,:,:) |
---|
| 265 | nr_p(nzt+1,:,:) = nr_p(nzt,:,:) |
---|
| 266 | |
---|
[1] | 267 | ENDIF |
---|
| 268 | ! |
---|
[875] | 269 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
| 270 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
| 271 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
| 272 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
[978] | 273 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
[1] | 274 | IF ( inflow_s ) THEN |
---|
[73] | 275 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[978] | 276 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 277 | ELSEIF ( inflow_n ) THEN |
---|
| 278 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1] | 279 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 280 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[978] | 281 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 282 | ELSEIF ( inflow_r ) THEN |
---|
| 283 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1] | 284 | ENDIF |
---|
| 285 | |
---|
| 286 | ! |
---|
| 287 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 288 | IF ( outflow_s ) THEN |
---|
[73] | 289 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 290 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[1115] | 291 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 292 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1115] | 293 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 294 | precipitation) THEN |
---|
[1053] | 295 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 296 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
| 297 | ENDIF |
---|
| 298 | ENDIF |
---|
[1] | 299 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 300 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 301 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1115] | 302 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 303 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1115] | 304 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 305 | precipitation ) THEN |
---|
[1053] | 306 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 307 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
| 308 | ENDIF |
---|
| 309 | ENDIF |
---|
[1] | 310 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 311 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 312 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[1115] | 313 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 314 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1115] | 315 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 316 | precipitation ) THEN |
---|
[1053] | 317 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 318 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
| 319 | ENDIF |
---|
| 320 | ENDIF |
---|
[1] | 321 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 322 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 323 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1053] | 324 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 325 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1115] | 326 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
[1053] | 327 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 328 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
| 329 | ENDIF |
---|
| 330 | ENDIF |
---|
[1] | 331 | ENDIF |
---|
| 332 | |
---|
| 333 | ENDIF |
---|
| 334 | |
---|
| 335 | ! |
---|
[978] | 336 | !-- Neumann or Radiation boundary condition for the velocities at the |
---|
| 337 | !-- respective outflow |
---|
[106] | 338 | IF ( outflow_s ) THEN |
---|
[75] | 339 | |
---|
[978] | 340 | IF ( bc_ns_dirneu ) THEN |
---|
| 341 | u(:,-1,:) = u(:,0,:) |
---|
| 342 | v(:,0,:) = v(:,1,:) |
---|
| 343 | w(:,-1,:) = w(:,0,:) |
---|
| 344 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 345 | |
---|
[978] | 346 | c_max = dy / dt_3d |
---|
[75] | 347 | |
---|
[978] | 348 | c_u_m_l = 0.0 |
---|
| 349 | c_v_m_l = 0.0 |
---|
| 350 | c_w_m_l = 0.0 |
---|
| 351 | |
---|
| 352 | c_u_m = 0.0 |
---|
| 353 | c_v_m = 0.0 |
---|
| 354 | c_w_m = 0.0 |
---|
| 355 | |
---|
[75] | 356 | ! |
---|
[996] | 357 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 358 | !-- average along the outflow boundary. |
---|
| 359 | DO k = nzb+1, nzt+1 |
---|
| 360 | DO i = nxl, nxr |
---|
[75] | 361 | |
---|
[106] | 362 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 363 | |
---|
| 364 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 365 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[106] | 366 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 367 | c_u(k,i) = 0.0 |
---|
| 368 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 369 | c_u(k,i) = c_max |
---|
| 370 | ENDIF |
---|
| 371 | ELSE |
---|
| 372 | c_u(k,i) = c_max |
---|
[75] | 373 | ENDIF |
---|
| 374 | |
---|
[106] | 375 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 376 | |
---|
