1 | MODULE advec_ws |
---|
2 | |
---|
3 | !-----------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ------------------ |
---|
6 | ! |
---|
7 | ! Former revisions: |
---|
8 | ! ----------------- |
---|
9 | ! $Id: advec_ws.f90 744 2011-08-18 16:12:51Z heinze $ |
---|
10 | ! |
---|
11 | ! 743 2011-08-18 16:10:16Z suehring |
---|
12 | ! Evaluation of turbulent fluxes with WS-scheme only for the whole model |
---|
13 | ! domain. Therefor dimension of arrays needed for statistical evaluation |
---|
14 | ! decreased. |
---|
15 | ! |
---|
16 | ! 736 2011-08-17 14:13:26Z suehring |
---|
17 | ! Bugfix concerning OpenMP parallelization. i_omp introduced, because first |
---|
18 | ! index where fluxes on left side have to be calculated explicitly is |
---|
19 | ! different on each thread. Furthermore the swapping of fluxes is now |
---|
20 | ! thread-safe by adding an additional dimension. |
---|
21 | ! |
---|
22 | ! 713 2011-03-30 14:21:21Z suehring |
---|
23 | ! File reformatted. |
---|
24 | ! Bugfix in vertical advection of w concerning the optimized version for |
---|
25 | ! vector architecture. |
---|
26 | ! Constants adv_mom_3, adv_mom_5, adv_sca_5, adv_sca_3 reformulated as |
---|
27 | ! broken numbers. |
---|
28 | ! |
---|
29 | ! 709 2011-03-30 09:31:40Z raasch |
---|
30 | ! formatting adjustments |
---|
31 | ! |
---|
32 | ! 705 2011-03-25 11:21:43 Z suehring $ |
---|
33 | ! Bugfix in declaration of logicals concerning outflow boundaries. |
---|
34 | ! |
---|
35 | ! 411 2009-12-11 12:31:43 Z suehring |
---|
36 | ! Allocation of weight_substep moved to init_3d_model. |
---|
37 | ! Declaration of ws_scheme_sca and ws_scheme_mom moved to check_parameters. |
---|
38 | ! Setting bc for the horizontal velocity variances added (moved from |
---|
39 | ! flow_statistics). |
---|
40 | ! |
---|
41 | ! Initial revision |
---|
42 | ! |
---|
43 | ! 411 2009-12-11 12:31:43 Z suehring |
---|
44 | ! |
---|
45 | ! Description: |
---|
46 | ! ------------ |
---|
47 | ! Advection scheme for scalars and momentum using the flux formulation of |
---|
48 | ! Wicker and Skamarock 5th order. Additionally the module contains of a |
---|
49 | ! routine using for initialisation and steering of the statical evaluation. |
---|
50 | ! The computation of turbulent fluxes takes place inside the advection |
---|
51 | ! routines. |
---|
52 | ! In case of vector architectures Dirichlet and Radiation boundary conditions |
---|
53 | ! are outstanding and not available. |
---|
54 | ! A further routine local_diss_ij is available (next weeks) and is used if a |
---|
55 | ! control of dissipative fluxes is desired. |
---|
56 | ! |
---|
57 | ! OUTSTANDING: - Dirichlet and Radiation boundary conditions for |
---|
58 | ! vector architectures |
---|
59 | ! - dissipation control for cache architectures ( next weeks ) |
---|
60 | ! - Topography ( next weeks ) |
---|
61 | !-----------------------------------------------------------------------------! |
---|
62 | |
---|
63 | PRIVATE |
---|
64 | PUBLIC advec_s_ws, advec_u_ws, advec_v_ws, advec_w_ws, & |
---|
65 | local_diss, ws_init, ws_statistics |
---|
66 | |
---|
67 | INTERFACE ws_init |
---|
68 | MODULE PROCEDURE ws_init |
---|
69 | END INTERFACE ws_init |
---|
70 | |
---|
71 | INTERFACE ws_statistics |
---|
72 | MODULE PROCEDURE ws_statistics |
---|
73 | END INTERFACE ws_statistics |
---|
74 | |
---|
75 | INTERFACE advec_s_ws |
---|
76 | MODULE PROCEDURE advec_s_ws |
---|
77 | MODULE PROCEDURE advec_s_ws_ij |
---|
78 | END INTERFACE advec_s_ws |
---|
79 | |
---|
80 | INTERFACE advec_u_ws |
---|
81 | MODULE PROCEDURE advec_u_ws |
---|
82 | MODULE PROCEDURE advec_u_ws_ij |
---|
83 | END INTERFACE advec_u_ws |
---|
84 | |
---|
85 | INTERFACE advec_v_ws |
---|
86 | MODULE PROCEDURE advec_v_ws |
---|
87 | MODULE PROCEDURE advec_v_ws_ij |
---|
88 | END INTERFACE advec_v_ws |
---|
89 | |
---|
90 | INTERFACE advec_w_ws |
---|
91 | MODULE PROCEDURE advec_w_ws |
---|
92 | MODULE PROCEDURE advec_w_ws_ij |
---|
93 | END INTERFACE advec_w_ws |
---|
94 | |
---|
95 | INTERFACE local_diss |
---|
96 | MODULE PROCEDURE local_diss |
---|
97 | MODULE PROCEDURE local_diss_ij |
---|
98 | END INTERFACE local_diss |
---|
99 | |
---|
100 | CONTAINS |
---|
101 | |
---|
102 | |
---|
103 | !------------------------------------------------------------------------------! |
---|
104 | ! Initialization of WS-scheme |
---|
105 | !------------------------------------------------------------------------------! |
---|
106 | SUBROUTINE ws_init |
---|
107 | |
---|
108 | USE arrays_3d |
---|
109 | USE constants |
---|
110 | USE control_parameters |
---|
111 | USE indices |
---|
112 | USE pegrid |
---|
113 | USE statistics |
---|
114 | |
---|
115 | ! |
---|
116 | !-- Allocate arrays needed for dissipation control. |
---|
117 | IF ( dissipation_control ) THEN |
---|
118 | ! ALLOCATE(var_x(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
119 | ! var_y(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
120 | ! var_z(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
121 | ! gamma_x(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
122 | ! gamma_y(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
123 | ! gamma_z(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) |
---|
124 | ENDIF |
---|
125 | |
---|
126 | ! |
---|
127 | !-- Set the appropriate factors for scalar and momentum advection. |
---|
128 | adv_sca_5 = 1./60. |
---|
129 | adv_sca_3 = 1./12. |
---|
130 | adv_mom_5 = 1./120. |
---|
131 | adv_mom_3 = 1./24. |
---|
132 | |
---|
133 | ! |
---|
134 | !-- Arrays needed for statical evaluation of fluxes. |
---|
135 | IF ( ws_scheme_mom ) THEN |
---|
136 | |
---|
137 | ALLOCATE( sums_wsus_ws_l(nzb:nzt+1), sums_wsvs_ws_l(nzb:nzt+1), & |
---|
138 | sums_us2_ws_l(nzb:nzt+1), sums_vs2_ws_l(nzb:nzt+1), & |
---|
139 | sums_ws2_ws_l(nzb:nzt+1) ) |
---|
140 | |
---|
141 | sums_wsus_ws_l = 0.0 |
---|
142 | sums_wsvs_ws_l = 0.0 |
---|
143 | sums_us2_ws_l = 0.0 |
---|
144 | sums_vs2_ws_l = 0.0 |
---|
145 | sums_ws2_ws_l = 0.0 |
---|
146 | |
---|
147 | ENDIF |
---|
148 | |
---|
149 | IF ( ws_scheme_sca ) THEN |
---|
150 | |
---|
151 | ALLOCATE( sums_wspts_ws_l(nzb:nzt+1) ) |
---|
152 | sums_wspts_ws_l = 0.0 |
---|
153 | |
---|
154 | IF ( humidity .OR. passive_scalar ) THEN |
---|
155 | ALLOCATE( sums_wsqs_ws_l(nzb:nzt+1) ) |
---|
156 | sums_wsqs_ws_l = 0.0 |
---|
157 | ENDIF |
---|
158 | |
---|
159 | IF ( ocean ) THEN |
---|
160 | ALLOCATE( sums_wssas_ws_l(nzb:nzt+1) ) |
---|
161 | sums_wssas_ws_l = 0.0 |
---|
162 | ENDIF |
---|
163 | |
---|
164 | ENDIF |
---|
165 | |
---|
166 | ! |
---|
167 | !-- Arrays needed for reasons of speed optimization for cache and noopt |
---|
168 | !-- version. For the vector version the buffer arrays are not necessary, |
---|
169 | !-- because the the fluxes can swapped directly inside the loops of the |
---|
170 | !-- advection routines. |
---|
171 | IF ( loop_optimization /= 'vector' ) THEN |
---|
172 | |
---|
173 | IF ( ws_scheme_mom ) THEN |
---|
174 | |
---|
175 | ALLOCATE( flux_s_u(nzb+1:nzt,0:threads_per_task-1), & |
---|
176 | flux_s_v(nzb+1:nzt,0:threads_per_task-1), & |
---|
177 | flux_s_w(nzb+1:nzt,0:threads_per_task-1), & |
---|
178 | diss_s_u(nzb+1:nzt,0:threads_per_task-1), & |
---|
179 | diss_s_v(nzb+1:nzt,0:threads_per_task-1), & |
---|
180 | diss_s_w(nzb+1:nzt,0:threads_per_task-1) ) |
---|
181 | ALLOCATE( flux_l_u(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
182 | flux_l_v(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
183 | flux_l_w(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
184 | diss_l_u(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
185 | diss_l_v(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
186 | diss_l_w(nzb+1:nzt,nys:nyn,0:threads_per_task-1) ) |
---|
187 | |
---|
188 | ENDIF |
---|
189 | |
---|
190 | IF ( ws_scheme_sca ) THEN |
---|
191 | |
---|
192 | ALLOCATE( flux_s_pt(nzb+1:nzt,0:threads_per_task-1), & |
---|
193 | flux_s_e(nzb+1:nzt,0:threads_per_task-1), & |
---|
194 | diss_s_pt(nzb+1:nzt,0:threads_per_task-1), & |
---|
195 | diss_s_e(nzb+1:nzt,0:threads_per_task-1) ) |
---|
196 | ALLOCATE( flux_l_pt(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
197 | flux_l_e(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
198 | diss_l_pt(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
199 | diss_l_e(nzb+1:nzt,nys:nyn,0:threads_per_task-1) ) |
---|
200 | |
---|
201 | IF ( humidity .OR. passive_scalar ) THEN |
---|
202 | ALLOCATE( flux_s_q(nzb+1:nzt,0:threads_per_task-1), & |
---|
203 | diss_s_q(nzb+1:nzt,0:threads_per_task-1) ) |
---|
204 | ALLOCATE( flux_l_q(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
205 | diss_l_q(nzb+1:nzt,nys:nyn,0:threads_per_task-1) ) |
---|
206 | ENDIF |
---|
207 | |
---|
208 | IF ( ocean ) THEN |
---|
209 | ALLOCATE( flux_s_sa(nzb+1:nzt,0:threads_per_task-1), & |
---|
210 | diss_s_sa(nzb+1:nzt,0:threads_per_task-1) ) |
---|
211 | ALLOCATE( flux_l_sa(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
212 | diss_l_sa(nzb+1:nzt,nys:nyn,0:threads_per_task-1) ) |
---|
213 | ENDIF |
---|
214 | |
---|
215 | ENDIF |
---|
216 | |
---|
217 | ENDIF |
---|
218 | |
---|
219 | ! |
---|
220 | !-- Determine the flags where the order of the scheme for horizontal |
---|
221 | !-- advection has to be degraded. |
---|
222 | ALLOCATE( boundary_flags(nys:nyn,nxl:nxr) ) |
---|
223 | DO i = nxl, nxr |
---|
224 | DO j = nys, nyn |
---|
225 | |
---|
226 | boundary_flags(j,i) = 0 |
---|
227 | IF ( outflow_l ) THEN |
---|
228 | IF ( i == nxlu ) boundary_flags(j,i) = 5 |
---|
229 | IF ( i == nxl ) boundary_flags(j,i) = 6 |
---|
230 | ELSEIF ( outflow_r ) THEN |
---|
231 | IF ( i == nxr-1 ) boundary_flags(j,i) = 1 |
---|
232 | IF ( i == nxr ) boundary_flags(j,i) = 2 |
---|
233 | ELSEIF ( outflow_n ) THEN |
---|
234 | IF ( j == nyn-1 ) boundary_flags(j,i) = 3 |
---|
235 | IF ( j == nyn ) boundary_flags(j,i) = 4 |
---|
236 | ELSEIF ( outflow_s ) THEN |
---|
237 | IF ( j == nysv ) boundary_flags(j,i) = 7 |
---|
238 | IF ( j == nys ) boundary_flags(j,i) = 8 |
---|
239 | ENDIF |
---|
240 | |
---|
241 | ENDDO |
---|
242 | ENDDO |
---|
243 | |
---|
244 | END SUBROUTINE ws_init |
---|
245 | |
---|
246 | |
---|
247 | !------------------------------------------------------------------------------! |
---|
248 | ! Initialize variables used for storing statistic qauntities (fluxes, variances) |
---|
249 | !------------------------------------------------------------------------------! |
---|
250 | SUBROUTINE ws_statistics |
---|
251 | |
---|
252 | USE control_parameters |
---|
253 | USE statistics |
---|
254 | |
---|
255 | IMPLICIT NONE |
---|
256 | |
---|
257 | ! |
---|
258 | !-- The arrays needed for statistical evaluation are set to to 0 at the |
---|
259 | !-- begin of prognostic_equations. |
---|
260 | IF ( ws_scheme_mom ) THEN |
---|
261 | sums_wsus_ws_l = 0.0 |
---|
262 | sums_wsvs_ws_l = 0.0 |
---|
263 | sums_us2_ws_l = 0.0 |
---|
264 | sums_vs2_ws_l = 0.0 |
---|
265 | sums_ws2_ws_l = 0.0 |
---|
266 | ENDIF |
---|
267 | |
---|
268 | IF ( ws_scheme_sca ) THEN |
---|
269 | sums_wspts_ws_l = 0.0 |
---|
270 | IF ( humidity .OR. passive_scalar ) sums_wsqs_ws_l = 0.0 |
---|
271 | IF ( ocean ) sums_wssas_ws_l = 0.0 |
---|
272 | |
---|
273 | ENDIF |
---|
274 | |
---|
275 | END SUBROUTINE ws_statistics |
---|
276 | |
---|
277 | |
---|
278 | !------------------------------------------------------------------------------! |
---|
279 | ! Scalar advection - Call for grid point i,j |
---|
280 | !------------------------------------------------------------------------------! |
---|
281 | SUBROUTINE advec_s_ws_ij( i, j, sk, sk_char,swap_flux_y_local, & |
---|
282 | swap_diss_y_local, swap_flux_x_local, & |
---|
283 | swap_diss_x_local, i_omp, tn ) |
---|
284 | |
---|
285 | USE arrays_3d |
---|
286 | USE constants |
---|
287 | USE control_parameters |
---|
288 | USE grid_variables |
---|
289 | USE indices |
---|
290 | USE pegrid |
---|
291 | USE statistics |
---|
292 | |
---|
293 | IMPLICIT NONE |
---|
294 | |
---|
295 | INTEGER :: i, i_omp, j, k, tn |
---|
296 | LOGICAL :: degraded_l, degraded_s |
---|
297 | REAL :: flux_d, diss_d, u_comp, v_comp |
---|
298 | REAL, DIMENSION(:,:,:), POINTER :: sk |
---|
299 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, & |
---|
300 | flux_n, diss_n |
---|
301 | REAL, DIMENSION(nzb+1:nzt,0:threads_per_task-1) :: swap_flux_y_local, & |
---|
302 | swap_diss_y_local |
---|
303 | REAL, DIMENSION(nzb+1:nzt,nys:nyn,0:threads_per_task-1) :: & |
---|
304 | swap_flux_x_local, & |
---|
305 | swap_diss_x_local |
---|
306 | CHARACTER (LEN = *), INTENT(IN) :: sk_char |
---|
307 | |
---|
308 | |
---|
309 | degraded_l = .FALSE. |
---|
310 | degraded_s = .FALSE. |
---|
311 | |
---|
312 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
313 | ! |
---|
314 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
315 | SELECT CASE ( boundary_flags(j,i) ) |
---|
316 | |
---|
317 | CASE ( 1 ) |
---|
318 | |
---|
319 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
320 | u_comp = u(k,j,i+1) - u_gtrans |
---|
321 | flux_r(k) = u_comp * ( & |
---|
322 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
323 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
324 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
325 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
326 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
327 | ENDDO |
---|
328 | |
---|
329 | CASE ( 2 ) |
---|
330 | |
---|
331 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
332 | u_comp = u(k,j,i+1) - u_gtrans |
---|
333 | flux_r(k) = u_comp * ( sk(k,j,i+1) + sk(k,j,i) ) * 0.5 |
---|
334 | diss_r(k) = diss_2nd( sk(k,j,i+1), sk(k,j,i+1), sk(k,j,i), & |
---|
335 | sk(k,j,i-1), sk(k,j,i-2), u_comp, & |
---|
336 | 0.5, ddx ) |
---|
337 | ENDDO |
---|
338 | |
---|
339 | CASE ( 3 ) |
---|
340 | |
---|
341 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
342 | v_comp = v(k,j+1,i) - v_gtrans |
---|
343 | flux_n(k) = v_comp * ( & |
---|
344 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
345 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
346 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
347 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
348 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
349 | ENDDO |
---|
350 | |
---|
351 | CASE ( 4 ) |
---|
352 | |
---|
353 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
354 | v_comp = v(k,j+1,i) - v_gtrans |
---|
355 | flux_n(k) = v_comp* ( sk(k,j+1,i) + sk(k,j,i) ) * 0.5 |
---|
356 | diss_n(k) = diss_2nd( sk(k,j+1,i), sk(k,j+1,i), sk(k,j,i), & |
---|
357 | sk(k,j-1,i), sk(k,j-2,i), v_comp, & |
---|
358 | 0.5, ddy ) |
---|
359 | ENDDO |
---|
360 | |
---|
361 | CASE ( 5 ) |
---|
362 | |
---|
363 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
364 | u_comp = u(k,j,i+1) - u_gtrans |
---|
365 | flux_r(k) = u_comp * ( & |
---|
366 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
367 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
368 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
369 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
370 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
