[1] | 1 | SUBROUTINE boundary_conds( range ) |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[997] | 22 | ! |
---|
[667] | 23 | ! |
---|
[1] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
[3] | 26 | ! $Id: boundary_conds.f90 1037 2012-10-22 14:10:22Z raasch $ |
---|
[39] | 27 | ! |
---|
[1037] | 28 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 29 | ! code put under GPL (PALM 3.9) |
---|
| 30 | ! |
---|
[997] | 31 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 32 | ! little reformatting |
---|
| 33 | ! |
---|
[979] | 34 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 35 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 36 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 37 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 38 | ! velocity. |
---|
| 39 | ! |
---|
[876] | 40 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 41 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 42 | ! |
---|
[768] | 43 | ! 767 2011-10-14 06:39:12Z raasch |
---|
| 44 | ! ug,vg replaced by u_init,v_init as the Dirichlet top boundary condition |
---|
| 45 | ! |
---|
[668] | 46 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 47 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 48 | ! Removed mirror boundary conditions for u and v at the bottom in case of |
---|
| 49 | ! ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set |
---|
| 50 | ! in init_3d_model |
---|
| 51 | ! |
---|
[110] | 52 | ! 107 2007-08-17 13:54:45Z raasch |
---|
| 53 | ! Boundary conditions for temperature adjusted for coupled runs, |
---|
| 54 | ! bugfixes for the radiation boundary conditions at the outflow: radiation |
---|
| 55 | ! conditions are used for every substep, phase speeds are calculated for the |
---|
| 56 | ! first Runge-Kutta substep only and then reused, several index values changed |
---|
| 57 | ! |
---|
[98] | 58 | ! 95 2007-06-02 16:48:38Z raasch |
---|
| 59 | ! Boundary conditions for salinity added |
---|
| 60 | ! |
---|
[77] | 61 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 62 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
| 63 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
| 64 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
| 65 | ! |
---|
[39] | 66 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 67 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
| 68 | ! gridpoints are now calculated by the prognostic equation, |
---|
| 69 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
| 70 | ! |
---|
[3] | 71 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 72 | ! |
---|
[1] | 73 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
| 74 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
| 75 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
| 76 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
| 77 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
| 78 | ! |
---|
| 79 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 80 | ! Initial revision |
---|
| 81 | ! |
---|
| 82 | ! |
---|
| 83 | ! Description: |
---|
| 84 | ! ------------ |
---|
| 85 | ! Boundary conditions for the prognostic quantities (range='main'). |
---|
| 86 | ! In case of non-cyclic lateral boundaries the conditions for velocities at |
---|
| 87 | ! the outflow are set after the pressure solver has been called (range= |
---|
| 88 | ! 'outflow_uvw'). |
---|
| 89 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 90 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 91 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 92 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 93 | !------------------------------------------------------------------------------! |
---|
| 94 | |
---|
| 95 | USE arrays_3d |
---|
| 96 | USE control_parameters |
---|
| 97 | USE grid_variables |
---|
| 98 | USE indices |
---|
| 99 | USE pegrid |
---|
| 100 | |
---|
| 101 | IMPLICIT NONE |
---|
| 102 | |
---|
| 103 | CHARACTER (LEN=*) :: range |
---|
| 104 | |
---|
| 105 | INTEGER :: i, j, k |
---|
| 106 | |
---|
[106] | 107 | REAL :: c_max, denom |
---|
[1] | 108 | |
---|
[73] | 109 | |
---|
[1] | 110 | IF ( range == 'main') THEN |
---|
| 111 | ! |
---|
[667] | 112 | !-- Bottom boundary |
---|
| 113 | IF ( ibc_uv_b == 1 ) THEN |
---|
[73] | 114 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 115 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
[1] | 116 | ENDIF |
---|
[667] | 117 | DO i = nxlg, nxrg |
---|
| 118 | DO j = nysg, nyng |
---|
[73] | 119 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
[1] | 120 | ENDDO |
