[1] | 1 | SUBROUTINE boundary_conds( range ) |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[667] | 22 | ! |
---|
[1] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
[3] | 25 | ! $Id: boundary_conds.f90 1054 2012-11-13 17:30:09Z maronga $ |
---|
[39] | 26 | ! |
---|
[1054] | 27 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 28 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 29 | ! two-moment cloud scheme |
---|
| 30 | ! |
---|
[1037] | 31 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 32 | ! code put under GPL (PALM 3.9) |
---|
| 33 | ! |
---|
[997] | 34 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 35 | ! little reformatting |
---|
| 36 | ! |
---|
[979] | 37 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 38 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 39 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 40 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 41 | ! velocity. |
---|
| 42 | ! |
---|
[876] | 43 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 44 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 45 | ! |
---|
[768] | 46 | ! 767 2011-10-14 06:39:12Z raasch |
---|
| 47 | ! ug,vg replaced by u_init,v_init as the Dirichlet top boundary condition |
---|
| 48 | ! |
---|
[668] | 49 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 50 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 51 | ! Removed mirror boundary conditions for u and v at the bottom in case of |
---|
| 52 | ! ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set |
---|
| 53 | ! in init_3d_model |
---|
| 54 | ! |
---|
[110] | 55 | ! 107 2007-08-17 13:54:45Z raasch |
---|
| 56 | ! Boundary conditions for temperature adjusted for coupled runs, |
---|
| 57 | ! bugfixes for the radiation boundary conditions at the outflow: radiation |
---|
| 58 | ! conditions are used for every substep, phase speeds are calculated for the |
---|
| 59 | ! first Runge-Kutta substep only and then reused, several index values changed |
---|
| 60 | ! |
---|
[98] | 61 | ! 95 2007-06-02 16:48:38Z raasch |
---|
| 62 | ! Boundary conditions for salinity added |
---|
| 63 | ! |
---|
[77] | 64 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 65 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
| 66 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
| 67 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
| 68 | ! |
---|
[39] | 69 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 70 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
| 71 | ! gridpoints are now calculated by the prognostic equation, |
---|
| 72 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
| 73 | ! |
---|
[3] | 74 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 75 | ! |
---|
[1] | 76 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
| 77 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
| 78 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
| 79 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
| 80 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
| 81 | ! |
---|
| 82 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 83 | ! Initial revision |
---|
| 84 | ! |
---|
| 85 | ! |
---|
| 86 | ! Description: |
---|
| 87 | ! ------------ |
---|
| 88 | ! Boundary conditions for the prognostic quantities (range='main'). |
---|
| 89 | ! In case of non-cyclic lateral boundaries the conditions for velocities at |
---|
| 90 | ! the outflow are set after the pressure solver has been called (range= |
---|
| 91 | ! 'outflow_uvw'). |
---|
| 92 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 93 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 94 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 95 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 96 | !------------------------------------------------------------------------------! |
---|
| 97 | |
---|
| 98 | USE arrays_3d |
---|
| 99 | USE control_parameters |
---|
| 100 | USE grid_variables |
---|
| 101 | USE indices |
---|
| 102 | USE pegrid |
---|
| 103 | |
---|
| 104 | IMPLICIT NONE |
---|
| 105 | |
---|
| 106 | CHARACTER (LEN=*) :: range |
---|
| 107 | |
---|
| 108 | INTEGER :: i, j, k |
---|
| 109 | |
---|
[106] | 110 | REAL :: c_max, denom |
---|
[1] | 111 | |
---|
[73] | 112 | |
---|
[1] | 113 | IF ( range == 'main') THEN |
---|