| 377 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 378 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[106] | 379 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 380 | c_v(k,i) = 0.0 |
---|
| 381 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 382 | c_v(k,i) = c_max |
---|
| 383 | ENDIF |
---|
| 384 | ELSE |
---|
| 385 | c_v(k,i) = c_max |
---|
[75] | 386 | ENDIF |
---|
| 387 | |
---|
[106] | 388 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 389 | |
---|
[106] | 390 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 391 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[106] | 392 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 393 | c_w(k,i) = 0.0 |
---|
| 394 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 395 | c_w(k,i) = c_max |
---|
| 396 | ENDIF |
---|
| 397 | ELSE |
---|
| 398 | c_w(k,i) = c_max |
---|
[75] | 399 | ENDIF |
---|
[106] | 400 | |
---|
[978] | 401 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 402 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 403 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 404 | |
---|
[978] | 405 | ENDDO |
---|
| 406 | ENDDO |
---|
[75] | 407 | |
---|
[978] | 408 | #if defined( __parallel ) |
---|
| 409 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 410 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 411 | MPI_SUM, comm1dx, ierr ) |
---|
| 412 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 413 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 414 | MPI_SUM, comm1dx, ierr ) |
---|
| 415 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 416 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 417 | MPI_SUM, comm1dx, ierr ) |
---|
| 418 | #else |
---|
| 419 | c_u_m = c_u_m_l |
---|
| 420 | c_v_m = c_v_m_l |
---|
| 421 | c_w_m = c_w_m_l |
---|
| 422 | #endif |
---|
| 423 | |
---|
| 424 | c_u_m = c_u_m / (nx+1) |
---|
| 425 | c_v_m = c_v_m / (nx+1) |
---|
| 426 | c_w_m = c_w_m / (nx+1) |
---|
| 427 | |
---|
[75] | 428 | ! |
---|
[978] | 429 | !-- Save old timelevels for the next timestep |
---|
| 430 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 431 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 432 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 433 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 434 | ENDIF |
---|
| 435 | |
---|
| 436 | ! |
---|
| 437 | !-- Calculate the new velocities |
---|
[996] | 438 | DO k = nzb+1, nzt+1 |
---|
| 439 | DO i = nxlg, nxrg |
---|
[978] | 440 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 441 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 442 | |
---|
[978] | 443 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 444 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 445 | |
---|
[978] | 446 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 447 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 448 | ENDDO |
---|
[75] | 449 | ENDDO |
---|
| 450 | |
---|
| 451 | ! |
---|
[978] | 452 | !-- Bottom boundary at the outflow |
---|
| 453 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 454 | u_p(nzb,-1,:) = 0.0 |
---|
| 455 | v_p(nzb,0,:) = 0.0 |
---|
| 456 | ELSE |
---|
| 457 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 458 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 459 | ENDIF |
---|
| 460 | w_p(nzb,-1,:) = 0.0 |
---|
[73] | 461 | |
---|
[75] | 462 | ! |
---|
[978] | 463 | !-- Top boundary at the outflow |
---|
| 464 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 465 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 466 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 467 | ELSE |
---|
| 468 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
| 469 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
| 470 | ENDIF |
---|
| 471 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
| 472 | |
---|
[75] | 473 | ENDIF |
---|
[73] | 474 | |
---|
[75] | 475 | ENDIF |
---|
[73] | 476 | |
---|
[106] | 477 | IF ( outflow_n ) THEN |
---|
[73] | 478 | |
---|
[978] | 479 | IF ( bc_ns_neudir ) THEN |
---|
| 480 | u(:,ny+1,:) = u(:,ny,:) |
---|
| 481 | v(:,ny+1,:) = v(:,ny,:) |
---|
| 482 | w(:,ny+1,:) = w(:,ny,:) |
---|
| 483 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 484 | |
---|
[978] | 485 | c_max = dy / dt_3d |
---|
[75] | 486 | |
---|
[978] | 487 | c_u_m_l = 0.0 |
---|
| 488 | c_v_m_l = 0.0 |
---|
| 489 | c_w_m_l = 0.0 |
---|
| 490 | |
---|
| 491 | c_u_m = 0.0 |
---|
| 492 | c_v_m = 0.0 |
---|
| 493 | c_w_m = 0.0 |
---|
| 494 | |
---|
[1] | 495 | ! |
---|
[996] | 496 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 497 | !-- average along the outflow boundary. |
---|
| 498 | DO k = nzb+1, nzt+1 |
---|
| 499 | DO i = nxl, nxr |
---|
[73] | 500 | |
---|
[106] | 501 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 502 | |
---|
| 503 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 504 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 505 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 506 | c_u(k,i) = 0.0 |
---|