---|
| 121 | ENDDO |
---|
| 122 | |
---|
| 123 | ! |
---|
| 124 | !-- Top boundary |
---|
| 125 | IF ( ibc_uv_t == 0 ) THEN |
---|
[767] | 126 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 127 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[1] | 128 | ELSE |
---|
[667] | 129 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 130 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
[1] | 131 | ENDIF |
---|
[73] | 132 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
[1] | 133 | |
---|
| 134 | ! |
---|
[102] | 135 | !-- Temperature at bottom boundary. |
---|
| 136 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 137 | !-- the sea surface temperature of the coupled ocean model. |
---|
[1] | 138 | IF ( ibc_pt_b == 0 ) THEN |
---|
[667] | 139 | DO i = nxlg, nxrg |
---|
| 140 | DO j = nysg, nyng |
---|
[73] | 141 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 142 | ENDDO |
---|
[73] | 143 | ENDDO |
---|
[102] | 144 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
[667] | 145 | DO i = nxlg, nxrg |
---|
| 146 | DO j = nysg, nyng |
---|
[73] | 147 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 148 | ENDDO |
---|
| 149 | ENDDO |
---|
| 150 | ENDIF |
---|
| 151 | |
---|
| 152 | ! |
---|
| 153 | !-- Temperature at top boundary |
---|
[19] | 154 | IF ( ibc_pt_t == 0 ) THEN |
---|
[667] | 155 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[19] | 156 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
[667] | 157 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
[19] | 158 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[667] | 159 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 160 | ENDIF |
---|
| 161 | |
---|
| 162 | ! |
---|
| 163 | !-- Boundary conditions for TKE |
---|
| 164 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 165 | IF ( .NOT. constant_diffusion ) THEN |
---|
[667] | 166 | DO i = nxlg, nxrg |
---|
| 167 | DO j = nysg, nyng |
---|
[73] | 168 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 169 | ENDDO |
---|
| 170 | ENDDO |
---|
[73] | 171 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[1] | 172 | ENDIF |
---|
| 173 | |
---|
| 174 | ! |
---|
[95] | 175 | !-- Boundary conditions for salinity |
---|
| 176 | IF ( ocean ) THEN |
---|
| 177 | ! |
---|
| 178 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 179 | !-- given |
---|
[667] | 180 | DO i = nxlg, nxrg |
---|
| 181 | DO j = nysg, nyng |
---|
[95] | 182 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 183 | ENDDO |
---|
| 184 | ENDDO |
---|
| 185 | |
---|
| 186 | ! |
---|
| 187 | !-- Top boundary: Dirichlet or Neumann |
---|
| 188 | IF ( ibc_sa_t == 0 ) THEN |
---|
[667] | 189 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
[95] | 190 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
[667] | 191 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[95] | 192 | ENDIF |
---|
| 193 | |
---|
| 194 | ENDIF |
---|
| 195 | |
---|
| 196 | ! |
---|
[1] | 197 | !-- Boundary conditions for total water content or scalar, |
---|
[95] | 198 | !-- bottom and top boundary (see also temperature) |
---|
[75] | 199 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 200 | ! |
---|
[75] | 201 | !-- Surface conditions for constant_humidity_flux |
---|
[1] | 202 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 203 | DO i = nxlg, nxrg |
---|
| 204 | DO j = nysg, nyng |
---|
[73] | 205 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 206 | ENDDO |
---|
[73] | 207 | ENDDO |
---|
[1] | 208 | ELSE |
---|
[667] | 209 | DO i = nxlg, nxrg |
---|
| 210 | DO j = nysg, nyng |
---|
[73] | 211 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 212 | ENDDO |
---|
| 213 | ENDDO |
---|
| 214 | ENDIF |
---|
| 215 | ! |
---|
| 216 | !-- Top boundary |
---|
[73] | 217 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[667] | 218 | |
---|
[1] | 219 | ENDIF |
---|
| 220 | |
---|
| 221 | ! |
---|
[875] | 222 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
| 223 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
| 224 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
| 225 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
[978] | 226 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
[1] | 227 | IF ( inflow_s ) THEN |
---|
[73] | 228 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[978] | 229 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 230 | ELSEIF ( inflow_n ) THEN |
---|