| 114 | ! |
---|
[667] | 115 | !-- Bottom boundary |
---|
| 116 | IF ( ibc_uv_b == 1 ) THEN |
---|
[73] | 117 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 118 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
[1] | 119 | ENDIF |
---|
[667] | 120 | DO i = nxlg, nxrg |
---|
| 121 | DO j = nysg, nyng |
---|
[73] | 122 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
[1] | 123 | ENDDO |
---|
| 124 | ENDDO |
---|
| 125 | |
---|
| 126 | ! |
---|
| 127 | !-- Top boundary |
---|
| 128 | IF ( ibc_uv_t == 0 ) THEN |
---|
[767] | 129 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 130 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[1] | 131 | ELSE |
---|
[667] | 132 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 133 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
[1] | 134 | ENDIF |
---|
[73] | 135 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
[1] | 136 | |
---|
| 137 | ! |
---|
[102] | 138 | !-- Temperature at bottom boundary. |
---|
| 139 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 140 | !-- the sea surface temperature of the coupled ocean model. |
---|
[1] | 141 | IF ( ibc_pt_b == 0 ) THEN |
---|
[667] | 142 | DO i = nxlg, nxrg |
---|
| 143 | DO j = nysg, nyng |
---|
[73] | 144 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 145 | ENDDO |
---|
[73] | 146 | ENDDO |
---|
[102] | 147 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
[667] | 148 | DO i = nxlg, nxrg |
---|
| 149 | DO j = nysg, nyng |
---|
[73] | 150 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 151 | ENDDO |
---|
| 152 | ENDDO |
---|
| 153 | ENDIF |
---|
| 154 | |
---|
| 155 | ! |
---|
| 156 | !-- Temperature at top boundary |
---|
[19] | 157 | IF ( ibc_pt_t == 0 ) THEN |
---|
[667] | 158 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[19] | 159 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
[667] | 160 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
[19] | 161 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[667] | 162 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 163 | ENDIF |
---|
| 164 | |
---|
| 165 | ! |
---|
| 166 | !-- Boundary conditions for TKE |
---|
| 167 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 168 | IF ( .NOT. constant_diffusion ) THEN |
---|
[667] | 169 | DO i = nxlg, nxrg |
---|
| 170 | DO j = nysg, nyng |
---|
[73] | 171 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 172 | ENDDO |
---|
| 173 | ENDDO |
---|
[73] | 174 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[1] | 175 | ENDIF |
---|
| 176 | |
---|
| 177 | ! |
---|
[95] | 178 | !-- Boundary conditions for salinity |
---|
| 179 | IF ( ocean ) THEN |
---|
| 180 | ! |
---|
| 181 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 182 | !-- given |
---|
[667] | 183 | DO i = nxlg, nxrg |
---|
| 184 | DO j = nysg, nyng |
---|
[95] | 185 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 186 | ENDDO |
---|
| 187 | ENDDO |
---|
| 188 | |
---|
| 189 | ! |
---|
| 190 | !-- Top boundary: Dirichlet or Neumann |
---|
| 191 | IF ( ibc_sa_t == 0 ) THEN |
---|
[667] | 192 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
[95] | 193 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
[667] | 194 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[95] | 195 | ENDIF |
---|
| 196 | |
---|
| 197 | ENDIF |
---|
| 198 | |
---|
| 199 | ! |
---|
[1] | 200 | !-- Boundary conditions for total water content or scalar, |
---|
[95] | 201 | !-- bottom and top boundary (see also temperature) |
---|
[75] | 202 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 203 | ! |
---|
[75] | 204 | !-- Surface conditions for constant_humidity_flux |
---|
[1] | 205 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 206 | DO i = nxlg, nxrg |
---|
| 207 | DO j = nysg, nyng |
---|
[73] | 208 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 209 | ENDDO |
---|
[73] | 210 | ENDDO |
---|
[1] | 211 | ELSE |
---|
[667] | 212 | DO i = nxlg, nxrg |
---|
| 213 | DO j = nysg, nyng |
---|
[73] | 214 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 215 | ENDDO |
---|
| 216 | ENDDO |
---|
| 217 | ENDIF |
---|
| 218 | ! |
---|
| 219 | !-- Top boundary |
---|
[73] | 220 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[667] | 221 | |
---|
[1053] | 222 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