| 507 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 508 | c_u(k,i) = c_max |
---|
| 509 | ENDIF |
---|
| 510 | ELSE |
---|
| 511 | c_u(k,i) = c_max |
---|
[73] | 512 | ENDIF |
---|
| 513 | |
---|
[106] | 514 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 515 | |
---|
[106] | 516 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 517 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 518 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 519 | c_v(k,i) = 0.0 |
---|
| 520 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 521 | c_v(k,i) = c_max |
---|
| 522 | ENDIF |
---|
| 523 | ELSE |
---|
| 524 | c_v(k,i) = c_max |
---|
[73] | 525 | ENDIF |
---|
| 526 | |
---|
[106] | 527 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 528 | |
---|
[106] | 529 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 530 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 531 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 532 | c_w(k,i) = 0.0 |
---|
| 533 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 534 | c_w(k,i) = c_max |
---|
| 535 | ENDIF |
---|
| 536 | ELSE |
---|
| 537 | c_w(k,i) = c_max |
---|
[73] | 538 | ENDIF |
---|
[106] | 539 | |
---|
[978] | 540 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 541 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 542 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 543 | |
---|
[978] | 544 | ENDDO |
---|
| 545 | ENDDO |
---|
[73] | 546 | |
---|
[978] | 547 | #if defined( __parallel ) |
---|
| 548 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 549 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 550 | MPI_SUM, comm1dx, ierr ) |
---|
| 551 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 552 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 553 | MPI_SUM, comm1dx, ierr ) |
---|
| 554 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 555 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 556 | MPI_SUM, comm1dx, ierr ) |
---|
| 557 | #else |
---|
| 558 | c_u_m = c_u_m_l |
---|
| 559 | c_v_m = c_v_m_l |
---|
| 560 | c_w_m = c_w_m_l |
---|
| 561 | #endif |
---|
| 562 | |
---|
| 563 | c_u_m = c_u_m / (nx+1) |
---|
| 564 | c_v_m = c_v_m / (nx+1) |
---|
| 565 | c_w_m = c_w_m / (nx+1) |
---|
| 566 | |
---|
[73] | 567 | ! |
---|
[978] | 568 | !-- Save old timelevels for the next timestep |
---|
| 569 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 570 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 571 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 572 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 573 | ENDIF |
---|
[73] | 574 | |
---|
[978] | 575 | ! |
---|
| 576 | !-- Calculate the new velocities |
---|
[996] | 577 | DO k = nzb+1, nzt+1 |
---|
| 578 | DO i = nxlg, nxrg |
---|
[978] | 579 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 580 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 581 | |
---|
[978] | 582 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 583 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 584 | |
---|
[978] | 585 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 586 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 587 | ENDDO |
---|
[1] | 588 | ENDDO |
---|
| 589 | |
---|
| 590 | ! |
---|
[978] | 591 | !-- Bottom boundary at the outflow |
---|
| 592 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 593 | u_p(nzb,ny+1,:) = 0.0 |
---|
| 594 | v_p(nzb,ny+1,:) = 0.0 |
---|
| 595 | ELSE |
---|
| 596 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 597 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 598 | ENDIF |
---|
| 599 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 600 | |
---|
| 601 | ! |
---|
[978] | 602 | !-- Top boundary at the outflow |
---|
| 603 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 604 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 605 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 606 | ELSE |
---|
| 607 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 608 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 609 | ENDIF |
---|
| 610 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
| 611 | |
---|
[1] | 612 | ENDIF |
---|
| 613 | |
---|
[75] | 614 | ENDIF |
---|
| 615 | |
---|
[106] | 616 | IF ( outflow_l ) THEN |
---|
[75] | 617 | |
---|
[978] | 618 | IF ( bc_lr_neudir ) THEN |
---|
| 619 | u(:,:,-1) = u(:,:,0) |
---|
| 620 | v(:,:,0) = v(:,:,1) |
---|
| 621 | w(:,:,-1) = w(:,:,0) |
---|
| 622 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 623 | |
---|
[978] | 624 | c_max = dx / dt_3d |
---|
[75] | 625 | |
---|
[978] | 626 | c_u_m_l = 0.0 |
---|
| 627 | c_v_m_l = 0.0 |
---|
| 628 | c_w_m_l = 0.0 |
---|
| 629 | |
---|
| 630 | c_u_m = 0.0 |
---|
| 631 | c_v_m = 0.0 |
---|
| 632 | c_w_m = 0.0 |
---|
| 633 | |
---|
[1] | 634 | ! |
---|
[996] | 635 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 636 | !-- average along the outflow boundary. |
---|
| 637 | DO k = nzb+1, nzt+1 |
---|