371 | ENDDO |
---|
372 | |
---|
373 | CASE ( 6 ) |
---|
374 | |
---|
375 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
376 | u_comp = u(k,j,i+1) - u_gtrans |
---|
377 | flux_r(k) = u_comp * ( & |
---|
378 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
379 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
380 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
381 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
382 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
383 | ! |
---|
384 | !-- Compute leftside fluxes for the left boundary of PE domain |
---|
385 | u_comp = u(k,j,i) - u_gtrans |
---|
386 | swap_flux_x_local(k,j,tn) = u_comp * ( & |
---|
387 | sk(k,j,i) + sk(k,j,i-1) ) * 0.5 |
---|
388 | swap_diss_x_local(k,j,tn) = diss_2nd( sk(k,j,i+2),sk(k,j,i+1), & |
---|
389 | sk(k,j,i), sk(k,j,i-1), & |
---|
390 | sk(k,j,i-1), u_comp, & |
---|
391 | 0.5, ddx ) |
---|
392 | ENDDO |
---|
393 | degraded_l = .TRUE. |
---|
394 | |
---|
395 | CASE ( 7 ) |
---|
396 | |
---|
397 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
398 | v_comp = v(k,j+1,i)-v_gtrans |
---|
399 | flux_n(k) = v_comp * ( & |
---|
400 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
401 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
402 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
403 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
404 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
405 | ENDDO |
---|
406 | |
---|
407 | CASE ( 8 ) |
---|
408 | |
---|
409 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
410 | v_comp = v(k,j+1,i) - v_gtrans |
---|
411 | flux_n(k) = v_comp * ( & |
---|
412 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
413 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
414 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
415 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
416 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
417 | ! |
---|
418 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
419 | v_comp = v(k,j,i) - v_gtrans |
---|
420 | swap_flux_y_local(k,tn) = v_comp * & |
---|
421 | ( sk(k,j,i) + sk(k,j-1,i) ) * 0.5 |
---|
422 | swap_diss_y_local(k,tn) = diss_2nd( sk(k,j+2,i), sk(k,j+1,i), & |
---|
423 | sk(k,j,i), sk(k,j-1,i), & |
---|
424 | sk(k,j-1,i), v_comp, & |
---|
425 | 0.5, ddy ) |
---|
426 | ENDDO |
---|
427 | degraded_s = .TRUE. |
---|
428 | |
---|
429 | CASE DEFAULT |
---|
430 | |
---|
431 | END SELECT |
---|
432 | |
---|
433 | ! |
---|
434 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
435 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR. & |
---|
436 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) THEN |
---|
437 | |
---|
438 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
439 | v_comp = v(k,j+1,i) - v_gtrans |
---|
440 | flux_n(k) = v_comp * ( & |
---|
441 | 37.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
442 | - 8.0 * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
443 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) * adv_sca_5 |
---|
444 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
445 | 10.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
446 | - 5.0 * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
447 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) * adv_sca_5 |
---|
448 | ENDDO |
---|
449 | |
---|
450 | ELSE |
---|
451 | |
---|
452 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
453 | u_comp = u(k,j,i+1) - u_gtrans |
---|
454 | flux_r(k) = u_comp * ( & |
---|
455 | 37.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
456 | - 8.0 * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
457 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) * adv_sca_5 |
---|
458 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
459 | 10.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
460 | - 5.0 * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
461 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) * adv_sca_5 |
---|
462 | ENDDO |
---|
463 | |
---|
464 | ENDIF |
---|
465 | |
---|
466 | ELSE |
---|
467 | |
---|
468 | ! |
---|
469 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
470 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
471 | u_comp = u(k,j,i+1) - u_gtrans |
---|
472 | flux_r(k) = u_comp * ( & |
---|
473 | 37.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
474 | - 8.0 * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
475 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) * adv_sca_5 |
---|
476 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
477 | 10.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
478 | - 5.0 * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
479 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) * adv_sca_5 |
---|
480 | |
---|
481 | v_comp = v(k,j+1,i) - v_gtrans |
---|
482 | flux_n(k) = v_comp * ( & |
---|
483 | 37.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
484 | - 8.0 * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
485 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) * adv_sca_5 |
---|
486 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
487 | 10.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
488 | - 5.0 * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
489 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) * adv_sca_5 |
---|
490 | ENDDO |
---|
491 | |
---|
492 | ENDIF |
---|
493 | ! |
---|
494 | !-- Compute left- and southside fluxes of the respective PE bounds. |
---|
495 | IF ( j == nys .AND. .NOT. degraded_s ) THEN |
---|
496 | |
---|
497 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
498 | v_comp = v(k,j,i) - v_gtrans |
---|
499 | swap_flux_y_local(k,tn) = v_comp * ( & |
---|
500 | 37.0 * ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
501 | - 8.0 * ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
502 | + ( sk(k,j+2,i) + sk(k,j-3,i) ) & |
---|
503 | ) * adv_sca_5 |
---|
504 | swap_diss_y_local(k,tn) = -ABS( v_comp ) * ( & |
---|
505 | 10.0 * ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
506 | - 5.0 * ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
507 | + sk(k,j+2,i) - sk(k,j-3,i) & |
---|
508 | ) * adv_sca_5 |
---|
509 | ENDDO |
---|
510 | |
---|
511 | ENDIF |
---|
512 | |
---|
513 | IF ( i == i_omp .AND. .NOT. degraded_l ) THEN |
---|
514 | |
---|
515 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
516 | u_comp = u(k,j,i) - u_gtrans |
---|
517 | swap_flux_x_local(k,j,tn) = u_comp * ( & |
---|
518 | 37.0 * ( sk(k,j,i) + sk(k,j,i-1) ) & |
---|
519 | - 8.0 * ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
520 | + ( sk(k,j,i+2) + sk(k,j,i-3) ) & |
---|
521 | ) * adv_sca_5 |
---|
522 | swap_diss_x_local(k,j,tn) = -ABS( u_comp ) * ( & |
---|
523 | 10.0 * ( sk(k,j,i) - sk(k,j,i-1) ) & |
---|
524 | - 5.0 * ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
525 | + ( sk(k,j,i+2) - sk(k,j,i-3) ) & |
---|
526 | ) * adv_sca_5 |
---|
527 | ENDDO |
---|
528 | |
---|
529 | ENDIF |
---|
530 | |
---|
531 | ! |
---|
532 | !-- Now compute the tendency terms for the horizontal parts |
---|
533 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
534 | |
---|
535 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
536 | ( flux_r(k) + diss_r(k) - swap_flux_x_local(k,j,tn) - & |
---|
537 | swap_diss_x_local(k,j,tn) ) * ddx & |
---|
538 | + ( flux_n(k) + diss_n(k) - swap_flux_y_local(k,tn) - & |
---|
539 | swap_diss_y_local(k,tn) ) * ddy & |
---|
540 | ) |
---|
541 | |
---|
542 | swap_flux_y_local(k,tn) = flux_n(k) |
---|
543 | swap_diss_y_local(k,tn) = diss_n(k) |
---|
544 | swap_flux_x_local(k,j,tn) = flux_r(k) |
---|
545 | swap_diss_x_local(k,j,tn) = diss_r(k) |
---|
546 | |
---|
547 | ENDDO |
---|
548 | |
---|
549 | ! |
---|
550 | !-- Vertical advection, degradation of order near bottom and top. |
---|
551 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to later |
---|
552 | !-- calculation of statistics the top flux at the surface should be 0. |
---|
553 | flux_t(nzb_s_inner(j,i)) = 0.0 |
---|
554 | diss_t(nzb_s_inner(j,i)) = 0.0 |
---|
555 | |
---|
556 | ! |
---|
557 | !-- 2nd-order scheme (bottom) |
---|
558 | k = nzb_s_inner(j,i)+1 |
---|
559 | flux_d = flux_t(k-1) |
---|
560 | diss_d = diss_t(k-1) |
---|
561 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) * 0.5 |
---|
562 | |
---|
563 | ! |
---|
564 | !-- sk(k,j,i) is referenced three times to avoid an access below surface |
---|
565 | diss_t(k) = diss_2nd( sk(k+2,j,i), sk(k+1,j,i), sk(k,j,i), sk(k,j,i), & |
---|
566 | sk(k,j,i), w(k,j,i), 0.5, ddzw(k) ) |
---|
567 | |
---|
568 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) - flux_d - diss_d ) & |
---|
569 | * ddzw(k) |
---|
570 | ! |
---|
571 | !-- WS3 as an intermediate step (bottom) |
---|
572 | k = nzb_s_inner(j,i) + 2 |
---|
573 | flux_d = flux_t(k-1) |
---|
574 | diss_d = diss_t(k-1) |
---|
575 | flux_t(k) = w(k,j,i) * ( & |
---|
576 | 7.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
577 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
578 | ) * adv_sca_3 |
---|
579 | diss_t(k) = -ABS( w(k,j,i) ) * ( & |
---|
580 | 3.0 * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
581 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) & |
---|
582 | ) * adv_sca_3 |
---|
583 | |
---|
584 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) - flux_d - diss_d ) & |
---|
585 | * ddzw(k) |
---|
586 | ! |
---|
587 | !-- WS5 |
---|
588 | DO k = nzb_s_inner(j,i)+3, nzt-2 |
---|
589 | |
---|
590 | flux_d = flux_t(k-1) |
---|
591 | diss_d = diss_t(k-1) |
---|
592 | flux_t(k) = w(k,j,i) * ( & |
---|
593 | 37.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
594 | - 8.0 * ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
595 | + ( sk(k+3,j,i) + sk(k-2,j,i) ) & |
---|
596 | ) * adv_sca_5 |
---|
597 | diss_t(k) = -ABS( w(k,j,i) ) * ( & |
---|
598 | 10.0 * ( sk(k+1,j,i) - sk(k,j,i) )& |
---|
599 | - 5.0 * ( sk(k+2,j,i) - sk(k-1,j,i) )& |
---|
600 | + ( sk(k+3,j,i) - sk(k-2,j,i) )& |
---|
601 | ) * adv_sca_5 |
---|
602 | |
---|
603 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
604 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
605 | |
---|
606 | ENDDO |
---|
607 | |
---|
608 | ! |
---|
609 | !-- WS3 as an intermediate step (top) |
---|
610 | k = nzt - 1 |
---|
611 | flux_d = flux_t(k-1) |
---|
612 | diss_d = diss_t(k-1) |
---|
613 | flux_t(k) = w(k,j,i) * ( & |
---|
614 | 7.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
615 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
616 | ) * adv_sca_3 |
---|
617 | diss_t(k) = -ABS( w(k,j,i) ) * ( & |
---|
618 | 3.0 * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
619 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) & |
---|
620 | ) * adv_sca_3 |
---|
621 | |
---|
622 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) - flux_d - diss_d ) & |
---|
623 | * ddzw(k) |
---|
624 | ! |
---|
625 | !-- 2nd-order scheme (top) |
---|
626 | k = nzt |
---|
627 | flux_d = flux_t(k-1) |
---|
628 | diss_d = diss_t(k-1) |
---|
629 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) * 0.5 |
---|
630 | |
---|
631 | ! |
---|
632 | !-- sk(k+1) is referenced two times to avoid a segmentation fault at top |
---|
633 | diss_t(k) = diss_2nd( sk(k+1,j,i), sk(k+1,j,i), sk(k,j,i), sk(k-1,j,i), & |
---|
634 | sk(k-2,j,i), w(k,j,i), 0.5, ddzw(k) ) |
---|
635 | |
---|
636 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) - flux_d - diss_d ) & |
---|
637 | * ddzw(k) |
---|
638 | ! |
---|
639 | !-- Evaluation of statistics |
---|
640 | SELECT CASE ( sk_char ) |
---|
641 | |
---|
642 | CASE ( 'pt' ) |
---|
643 | |
---|
644 | DO k = nzb_s_inner(j,i), nzt |
---|
645 | sums_wspts_ws_l(k) = sums_wspts_ws_l(k) + & |
---|
646 | ( flux_t(k) + diss_t(k) ) & |
---|
647 | * weight_substep(intermediate_timestep_count) |
---|
648 | ENDDO |
---|
649 | |
---|
650 | CASE ( 'sa' ) |
---|
651 | |
---|
652 | DO k = nzb_s_inner(j,i), nzt |
---|
653 | sums_wssas_ws_l(k) = sums_wssas_ws_l(k) + & |
---|
654 | ( flux_t(k) + diss_t(k) ) & |
---|
655 | * weight_substep(intermediate_timestep_count) |
---|
656 | ENDDO |
---|
657 | |
---|
658 | CASE ( 'q' ) |
---|
659 | |
---|
660 | DO k = nzb_s_inner(j,i), nzt |
---|
661 | sums_wsqs_ws_l(k) = sums_wsqs_ws_l(k) + & |
---|
662 | ( flux_t(k) + diss_t(k) ) & |
---|
663 | * weight_substep(intermediate_timestep_count) |
---|
664 | ENDDO |
---|
665 | |
---|
666 | END SELECT |
---|
667 | |
---|
668 | END SUBROUTINE advec_s_ws_ij |
---|
669 | |
---|
670 | |
---|
671 | |
---|
672 | |
---|
673 | !------------------------------------------------------------------------------! |
---|
674 | ! Advection of u-component - Call for grid point i,j |
---|
675 | !------------------------------------------------------------------------------! |
---|
676 | SUBROUTINE advec_u_ws_ij( i, j, i_omp, tn ) |
---|
677 | |
---|
678 | USE arrays_3d |
---|
679 | USE constants |
---|
680 | USE control_parameters |
---|
681 | USE grid_variables |
---|
682 | USE indices |
---|
683 | USE statistics |
---|
684 | |
---|
685 | IMPLICIT NONE |
---|
686 | |
---|
687 | INTEGER :: i, i_omp, j, k, tn |
---|
688 | LOGICAL :: degraded_l, degraded_s |
---|
689 | REAL :: gu, gv, flux_d, diss_d, u_comp_l, v_comp, w_comp |
---|
690 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, & |
---|
691 | flux_n, diss_n, u_comp |
---|
692 | |
---|
693 | degraded_l = .FALSE. |
---|
694 | degraded_s = .FALSE. |
---|
695 | |
---|
696 | gu = 2.0 * u_gtrans |
---|
697 | gv = 2.0 * v_gtrans |
---|
698 | |
---|
699 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
700 | ! |
---|
701 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
702 | SELECT CASE ( boundary_flags(j,i) ) |
---|
703 | |
---|
704 | CASE ( 1 ) |
---|
705 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
706 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
707 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
708 | 7.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
709 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) * adv_mom_3 |
---|
710 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
711 | 3.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
712 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) * adv_mom_3 |
---|
713 | ENDDO |
---|
714 | |
---|
715 | CASE ( 2 ) |
---|
716 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
717 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
718 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
719 | u(k,j,i+1) + u(k,j,i) ) * 0.25 |
---|
720 | diss_r(k) = diss_2nd( u(k,j,i+1) ,u(k,j,i+1), u(k,j,i), & |
---|
721 | u(k,j,i-1), u(k,j,i-2), u_comp(k), & |
---|
722 | 0.25, ddx ) |
---|
723 | ENDDO |
---|
724 | |
---|
725 | CASE ( 3 ) |
---|
726 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
727 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
728 | flux_n(k) = v_comp * ( & |
---|
729 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
730 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
731 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
732 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
733 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
734 | ENDDO |
---|
735 | |