| 223 | ! |
---|
| 224 | !-- Surface conditions for constant_humidity_flux |
---|
| 225 | IF ( ibc_qr_b == 0 ) THEN |
---|
| 226 | DO i = nxlg, nxrg |
---|
| 227 | DO j = nysg, nyng |
---|
| 228 | qr_p(nzb_s_inner(j,i),j,i) = qr(nzb_s_inner(j,i),j,i) |
---|
| 229 | ENDDO |
---|
| 230 | ENDDO |
---|
| 231 | ELSE |
---|
| 232 | DO i = nxlg, nxrg |
---|
| 233 | DO j = nysg, nyng |
---|
| 234 | qr_p(nzb_s_inner(j,i),j,i) = qr_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 235 | ENDDO |
---|
| 236 | ENDDO |
---|
| 237 | ENDIF |
---|
| 238 | ! |
---|
| 239 | !-- Top boundary |
---|
| 240 | qr_p(nzt+1,:,:) = qr_p(nzt,:,:) + bc_qr_t_val * dzu(nzt+1) |
---|
| 241 | ! |
---|
| 242 | !-- Surface conditions for constant_humidity_flux |
---|
| 243 | IF ( ibc_nr_b == 0 ) THEN |
---|
| 244 | DO i = nxlg, nxrg |
---|
| 245 | DO j = nysg, nyng |
---|
| 246 | nr_p(nzb_s_inner(j,i),j,i) = nr(nzb_s_inner(j,i),j,i) |
---|
| 247 | ENDDO |
---|
| 248 | ENDDO |
---|
| 249 | ELSE |
---|
| 250 | DO i = nxlg, nxrg |
---|
| 251 | DO j = nysg, nyng |
---|
| 252 | nr_p(nzb_s_inner(j,i),j,i) = nr_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 253 | ENDDO |
---|
| 254 | ENDDO |
---|
| 255 | ENDIF |
---|
| 256 | ! |
---|
| 257 | !-- Top boundary |
---|
| 258 | nr_p(nzt+1,:,:) = nr_p(nzt,:,:) + bc_nr_t_val * dzu(nzt+1) |
---|
| 259 | ENDIF |
---|
| 260 | |
---|
[1] | 261 | ENDIF |
---|
| 262 | |
---|
| 263 | ! |
---|
[875] | 264 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
| 265 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
| 266 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
| 267 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
[978] | 268 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
[1] | 269 | IF ( inflow_s ) THEN |
---|
[73] | 270 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[978] | 271 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 272 | ELSEIF ( inflow_n ) THEN |
---|
| 273 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1] | 274 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 275 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[978] | 276 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 277 | ELSEIF ( inflow_r ) THEN |
---|
| 278 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1] | 279 | ENDIF |
---|
| 280 | |
---|
| 281 | ! |
---|
| 282 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 283 | IF ( outflow_s ) THEN |
---|
[73] | 284 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 285 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[1053] | 286 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 287 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
| 288 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
| 289 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 290 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
| 291 | ENDIF |
---|
| 292 | ENDIF |
---|
[1] | 293 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 294 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 295 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1053] | 296 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 297 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
| 298 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
| 299 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 300 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
| 301 | ENDIF |
---|
| 302 | ENDIF |
---|
[1] | 303 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 304 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 305 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[1053] | 306 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 307 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
| 308 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
| 309 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 310 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
| 311 | ENDIF |
---|
| 312 | ENDIF |
---|
[1] | 313 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 314 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 315 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1053] | 316 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 317 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
| 318 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