| 231 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1] | 232 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 233 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[978] | 234 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 235 | ELSEIF ( inflow_r ) THEN |
---|
| 236 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1] | 237 | ENDIF |
---|
| 238 | |
---|
| 239 | ! |
---|
| 240 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 241 | IF ( outflow_s ) THEN |
---|
[73] | 242 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 243 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[75] | 244 | IF ( humidity .OR. passive_scalar ) q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1] | 245 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 246 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 247 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[75] | 248 | IF ( humidity .OR. passive_scalar ) q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1] | 249 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 250 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 251 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[75] | 252 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1] | 253 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 254 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 255 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[75] | 256 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1] | 257 | ENDIF |
---|
| 258 | |
---|
| 259 | ENDIF |
---|
| 260 | |
---|
| 261 | ! |
---|
[978] | 262 | !-- Neumann or Radiation boundary condition for the velocities at the |
---|
| 263 | !-- respective outflow |
---|
[106] | 264 | IF ( outflow_s ) THEN |
---|
[75] | 265 | |
---|
[978] | 266 | IF ( bc_ns_dirneu ) THEN |
---|
| 267 | u(:,-1,:) = u(:,0,:) |
---|
| 268 | v(:,0,:) = v(:,1,:) |
---|
| 269 | w(:,-1,:) = w(:,0,:) |
---|
| 270 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 271 | |
---|
[978] | 272 | c_max = dy / dt_3d |
---|
[75] | 273 | |
---|
[978] | 274 | c_u_m_l = 0.0 |
---|
| 275 | c_v_m_l = 0.0 |
---|
| 276 | c_w_m_l = 0.0 |
---|
| 277 | |
---|
| 278 | c_u_m = 0.0 |
---|
| 279 | c_v_m = 0.0 |
---|
| 280 | c_w_m = 0.0 |
---|
| 281 | |
---|
[75] | 282 | ! |
---|
[996] | 283 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 284 | !-- average along the outflow boundary. |
---|
| 285 | DO k = nzb+1, nzt+1 |
---|
| 286 | DO i = nxl, nxr |
---|
[75] | 287 | |
---|
[106] | 288 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 289 | |
---|
| 290 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 291 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[106] | 292 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 293 | c_u(k,i) = 0.0 |
---|
| 294 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 295 | c_u(k,i) = c_max |
---|
| 296 | ENDIF |
---|
| 297 | ELSE |
---|
| 298 | c_u(k,i) = c_max |
---|
[75] | 299 | ENDIF |
---|
| 300 | |
---|
[106] | 301 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 302 | |
---|
| 303 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 304 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[106] | 305 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 306 | c_v(k,i) = 0.0 |
---|
| 307 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 308 | c_v(k,i) = c_max |
---|
| 309 | ENDIF |
---|
| 310 | ELSE |
---|
| 311 | c_v(k,i) = c_max |
---|
[75] | 312 | ENDIF |
---|
| 313 | |
---|
[106] | 314 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 315 | |
---|
[106] | 316 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 317 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[106] | 318 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 319 | c_w(k,i) = 0.0 |
---|
| 320 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 321 | c_w(k,i) = c_max |
---|
| 322 | ENDIF |
---|
| 323 | ELSE |
---|
| 324 | c_w(k,i) = c_max |
---|
[75] | 325 | ENDIF |
---|
[106] | 326 | |
---|
[978] | 327 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 328 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 329 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 330 | |
---|
[978] | 331 | ENDDO |
---|
| 332 | ENDDO |
---|
[75] | 333 | |
---|
[978] | 334 | #if defined( __parallel ) |
---|
| 335 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 336 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 337 | MPI_SUM, comm1dx, ierr ) |
---|
| 338 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 339 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 340 | MPI_SUM, comm1dx, ierr ) |
---|
| 341 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 342 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 343 | MPI_SUM, comm1dx, ierr ) |