---|
736 | CASE ( 4 ) |
---|
737 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
738 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
739 | flux_n(k) = v_comp * ( u(k,j+1,i) + u(k,j,i) ) * 0.25 |
---|
740 | diss_n(k) = diss_2nd( u(k,j+1,i), u(k,j+1,i), u(k,j,i), & |
---|
741 | u(k,j-1,i), u(k,j-2,i), v_comp, & |
---|
742 | 0.25, ddy ) |
---|
743 | ENDDO |
---|
744 | |
---|
745 | CASE ( 5 ) |
---|
746 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
747 | ! |
---|
748 | !-- Compute leftside fluxes for the left boundary of PE domain |
---|
749 | u_comp(k) = u(k,j,i) + u(k,j,i-1) - gu |
---|
750 | flux_l_u(k,j,tn) = u_comp(k) * ( u(k,j,i) + u(k,j,i-1) ) * 0.25 |
---|
751 | diss_l_u(k,j,tn) = diss_2nd( u(k,j,i+2), u(k,j,i+1), u(k,j,i), & |
---|
752 | u(k,j,i-1), u(k,j,i-1), u_comp(k),& |
---|
753 | 0.25, ddx ) |
---|
754 | |
---|
755 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
756 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
757 | 7.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
758 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) * adv_mom_3 |
---|
759 | diss_r(k) = - ABS( u_comp(k) -gu ) * ( & |
---|
760 | 3.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
761 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) * adv_mom_3 |
---|
762 | ENDDO |
---|
763 | degraded_l = .TRUE. |
---|
764 | |
---|
765 | CASE ( 7 ) |
---|
766 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
767 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
768 | flux_n(k) = v_comp * ( & |
---|
769 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
770 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
771 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
772 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
773 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
774 | ENDDO |
---|
775 | |
---|
776 | CASE ( 8 ) |
---|
777 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
778 | ! |
---|
779 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
780 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
781 | flux_s_u(k,tn) = v_comp * ( u(k,j,i) + u(k,j-1,i) ) * 0.25 |
---|
782 | diss_s_u(k,tn) = diss_2nd( u(k,j+2,i), u(k,j+1,i), u(k,j,i), & |
---|
783 | u(k,j-1,i), u(k,j-1,i), v_comp, & |
---|
784 | 0.25, ddy ) |
---|
785 | |
---|
786 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
787 | flux_n(k) = v_comp * ( & |
---|
788 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
789 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
790 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
791 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
792 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
793 | ENDDO |
---|
794 | degraded_s = .TRUE. |
---|
795 | |
---|
796 | CASE DEFAULT |
---|
797 | |
---|
798 | END SELECT |
---|
799 | ! |
---|
800 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
801 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR. & |
---|
802 | boundary_flags(j,i) == 5 ) THEN |
---|
803 | |
---|
804 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
805 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
806 | flux_n(k) = v_comp * ( & |
---|
807 | 37.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
808 | - 8.0 * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
809 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
810 | diss_n(k) = - ABS ( v_comp ) * ( & |
---|
811 | 10.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
812 | - 5.0 * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
813 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
814 | ENDDO |
---|
815 | |
---|
816 | ELSE |
---|
817 | |
---|
818 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
819 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
820 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
821 | 37.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
822 | - 8.0 * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
823 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) * adv_mom_5 |
---|
824 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
825 | 10.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
826 | - 5.0 * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
827 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
828 | ENDDO |
---|
829 | |
---|
830 | ENDIF |
---|
831 | |
---|
832 | ELSE |
---|
833 | ! |
---|
834 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
835 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
836 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
837 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
838 | 37.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
839 | - 8.0 * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
840 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) * adv_mom_5 |
---|
841 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
842 | 10.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
843 | - 5.0 * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
844 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
845 | |
---|
846 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
847 | flux_n(k) = v_comp * ( & |
---|
848 | 37.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
849 | - 8.0 * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
850 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
851 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
852 | 10.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
853 | - 5.0 * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
854 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
855 | ENDDO |
---|
856 | |
---|
857 | ENDIF |
---|
858 | ! |
---|
859 | !-- Compute left- and southside fluxes for the respective boundary of PE |
---|
860 | IF ( j == nys .AND. ( .NOT. degraded_s ) ) THEN |
---|
861 | |
---|
862 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
863 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
864 | flux_s_u(k,tn) = v_comp * ( & |
---|
865 | 37.0 * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
866 | - 8.0 * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
867 | + ( u(k,j+2,i) + u(k,j-3,i) ) ) * adv_mom_5 |
---|
868 | diss_s_u(k,tn) = - ABS(v_comp) * ( & |
---|
869 | 10.0 * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
870 | - 5.0 * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
871 | + ( u(k,j+2,i) - u(k,j-3,i) ) ) * adv_mom_5 |
---|
872 | ENDDO |
---|
873 | |
---|
874 | ENDIF |
---|
875 | |
---|
876 | IF ( i == i_omp .AND. ( .NOT. degraded_l ) ) THEN |
---|
877 | |
---|
878 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
879 | u_comp_l = u(k,j,i)+u(k,j,i-1)-gu |
---|
880 | flux_l_u(k,j,tn) = u_comp_l * ( & |
---|
881 | 37.0 * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
882 | - 8.0 * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
883 | + ( u(k,j,i+2) + u(k,j,i-3) ) ) * adv_mom_5 |
---|
884 | diss_l_u(k,j,tn) = - ABS(u_comp_l) * ( & |
---|
885 | 10.0 * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
886 | - 5.0 * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
887 | + ( u(k,j,i+2) - u(k,j,i-3) ) ) * adv_mom_5 |
---|
888 | ENDDO |
---|
889 | |
---|
890 | ENDIF |
---|
891 | ! |
---|
892 | !-- Now compute the tendency terms for the horizontal parts. |
---|
893 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
894 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
895 | ( flux_r(k) + diss_r(k) & |
---|
896 | - flux_l_u(k,j,tn) - diss_l_u(k,j,tn) ) * ddx & |
---|
897 | + ( flux_n(k) + diss_n(k) & |
---|
898 | - flux_s_u(k,tn) - diss_s_u(k,tn) ) * ddy ) |
---|
899 | |
---|
900 | flux_l_u(k,j,tn) = flux_r(k) |
---|
901 | diss_l_u(k,j,tn) = diss_r(k) |
---|
902 | flux_s_u(k,tn) = flux_n(k) |
---|
903 | diss_s_u(k,tn) = diss_n(k) |
---|
904 | ! |
---|
905 | !-- Statistical Evaluation of u'u'. The factor has to be applied for |
---|
906 | !-- right evaluation when gallilei_trans = .T. . |
---|
907 | sums_us2_ws_l(k) = sums_us2_ws_l(k) & |
---|
908 | + ( flux_r(k) * & |
---|
909 | ( u_comp(k) - 2.0 * hom(k,1,1,0) ) & |
---|
910 | / ( u_comp(k) - gu + 1.0E-20 ) & |
---|
911 | + diss_r(k) * & |
---|
912 | ABS( u_comp(k) - 2.0 * hom(k,1,1,0) ) & |
---|
913 | / ( ABS( u_comp(k) - gu ) + 1.0E-20 ) ) & |
---|
914 | * weight_substep(intermediate_timestep_count) |
---|
915 | ENDDO |
---|
916 | sums_us2_ws_l(nzb_u_inner(j,i)) = sums_us2_ws_l(nzb_u_inner(j,i)+1) |
---|
917 | |
---|
918 | |
---|
919 | ! |
---|
920 | !-- Vertical advection, degradation of order near surface and top. |
---|
921 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
922 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
923 | flux_t(nzb_u_inner(j,i)) = 0. !statistical reasons |
---|
924 | diss_t(nzb_u_inner(j,i)) = 0. |
---|
925 | ! |
---|
926 | !-- 2nd order scheme (bottom) |
---|
927 | k = nzb_u_inner(j,i)+1 |
---|
928 | flux_d = flux_t(k-1) |
---|
929 | diss_d = diss_t(k-1) |
---|
930 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
931 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) *0.25 |
---|
932 | diss_t(k) = diss_2nd( u(k+2,j,i), u(k+1,j,i), u(k,j,i), 0., 0., & |
---|
933 | w_comp, 0.25, ddzw(k) ) |
---|
934 | |
---|
935 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
936 | - flux_d - diss_d ) * ddzw(k) |
---|
937 | ! |
---|
938 | !-- WS3 as an intermediate step (bottom) |
---|
939 | k = nzb_u_inner(j,i)+2 |
---|
940 | flux_d = flux_t(k-1) |
---|
941 | diss_d = diss_t(k-1) |
---|
942 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
943 | flux_t(k) = w_comp * ( & |
---|
944 | 7.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
945 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
946 | diss_t(k) = -ABS( w_comp) * ( & |
---|
947 | 3.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
948 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
949 | |
---|
950 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
951 | - flux_d - diss_d ) * ddzw(k) |
---|
952 | ! |
---|
953 | !-- WS5 |
---|
954 | DO k = nzb_u_inner(j,i)+3, nzt-2 |
---|
955 | flux_d = flux_t(k-1) |
---|
956 | diss_d = diss_t(k-1) |
---|
957 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
958 | flux_t(k) = w_comp * ( & |
---|
959 | 37.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
960 | - 8.0 * ( u(k+2,j,i) + u(k-1,j,i) ) & |
---|
961 | + ( u(k+3,j,i) + u(k-2,j,i) ) ) * adv_mom_5 |
---|
962 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
963 | 10.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
964 | - 5.0 * ( u(k+2,j,i) - u(k-1,j,i) ) & |
---|
965 | + ( u(k+3,j,i) - u(k-2,j,i) ) ) * adv_mom_5 |
---|
966 | |
---|
967 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
968 | - flux_d - diss_d ) * ddzw(k) |
---|
969 | ENDDO |
---|
970 | ! |
---|
971 | !-- WS3 as an intermediate step (top) |
---|
972 | k = nzt - 1 |
---|
973 | flux_d = flux_t(k-1) |
---|
974 | diss_d = diss_t(k-1) |
---|
975 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
976 | flux_t(k) = w_comp * ( & |
---|
977 | 7.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
978 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
979 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
980 | 3.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
981 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
982 | |
---|
983 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
984 | - flux_d - diss_d ) * ddzw(k) |
---|
985 | |
---|
986 | ! |
---|
987 | !-- 2nd order scheme (top) |
---|
988 | k = nzt |
---|
989 | flux_d = flux_t(k-1) |
---|
990 | diss_d = diss_t(k-1) |
---|
991 | w_comp = w(k,j,i)+w(k,j,i-1) |
---|
992 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) * 0.25 |
---|
993 | diss_t(k) = diss_2nd( u(k+1,j,i), u(k+1,j,i), u(k,j,i), u(k-1,j,i), & |
---|
994 | u(k-2,j,i), w_comp, 0.25, ddzw(k) ) |
---|
995 | |
---|
996 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
997 | - flux_d - diss_d ) * ddzw(k) |
---|
998 | |
---|
999 | ! |
---|
1000 | !-- sum up the vertical momentum fluxes |
---|
1001 | DO k = nzb_u_inner(j,i), nzt |
---|
1002 | sums_wsus_ws_l(k) = sums_wsus_ws_l(k) & |
---|
1003 | + ( flux_t(k) + diss_t(k) ) & |
---|
1004 | * weight_substep(intermediate_timestep_count) |
---|
1005 | ENDDO |
---|
1006 | |
---|
1007 | |
---|
1008 | END SUBROUTINE advec_u_ws_ij |
---|
1009 | |
---|
1010 | |
---|
1011 | |
---|
1012 | |
---|
1013 | !-----------------------------------------------------------------------------! |
---|
1014 | ! Advection of v-component - Call for grid point i,j |
---|
1015 | !-----------------------------------------------------------------------------! |
---|
1016 | SUBROUTINE advec_v_ws_ij( i, j, i_omp, tn ) |
---|
1017 | |
---|
1018 | USE arrays_3d |
---|
1019 | USE constants |
---|
1020 | USE control_parameters |
---|
1021 | USE grid_variables |
---|
1022 | USE indices |
---|
1023 | USE statistics |
---|
1024 | |
---|
1025 | IMPLICIT NONE |
---|
1026 | |
---|
1027 | INTEGER :: i, i_omp, j, k, tn |
---|
1028 | LOGICAL :: degraded_l, degraded_s |
---|
1029 | REAL :: gu, gv, flux_d, diss_d, u_comp, v_comp_l, w_comp |
---|
1030 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_n, & |
---|
1031 | diss_n, flux_r, diss_r, v_comp |
---|
1032 | |
---|
1033 | degraded_l = .FALSE. |
---|
1034 | degraded_s = .FALSE. |
---|
1035 | |
---|
1036 | gu = 2.0 * u_gtrans |
---|
1037 | gv = 2.0 * v_gtrans |
---|
1038 | |
---|
1039 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
1040 | ! |
---|
1041 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
1042 | SELECT CASE ( boundary_flags(j,i) ) |
---|
1043 | |
---|
1044 | CASE ( 1 ) |
---|
1045 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1046 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1047 | flux_r(k) = u_comp * ( & |
---|
1048 | 7.0 * (v(k,j,i+1) + v(k,j,i) ) & |
---|
1049 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
1050 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1051 | 3.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1052 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
1053 | ENDDO |
---|
1054 | |
---|
1055 | CASE ( 2 ) |
---|
1056 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1057 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1058 | flux_r(k) = u_comp * ( v(k,j,i+1) + v(k,j,i) ) * 0.25 |
---|
1059 | diss_r(k) = diss_2nd( v(k,j,i+1), v(k,j,i+1), v(k,j,i), & |
---|
1060 | v(k,j,i-1), v(k,j,i-2), u_comp, & |
---|
1061 | 0.25, ddx ) |
---|
1062 | ENDDO |
---|
1063 | |
---|
1064 | CASE ( 3 ) |
---|
1065 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1066 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1067 | flux_n(k) = ( v_comp(k)- gv ) * ( & |
---|
1068 | 7.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1069 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) * adv_mom_3 |
---|
1070 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
1071 | 3.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1072 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) * adv_mom_3 |
---|
1073 | ENDDO |
---|
1074 | |
---|
1075 | CASE ( 4 ) |
---|
1076 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1077 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1078 | flux_n(k) = ( v_comp(k) - gv ) * & |