| 319 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 320 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
| 321 | ENDIF |
---|
| 322 | ENDIF |
---|
[1] | 323 | ENDIF |
---|
| 324 | |
---|
| 325 | ENDIF |
---|
| 326 | |
---|
| 327 | ! |
---|
[978] | 328 | !-- Neumann or Radiation boundary condition for the velocities at the |
---|
| 329 | !-- respective outflow |
---|
[106] | 330 | IF ( outflow_s ) THEN |
---|
[75] | 331 | |
---|
[978] | 332 | IF ( bc_ns_dirneu ) THEN |
---|
| 333 | u(:,-1,:) = u(:,0,:) |
---|
| 334 | v(:,0,:) = v(:,1,:) |
---|
| 335 | w(:,-1,:) = w(:,0,:) |
---|
| 336 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 337 | |
---|
[978] | 338 | c_max = dy / dt_3d |
---|
[75] | 339 | |
---|
[978] | 340 | c_u_m_l = 0.0 |
---|
| 341 | c_v_m_l = 0.0 |
---|
| 342 | c_w_m_l = 0.0 |
---|
| 343 | |
---|
| 344 | c_u_m = 0.0 |
---|
| 345 | c_v_m = 0.0 |
---|
| 346 | c_w_m = 0.0 |
---|
| 347 | |
---|
[75] | 348 | ! |
---|
[996] | 349 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 350 | !-- average along the outflow boundary. |
---|
| 351 | DO k = nzb+1, nzt+1 |
---|
| 352 | DO i = nxl, nxr |
---|
[75] | 353 | |
---|
[106] | 354 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 355 | |
---|
| 356 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 357 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[106] | 358 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 359 | c_u(k,i) = 0.0 |
---|
| 360 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 361 | c_u(k,i) = c_max |
---|
| 362 | ENDIF |
---|
| 363 | ELSE |
---|
| 364 | c_u(k,i) = c_max |
---|
[75] | 365 | ENDIF |
---|
| 366 | |
---|
[106] | 367 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 368 | |
---|
| 369 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 370 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[106] | 371 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 372 | c_v(k,i) = 0.0 |
---|
| 373 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 374 | c_v(k,i) = c_max |
---|
| 375 | ENDIF |
---|
| 376 | ELSE |
---|
| 377 | c_v(k,i) = c_max |
---|
[75] | 378 | ENDIF |
---|
| 379 | |
---|
[106] | 380 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 381 | |
---|
[106] | 382 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 383 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[106] | 384 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 385 | c_w(k,i) = 0.0 |
---|
| 386 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 387 | c_w(k,i) = c_max |
---|
| 388 | ENDIF |
---|
| 389 | ELSE |
---|
| 390 | c_w(k,i) = c_max |
---|
[75] | 391 | ENDIF |
---|
[106] | 392 | |
---|
[978] | 393 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 394 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 395 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 396 | |
---|
[978] | 397 | ENDDO |
---|
| 398 | ENDDO |
---|
[75] | 399 | |
---|
[978] | 400 | #if defined( __parallel ) |
---|
| 401 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 402 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 403 | MPI_SUM, comm1dx, ierr ) |
---|
| 404 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 405 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 406 | MPI_SUM, comm1dx, ierr ) |
---|
| 407 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 408 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 409 | MPI_SUM, comm1dx, ierr ) |
---|
| 410 | #else |
---|
| 411 | c_u_m = c_u_m_l |
---|
| 412 | c_v_m = c_v_m_l |
---|
| 413 | c_w_m = c_w_m_l |
---|
| 414 | #endif |
---|
| 415 | |
---|
| 416 | c_u_m = c_u_m / (nx+1) |
---|
| 417 | c_v_m = c_v_m / (nx+1) |
---|
| 418 | c_w_m = c_w_m / (nx+1) |
---|
| 419 | |
---|
[75] | 420 | ! |
---|
[978] | 421 | !-- Save old timelevels for the next timestep |
---|
| 422 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 423 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 424 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 425 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 426 | ENDIF |
---|
| 427 | |
---|
| 428 | ! |
---|
| 429 | !-- Calculate the new velocities |
---|
[996] | 430 | DO k = nzb+1, nzt+1 |
---|
| 431 | DO i = nxlg, nxrg |
---|
[978] | 432 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 433 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 434 | |