| 638 | DO j = nys, nyn |
---|
[75] | 639 | |
---|
[106] | 640 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 641 | |
---|
| 642 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 643 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[107] | 644 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
[106] | 645 | c_u(k,j) = 0.0 |
---|
[107] | 646 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 647 | c_u(k,j) = c_max |
---|
[106] | 648 | ENDIF |
---|
| 649 | ELSE |
---|
[107] | 650 | c_u(k,j) = c_max |
---|
[75] | 651 | ENDIF |
---|
| 652 | |
---|
[106] | 653 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 654 | |
---|
[106] | 655 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 656 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[106] | 657 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 658 | c_v(k,j) = 0.0 |
---|
| 659 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 660 | c_v(k,j) = c_max |
---|
| 661 | ENDIF |
---|
| 662 | ELSE |
---|
| 663 | c_v(k,j) = c_max |
---|
[75] | 664 | ENDIF |
---|
| 665 | |
---|
[106] | 666 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 667 | |
---|
[106] | 668 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 669 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[106] | 670 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 671 | c_w(k,j) = 0.0 |
---|
| 672 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 673 | c_w(k,j) = c_max |
---|
| 674 | ENDIF |
---|
| 675 | ELSE |
---|
| 676 | c_w(k,j) = c_max |
---|
[75] | 677 | ENDIF |
---|
[106] | 678 | |
---|
[978] | 679 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 680 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 681 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 682 | |
---|
[978] | 683 | ENDDO |
---|
| 684 | ENDDO |
---|
[75] | 685 | |
---|
[978] | 686 | #if defined( __parallel ) |
---|
| 687 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 688 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 689 | MPI_SUM, comm1dy, ierr ) |
---|
| 690 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 691 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 692 | MPI_SUM, comm1dy, ierr ) |
---|
| 693 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 694 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 695 | MPI_SUM, comm1dy, ierr ) |
---|
| 696 | #else |
---|
| 697 | c_u_m = c_u_m_l |
---|
| 698 | c_v_m = c_v_m_l |
---|
| 699 | c_w_m = c_w_m_l |
---|
| 700 | #endif |
---|
| 701 | |
---|
| 702 | c_u_m = c_u_m / (ny+1) |
---|
| 703 | c_v_m = c_v_m / (ny+1) |
---|
| 704 | c_w_m = c_w_m / (ny+1) |
---|
| 705 | |
---|
[73] | 706 | ! |
---|
[978] | 707 | !-- Save old timelevels for the next timestep |
---|
| 708 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 709 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 710 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 711 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 712 | ENDIF |
---|
| 713 | |
---|
| 714 | ! |
---|
| 715 | !-- Calculate the new velocities |
---|
[996] | 716 | DO k = nzb+1, nzt+1 |
---|
[1113] | 717 | DO j = nysg, nyng |
---|
[978] | 718 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 719 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 720 | |
---|
[978] | 721 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 722 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 723 | |
---|
[978] | 724 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 725 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 726 | ENDDO |
---|
[75] | 727 | ENDDO |
---|
| 728 | |
---|
| 729 | ! |
---|
[978] | 730 | !-- Bottom boundary at the outflow |
---|
| 731 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 732 | u_p(nzb,:,0) = 0.0 |
---|
| 733 | v_p(nzb,:,-1) = 0.0 |
---|
| 734 | ELSE |
---|
| 735 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 736 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 737 | ENDIF |
---|
| 738 | w_p(nzb,:,-1) = 0.0 |
---|
[1] | 739 | |
---|
[75] | 740 | ! |
---|
[978] | 741 | !-- Top boundary at the outflow |
---|
| 742 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 743 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
| 744 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 745 | ELSE |
---|
| 746 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 747 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 748 | ENDIF |
---|
| 749 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
| 750 | |
---|
[75] | 751 | ENDIF |
---|
[73] | 752 | |
---|
[75] | 753 | ENDIF |
---|
[73] | 754 | |
---|
[106] | 755 | IF ( outflow_r ) THEN |
---|
[73] | 756 | |
---|
[978] | 757 | IF ( bc_lr_dirneu ) THEN |
---|
| 758 | u(:,:,nx+1) = u(:,:,nx) |
---|
| 759 | v(:,:,nx+1) = v(:,:,nx) |
---|
| 760 | w(:,:,nx+1) = w(:,:,nx) |
---|
| 761 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 762 | |
---|
[978] | 763 | c_max = dx / dt_3d |
---|
[75] | 764 | |
---|