---|
1079 | ( v(k,j+1,i) + v(k,j,i) ) * 0.25 |
---|
1080 | diss_n(k) = diss_2nd( v(k,j+1,i), v(k,j+1,i), v(k,j,i), & |
---|
1081 | v(k,j-1,i), v(k,j-2,i), v_comp(k), & |
---|
1082 | 0.25, ddy ) |
---|
1083 | ENDDO |
---|
1084 | |
---|
1085 | CASE ( 5 ) |
---|
1086 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1087 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
1088 | flux_r(k) = u_comp * ( & |
---|
1089 | 7.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1090 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
1091 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1092 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1093 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
1094 | ENDDO |
---|
1095 | |
---|
1096 | CASE ( 6 ) |
---|
1097 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1098 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
1099 | flux_l_v(k,j,tn) = u_comp * ( v(k,j,i) + v(k,j,i-1) ) * 0.25 |
---|
1100 | diss_l_v(k,j,tn) = diss_2nd( v(k,j,i+2), v(k,j,i+1), v(k,j,i),& |
---|
1101 | v(k,j,i-1), v(k,j,i-1), u_comp, & |
---|
1102 | 0.25, ddx ) |
---|
1103 | |
---|
1104 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1105 | flux_r(k) = u_comp * ( & |
---|
1106 | 7.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1107 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
1108 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1109 | 3.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1110 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
1111 | ENDDO |
---|
1112 | degraded_l = .TRUE. |
---|
1113 | |
---|
1114 | CASE ( 7 ) |
---|
1115 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1116 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
1117 | flux_s_v(k,tn) = v_comp(k) * ( v(k,j,i) + v(k,j-1,i) ) * 0.25 |
---|
1118 | diss_s_v(k,tn) = diss_2nd( v(k,j+2,i), v(k,j+1,i), v(k,j,i), & |
---|
1119 | v(k,j-1,i), v(k,j-1,i), v_comp(k), & |
---|
1120 | 0.25, ddy ) |
---|
1121 | |
---|
1122 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1123 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
1124 | 7.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1125 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) * adv_mom_3 |
---|
1126 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
1127 | 3.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1128 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) * adv_mom_3 |
---|
1129 | ENDDO |
---|
1130 | degraded_s = .TRUE. |
---|
1131 | |
---|
1132 | CASE DEFAULT |
---|
1133 | |
---|
1134 | END SELECT |
---|
1135 | ! |
---|
1136 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
1137 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR. & |
---|
1138 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) THEN |
---|
1139 | |
---|
1140 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1141 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1142 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
1143 | 37.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1144 | - 8.0 * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
1145 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
1146 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
1147 | 10.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1148 | - 5.0 * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
1149 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) * adv_mom_5 |
---|
1150 | ENDDO |
---|
1151 | |
---|
1152 | ELSE |
---|
1153 | |
---|
1154 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1155 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1156 | flux_r(k) = u_comp * ( & |
---|
1157 | 37.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1158 | - 8.0 * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
1159 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) * adv_mom_5 |
---|
1160 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1161 | 10.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1162 | - 5.0 * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
1163 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
1164 | ENDDO |
---|
1165 | |
---|
1166 | ENDIF |
---|
1167 | |
---|
1168 | ELSE |
---|
1169 | ! |
---|
1170 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
1171 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1172 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1173 | flux_r(k) = u_comp * ( & |
---|
1174 | 37.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1175 | - 8.0 * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
1176 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) * adv_mom_5 |
---|
1177 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1178 | 10.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1179 | - 5.0 * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
1180 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
1181 | |
---|
1182 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1183 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
1184 | 37.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1185 | - 8.0 * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
1186 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
1187 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
1188 | 10.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1189 | - 5.0 * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
1190 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) * adv_mom_5 |
---|
1191 | ENDDO |
---|
1192 | |
---|
1193 | ENDIF |
---|
1194 | ! |
---|
1195 | !-- Compute left- and southside fluxes for the respective boundary |
---|
1196 | IF ( i == i_omp .AND. .NOT. degraded_l ) THEN |
---|
1197 | |
---|
1198 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1199 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
1200 | flux_l_v(k,j,tn) = u_comp * ( & |
---|
1201 | 37.0 * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
1202 | - 8.0 * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
1203 | + ( v(k,j,i+2) + v(k,j,i-3) ) ) * adv_mom_5 |
---|
1204 | diss_l_v(k,j,tn) = - ABS( u_comp ) * ( & |
---|
1205 | 10.0 * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
1206 | - 5.0 * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
1207 | + ( v(k,j,i+2) - v(k,j,i-3) ) ) * adv_mom_5 |
---|
1208 | ENDDO |
---|
1209 | |
---|
1210 | ENDIF |
---|
1211 | |
---|
1212 | IF ( j == nysv .AND. .NOT. degraded_s ) THEN |
---|
1213 | |
---|
1214 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1215 | v_comp_l = v(k,j,i) + v(k,j-1,i) - gv |
---|
1216 | flux_s_v(k,tn) = v_comp_l * ( & |
---|
1217 | 37.0 * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
1218 | - 8.0 * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
1219 | + ( v(k,j+2,i) + v(k,j-3,i) ) ) * adv_mom_5 |
---|
1220 | diss_s_v(k,tn) = - ABS( v_comp_l ) * ( & |
---|
1221 | 10.0 * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
1222 | - 5.0 * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
1223 | + ( v(k,j+2,i) - v(k,j-3,i) ) ) * adv_mom_5 |
---|
1224 | ENDDO |
---|
1225 | |
---|
1226 | ENDIF |
---|
1227 | ! |
---|
1228 | !-- Now compute the tendency terms for the horizontal parts. |
---|
1229 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1230 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1231 | ( flux_r(k) + diss_r(k) & |
---|
1232 | - flux_l_v(k,j,tn) - diss_l_v(k,j,tn) ) * ddx & |
---|
1233 | + ( flux_n(k) + diss_n(k) & |
---|
1234 | - flux_s_v(k,tn) - diss_s_v(k,tn) ) * ddy ) |
---|
1235 | |
---|
1236 | flux_l_v(k,j,tn) = flux_r(k) |
---|
1237 | diss_l_v(k,j,tn) = diss_r(k) |
---|
1238 | flux_s_v(k,tn) = flux_n(k) |
---|
1239 | diss_s_v(k,tn) = diss_n(k) |
---|
1240 | |
---|
1241 | ! |
---|
1242 | !-- Statistical Evaluation of v'v'. The factor has to be applied for |
---|
1243 | !-- right evaluation when gallilei_trans = .T. . |
---|
1244 | |
---|
1245 | sums_vs2_ws_l(k) = sums_vs2_ws_l(k) & |
---|
1246 | + ( flux_n(k) & |
---|
1247 | * ( v_comp(k) - 2.0 * hom(k,1,2,0) ) & |
---|
1248 | / ( v_comp(k) - gv + 1.0E-20 ) & |
---|
1249 | + diss_n(k) & |
---|
1250 | * ABS( v_comp(k) - 2.0 * hom(k,1,2,0) ) & |
---|
1251 | / ( ABS( v_comp(k) - gv ) +1.0E-20 ) ) & |
---|
1252 | * weight_substep(intermediate_timestep_count) |
---|
1253 | |
---|
1254 | ENDDO |
---|
1255 | sums_vs2_ws_l(nzb_v_inner(j,i)) = sums_vs2_ws_l(nzb_v_inner(j,i)+1) |
---|
1256 | |
---|
1257 | ! |
---|
1258 | !-- Vertical advection, degradation of order near surface and top. |
---|
1259 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
1260 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
1261 | flux_t(nzb_v_inner(j,i)) = 0.0 !statistical reasons |
---|
1262 | diss_t(nzb_v_inner(j,i)) = 0.0 |
---|
1263 | ! |
---|
1264 | !-- 2nd order scheme (bottom) |
---|
1265 | k = nzb_v_inner(j,i)+1 |
---|
1266 | flux_d = flux_t(k-1) |
---|
1267 | diss_d = diss_t(k-1) |
---|
1268 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1269 | flux_t(k) = w_comp * ( v(k+1,j,i) + v(k,j,i) ) * 0.25 |
---|
1270 | diss_t(k) = diss_2nd( v(k+2,j,i), v(k+1,j,i), v(k,j,i), 0.0, 0.0, & |
---|
1271 | w_comp, 0.25, ddzw(k) ) |
---|
1272 | |
---|
1273 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1274 | - flux_d - diss_d ) * ddzw(k) |
---|
1275 | |
---|
1276 | ! |
---|
1277 | !-- WS3 as an intermediate step (bottom) |
---|
1278 | k = nzb_v_inner(j,i)+2 |
---|
1279 | flux_d = flux_t(k-1) |
---|
1280 | diss_d = diss_t(k-1) |
---|
1281 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1282 | flux_t(k) = w_comp * ( & |
---|
1283 | 7.0 * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
1284 | - ( v(k+2,j,i) + v(k-1,j,i) ) ) * adv_mom_3 |
---|
1285 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1286 | 3.0 * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
1287 | - ( v(k+2,j,i) - v(k-1,j,i) ) ) * adv_mom_3 |
---|
1288 | |
---|
1289 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1290 | - flux_d - diss_d ) * ddzw(k) |
---|
1291 | ! |
---|
1292 | !-- WS5 |
---|
1293 | DO k = nzb_v_inner(j,i)+3, nzt-2 |
---|
1294 | flux_d = flux_t(k-1) |
---|
1295 | diss_d = diss_t(k-1) |
---|
1296 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1297 | flux_t(k) = w_comp * ( & |
---|
1298 | 37.0 * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
1299 | - 8.0 * ( v(k+2,j,i) + v(k-1,j,i) ) & |
---|
1300 | + ( v(k+3,j,i) + v(k-2,j,i) ) ) * adv_mom_5 |
---|
1301 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1302 | 10.0 * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
1303 | - 5.0 * ( v(k+2,j,i) - v(k-1,j,i) ) & |
---|
1304 | + ( v(k+3,j,i) - v(k-2,j,i) ) ) * adv_mom_5 |
---|
1305 | |
---|
1306 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1307 | - flux_d - diss_d ) * ddzw(k) |
---|
1308 | ENDDO |
---|
1309 | ! |
---|
1310 | !-- WS3 as an intermediate step (top) |
---|
1311 | k = nzt - 1 |
---|
1312 | flux_d = flux_t(k-1) |
---|
1313 | diss_d = diss_t(k-1) |
---|
1314 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1315 | flux_t(k) = w_comp * ( & |
---|
1316 | 7.0 * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
1317 | - ( v(k+2,j,i) + v(k-1,j,i) ) ) * adv_mom_3 |
---|
1318 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1319 | 3.0 * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
1320 | - ( v(k+2,j,i) - v(k-1,j,i) ) ) * adv_mom_3 |
---|
1321 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1322 | - flux_d - diss_d ) * ddzw(k) |
---|
1323 | ! |
---|
1324 | !-- 2nd order scheme (top) |
---|
1325 | k = nzt |
---|
1326 | flux_d = flux_t(k-1) |
---|
1327 | diss_d = diss_t(k-1) |
---|
1328 | w_comp = w(k,j-1,i)+w(k,j,i) |
---|
1329 | flux_t(k) = w_comp * ( v(k+1,j,i) + v(k,j,i) ) * 0.25 |
---|
1330 | diss_t(k) = diss_2nd( v(k+1,j,i), v(k+1,j,i), v(k,j,i), v(k-1,j,i), & |
---|
1331 | v(k-2,j,i), w_comp, 0.25, ddzw(k) ) |
---|
1332 | |
---|
1333 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1334 | - flux_d - diss_d ) * ddzw(k) |
---|
1335 | |
---|
1336 | DO k = nzb_v_inner(j,i), nzt |
---|
1337 | sums_wsvs_ws_l(k) = sums_wsvs_ws_l(k) & |
---|
1338 | + ( flux_t(k) + diss_t(k) ) & |
---|
1339 | * weight_substep(intermediate_timestep_count) |
---|
1340 | ENDDO |
---|
1341 | |
---|
1342 | END SUBROUTINE advec_v_ws_ij |
---|
1343 | |
---|
1344 | |
---|
1345 | |
---|
1346 | !------------------------------------------------------------------------------! |
---|
1347 | ! Advection of w-component - Call for grid point i,j |
---|
1348 | !------------------------------------------------------------------------------! |
---|
1349 | SUBROUTINE advec_w_ws_ij( i, j, i_omp, tn ) |
---|
1350 | |
---|
1351 | USE arrays_3d |
---|
1352 | USE constants |
---|
1353 | USE control_parameters |
---|
1354 | USE grid_variables |
---|
1355 | USE indices |
---|
1356 | USE statistics |
---|
1357 | |
---|
1358 | IMPLICIT NONE |
---|
1359 | |
---|
1360 | INTEGER :: i, i_omp, j, k, tn |
---|
1361 | LOGICAL :: degraded_l, degraded_s |
---|
1362 | REAL :: gu, gv, flux_d, diss_d, u_comp, v_comp, w_comp |
---|
1363 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, flux_n, & |
---|
1364 | diss_n |
---|
1365 | |
---|
1366 | degraded_l = .FALSE. |
---|
1367 | degraded_s = .FALSE. |
---|
1368 | |
---|
1369 | gu = 2.0 * u_gtrans |
---|
1370 | gv = 2.0 * v_gtrans |
---|
1371 | |
---|
1372 | |
---|
1373 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
1374 | ! |
---|
1375 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
1376 | SELECT CASE ( boundary_flags(j,i) ) |
---|
1377 | |
---|
1378 | CASE ( 1 ) |
---|
1379 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1380 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1381 | flux_r(k) = u_comp * ( & |
---|
1382 | 7.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1383 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) * adv_mom_3 |
---|
1384 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
1385 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1386 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) * adv_mom_3 |
---|
1387 | ENDDO |
---|
1388 | |
---|
1389 | CASE ( 2 ) |
---|
1390 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1391 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1392 | flux_r(k) = u_comp * ( w(k,j,i+1) + w(k,j,i) ) * 0.25 |
---|
1393 | diss_r(k) = diss_2nd( w(k,j,i+1), w(k,j,i+1), w(k,j,i), & |
---|
1394 | w(k,j,i-1), w(k,j,i-2), u_comp, & |
---|
1395 | 0.25, ddx ) |
---|
1396 | ENDDO |
---|
1397 | |
---|
1398 | CASE ( 3 ) |
---|
1399 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1400 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1401 | flux_n(k) = v_comp * ( & |
---|
1402 | 7.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1403 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) * adv_mom_3 |
---|
1404 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
1405 | 3.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1406 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) * adv_mom_3 |
---|
1407 | ENDDO |
---|
1408 | |
---|
1409 | CASE ( 4 ) |
---|