---|
[978] | 435 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 436 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 437 | |
---|
[978] | 438 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 439 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 440 | ENDDO |
---|
[75] | 441 | ENDDO |
---|
| 442 | |
---|
| 443 | ! |
---|
[978] | 444 | !-- Bottom boundary at the outflow |
---|
| 445 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 446 | u_p(nzb,-1,:) = 0.0 |
---|
| 447 | v_p(nzb,0,:) = 0.0 |
---|
| 448 | ELSE |
---|
| 449 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 450 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 451 | ENDIF |
---|
| 452 | w_p(nzb,-1,:) = 0.0 |
---|
[73] | 453 | |
---|
[75] | 454 | ! |
---|
[978] | 455 | !-- Top boundary at the outflow |
---|
| 456 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 457 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 458 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 459 | ELSE |
---|
| 460 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
| 461 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
| 462 | ENDIF |
---|
| 463 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
| 464 | |
---|
[75] | 465 | ENDIF |
---|
[73] | 466 | |
---|
[75] | 467 | ENDIF |
---|
[73] | 468 | |
---|
[106] | 469 | IF ( outflow_n ) THEN |
---|
[73] | 470 | |
---|
[978] | 471 | IF ( bc_ns_neudir ) THEN |
---|
| 472 | u(:,ny+1,:) = u(:,ny,:) |
---|
| 473 | v(:,ny+1,:) = v(:,ny,:) |
---|
| 474 | w(:,ny+1,:) = w(:,ny,:) |
---|
| 475 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 476 | |
---|
[978] | 477 | c_max = dy / dt_3d |
---|
[75] | 478 | |
---|
[978] | 479 | c_u_m_l = 0.0 |
---|
| 480 | c_v_m_l = 0.0 |
---|
| 481 | c_w_m_l = 0.0 |
---|
| 482 | |
---|
| 483 | c_u_m = 0.0 |
---|
| 484 | c_v_m = 0.0 |
---|
| 485 | c_w_m = 0.0 |
---|
| 486 | |
---|
[1] | 487 | ! |
---|
[996] | 488 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 489 | !-- average along the outflow boundary. |
---|
| 490 | DO k = nzb+1, nzt+1 |
---|
| 491 | DO i = nxl, nxr |
---|
[73] | 492 | |
---|
[106] | 493 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 494 | |
---|
| 495 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 496 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 497 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 498 | c_u(k,i) = 0.0 |
---|
| 499 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 500 | c_u(k,i) = c_max |
---|
| 501 | ENDIF |
---|
| 502 | ELSE |
---|
| 503 | c_u(k,i) = c_max |
---|
[73] | 504 | ENDIF |
---|
| 505 | |
---|
[106] | 506 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 507 | |
---|
[106] | 508 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 509 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 510 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 511 | c_v(k,i) = 0.0 |
---|
| 512 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 513 | c_v(k,i) = c_max |
---|
| 514 | ENDIF |
---|
| 515 | ELSE |
---|
| 516 | c_v(k,i) = c_max |
---|
[73] | 517 | ENDIF |
---|
| 518 | |
---|
[106] | 519 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 520 | |
---|
[106] | 521 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 522 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 523 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 524 | c_w(k,i) = 0.0 |
---|
| 525 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 526 | c_w(k,i) = c_max |
---|
| 527 | ENDIF |
---|
| 528 | ELSE |
---|
| 529 | c_w(k,i) = c_max |
---|
[73] | 530 | ENDIF |
---|
[106] | 531 | |
---|
[978] | 532 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 533 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 534 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 535 | |
---|
[978] | 536 | ENDDO |
---|
| 537 | ENDDO |
---|
[73] | 538 | |
---|
[978] | 539 | #if defined( __parallel ) |
---|
| 540 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 541 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 542 | MPI_SUM, comm1dx, ierr ) |
---|
| 543 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 544 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 545 | MPI_SUM, comm1dx, ierr ) |
---|