---|
| 344 | #else |
---|
| 345 | c_u_m = c_u_m_l |
---|
| 346 | c_v_m = c_v_m_l |
---|
| 347 | c_w_m = c_w_m_l |
---|
| 348 | #endif |
---|
| 349 | |
---|
| 350 | c_u_m = c_u_m / (nx+1) |
---|
| 351 | c_v_m = c_v_m / (nx+1) |
---|
| 352 | c_w_m = c_w_m / (nx+1) |
---|
| 353 | |
---|
[75] | 354 | ! |
---|
[978] | 355 | !-- Save old timelevels for the next timestep |
---|
| 356 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 357 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 358 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 359 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 360 | ENDIF |
---|
| 361 | |
---|
| 362 | ! |
---|
| 363 | !-- Calculate the new velocities |
---|
[996] | 364 | DO k = nzb+1, nzt+1 |
---|
| 365 | DO i = nxlg, nxrg |
---|
[978] | 366 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 367 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 368 | |
---|
[978] | 369 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 370 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 371 | |
---|
[978] | 372 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 373 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 374 | ENDDO |
---|
[75] | 375 | ENDDO |
---|
| 376 | |
---|
| 377 | ! |
---|
[978] | 378 | !-- Bottom boundary at the outflow |
---|
| 379 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 380 | u_p(nzb,-1,:) = 0.0 |
---|
| 381 | v_p(nzb,0,:) = 0.0 |
---|
| 382 | ELSE |
---|
| 383 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 384 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 385 | ENDIF |
---|
| 386 | w_p(nzb,-1,:) = 0.0 |
---|
[73] | 387 | |
---|
[75] | 388 | ! |
---|
[978] | 389 | !-- Top boundary at the outflow |
---|
| 390 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 391 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 392 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 393 | ELSE |
---|
| 394 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
| 395 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
| 396 | ENDIF |
---|
| 397 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
| 398 | |
---|
[75] | 399 | ENDIF |
---|
[73] | 400 | |
---|
[75] | 401 | ENDIF |
---|
[73] | 402 | |
---|
[106] | 403 | IF ( outflow_n ) THEN |
---|
[73] | 404 | |
---|
[978] | 405 | IF ( bc_ns_neudir ) THEN |
---|
| 406 | u(:,ny+1,:) = u(:,ny,:) |
---|
| 407 | v(:,ny+1,:) = v(:,ny,:) |
---|
| 408 | w(:,ny+1,:) = w(:,ny,:) |
---|
| 409 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 410 | |
---|
[978] | 411 | c_max = dy / dt_3d |
---|
[75] | 412 | |
---|
[978] | 413 | c_u_m_l = 0.0 |
---|
| 414 | c_v_m_l = 0.0 |
---|
| 415 | c_w_m_l = 0.0 |
---|
| 416 | |
---|
| 417 | c_u_m = 0.0 |
---|
| 418 | c_v_m = 0.0 |
---|
| 419 | c_w_m = 0.0 |
---|
| 420 | |
---|
[1] | 421 | ! |
---|
[996] | 422 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 423 | !-- average along the outflow boundary. |
---|
| 424 | DO k = nzb+1, nzt+1 |
---|
| 425 | DO i = nxl, nxr |
---|
[73] | 426 | |
---|
[106] | 427 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 428 | |
---|
| 429 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 430 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 431 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 432 | c_u(k,i) = 0.0 |
---|
| 433 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 434 | c_u(k,i) = c_max |
---|
| 435 | ENDIF |
---|
| 436 | ELSE |
---|
| 437 | c_u(k,i) = c_max |
---|
[73] | 438 | ENDIF |
---|
| 439 | |
---|
[106] | 440 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 441 | |
---|
[106] | 442 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 443 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 444 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 445 | c_v(k,i) = 0.0 |
---|
| 446 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 447 | c_v(k,i) = c_max |
---|
| 448 | ENDIF |
---|
| 449 | ELSE |
---|
| 450 | c_v(k,i) = c_max |
---|
[73] | 451 | ENDIF |
---|
| 452 | |
---|
[106] | 453 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 454 | |
---|
[106] | 455 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 456 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 457 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 458 | c_w(k,i) = 0.0 |
---|
| 459 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 460 | c_w(k,i) = c_max |
---|
| 461 | ENDIF |
---|
| 462 | ELSE |
---|
| 463 | c_w(k,i) = c_max |
---|
[73] | 464 | ENDIF |
---|