1410 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1411 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1412 | flux_n(k) = v_comp * ( w(k,j+1,i) + w(k,j,i) ) * 0.25 |
---|
1413 | diss_n(k) = diss_2nd( w(k,j+1,i), w(k,j+1,i), w(k,j,i), & |
---|
1414 | w(k,j-1,i), w(k,j-2,i), v_comp, & |
---|
1415 | 0.25, ddy ) |
---|
1416 | ENDDO |
---|
1417 | |
---|
1418 | CASE ( 5 ) |
---|
1419 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1420 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1421 | flux_r(k) = u_comp * ( & |
---|
1422 | 7.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1423 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) * adv_mom_3 |
---|
1424 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1425 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1426 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) * adv_mom_3 |
---|
1427 | ENDDO |
---|
1428 | |
---|
1429 | CASE ( 6 ) |
---|
1430 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1431 | ! |
---|
1432 | !-- Compute leftside fluxes for the left boundary of PE domain |
---|
1433 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1434 | flux_r(k) = u_comp *( & |
---|
1435 | 7.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1436 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) * adv_mom_3 |
---|
1437 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1438 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1439 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) * adv_mom_3 |
---|
1440 | |
---|
1441 | u_comp = u(k+1,j,i) + u(k,j,i) - gu |
---|
1442 | flux_l_w(k,j,tn) = u_comp * ( w(k,j,i) + w(k,j,i-1) ) * 0.25 |
---|
1443 | diss_l_w(k,j,tn) = diss_2nd( w(k,j,i+2), w(k,j,i+1), w(k,j,i), & |
---|
1444 | w(k,j,i-1), w(k,j,i-1), u_comp, & |
---|
1445 | 0.25, ddx ) |
---|
1446 | ENDDO |
---|
1447 | degraded_l = .TRUE. |
---|
1448 | |
---|
1449 | CASE ( 7 ) |
---|
1450 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1451 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1452 | flux_n(k) = v_comp *( & |
---|
1453 | 7.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1454 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) * adv_mom_3 |
---|
1455 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1456 | 3.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1457 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) * adv_mom_3 |
---|
1458 | ENDDO |
---|
1459 | |
---|
1460 | CASE ( 8 ) |
---|
1461 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1462 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1463 | flux_n(k) = v_comp * ( & |
---|
1464 | 7.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1465 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) * adv_mom_3 |
---|
1466 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1467 | 3.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1468 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) * adv_mom_3 |
---|
1469 | ! |
---|
1470 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
1471 | v_comp = v(k+1,j,i) + v(k,j,i) - gv |
---|
1472 | flux_s_w(k,tn) = v_comp * ( w(k,j,i) + w(k,j-1,i) ) * 0.25 |
---|
1473 | diss_s_w(k,tn) = diss_2nd( w(k,j+2,i), w(k,j+1,i), w(k,j,i), & |
---|
1474 | w(k,j-1,i), w(k,j-1,i), v_comp, & |
---|
1475 | 0.25, ddy ) |
---|
1476 | ENDDO |
---|
1477 | degraded_s = .TRUE. |
---|
1478 | |
---|
1479 | CASE DEFAULT |
---|
1480 | |
---|
1481 | END SELECT |
---|
1482 | ! |
---|
1483 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
1484 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR. & |
---|
1485 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) THEN |
---|
1486 | |
---|
1487 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1488 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1489 | flux_n(k) = v_comp * ( & |
---|
1490 | 37.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1491 | - 8.0 * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
1492 | + ( w(k,j+3,i) + w(k,j-2,i) ) ) * adv_mom_5 |
---|
1493 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1494 | 10.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1495 | - 5.0 * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
1496 | + ( w(k,j+3,i) - w(k,j-2,i) ) ) * adv_mom_5 |
---|
1497 | ENDDO |
---|
1498 | |
---|
1499 | ELSE |
---|
1500 | |
---|
1501 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1502 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1503 | flux_r(k) = u_comp * ( & |
---|
1504 | 37.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1505 | - 8.0 * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
1506 | + ( w(k,j,i+3) + w(k,j,i-2) ) ) * adv_mom_5 |
---|
1507 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1508 | 10.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1509 | - 5.0 * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
1510 | + ( w(k,j,i+3) - w(k,j,i-2) ) ) * adv_mom_5 |
---|
1511 | ENDDO |
---|
1512 | |
---|
1513 | ENDIF |
---|
1514 | |
---|
1515 | ELSE |
---|
1516 | ! |
---|
1517 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
1518 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1519 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1520 | flux_r(k) = u_comp * ( & |
---|
1521 | 37.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1522 | - 8.0 * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
1523 | + ( w(k,j,i+3) + w(k,j,i-2) ) ) * adv_mom_5 |
---|
1524 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1525 | 10.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1526 | - 5.0 * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
1527 | + ( w(k,j,i+3) - w(k,j,i-2) ) ) * adv_mom_5 |
---|
1528 | |
---|
1529 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1530 | flux_n(k) = v_comp * ( & |
---|
1531 | 37.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1532 | - 8.0 * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
1533 | + ( w(k,j+3,i) + w(k,j-2,i) ) ) * adv_mom_5 |
---|
1534 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1535 | 10.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1536 | - 5.0 * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
1537 | + ( w(k,j+3,i) - w(k,j-2,i) ) ) * adv_mom_5 |
---|
1538 | ENDDO |
---|
1539 | |
---|
1540 | ENDIF |
---|
1541 | ! |
---|
1542 | !-- Compute left- and southside fluxes for the respective boundary |
---|
1543 | IF ( j == nys .AND. .NOT. degraded_s ) THEN |
---|
1544 | |
---|
1545 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1546 | v_comp = v(k+1,j,i) + v(k,j,i) - gv |
---|
1547 | flux_s_w(k,tn) = v_comp * ( & |
---|
1548 | 37.0 * ( w(k,j,i) + w(k,j-1,i) ) & |
---|
1549 | - 8.0 * ( w(k,j+1,i) +w(k,j-2,i) ) & |
---|
1550 | + ( w(k,j+2,i) + w(k,j-3,i) ) ) * adv_mom_5 |
---|
1551 | diss_s_w(k,tn) = - ABS( v_comp ) * ( & |
---|
1552 | 10.0 * ( w(k,j,i) - w(k,j-1,i) ) & |
---|
1553 | - 5.0 * ( w(k,j+1,i) - w(k,j-2,i) ) & |
---|
1554 | + ( w(k,j+2,i) - w(k,j-3,i) ) ) * adv_mom_5 |
---|
1555 | ENDDO |
---|
1556 | |
---|
1557 | ENDIF |
---|
1558 | |
---|
1559 | IF ( i == i_omp .AND. .NOT. degraded_l ) THEN |
---|
1560 | |
---|
1561 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1562 | u_comp = u(k+1,j,i) + u(k,j,i) - gu |
---|
1563 | flux_l_w(k,j,tn) = u_comp * ( & |
---|
1564 | 37.0 * ( w(k,j,i) + w(k,j,i-1) ) & |
---|
1565 | - 8.0 * ( w(k,j,i+1) + w(k,j,i-2) ) & |
---|
1566 | + ( w(k,j,i+2) + w(k,j,i-3) ) ) * adv_mom_5 |
---|
1567 | diss_l_w(k,j,tn) = - ABS( u_comp ) * ( & |
---|
1568 | 10.0 * ( w(k,j,i) - w(k,j,i-1) ) & |
---|
1569 | - 5.0 * ( w(k,j,i+1) - w(k,j,i-2) ) & |
---|
1570 | + ( w(k,j,i+2) - w(k,j,i-3) ) ) * adv_mom_5 |
---|
1571 | ENDDO |
---|
1572 | |
---|
1573 | ENDIF |
---|
1574 | |
---|
1575 | ! |
---|
1576 | !-- Now compute the tendency terms for the horizontal parts. |
---|
1577 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1578 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1579 | ( flux_r(k) + diss_r(k) & |
---|
1580 | - flux_l_w(k,j,tn) - diss_l_w(k,j,tn) ) * ddx & |
---|
1581 | + ( flux_n(k) + diss_n(k) & |
---|
1582 | - flux_s_w(k,tn) - diss_s_w(k,tn) ) * ddy ) |
---|
1583 | |
---|
1584 | flux_l_w(k,j,tn) = flux_r(k) |
---|
1585 | diss_l_w(k,j,tn) = diss_r(k) |
---|
1586 | flux_s_w(k,tn) = flux_n(k) |
---|
1587 | diss_s_w(k,tn) = diss_n(k) |
---|
1588 | ENDDO |
---|
1589 | |
---|
1590 | ! |
---|
1591 | !-- Vertical advection, degradation of order near surface and top. |
---|
1592 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
1593 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
1594 | flux_t(nzb_w_inner(j,i)) = 0.0 !statistical reasons |
---|
1595 | diss_t(nzb_w_inner(j,i)) = 0.0 |
---|
1596 | ! |
---|
1597 | !-- 2nd order scheme (bottom) |
---|
1598 | k = nzb_w_inner(j,i)+1 |
---|
1599 | flux_d = flux_t(k-1) |
---|
1600 | diss_d = diss_t(k-1) |
---|
1601 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1602 | flux_t(k) = w_comp * ( w(k+1,j,i) + w(k,j,i) ) * 0.25 |
---|
1603 | diss_t(k) = diss_2nd( w(k+2,j,i), w(k+1,j,i), w(k,j,i), 0.0, 0.0, & |
---|
1604 | w_comp, 0.25, ddzu(k+1) ) |
---|
1605 | |
---|
1606 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1607 | - flux_d - diss_d ) * ddzu(k+1) |
---|
1608 | ! |
---|
1609 | !-- WS3 as an intermediate step (bottom) |
---|
1610 | k = nzb_w_inner(j,i)+2 |
---|
1611 | flux_d = flux_t(k-1) |
---|
1612 | diss_d = diss_t(k-1) |
---|
1613 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1614 | flux_t(k) = w_comp * ( & |
---|
1615 | 7.0 * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
1616 | - ( w(k+2,j,i) + w(k-1,j,i) ) ) * adv_mom_3 |
---|
1617 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1618 | 3.0 * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
1619 | - ( w(k+2,j,i) - w(k-1,j,i) ) ) * adv_mom_3 |
---|
1620 | |
---|
1621 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1622 | - flux_d - diss_d ) * ddzu(k+1) |
---|
1623 | ! |
---|
1624 | !-- WS5 |
---|
1625 | DO k = nzb_w_inner(j,i)+3, nzt-2 |
---|
1626 | flux_d = flux_t(k-1) |
---|
1627 | diss_d = diss_t(k-1) |
---|
1628 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1629 | flux_t(k) = w_comp * ( & |
---|
1630 | 37.0 * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
1631 | - 8.0 * ( w(k+2,j,i) + w(k-1,j,i) ) & |
---|
1632 | + ( w(k+3,j,i) + w(k-2,j,i) ) ) * adv_mom_5 |
---|
1633 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1634 | 10.0 * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
1635 | - 5.0 * ( w(k+2,j,i) - w(k-1,j,i) ) & |
---|
1636 | + ( w(k+3,j,i) - w(k-2,j,i) ) ) * adv_mom_5 |
---|
1637 | |
---|
1638 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1639 | - flux_d - diss_d ) * ddzu(k+1) |
---|
1640 | ENDDO |
---|
1641 | !-- WS3 as an intermediate step (top) |
---|
1642 | k = nzt - 1 |
---|
1643 | flux_d = flux_t(k-1) |
---|
1644 | diss_d = diss_t(k-1) |
---|
1645 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1646 | flux_t(k) = w_comp * ( & |
---|
1647 | 7.0 * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
1648 | - ( w(k+2,j,i) + w(k-1,j,i) ) ) *adv_mom_3 |
---|
1649 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1650 | 3.0 * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
1651 | - ( w(k+2,j,i) - w(k-1,j,i) ) ) * adv_mom_3 |
---|
1652 | |
---|
1653 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1654 | - flux_d - diss_d ) * ddzu(k+1) |
---|
1655 | ! |
---|
1656 | !-- 2nd order scheme (top) |
---|
1657 | k = nzt |
---|
1658 | flux_d = flux_t(k-1) |
---|
1659 | diss_d = diss_t(k-1) |
---|
1660 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1661 | flux_t(k) = w_comp * ( w(k+1,j,i) + w(k,j,i) ) * 0.25 |
---|
1662 | diss_t(k) = diss_2nd( w(k+1,j,i), w(k+1,j,i), w(k,j,i), w(k-1,j,i), & |
---|
1663 | w(k-2,j,i), w_comp, 0.25, ddzu(k+1) ) |
---|
1664 | |
---|
1665 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1666 | - flux_d - diss_d ) * ddzu(k+1) |
---|
1667 | |
---|
1668 | DO k = nzb_w_inner(j,i), nzt |
---|
1669 | sums_ws2_ws_l(k) = sums_ws2_ws_l(k) & |
---|
1670 | + ( flux_t(k) + diss_t(k) ) & |
---|
1671 | * weight_substep(intermediate_timestep_count) |
---|
1672 | ENDDO |
---|
1673 | |
---|
1674 | END SUBROUTINE advec_w_ws_ij |
---|
1675 | |
---|
1676 | |
---|
1677 | !------------------------------------------------------------------------------! |
---|
1678 | ! Scalar advection - Call for all grid points |
---|
1679 | !------------------------------------------------------------------------------! |
---|
1680 | SUBROUTINE advec_s_ws( sk, sk_char ) |
---|
1681 | |
---|
1682 | USE arrays_3d |
---|
1683 | USE constants |
---|
1684 | USE control_parameters |
---|
1685 | USE grid_variables |
---|
1686 | USE indices |
---|
1687 | USE statistics |
---|
1688 | |
---|
1689 | IMPLICIT NONE |
---|
1690 | |
---|
1691 | INTEGER :: i, j, k |
---|
1692 | |
---|
1693 | REAL, DIMENSION(:,:,:), POINTER :: sk |
---|
1694 | REAL :: flux_d, diss_d, u_comp, v_comp |
---|
1695 | REAL, DIMENSION(nzb:nzt+1) :: flux_r, diss_r, flux_n, diss_n |
---|
1696 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local, swap_diss_y_local, & |
---|
1697 | flux_t, diss_t |
---|
1698 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local, & |
---|
1699 | swap_diss_x_local |
---|
1700 | CHARACTER (LEN = *), INTENT(IN) :: sk_char |
---|
1701 | |
---|
1702 | ! |
---|
1703 | !-- Compute the fluxes for the whole left boundary of the processor domain. |
---|
1704 | i = nxl |
---|
1705 | DO j = nys, nyn |
---|
1706 | IF ( boundary_flags(j,i) == 6 ) THEN |
---|
1707 | |
---|
1708 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1709 | u_comp = u(k,j,i) - u_gtrans |
---|
1710 | swap_flux_x_local(k,j) = u_comp * ( & |
---|
1711 | sk(k,j,i) + sk(k,j,i-1)) * 0.5 |
---|
1712 | swap_diss_x_local(k,j) = diss_2nd( sk(k,j,i+2), sk(k,j,i+1), & |
---|
1713 | sk(k,j,i), sk(k,j,i-1), & |
---|
1714 | sk(k,j,i-1), u_comp, & |
---|
1715 | 0.5, ddx ) |
---|
1716 | ENDDO |
---|
1717 | |
---|
1718 | ELSE |
---|
1719 | |
---|
1720 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1721 | u_comp = u(k,j,i) - u_gtrans |
---|
1722 | swap_flux_x_local(k,j) = u_comp*( & |
---|
1723 | 37.0 * ( sk(k,j,i)+sk(k,j,i-1) ) & |
---|
1724 | - 8.0 * ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
1725 | + ( sk(k,j,i+2) + sk(k,j,i-3) ) )& |
---|
1726 | * adv_sca_5 |
---|
1727 | swap_diss_x_local(k,j) = - ABS( u_comp ) * ( & |
---|
1728 | 10.0 * (sk(k,j,i) - sk(k,j,i-1) ) & |
---|
1729 | - 5.0 * ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
1730 | + ( sk(k,j,i+2) - sk(k,j,i-3) ) )& |
---|
1731 | * adv_sca_5 |
---|
1732 | ENDDO |
---|
1733 | ENDIF |
---|
1734 | ENDDO |
---|
1735 | ! |
---|
1736 | !-- The following loop computes the horizontal fluxes for the interior of the |
---|
1737 | !-- processor domain plus south boundary points. Furthermore tendency terms |
---|
1738 | !-- are computed. |
---|
1739 | DO i = nxl, nxr |
---|
1740 | j = nys |
---|
1741 | IF ( boundary_flags(j,i) == 8 ) THEN |
---|
1742 | |
---|
1743 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1744 | v_comp = v(k,j,i) - v_gtrans |
---|
1745 | swap_flux_y_local(k) = v_comp * & |
---|
1746 | ( sk(k,j,i) + sk(k,j-1,i) ) * 0.5 |
---|
1747 | swap_diss_y_local(k) = diss_2nd( sk(k,j+2,i), sk(k,j+1,i), & |