[978] | 765 | c_u_m_l = 0.0 |
---|
| 766 | c_v_m_l = 0.0 |
---|
| 767 | c_w_m_l = 0.0 |
---|
| 768 | |
---|
| 769 | c_u_m = 0.0 |
---|
| 770 | c_v_m = 0.0 |
---|
| 771 | c_w_m = 0.0 |
---|
| 772 | |
---|
[1] | 773 | ! |
---|
[996] | 774 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 775 | !-- average along the outflow boundary. |
---|
| 776 | DO k = nzb+1, nzt+1 |
---|
| 777 | DO j = nys, nyn |
---|
[73] | 778 | |
---|
[106] | 779 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 780 | |
---|
| 781 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 782 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 783 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
| 784 | c_u(k,j) = 0.0 |
---|
| 785 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 786 | c_u(k,j) = c_max |
---|
| 787 | ENDIF |
---|
| 788 | ELSE |
---|
| 789 | c_u(k,j) = c_max |
---|
[73] | 790 | ENDIF |
---|
| 791 | |
---|
[106] | 792 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 793 | |
---|
[106] | 794 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 795 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 796 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 797 | c_v(k,j) = 0.0 |
---|
| 798 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 799 | c_v(k,j) = c_max |
---|
| 800 | ENDIF |
---|
| 801 | ELSE |
---|
| 802 | c_v(k,j) = c_max |
---|
[73] | 803 | ENDIF |
---|
| 804 | |
---|
[106] | 805 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 806 | |
---|
[106] | 807 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 808 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 809 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 810 | c_w(k,j) = 0.0 |
---|
| 811 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 812 | c_w(k,j) = c_max |
---|
| 813 | ENDIF |
---|
| 814 | ELSE |
---|
| 815 | c_w(k,j) = c_max |
---|
[73] | 816 | ENDIF |
---|
[106] | 817 | |
---|
[978] | 818 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 819 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 820 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 821 | |
---|
[978] | 822 | ENDDO |
---|
| 823 | ENDDO |
---|
[73] | 824 | |
---|
[978] | 825 | #if defined( __parallel ) |
---|
| 826 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 827 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 828 | MPI_SUM, comm1dy, ierr ) |
---|
| 829 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 830 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 831 | MPI_SUM, comm1dy, ierr ) |
---|
| 832 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 833 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 834 | MPI_SUM, comm1dy, ierr ) |
---|
| 835 | #else |
---|
| 836 | c_u_m = c_u_m_l |
---|
| 837 | c_v_m = c_v_m_l |
---|
| 838 | c_w_m = c_w_m_l |
---|
| 839 | #endif |
---|
| 840 | |
---|
| 841 | c_u_m = c_u_m / (ny+1) |
---|
| 842 | c_v_m = c_v_m / (ny+1) |
---|
| 843 | c_w_m = c_w_m / (ny+1) |
---|
| 844 | |
---|
[73] | 845 | ! |
---|
[978] | 846 | !-- Save old timelevels for the next timestep |
---|
| 847 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 848 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 849 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 850 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 851 | ENDIF |
---|
[73] | 852 | |
---|
[978] | 853 | ! |
---|
| 854 | !-- Calculate the new velocities |
---|
[996] | 855 | DO k = nzb+1, nzt+1 |
---|
[1113] | 856 | DO j = nysg, nyng |
---|
[978] | 857 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 858 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 859 | |
---|
[978] | 860 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 861 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 862 | |
---|
[978] | 863 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 864 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 865 | ENDDO |
---|
[73] | 866 | ENDDO |
---|
| 867 | |
---|
| 868 | ! |
---|
[978] | 869 | !-- Bottom boundary at the outflow |
---|
| 870 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 871 | u_p(nzb,:,nx+1) = 0.0 |
---|
| 872 | v_p(nzb,:,nx+1) = 0.0 |
---|
| 873 | ELSE |
---|
| 874 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 875 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 876 | ENDIF |
---|
| 877 | w_p(nzb,:,nx+1) = 0.0 |
---|
[73] | 878 | |
---|
| 879 | ! |
---|
[978] | 880 | !-- Top boundary at the outflow |
---|
| 881 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 882 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 883 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 884 | ELSE |
---|
| 885 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 886 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 887 | ENDIF |
---|
| 888 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
| 889 | |
---|
[1] | 890 | ENDIF |
---|
| 891 | |
---|
| 892 | ENDIF |
---|
| 893 | |
---|
| 894 | END SUBROUTINE boundary_conds |
---|