[106] | 465 | |
---|
[978] | 466 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 467 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 468 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 469 | |
---|
[978] | 470 | ENDDO |
---|
| 471 | ENDDO |
---|
[73] | 472 | |
---|
[978] | 473 | #if defined( __parallel ) |
---|
| 474 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 475 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 476 | MPI_SUM, comm1dx, ierr ) |
---|
| 477 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 478 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 479 | MPI_SUM, comm1dx, ierr ) |
---|
| 480 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 481 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 482 | MPI_SUM, comm1dx, ierr ) |
---|
| 483 | #else |
---|
| 484 | c_u_m = c_u_m_l |
---|
| 485 | c_v_m = c_v_m_l |
---|
| 486 | c_w_m = c_w_m_l |
---|
| 487 | #endif |
---|
| 488 | |
---|
| 489 | c_u_m = c_u_m / (nx+1) |
---|
| 490 | c_v_m = c_v_m / (nx+1) |
---|
| 491 | c_w_m = c_w_m / (nx+1) |
---|
| 492 | |
---|
[73] | 493 | ! |
---|
[978] | 494 | !-- Save old timelevels for the next timestep |
---|
| 495 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 496 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 497 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 498 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 499 | ENDIF |
---|
[73] | 500 | |
---|
[978] | 501 | ! |
---|
| 502 | !-- Calculate the new velocities |
---|
[996] | 503 | DO k = nzb+1, nzt+1 |
---|
| 504 | DO i = nxlg, nxrg |
---|
[978] | 505 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 506 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 507 | |
---|
[978] | 508 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 509 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 510 | |
---|
[978] | 511 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 512 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 513 | ENDDO |
---|
[1] | 514 | ENDDO |
---|
| 515 | |
---|
| 516 | ! |
---|
[978] | 517 | !-- Bottom boundary at the outflow |
---|
| 518 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 519 | u_p(nzb,ny+1,:) = 0.0 |
---|
| 520 | v_p(nzb,ny+1,:) = 0.0 |
---|
| 521 | ELSE |
---|
| 522 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 523 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 524 | ENDIF |
---|
| 525 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 526 | |
---|
| 527 | ! |
---|
[978] | 528 | !-- Top boundary at the outflow |
---|
| 529 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 530 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 531 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 532 | ELSE |
---|
| 533 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 534 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 535 | ENDIF |
---|
| 536 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
| 537 | |
---|
[1] | 538 | ENDIF |
---|
| 539 | |
---|
[75] | 540 | ENDIF |
---|
| 541 | |
---|
[106] | 542 | IF ( outflow_l ) THEN |
---|
[75] | 543 | |
---|
[978] | 544 | IF ( bc_lr_neudir ) THEN |
---|
| 545 | u(:,:,-1) = u(:,:,0) |
---|
| 546 | v(:,:,0) = v(:,:,1) |
---|
| 547 | w(:,:,-1) = w(:,:,0) |
---|
| 548 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 549 | |
---|
[978] | 550 | c_max = dx / dt_3d |
---|
[75] | 551 | |
---|
[978] | 552 | c_u_m_l = 0.0 |
---|
| 553 | c_v_m_l = 0.0 |
---|
| 554 | c_w_m_l = 0.0 |
---|
| 555 | |
---|
| 556 | c_u_m = 0.0 |
---|
| 557 | c_v_m = 0.0 |
---|
| 558 | c_w_m = 0.0 |
---|
| 559 | |
---|
[1] | 560 | ! |
---|
[996] | 561 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 562 | !-- average along the outflow boundary. |
---|
| 563 | DO k = nzb+1, nzt+1 |
---|
| 564 | DO j = nys, nyn |
---|
[75] | 565 | |
---|
[106] | 566 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 567 | |
---|
| 568 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 569 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[107] | 570 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
[106] | 571 | c_u(k,j) = 0.0 |
---|
[107] | 572 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 573 | c_u(k,j) = c_max |
---|
[106] | 574 | ENDIF |
---|
| 575 | ELSE |
---|
[107] | 576 | c_u(k,j) = c_max |
---|
[75] | 577 | ENDIF |
---|
| 578 | |
---|
[106] | 579 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 580 | |
---|
[106] | 581 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 582 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[106] | 583 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 584 | c_v(k,j) = 0.0 |