---|
1748 | sk(k,j,i), sk(k,j-1,i), & |
---|
1749 | sk(k,j-1,i), v_comp, 0.5, ddy ) |
---|
1750 | ENDDO |
---|
1751 | |
---|
1752 | ELSE |
---|
1753 | |
---|
1754 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1755 | v_comp = v(k,j,i) - v_gtrans |
---|
1756 | swap_flux_y_local(k) = v_comp * ( & |
---|
1757 | 37.0 * ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
1758 | - 8.0 * ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
1759 | + ( sk(k,j+2,i) + sk(k,j-3,i) ) ) & |
---|
1760 | * adv_sca_5 |
---|
1761 | swap_diss_y_local(k)= - ABS( v_comp ) * ( & |
---|
1762 | 10.0 * ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
1763 | - 5.0 * ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
1764 | + ( sk(k,j+2,i)-sk(k,j-3,i) ) ) & |
---|
1765 | * adv_sca_5 |
---|
1766 | ENDDO |
---|
1767 | |
---|
1768 | ENDIF |
---|
1769 | |
---|
1770 | DO j = nys, nyn |
---|
1771 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
1772 | ! |
---|
1773 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
1774 | SELECT CASE ( boundary_flags(j,i) ) |
---|
1775 | |
---|
1776 | CASE ( 1 ) |
---|
1777 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1778 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1779 | flux_r(k) = u_comp * ( & |
---|
1780 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1781 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) & |
---|
1782 | * adv_sca_3 |
---|
1783 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1784 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1785 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) & |
---|
1786 | * adv_sca_3 |
---|
1787 | ENDDO |
---|
1788 | |
---|
1789 | CASE ( 2 ) |
---|
1790 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1791 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1792 | flux_r(k) = u_comp * ( sk(k,j,i+1) + sk(k,j,i) ) * 0.5 |
---|
1793 | diss_r(k) = diss_2nd( sk(k,j,i+1), sk(k,j,i+1), & |
---|
1794 | sk(k,j,i), sk(k,j,i-1), & |
---|
1795 | sk(k,j,i-2), u_comp, 0.5, ddx ) |
---|
1796 | ENDDO |
---|
1797 | |
---|
1798 | CASE ( 3 ) |
---|
1799 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1800 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1801 | flux_n(k) = v_comp * ( & |
---|
1802 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1803 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) & |
---|
1804 | * adv_sca_3 |
---|
1805 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1806 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1807 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) & |
---|
1808 | * adv_sca_3 |
---|
1809 | ENDDO |
---|
1810 | |
---|
1811 | CASE ( 4 ) |
---|
1812 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1813 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1814 | flux_n(k) = v_comp * ( sk(k,j+1,i) + sk(k,j,i) ) * 0.5 |
---|
1815 | diss_n(k) = diss_2nd( sk(k,j+1,i), sk(k,j+1,i), & |
---|
1816 | sk(k,j,i), sk(k,j-1,i), & |
---|
1817 | sk(k,j-2,i), v_comp, 0.5, ddy ) |
---|
1818 | ENDDO |
---|
1819 | |
---|
1820 | CASE ( 5 ) |
---|
1821 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1822 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1823 | flux_r(k) = u_comp * ( & |
---|
1824 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1825 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) & |
---|
1826 | * adv_sca_3 |
---|
1827 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1828 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1829 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) & |
---|
1830 | * adv_sca_3 |
---|
1831 | ENDDO |
---|
1832 | |
---|
1833 | CASE ( 6 ) |
---|
1834 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1835 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1836 | flux_r(k) = u_comp * ( & |
---|
1837 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1838 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) & |
---|
1839 | * adv_sca_3 |
---|
1840 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1841 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1842 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) & |
---|
1843 | * adv_sca_3 |
---|
1844 | ENDDO |
---|
1845 | |
---|
1846 | CASE ( 7 ) |
---|
1847 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1848 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1849 | flux_n(k) = v_comp * ( & |
---|
1850 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1851 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) & |
---|
1852 | * adv_sca_3 |
---|
1853 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1854 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1855 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) & |
---|
1856 | * adv_sca_3 |
---|
1857 | ENDDO |
---|
1858 | |
---|
1859 | CASE ( 8 ) |
---|
1860 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1861 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1862 | flux_n(k) = v_comp * ( & |
---|
1863 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1864 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) & |
---|
1865 | * adv_sca_3 |
---|
1866 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1867 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1868 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) & |
---|
1869 | * adv_sca_3 |
---|
1870 | ENDDO |
---|
1871 | |
---|
1872 | CASE DEFAULT |
---|
1873 | |
---|
1874 | END SELECT |
---|
1875 | |
---|
1876 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR.& |
---|
1877 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) & |
---|
1878 | THEN |
---|
1879 | |
---|
1880 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1881 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1882 | flux_n(k) = v_comp * ( & |
---|
1883 | 37.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1884 | - 8.0 * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
1885 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) & |
---|
1886 | * adv_sca_5 |
---|
1887 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1888 | 10.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1889 | - 5.0 * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
1890 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) & |
---|
1891 | * adv_sca_5 |
---|
1892 | ENDDO |
---|
1893 | |
---|
1894 | ELSE |
---|
1895 | |
---|
1896 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1897 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1898 | flux_r(k) = u_comp * ( & |
---|
1899 | 37.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1900 | - 8.0 * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
1901 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) & |
---|
1902 | * adv_sca_5 |
---|
1903 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1904 | 10.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1905 | - 5.0 * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
1906 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) & |
---|
1907 | * adv_sca_5 |
---|
1908 | ENDDO |
---|
1909 | |
---|
1910 | ENDIF |
---|
1911 | |
---|
1912 | ELSE |
---|
1913 | |
---|
1914 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1915 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1916 | flux_r(k) = u_comp * ( & |
---|
1917 | 37.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1918 | - 8.0 * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
1919 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) & |
---|
1920 | * adv_sca_5 |
---|
1921 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1922 | 10.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1923 | - 5.0 * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
1924 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) & |
---|
1925 | * adv_sca_5 |
---|
1926 | |
---|
1927 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1928 | flux_n(k) = v_comp * ( & |
---|
1929 | 37.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1930 | - 8.0 * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
1931 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) & |
---|
1932 | * adv_sca_5 |
---|
1933 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1934 | 10.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1935 | - 5.0 * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
1936 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) & |
---|
1937 | * adv_sca_5 |
---|
1938 | ENDDO |
---|
1939 | |
---|
1940 | ENDIF |
---|
1941 | |
---|
1942 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1943 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1944 | ( flux_r(k) + diss_r(k) & |
---|
1945 | - swap_flux_x_local(k,j) - swap_diss_x_local(k,j) ) * ddx & |
---|
1946 | + ( flux_n(k) + diss_n(k) & |
---|
1947 | - swap_flux_y_local(k) - swap_diss_y_local(k) ) * ddy) |
---|
1948 | |
---|
1949 | swap_flux_x_local(k,j) = flux_r(k) |
---|
1950 | swap_diss_x_local(k,j) = diss_r(k) |
---|
1951 | swap_flux_y_local(k) = flux_n(k) |
---|
1952 | swap_diss_y_local(k) = diss_n(k) |
---|
1953 | ENDDO |
---|
1954 | ENDDO |
---|
1955 | ENDDO |
---|
1956 | |
---|
1957 | ! |
---|
1958 | !-- Vertical advection, degradation of order near surface and top. |
---|
1959 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
1960 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
1961 | DO i = nxl, nxr |
---|
1962 | DO j = nys, nyn |
---|
1963 | ! |
---|
1964 | !-- 2nd order scheme (bottom) |
---|
1965 | k=nzb_s_inner(j,i)+1 |
---|
1966 | ! |
---|
1967 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to static |
---|
1968 | !-- reasons the top flux at the surface should be 0. |
---|
1969 | flux_t(nzb_s_inner(j,i)) = 0.0 |
---|
1970 | diss_t(nzb_s_inner(j,i)) = 0.0 |
---|
1971 | flux_d = flux_t(k-1) |
---|
1972 | diss_d = diss_t(k-1) |
---|
1973 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) * 0.5 |
---|
1974 | diss_t(k) = diss_2nd( sk(k+2,j,i), sk(k+1,j,i), sk(k,j,i), & |
---|
1975 | sk(k,j,i), sk(k,j,i), w(k,j,i), & |
---|
1976 | 0.5, ddzw(k) ) |
---|
1977 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1978 | - flux_d - diss_d ) * ddzw(k) |
---|
1979 | ! |
---|
1980 | !-- WS3 as an intermediate step (bottom) |
---|
1981 | k = nzb_s_inner(j,i)+2 |
---|
1982 | flux_d = flux_t(k-1) |
---|
1983 | diss_d = diss_t(k-1) |
---|
1984 | flux_t(k) = w(k,j,i) * ( & |
---|
1985 | 7.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1986 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) ) * adv_sca_3 |
---|
1987 | diss_t(k) = - ABS( w(k,j,i) ) * ( & |
---|
1988 | 3.0 * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
1989 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) ) * adv_sca_3 |
---|
1990 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1991 | - flux_d - diss_d ) * ddzw(k) |
---|
1992 | ! |
---|
1993 | !-- WS5 |
---|
1994 | DO k = nzb_s_inner(j,i)+3, nzt-2 |
---|
1995 | flux_d = flux_t(k-1) |
---|
1996 | diss_d = diss_t(k-1) |
---|
1997 | flux_t(k) = w(k,j,i) * ( & |
---|
1998 | 37.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1999 | - 8.0 * ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
2000 | + ( sk(k+3,j,i) + sk(k-2,j,i) ) ) * adv_sca_5 |
---|
2001 | diss_t(k) = - ABS(w(k,j,i)) * ( & |
---|
2002 | 10.0 * ( sk(k+1,j,i) -sk(k,j,i) ) & |
---|
2003 | - 5.0 * ( sk(k+2,j,i) - sk(k-1,j,i) ) & |
---|
2004 | + ( sk(k+3,j,i) - sk(k-2,j,i) ) ) * adv_sca_5 |
---|
2005 | |
---|
2006 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2007 | - flux_d - diss_d ) * ddzw(k) |
---|
2008 | ENDDO |
---|
2009 | ! |
---|
2010 | !-- WS3 as an intermediate step (top) |
---|
2011 | k = nzt - 1 |
---|
2012 | flux_d = flux_t(k-1) |
---|
2013 | diss_d = diss_t(k-1) |
---|
2014 | flux_t(k) = w(k,j,i) * ( & |
---|
2015 | 7.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
2016 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) ) * adv_sca_3 |
---|
2017 | diss_t(k) = - ABS(w(k,j,i)) * ( & |
---|
2018 | 3.0 * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
2019 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) ) * adv_sca_3 |
---|
2020 | |
---|
2021 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2022 | - flux_d - diss_d ) * ddzw(k) |
---|
2023 | ! |
---|
2024 | !-- 2nd order scheme (top) |
---|
2025 | k = nzt |
---|
2026 | flux_d = flux_t(k-1) |
---|
2027 | diss_d = diss_t(k-1) |
---|
2028 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) * 0.5 |
---|
2029 | diss_t(k) = diss_2nd( sk(k+1,j,i), sk(k+1,j,i), sk(k,j,i), & |
---|
2030 | sk(k-1,j,i), sk(k-2,j,i), w(k,j,i), & |
---|
2031 | 0.5, ddzw(k) ) |
---|
2032 | |
---|
2033 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2034 | - flux_d - diss_d ) * ddzw(k) |
---|
2035 | ! |
---|
2036 | !-- evaluation of statistics |
---|
2037 | SELECT CASE ( sk_char ) |
---|
2038 | |
---|
2039 | CASE ( 'pt' ) |
---|
2040 | DO k = nzb_s_inner(j,i), nzt |
---|
2041 | sums_wspts_ws_l(k) = sums_wspts_ws_l(k) & |
---|
2042 | + ( flux_t(k) + diss_t(k) ) & |
---|
2043 | * weight_substep(intermediate_timestep_count) |
---|
2044 | ENDDO |
---|
2045 | CASE ( 'sa' ) |
---|
2046 | DO k = nzb_s_inner(j,i), nzt |
---|
2047 | sums_wssas_ws_l(k) = sums_wssas_ws_l(k) & |
---|
2048 | + ( flux_t(k) + diss_t(k) ) & |
---|
2049 | * weight_substep(intermediate_timestep_count) |
---|
2050 | ENDDO |
---|
2051 | CASE ( 'q' ) |
---|
2052 | DO k = nzb_s_inner(j,i), nzt |
---|
2053 | sums_wsqs_ws_l(k) = sums_wsqs_ws_l(k) & |
---|
2054 | + ( flux_t(k) + diss_t(k) ) & |
---|
2055 | * weight_substep(intermediate_timestep_count) |
---|
2056 | ENDDO |
---|
2057 | |
---|
2058 | END SELECT |
---|
2059 | ENDDO |
---|
2060 | ENDDO |
---|
2061 | |
---|
2062 | |
---|
2063 | END SUBROUTINE advec_s_ws |
---|
2064 | |
---|
2065 | |
---|
2066 | !------------------------------------------------------------------------------! |
---|
2067 | ! Advection of u - Call for all grid points |
---|
2068 | !------------------------------------------------------------------------------! |
---|
2069 | SUBROUTINE advec_u_ws |
---|
2070 | |
---|
2071 | USE arrays_3d |
---|
2072 | USE constants |
---|
2073 | USE control_parameters |
---|
2074 | USE grid_variables |
---|
2075 | USE indices |
---|
2076 | USE statistics |
---|
2077 | |
---|
2078 | IMPLICIT NONE |
---|
2079 | |
---|
2080 | INTEGER :: i, j, k |
---|
2081 | REAL :: gu, gv, flux_d, diss_d, v_comp, w_comp |
---|
2082 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local_u, swap_diss_y_local_u |
---|
2083 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local_u, & |
---|
2084 | swap_diss_x_local_u |
---|
2085 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, flux_n, & |
---|
2086 | diss_n, u_comp |
---|
2087 | |
---|
2088 | gu = 2.0 * u_gtrans |
---|
2089 | gv = 2.0 * v_gtrans |
---|
2090 | |
---|
2091 | ! |
---|
2092 | !-- Compute the fluxes for the whole left boundary of the processor domain. |
---|
2093 | i = nxlu |
---|
2094 | DO j = nys, nyn |
---|
2095 | IF( boundary_flags(j,i) == 5 ) THEN |
---|
2096 | |
---|
2097 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2098 | u_comp(k) = u(k,j,i) + u(k,j,i-1) - gu |
---|
2099 | swap_flux_x_local_u(k,j) = u_comp(k) * & |
---|
2100 | ( u(k,j,i) + u(k,j,i-1) ) * 0.25 |