| 546 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 547 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 548 | MPI_SUM, comm1dx, ierr ) |
---|
| 549 | #else |
---|
| 550 | c_u_m = c_u_m_l |
---|
| 551 | c_v_m = c_v_m_l |
---|
| 552 | c_w_m = c_w_m_l |
---|
| 553 | #endif |
---|
| 554 | |
---|
| 555 | c_u_m = c_u_m / (nx+1) |
---|
| 556 | c_v_m = c_v_m / (nx+1) |
---|
| 557 | c_w_m = c_w_m / (nx+1) |
---|
| 558 | |
---|
[73] | 559 | ! |
---|
[978] | 560 | !-- Save old timelevels for the next timestep |
---|
| 561 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 562 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 563 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 564 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 565 | ENDIF |
---|
[73] | 566 | |
---|
[978] | 567 | ! |
---|
| 568 | !-- Calculate the new velocities |
---|
[996] | 569 | DO k = nzb+1, nzt+1 |
---|
| 570 | DO i = nxlg, nxrg |
---|
[978] | 571 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 572 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 573 | |
---|
[978] | 574 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 575 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 576 | |
---|
[978] | 577 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 578 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 579 | ENDDO |
---|
[1] | 580 | ENDDO |
---|
| 581 | |
---|
| 582 | ! |
---|
[978] | 583 | !-- Bottom boundary at the outflow |
---|
| 584 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 585 | u_p(nzb,ny+1,:) = 0.0 |
---|
| 586 | v_p(nzb,ny+1,:) = 0.0 |
---|
| 587 | ELSE |
---|
| 588 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 589 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 590 | ENDIF |
---|
| 591 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 592 | |
---|
| 593 | ! |
---|
[978] | 594 | !-- Top boundary at the outflow |
---|
| 595 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 596 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 597 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 598 | ELSE |
---|
| 599 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 600 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 601 | ENDIF |
---|
| 602 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
| 603 | |
---|
[1] | 604 | ENDIF |
---|
| 605 | |
---|
[75] | 606 | ENDIF |
---|
| 607 | |
---|
[106] | 608 | IF ( outflow_l ) THEN |
---|
[75] | 609 | |
---|
[978] | 610 | IF ( bc_lr_neudir ) THEN |
---|
| 611 | u(:,:,-1) = u(:,:,0) |
---|
| 612 | v(:,:,0) = v(:,:,1) |
---|
| 613 | w(:,:,-1) = w(:,:,0) |
---|
| 614 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 615 | |
---|
[978] | 616 | c_max = dx / dt_3d |
---|
[75] | 617 | |
---|
[978] | 618 | c_u_m_l = 0.0 |
---|
| 619 | c_v_m_l = 0.0 |
---|
| 620 | c_w_m_l = 0.0 |
---|
| 621 | |
---|
| 622 | c_u_m = 0.0 |
---|
| 623 | c_v_m = 0.0 |
---|
| 624 | c_w_m = 0.0 |
---|
| 625 | |
---|
[1] | 626 | ! |
---|
[996] | 627 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 628 | !-- average along the outflow boundary. |
---|
| 629 | DO k = nzb+1, nzt+1 |
---|
| 630 | DO j = nys, nyn |
---|
[75] | 631 | |
---|
[106] | 632 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 633 | |
---|
| 634 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 635 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[107] | 636 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
[106] | 637 | c_u(k,j) = 0.0 |
---|
[107] | 638 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 639 | c_u(k,j) = c_max |
---|
[106] | 640 | ENDIF |
---|
| 641 | ELSE |
---|
[107] | 642 | c_u(k,j) = c_max |
---|
[75] | 643 | ENDIF |
---|
| 644 | |
---|
[106] | 645 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 646 | |
---|
[106] | 647 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 648 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[106] | 649 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 650 | c_v(k,j) = 0.0 |
---|
| 651 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 652 | c_v(k,j) = c_max |
---|
| 653 | ENDIF |
---|
| 654 | ELSE |
---|
| 655 | c_v(k,j) = c_max |
---|
[75] | 656 | ENDIF |
---|
| 657 | |
---|
[106] | 658 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 659 | |
---|
[106] | 660 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 661 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[106] | 662 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 663 | c_w(k,j) = 0.0 |