---|
| 585 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 586 | c_v(k,j) = c_max |
---|
| 587 | ENDIF |
---|
| 588 | ELSE |
---|
| 589 | c_v(k,j) = c_max |
---|
[75] | 590 | ENDIF |
---|
| 591 | |
---|
[106] | 592 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 593 | |
---|
[106] | 594 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 595 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[106] | 596 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 597 | c_w(k,j) = 0.0 |
---|
| 598 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 599 | c_w(k,j) = c_max |
---|
| 600 | ENDIF |
---|
| 601 | ELSE |
---|
| 602 | c_w(k,j) = c_max |
---|
[75] | 603 | ENDIF |
---|
[106] | 604 | |
---|
[978] | 605 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 606 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 607 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 608 | |
---|
[978] | 609 | ENDDO |
---|
| 610 | ENDDO |
---|
[75] | 611 | |
---|
[978] | 612 | #if defined( __parallel ) |
---|
| 613 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 614 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 615 | MPI_SUM, comm1dy, ierr ) |
---|
| 616 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 617 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 618 | MPI_SUM, comm1dy, ierr ) |
---|
| 619 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 620 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 621 | MPI_SUM, comm1dy, ierr ) |
---|
| 622 | #else |
---|
| 623 | c_u_m = c_u_m_l |
---|
| 624 | c_v_m = c_v_m_l |
---|
| 625 | c_w_m = c_w_m_l |
---|
| 626 | #endif |
---|
| 627 | |
---|
| 628 | c_u_m = c_u_m / (ny+1) |
---|
| 629 | c_v_m = c_v_m / (ny+1) |
---|
| 630 | c_w_m = c_w_m / (ny+1) |
---|
| 631 | |
---|
[73] | 632 | ! |
---|
[978] | 633 | !-- Save old timelevels for the next timestep |
---|
| 634 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 635 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 636 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 637 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 638 | ENDIF |
---|
| 639 | |
---|
| 640 | ! |
---|
| 641 | !-- Calculate the new velocities |
---|
[996] | 642 | DO k = nzb+1, nzt+1 |
---|
| 643 | DO i = nxlg, nxrg |
---|
[978] | 644 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 645 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 646 | |
---|
[978] | 647 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 648 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 649 | |
---|
[978] | 650 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 651 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 652 | ENDDO |
---|
[75] | 653 | ENDDO |
---|
| 654 | |
---|
| 655 | ! |
---|
[978] | 656 | !-- Bottom boundary at the outflow |
---|
| 657 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 658 | u_p(nzb,:,0) = 0.0 |
---|
| 659 | v_p(nzb,:,-1) = 0.0 |
---|
| 660 | ELSE |
---|
| 661 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 662 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 663 | ENDIF |
---|
| 664 | w_p(nzb,:,-1) = 0.0 |
---|
[1] | 665 | |
---|
[75] | 666 | ! |
---|
[978] | 667 | !-- Top boundary at the outflow |
---|
| 668 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 669 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
| 670 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 671 | ELSE |
---|
| 672 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 673 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 674 | ENDIF |
---|
| 675 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
| 676 | |
---|
[75] | 677 | ENDIF |
---|
[73] | 678 | |
---|
[75] | 679 | ENDIF |
---|
[73] | 680 | |
---|
[106] | 681 | IF ( outflow_r ) THEN |
---|
[73] | 682 | |
---|
[978] | 683 | IF ( bc_lr_dirneu ) THEN |
---|
| 684 | u(:,:,nx+1) = u(:,:,nx) |
---|
| 685 | v(:,:,nx+1) = v(:,:,nx) |
---|
| 686 | w(:,:,nx+1) = w(:,:,nx) |
---|
| 687 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[75] | 688 | |
---|
[978] | 689 | c_max = dx / dt_3d |
---|
[75] | 690 | |
---|
[978] | 691 | c_u_m_l = 0.0 |
---|
| 692 | c_v_m_l = 0.0 |
---|
| 693 | c_w_m_l = 0.0 |
---|
| 694 | |
---|
| 695 | c_u_m = 0.0 |
---|
| 696 | c_v_m = 0.0 |
---|
| 697 | c_w_m = 0.0 |
---|
| 698 | |
---|
[1] | 699 | ! |
---|
[996] | 700 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 701 | !-- average along the outflow boundary. |
---|
| 702 | DO k = nzb+1, nzt+1 |
---|
| 703 | DO j = nys, nyn |