---|
2101 | swap_diss_x_local_u(k,j) = diss_2nd( u(k,j,i+2), u(k,j,i+1), & |
---|
2102 | u(k,j,i), u(k,j,i-1), & |
---|
2103 | u(k,j,i-1), u_comp(k), & |
---|
2104 | 0.25, ddx ) |
---|
2105 | ENDDO |
---|
2106 | |
---|
2107 | ELSE |
---|
2108 | |
---|
2109 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2110 | u_comp(k) = u(k,j,i) + u(k,j,i-1) - gu |
---|
2111 | swap_flux_x_local_u(k,j) = u_comp(k) * ( & |
---|
2112 | 37.0 * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
2113 | - 8.0 * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
2114 | + (u(k,j,i+2)+u(k,j,i-3) ) ) & |
---|
2115 | * adv_mom_5 |
---|
2116 | swap_diss_x_local_u(k,j) = - ABS(u_comp(k)) * ( & |
---|
2117 | 10.0 * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
2118 | - 5.0 * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
2119 | + ( u(k,j,i+2) - u(k,j,i-3) ) )& |
---|
2120 | * adv_mom_5 |
---|
2121 | ENDDO |
---|
2122 | |
---|
2123 | ENDIF |
---|
2124 | |
---|
2125 | ENDDO |
---|
2126 | |
---|
2127 | DO i = nxlu, nxr |
---|
2128 | ! |
---|
2129 | !-- The following loop computes the fluxes for the south boundary points |
---|
2130 | j = nys |
---|
2131 | IF ( boundary_flags(j,i) == 8 ) THEN |
---|
2132 | ! |
---|
2133 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
2134 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2135 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
2136 | swap_flux_y_local_u(k) = v_comp * & |
---|
2137 | ( u(k,j,i) + u(k,j-1,i) ) * 0.25 |
---|
2138 | swap_diss_y_local_u(k) = diss_2nd( u(k,j+2,i), u(k,j+1,i), & |
---|
2139 | u(k,j,i), u(k,j-1,i), & |
---|
2140 | u(k,j-1,i), v_comp, & |
---|
2141 | 0.25, ddy ) |
---|
2142 | ENDDO |
---|
2143 | |
---|
2144 | ELSE |
---|
2145 | |
---|
2146 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2147 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
2148 | swap_flux_y_local_u(k) = v_comp * ( & |
---|
2149 | 37.0 * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
2150 | - 8.0 * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
2151 | + ( u(k,j+2,i) + u(k,j-3,i) ) ) & |
---|
2152 | * adv_mom_5 |
---|
2153 | swap_diss_y_local_u(k) = - ABS( v_comp ) * ( & |
---|
2154 | 10.0 * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
2155 | - 5.0 * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
2156 | + ( u(k,j+2,i) - u(k,j-3,i) ) ) & |
---|
2157 | * adv_mom_5 |
---|
2158 | ENDDO |
---|
2159 | |
---|
2160 | ENDIF |
---|
2161 | ! |
---|
2162 | !-- Computation of interior fluxes and tendency terms |
---|
2163 | DO j = nys, nyn |
---|
2164 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
2165 | ! |
---|
2166 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
2167 | SELECT CASE ( boundary_flags(j,i) ) |
---|
2168 | |
---|
2169 | CASE ( 1 ) |
---|
2170 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2171 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2172 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2173 | 7.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2174 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) & |
---|
2175 | * adv_mom_3 |
---|
2176 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
2177 | 3.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2178 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) & |
---|
2179 | * adv_mom_3 |
---|
2180 | ENDDO |
---|
2181 | |
---|
2182 | CASE ( 2 ) |
---|
2183 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2184 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2185 | flux_r(k) = ( u_comp(k) - gu ) * & |
---|
2186 | ( u(k,j,i+1) + u(k,j,i) ) * 0.25 |
---|
2187 | diss_r(k) = diss_2nd( u(k,j,i+1), u(k,j,i+1), & |
---|
2188 | u(k,j,i), u(k,j,i-1), & |
---|
2189 | u(k,j,i-2), u_comp(k) ,0.25 ,ddx) |
---|
2190 | ENDDO |
---|
2191 | |
---|
2192 | CASE ( 3 ) |
---|
2193 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2194 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2195 | flux_n(k) = v_comp * ( & |
---|
2196 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2197 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) & |
---|
2198 | * adv_mom_3 |
---|
2199 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2200 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2201 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) & |
---|
2202 | * adv_mom_3 |
---|
2203 | ENDDO |
---|
2204 | |
---|
2205 | CASE ( 4 ) |
---|
2206 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2207 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2208 | flux_n(k) = v_comp * ( u(k,j+1,i) + u(k,j,i) ) * 0.25 |
---|
2209 | diss_n(k) = diss_2nd( u(k,j+1,i), u(k,j+1,i), & |
---|
2210 | u(k,j,i), u(k,j-1,i), & |
---|
2211 | u(k,j-2,i), v_comp, 0.25, ddy ) |
---|
2212 | ENDDO |
---|
2213 | |
---|
2214 | CASE ( 5 ) |
---|
2215 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2216 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2217 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2218 | 7.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2219 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) & |
---|
2220 | * adv_mom_3 |
---|
2221 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
2222 | 3.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2223 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) & |
---|
2224 | * adv_mom_3 |
---|
2225 | ENDDO |
---|
2226 | |
---|
2227 | CASE ( 7 ) |
---|
2228 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2229 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2230 | flux_n(k) = v_comp * ( & |
---|
2231 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2232 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) & |
---|
2233 | * adv_mom_3 |
---|
2234 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2235 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2236 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) & |
---|
2237 | * adv_mom_3 |
---|
2238 | ENDDO |
---|
2239 | |
---|
2240 | CASE ( 8 ) |
---|
2241 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2242 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2243 | flux_n(k) = v_comp * ( & |
---|
2244 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2245 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) & |
---|
2246 | * adv_mom_3 |
---|
2247 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2248 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2249 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) & |
---|
2250 | * adv_mom_3 |
---|
2251 | ENDDO |
---|
2252 | |
---|
2253 | CASE DEFAULT |
---|
2254 | |
---|
2255 | END SELECT |
---|
2256 | ! |
---|
2257 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
2258 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR.& |
---|
2259 | boundary_flags(j,i) == 5 ) THEN |
---|
2260 | |
---|
2261 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2262 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2263 | flux_n(k) = v_comp * ( & |
---|
2264 | 37.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2265 | - 8.0 * ( u(k,j+2,i) +u(k,j-1,i) ) & |
---|
2266 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) & |
---|
2267 | * adv_mom_5 |
---|
2268 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2269 | 10.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2270 | - 5.0 * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
2271 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) & |
---|
2272 | * adv_mom_5 |
---|
2273 | ENDDO |
---|
2274 | |
---|
2275 | ELSE |
---|
2276 | |
---|
2277 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2278 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2279 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2280 | 37.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2281 | - 8.0 * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
2282 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) & |
---|
2283 | * adv_mom_5 |
---|
2284 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
2285 | 10.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2286 | - 5.0 * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
2287 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) & |
---|
2288 | * adv_mom_5 |
---|
2289 | ENDDO |
---|
2290 | |
---|
2291 | ENDIF |
---|
2292 | |
---|
2293 | ELSE |
---|
2294 | |
---|
2295 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2296 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2297 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2298 | 37.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2299 | - 8.0 * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
2300 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) & |
---|
2301 | * adv_mom_5 |
---|
2302 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
2303 | 10.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2304 | - 5.0 * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
2305 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
2306 | |
---|
2307 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2308 | flux_n(k) = v_comp * ( & |
---|
2309 | 37.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2310 | - 8.0 * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
2311 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
2312 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2313 | 10.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2314 | - 5.0 * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
2315 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
2316 | |
---|
2317 | ENDDO |
---|
2318 | |
---|
2319 | ENDIF |
---|
2320 | |
---|
2321 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2322 | |
---|
2323 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
2324 | ( flux_r(k) + diss_r(k) & |
---|
2325 | - swap_flux_x_local_u(k,j) - swap_diss_x_local_u(k,j) ) * ddx & |
---|
2326 | + ( flux_n(k) + diss_n(k) & |
---|
2327 | - swap_flux_y_local_u(k) - swap_diss_y_local_u(k) ) * ddy ) |
---|
2328 | |
---|
2329 | swap_flux_x_local_u(k,j) = flux_r(k) |
---|
2330 | swap_diss_x_local_u(k,j) = diss_r(k) |
---|
2331 | swap_flux_y_local_u(k) = flux_n(k) |
---|
2332 | swap_diss_y_local_u(k) = diss_n(k) |
---|
2333 | |
---|
2334 | sums_us2_ws_l(k) = sums_us2_ws_l(k) & |
---|
2335 | + ( flux_r(k) & |
---|
2336 | * ( u_comp(k) - 2.0 * hom(k,1,1,0) ) & |
---|
2337 | / ( u_comp(k) - gu + 1.0E-20 ) & |
---|
2338 | + diss_r(k) & |
---|
2339 | * ABS( u_comp(k) - 2.0 * hom(k,1,1,0) ) & |
---|
2340 | / ( ABS( u_comp(k) - gu) + 1.0E-20) ) & |
---|
2341 | * weight_substep(intermediate_timestep_count) |
---|
2342 | ENDDO |
---|
2343 | sums_us2_ws_l(nzb_u_inner(j,i)) = sums_us2_ws_l(nzb_u_inner(j,i)+1) |
---|
2344 | ENDDO |
---|
2345 | ENDDO |
---|
2346 | |
---|
2347 | ! |
---|
2348 | !-- Vertical advection, degradation of order near surface and top. |
---|
2349 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
2350 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
2351 | DO i = nxlu, nxr |
---|
2352 | DO j = nys, nyn |
---|
2353 | k = nzb_u_inner(j,i)+1 |
---|
2354 | ! |
---|
2355 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to static |
---|
2356 | !-- reasons the top flux at the surface should be 0. |
---|
2357 | flux_t(nzb_u_inner(j,i)) = 0.0 |
---|
2358 | diss_t(nzb_u_inner(j,i)) = 0.0 |
---|
2359 | flux_d = flux_t(k-1) |
---|
2360 | diss_d = diss_t(k-1) |
---|
2361 | ! |
---|
2362 | !-- 2nd order scheme (bottom) |
---|
2363 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2364 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) * 0.25 |
---|
2365 | diss_t(k) = diss_2nd( u(k+2,j,i), u(k+1,j,i), u(k,j,i), & |
---|
2366 | 0.0, 0.0, w_comp, 0.25, ddzw(k) ) |
---|
2367 | |
---|
2368 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2369 | - flux_d - diss_d ) * ddzw(k) |
---|
2370 | ! |
---|
2371 | !-- WS3 as an intermediate step (bottom) |
---|
2372 | k = nzb_u_inner(j,i)+2 |
---|
2373 | flux_d = flux_t(k-1) |
---|
2374 | diss_d = diss_t(k-1) |
---|
2375 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2376 | flux_t(k) = w_comp * ( & |
---|
2377 | 7.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2378 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
2379 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
2380 | 3.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2381 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
2382 | |
---|
2383 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2384 | - flux_d - diss_d ) * ddzw(k) |
---|
2385 | ! |
---|
2386 | !WS5 |
---|
2387 | DO k = nzb_u_inner(j,i)+3, nzt-2 |
---|
2388 | |
---|
2389 | flux_d = flux_t(k-1) |
---|
2390 | diss_d = diss_t(k-1) |
---|
2391 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2392 | flux_t(k) = w_comp * ( & |
---|
2393 | 37.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2394 | - 8.0 * ( u(k+2,j,i) + u(k-1,j,i) ) & |
---|
2395 | + ( u(k+3,j,i) + u(k-2,j,i) ) ) * adv_mom_5 |
---|
2396 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
2397 | 10.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2398 | - 5.0 * ( u(k+2,j,i) - u(k-1,j,i) ) & |
---|
2399 | + ( u(k+3,j,i) - u(k-2,j,i) ) ) * adv_mom_5 |
---|
2400 | |
---|
2401 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2402 | - flux_d - diss_d ) * ddzw(k) |
---|
2403 | |
---|
2404 | ENDDO |
---|
2405 | ! |
---|
2406 | !-- WS3 as an intermediate step (top) |
---|
2407 | k = nzt-1 |
---|
2408 | flux_d = flux_t(k-1) |
---|
2409 | diss_d = diss_t(k-1) |
---|
2410 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2411 | flux_t(k) = w_comp * ( & |
---|
2412 | 7.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2413 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
2414 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
2415 | 3.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2416 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
2417 | |
---|
2418 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2419 | - flux_d - diss_d ) * ddzw(k) |
---|
2420 | ! |
---|
2421 | !-- 2nd order scheme (top) |
---|
2422 | k = nzt |
---|
2423 | flux_d = flux_t(k-1) |
---|
2424 | diss_d = diss_t(k-1) |
---|
2425 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2426 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) * 0.25 |
---|
2427 | diss_t(k) = diss_2nd( u(nzt+1,j,i), u(nzt+1,j,i), u(k,j,i), & |
---|
2428 | u(k-1,j,i), u(k-2,j,i), w_comp, & |
---|
2429 | 0.25, ddzw(k)) |
---|
2430 | |
---|
2431 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2432 | - flux_d - diss_d ) * ddzw(k) |
---|
2433 | ! |
---|
2434 | !-- at last vertical momentum flux is accumulated |
---|
2435 | DO k = nzb_u_inner(j,i), nzt |
---|
2436 | sums_wsus_ws_l(k) = sums_wsus_ws_l(k) & |
---|
2437 | + ( flux_t(k) + diss_t(k) ) & |
---|
2438 | * weight_substep(intermediate_timestep_count) |
---|
2439 | ENDDO |
---|
2440 | ENDDO |
---|
2441 | ENDDO |
---|
2442 | |
---|
2443 | |
---|
2444 | END SUBROUTINE advec_u_ws |
---|
2445 | |
---|
2446 | |
---|
2447 | !------------------------------------------------------------------------------! |
---|
2448 | ! Advection of v - Call for all grid points |
---|
2449 | !------------------------------------------------------------------------------! |