---|
| 664 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 665 | c_w(k,j) = c_max |
---|
| 666 | ENDIF |
---|
| 667 | ELSE |
---|
| 668 | c_w(k,j) = c_max |
---|
[75] | 669 | ENDIF |
---|
[106] | 670 | |
---|
[978] | 671 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 672 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 673 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 674 | |
---|
[978] | 675 | ENDDO |
---|
| 676 | ENDDO |
---|
[75] | 677 | |
---|
[978] | 678 | #if defined( __parallel ) |
---|
| 679 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 680 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 681 | MPI_SUM, comm1dy, ierr ) |
---|
| 682 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 683 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 684 | MPI_SUM, comm1dy, ierr ) |
---|
| 685 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 686 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 687 | MPI_SUM, comm1dy, ierr ) |
---|
| 688 | #else |
---|
| 689 | c_u_m = c_u_m_l |
---|
| 690 | c_v_m = c_v_m_l |
---|
| 691 | c_w_m = c_w_m_l |
---|
| 692 | #endif |
---|
| 693 | |
---|
| 694 | c_u_m = c_u_m / (ny+1) |
---|
| 695 | c_v_m = c_v_m / (ny+1) |
---|
| 696 | c_w_m = c_w_m / (ny+1) |
---|
| 697 | |
---|
[73] | 698 | ! |
---|
[978] | 699 | !-- Save old timelevels for the next timestep |
---|
| 700 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 701 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 702 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 703 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 704 | ENDIF |
---|
| 705 | |
---|
| 706 | ! |
---|
| 707 | !-- Calculate the new velocities |
---|
[996] | 708 | DO k = nzb+1, nzt+1 |
---|
| 709 | DO i = nxlg, nxrg |
---|
[978] | 710 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 711 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 712 | |
---|
[978] | 713 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 714 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 715 | |
---|
[978] | 716 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 717 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 718 | ENDDO |
---|
[75] | 719 | ENDDO |
---|
| 720 | |
---|
| 721 | ! |
---|
[978] | 722 | !-- Bottom boundary at the outflow |
---|
| 723 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 724 | u_p(nzb,:,0) = 0.0 |
---|
| 725 | v_p(nzb,:,-1) = 0.0 |
---|
| 726 | ELSE |
---|
| 727 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 728 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 729 | ENDIF |
---|
| 730 | w_p(nzb,:,-1) = 0.0 |
---|
[1] | 731 | |
---|
[75] | 732 | ! |
---|
[978] | 733 | !-- Top boundary at the outflow |
---|
| 734 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 735 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
| 736 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 737 | ELSE |
---|
| 738 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 739 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 740 | ENDIF |
---|
| 741 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
| 742 | |
---|
[75] | 743 | ENDIF |
---|
[73] | 744 | |
---|
[75] | 745 | ENDIF |
---|
[73] | 746 | |
---|
[106] | 747 | IF ( outflow_r ) THEN |
---|
[73] | 748 | |
---|
[978] | 749 | IF ( bc_lr_dirneu ) THEN |
---|
| 750 | u(:,:,nx+1) = u(:,:,nx) |
---|
| 751 | v(:,:,nx+1) = v(:,:,nx) |
---|
| 752 | w(:,:,nx+1) = w(:,:,nx) |
---|
| 753 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 754 | |
---|
[978] | 755 | c_max = dx / dt_3d |
---|
[75] | 756 | |
---|
[978] | 757 | c_u_m_l = 0.0 |
---|
| 758 | c_v_m_l = 0.0 |
---|
| 759 | c_w_m_l = 0.0 |
---|
| 760 | |
---|
| 761 | c_u_m = 0.0 |
---|
| 762 | c_v_m = 0.0 |
---|
| 763 | c_w_m = 0.0 |
---|
| 764 | |
---|
[1] | 765 | ! |
---|
[996] | 766 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 767 | !-- average along the outflow boundary. |
---|
| 768 | DO k = nzb+1, nzt+1 |
---|
| 769 | DO j = nys, nyn |
---|
[73] | 770 | |
---|
[106] | 771 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 772 | |
---|
| 773 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 774 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 775 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