---|
[73] | 704 | |
---|
[106] | 705 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 706 | |
---|
| 707 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 708 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 709 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
| 710 | c_u(k,j) = 0.0 |
---|
| 711 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 712 | c_u(k,j) = c_max |
---|
| 713 | ENDIF |
---|
| 714 | ELSE |
---|
| 715 | c_u(k,j) = c_max |
---|
[73] | 716 | ENDIF |
---|
| 717 | |
---|
[106] | 718 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 719 | |
---|
[106] | 720 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 721 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 722 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 723 | c_v(k,j) = 0.0 |
---|
| 724 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 725 | c_v(k,j) = c_max |
---|
| 726 | ENDIF |
---|
| 727 | ELSE |
---|
| 728 | c_v(k,j) = c_max |
---|
[73] | 729 | ENDIF |
---|
| 730 | |
---|
[106] | 731 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 732 | |
---|
[106] | 733 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 734 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 735 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 736 | c_w(k,j) = 0.0 |
---|
| 737 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 738 | c_w(k,j) = c_max |
---|
| 739 | ENDIF |
---|
| 740 | ELSE |
---|
| 741 | c_w(k,j) = c_max |
---|
[73] | 742 | ENDIF |
---|
[106] | 743 | |
---|
[978] | 744 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 745 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 746 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 747 | |
---|
[978] | 748 | ENDDO |
---|
| 749 | ENDDO |
---|
[73] | 750 | |
---|
[978] | 751 | #if defined( __parallel ) |
---|
| 752 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 753 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 754 | MPI_SUM, comm1dy, ierr ) |
---|
| 755 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 756 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 757 | MPI_SUM, comm1dy, ierr ) |
---|
| 758 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 759 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 760 | MPI_SUM, comm1dy, ierr ) |
---|
| 761 | #else |
---|
| 762 | c_u_m = c_u_m_l |
---|
| 763 | c_v_m = c_v_m_l |
---|
| 764 | c_w_m = c_w_m_l |
---|
| 765 | #endif |
---|
| 766 | |
---|
| 767 | c_u_m = c_u_m / (ny+1) |
---|
| 768 | c_v_m = c_v_m / (ny+1) |
---|
| 769 | c_w_m = c_w_m / (ny+1) |
---|
| 770 | |
---|
[73] | 771 | ! |
---|
[978] | 772 | !-- Save old timelevels for the next timestep |
---|
| 773 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 774 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 775 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 776 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 777 | ENDIF |
---|
[73] | 778 | |
---|
[978] | 779 | ! |
---|
| 780 | !-- Calculate the new velocities |
---|
[996] | 781 | DO k = nzb+1, nzt+1 |
---|
| 782 | DO i = nxlg, nxrg |
---|
[978] | 783 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 784 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 785 | |
---|
[978] | 786 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 787 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 788 | |
---|
[978] | 789 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 790 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 791 | ENDDO |
---|
[73] | 792 | ENDDO |
---|
| 793 | |
---|
| 794 | ! |
---|
[978] | 795 | !-- Bottom boundary at the outflow |
---|
| 796 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 797 | u_p(nzb,:,nx+1) = 0.0 |
---|
| 798 | v_p(nzb,:,nx+1) = 0.0 |
---|
| 799 | ELSE |
---|
| 800 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 801 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 802 | ENDIF |
---|
| 803 | w_p(nzb,:,nx+1) = 0.0 |
---|
[73] | 804 | |
---|
| 805 | ! |
---|
[978] | 806 | !-- Top boundary at the outflow |
---|
| 807 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 808 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 809 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 810 | ELSE |
---|
| 811 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 812 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 813 | ENDIF |
---|
| 814 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
| 815 | |
---|
[1] | 816 | ENDIF |
---|
| 817 | |
---|
| 818 | ENDIF |
---|
| 819 | |
---|
| 820 | END SUBROUTINE boundary_conds |
---|