| 776 | c_u(k,j) = 0.0 |
---|
| 777 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 778 | c_u(k,j) = c_max |
---|
| 779 | ENDIF |
---|
| 780 | ELSE |
---|
| 781 | c_u(k,j) = c_max |
---|
[73] | 782 | ENDIF |
---|
| 783 | |
---|
[106] | 784 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 785 | |
---|
[106] | 786 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 787 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 788 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 789 | c_v(k,j) = 0.0 |
---|
| 790 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 791 | c_v(k,j) = c_max |
---|
| 792 | ENDIF |
---|
| 793 | ELSE |
---|
| 794 | c_v(k,j) = c_max |
---|
[73] | 795 | ENDIF |
---|
| 796 | |
---|
[106] | 797 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 798 | |
---|
[106] | 799 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 800 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 801 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 802 | c_w(k,j) = 0.0 |
---|
| 803 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 804 | c_w(k,j) = c_max |
---|
| 805 | ENDIF |
---|
| 806 | ELSE |
---|
| 807 | c_w(k,j) = c_max |
---|
[73] | 808 | ENDIF |
---|
[106] | 809 | |
---|
[978] | 810 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 811 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 812 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 813 | |
---|
[978] | 814 | ENDDO |
---|
| 815 | ENDDO |
---|
[73] | 816 | |
---|
[978] | 817 | #if defined( __parallel ) |
---|
| 818 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 819 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 820 | MPI_SUM, comm1dy, ierr ) |
---|
| 821 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 822 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 823 | MPI_SUM, comm1dy, ierr ) |
---|
| 824 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 825 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 826 | MPI_SUM, comm1dy, ierr ) |
---|
| 827 | #else |
---|
| 828 | c_u_m = c_u_m_l |
---|
| 829 | c_v_m = c_v_m_l |
---|
| 830 | c_w_m = c_w_m_l |
---|
| 831 | #endif |
---|
| 832 | |
---|
| 833 | c_u_m = c_u_m / (ny+1) |
---|
| 834 | c_v_m = c_v_m / (ny+1) |
---|
| 835 | c_w_m = c_w_m / (ny+1) |
---|
| 836 | |
---|
[73] | 837 | ! |
---|
[978] | 838 | !-- Save old timelevels for the next timestep |
---|
| 839 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 840 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 841 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 842 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 843 | ENDIF |
---|
[73] | 844 | |
---|
[978] | 845 | ! |
---|
| 846 | !-- Calculate the new velocities |
---|
[996] | 847 | DO k = nzb+1, nzt+1 |
---|
| 848 | DO i = nxlg, nxrg |
---|
[978] | 849 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 850 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 851 | |
---|
[978] | 852 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 853 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 854 | |
---|
[978] | 855 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 856 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 857 | ENDDO |
---|
[73] | 858 | ENDDO |
---|
| 859 | |
---|
| 860 | ! |
---|
[978] | 861 | !-- Bottom boundary at the outflow |
---|
| 862 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 863 | u_p(nzb,:,nx+1) = 0.0 |
---|
| 864 | v_p(nzb,:,nx+1) = 0.0 |
---|
| 865 | ELSE |
---|
| 866 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 867 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 868 | ENDIF |
---|
| 869 | w_p(nzb,:,nx+1) = 0.0 |
---|
[73] | 870 | |
---|
| 871 | ! |
---|
[978] | 872 | !-- Top boundary at the outflow |
---|
| 873 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 874 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 875 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 876 | ELSE |
---|
| 877 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 878 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 879 | ENDIF |
---|
| 880 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
| 881 | |
---|
[1] | 882 | ENDIF |
---|
| 883 | |
---|
| 884 | ENDIF |
---|
| 885 | |
---|
| 886 | END SUBROUTINE boundary_conds |
---|