---|
2450 | SUBROUTINE advec_v_ws |
---|
2451 | |
---|
2452 | USE arrays_3d |
---|
2453 | USE constants |
---|
2454 | USE control_parameters |
---|
2455 | USE grid_variables |
---|
2456 | USE indices |
---|
2457 | USE statistics |
---|
2458 | |
---|
2459 | IMPLICIT NONE |
---|
2460 | |
---|
2461 | |
---|
2462 | INTEGER :: i, j, k |
---|
2463 | REAL :: gu, gv, flux_l, flux_s, flux_d, diss_l, diss_s, diss_d, & |
---|
2464 | u_comp, w_comp |
---|
2465 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local_v, swap_diss_y_local_v |
---|
2466 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local_v, & |
---|
2467 | swap_diss_x_local_v |
---|
2468 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_n, diss_n, flux_r, & |
---|
2469 | diss_r, v_comp |
---|
2470 | |
---|
2471 | gu = 2.0 * u_gtrans |
---|
2472 | gv = 2.0 * v_gtrans |
---|
2473 | ! |
---|
2474 | !-- First compute the whole left boundary of the processor domain |
---|
2475 | i = nxl |
---|
2476 | DO j = nysv, nyn |
---|
2477 | |
---|
2478 | IF ( boundary_flags(j,i) == 6 ) THEN |
---|
2479 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2480 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
2481 | swap_flux_x_local_v(k,j) = u_comp * & |
---|
2482 | ( v(k,j,i) + v(k,j,i-1)) * 0.25 |
---|
2483 | swap_diss_x_local_v(k,j) = diss_2nd( v(k,j,i+2), v(k,j,i+1), & |
---|
2484 | v(k,j,i), v(k,j,i-1), & |
---|
2485 | v(k,j,i-1), u_comp, & |
---|
2486 | 0.25, ddx ) |
---|
2487 | ENDDO |
---|
2488 | |
---|
2489 | ELSE |
---|
2490 | |
---|
2491 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2492 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
2493 | swap_flux_x_local_v(k,j) = u_comp * ( & |
---|
2494 | 37.0 * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
2495 | - 8.0 * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
2496 | + ( v(k,j,i+2) + v(k,j,i-3) ) )& |
---|
2497 | * adv_mom_5 |
---|
2498 | swap_diss_x_local_v(k,j) = - ABS( u_comp ) * ( & |
---|
2499 | 10.0 * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
2500 | - 5.0 * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
2501 | + ( v(k,j,i+2) - v(k,j,i-3) ) )& |
---|
2502 | * adv_mom_5 |
---|
2503 | ENDDO |
---|
2504 | |
---|
2505 | ENDIF |
---|
2506 | |
---|
2507 | ENDDO |
---|
2508 | |
---|
2509 | DO i = nxl, nxr |
---|
2510 | j = nysv |
---|
2511 | IF ( boundary_flags(j,i) == 7 ) THEN |
---|
2512 | |
---|
2513 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2514 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
2515 | swap_flux_y_local_v(k) = v_comp(k) * & |
---|
2516 | ( v(k,j,i) + v(k,j-1,i) ) * 0.25 |
---|
2517 | swap_diss_y_local_v(k) = diss_2nd( v(k,j+2,i), v(k,j+1,i), & |
---|
2518 | v(k,j,i), v(k,j-1,i), & |
---|
2519 | v(k,j-1,i), v_comp(k), & |
---|
2520 | 0.25, ddy ) |
---|
2521 | ENDDO |
---|
2522 | |
---|
2523 | ELSE |
---|
2524 | |
---|
2525 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2526 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
2527 | swap_flux_y_local_v(k) = v_comp(k) * ( & |
---|
2528 | 37.0 * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
2529 | - 8.0 * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
2530 | + ( v(k,j+2,i) + v(k,j-3,i) ) ) & |
---|
2531 | * adv_mom_5 |
---|
2532 | swap_diss_y_local_v(k) = - ABS( v_comp(k) ) * ( & |
---|
2533 | 10.0 * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
2534 | - 5.0 * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
2535 | + ( v(k,j+2,i) - v(k,j-3,i) ) ) & |
---|
2536 | * adv_mom_5 |
---|
2537 | ENDDO |
---|
2538 | |
---|
2539 | ENDIF |
---|
2540 | |
---|
2541 | DO j = nysv, nyn |
---|
2542 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
2543 | ! |
---|
2544 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
2545 | SELECT CASE ( boundary_flags(j,i) ) |
---|
2546 | |
---|
2547 | CASE ( 1 ) |
---|
2548 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2549 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2550 | flux_r(k) = u_comp * ( & |
---|
2551 | 7.0 * (v(k,j,i+1) + v(k,j,i) ) & |
---|
2552 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) & |
---|
2553 | * adv_mom_3 |
---|
2554 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
2555 | 3.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2556 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) & |
---|
2557 | * adv_mom_3 |
---|
2558 | ENDDO |
---|
2559 | |
---|
2560 | CASE ( 2 ) |
---|
2561 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2562 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2563 | flux_r(k) = u_comp * ( v(k,j,i+1) + v(k,j,i) ) * 0.25 |
---|
2564 | diss_r(k) = diss_2nd( v(k,j,i+1), v(k,j,i+1), & |
---|
2565 | v(k,j,i), v(k,j,i-1), & |
---|
2566 | v(k,j,i-2), u_comp, 0.25, ddx ) |
---|
2567 | ENDDO |
---|
2568 | |
---|
2569 | CASE ( 3 ) |
---|
2570 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2571 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2572 | flux_n(k) = ( v_comp(k)- gv ) * ( & |
---|
2573 | 7.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2574 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) & |
---|
2575 | * adv_mom_3 |
---|
2576 | diss_n(k) = - ABS(v_comp(k) - gv) * ( & |
---|
2577 | 3.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2578 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) & |
---|
2579 | * adv_mom_3 |
---|
2580 | ENDDO |
---|
2581 | |
---|
2582 | CASE ( 4 ) |
---|
2583 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2584 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2585 | flux_n(k) = ( v_comp(k) - gv ) * & |
---|
2586 | ( v(k,j+1,i) + v(k,j,i) ) * 0.25 |
---|
2587 | diss_n(k) = diss_2nd( v(k,j+1,i), v(k,j+1,i), & |
---|
2588 | v(k,j,i), v(k,j-1,i), & |
---|
2589 | v(k,j-2,i), v_comp(k), 0.25, ddy) |
---|
2590 | ENDDO |
---|
2591 | |
---|
2592 | CASE ( 5 ) |
---|
2593 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
2594 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
2595 | flux_r(k) = u_comp * ( & |
---|
2596 | 7.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2597 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) & |
---|
2598 | * adv_mom_3 |
---|
2599 | diss_r(k) = - ABS (u_comp ) * ( & |
---|
2600 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
2601 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) & |
---|
2602 | * adv_mom_3 |
---|
2603 | ENDDO |
---|
2604 | |
---|
2605 | CASE ( 6 ) |
---|
2606 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2607 | |
---|
2608 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2609 | flux_r(k) = u_comp * ( & |
---|
2610 | 7.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2611 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) & |
---|
2612 | * adv_mom_3 |
---|
2613 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
2614 | 3.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2615 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) & |
---|
2616 | * adv_mom_3 |
---|
2617 | ENDDO |
---|
2618 | |
---|
2619 | CASE ( 7 ) |
---|
2620 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2621 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2622 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
2623 | 7.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2624 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) & |
---|
2625 | * adv_mom_3 |
---|
2626 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
2627 | 3.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2628 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) & |
---|
2629 | * adv_mom_3 |
---|
2630 | ENDDO |
---|
2631 | |
---|
2632 | CASE DEFAULT |
---|
2633 | |
---|
2634 | END SELECT |
---|
2635 | ! |
---|
2636 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
2637 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR.& |
---|
2638 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) & |
---|
2639 | THEN |
---|
2640 | |
---|
2641 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2642 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2643 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
2644 | 37.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2645 | - 8.0 * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
2646 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) & |
---|
2647 | * adv_mom_5 |
---|
2648 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
2649 | 10.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2650 | - 5.0 * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
2651 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) & |
---|
2652 | * adv_mom_5 |
---|
2653 | ENDDO |
---|
2654 | |
---|
2655 | ELSE |
---|
2656 | |
---|
2657 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2658 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2659 | flux_r(k) = u_comp * ( & |
---|
2660 | 37.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2661 | - 8.0 * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
2662 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) & |
---|
2663 | * adv_mom_5 |
---|
2664 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
2665 | 10.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2666 | - 5.0 * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
2667 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) & |
---|
2668 | * adv_mom_5 |
---|
2669 | ENDDO |
---|
2670 | |
---|
2671 | ENDIF |
---|
2672 | |
---|
2673 | |
---|
2674 | ELSE |
---|
2675 | |
---|
2676 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2677 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2678 | flux_r(k) = u_comp * ( & |
---|
2679 | 37.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2680 | - 8.0 * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
2681 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) & |
---|
2682 | * adv_mom_5 |
---|
2683 | diss_r(k) = - ABS ( u_comp ) * ( & |
---|
2684 | 10.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2685 | - 5.0 * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
2686 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
2687 | |
---|
2688 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2689 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
2690 | 37.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2691 | - 8.0 * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
2692 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
2693 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
2694 | 10.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2695 | - 5.0 * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
2696 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) *adv_mom_5 |
---|
2697 | |
---|
2698 | ENDDO |
---|
2699 | ENDIF |
---|
2700 | |
---|
2701 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2702 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
2703 | ( flux_r(k) + diss_r(k) & |
---|
2704 | - swap_flux_x_local_v(k,j) - swap_diss_x_local_v(k,j) ) * ddx & |
---|
2705 | + ( flux_n(k) + diss_n(k) & |
---|
2706 | - swap_flux_y_local_v(k) - swap_diss_y_local_v(k) ) * ddy ) |
---|
2707 | |
---|
2708 | swap_flux_x_local_v(k,j) = flux_r(k) |
---|
2709 | swap_diss_x_local_v(k,j) = diss_r(k) |
---|
2710 | swap_flux_y_local_v(k) = flux_n(k) |
---|
2711 | swap_diss_y_local_v(k) = diss_n(k) |
---|
2712 | |
---|
2713 | sums_vs2_ws_l(k) = sums_vs2_ws_l(k) & |
---|
2714 | + ( flux_n(k) * ( v_comp(k) - 2.0 * hom(k,1,2,0) ) & |
---|
2715 | / ( v_comp(k) - gv + 1.0E-20 ) & |
---|
2716 | + diss_n(k) * ABS( v_comp(k) - 2.0 * hom(k,1,2,0) ) & |
---|
2717 | / ( ABS( v_comp(k) - gv ) + 1.0E-20 ) ) & |
---|
2718 | * weight_substep(intermediate_timestep_count) |
---|
2719 | ENDDO |
---|
2720 | sums_vs2_ws_l(nzb_v_inner(j,i)) = sums_vs2_ws_l(nzb_v_inner(j,i)+1) |
---|
2721 | ENDDO |
---|
2722 | ENDDO |
---|
2723 | ! |
---|
2724 | !-- Vertical advection, degradation of order near surface and top. |
---|
2725 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
2726 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
2727 | DO i = nxl, nxr |
---|
2728 | DO j = nysv, nyn |
---|
2729 | ! |
---|
2730 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to static |
---|
2731 | !-- reasons the top flux at the surface should be 0. |
---|
2732 | flux_t(nzb_v_inner(j,i)) = 0.0 |
---|
2733 | diss_t(nzb_v_inner(j,i)) = 0.0 |
---|
2734 | k = nzb_v_inner(j,i)+1 |
---|
2735 | flux_d = flux_t(k-1) |
---|
2736 | diss_d = diss_t(k-1) |
---|
2737 | ! |
---|
2738 | !-- 2nd order scheme (bottom) |
---|
2739 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
2740 | flux_t(k) = w_comp * ( v(k+1,j,i) + v(k,j,i) ) * 0.25 |
---|
2741 | diss_t(k) = diss_2nd( v(k+2,j,i), v(k+1,j,i), v(k,j,i), & |
---|
2742 | 0.0, 0.0, w_comp, 0.25, ddzw(k) ) |
---|
2743 | |
---|
2744 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2745 | - flux_d - diss_d ) * ddzw(k) |
---|
2746 | ! |
---|
2747 | !-- WS3 as an intermediate step (bottom) |
---|
2748 | k = nzb_v_inner(j,i) + 2 |
---|
2749 | flux_d = flux_t(k-1) |
---|
2750 | diss_d = diss_t(k-1) |
---|
2751 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
2752 | flux_t(k) = w_comp * ( & |
---|
2753 | 7.0 * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
2754 | - ( v(k+2,j,i) + v(k-1,j,i) ) ) * adv_mom_3 |
---|
2755 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
2756 | 3.0 * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
2757 | - ( v(k+2,j,i) - v(k-1,j,i) ) ) * adv_mom_3 |
---|
2758 | |
---|
2759 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2760 | - flux_d - diss_d ) * ddzw(k) |
---|
2761 | |
---|
2762 | ! |
---|
2763 | !-- WS5 |
---|
2764 | DO k = nzb_v_inner(j,i)+3, nzt-2 |
---|
2765 | flux_d = flux_t(k-1) |
---|
2766 | diss_d = diss_t(k-1) |
---|
2767 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
2768 | flux_t(k) = w_comp * ( & |
---|
2769 | 37.0 * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
2770 | - 8.0 * ( v(k+2,j,i) + v(k-1,j,i) ) & |
---|
2771 | + ( v(k+3,j,i) + v(k-2,j,i) ) ) * adv_mom_5 |
---|
2772 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
2773 | 10.0 * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
2774 | - 5.0 * ( v(k+2,j,i) - v(k-1,j,i) ) & |
---|
2775 | + ( v(k+3,j,i) - v(k-2,j,i) ) ) * adv_mom_5 |
---|
2776 | |
---|
2777 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2778 | - flux_d - diss_d ) * ddzw(k) |
---|
2779 | ENDDO |
---|
2780 | ! |
---|
2781 | !-- WS3 as an intermediate step (top) |
---|
2782 | k = nzt-1 |
---|
2783 | flux_d = flux_t(k-1) |
---|
2784 | diss_d = diss_t(k-1) |
---|
2785 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
2786 | flux_t(k) = w_comp * ( & |
---|
2787 | 7.0 * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
2788 | - ( v(k+2,j,i) + v(k-1,j,i) ) ) * adv_mom_3 |
---|
2789 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
2790 | 3.0 * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
2791 | - ( v(k+2,j,i) - v(k-1,j,i) ) ) * adv_mom_3 |
---|
2792 | |
---|
2793 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2794 | - flux_d - diss_d ) * ddzw(k) |
---|
2795 | ! |
---|
2796 | !-- 2nd order scheme (top) |
---|
2797 | k = nzt |
---|
2798 | flux_d = flux_t(k-1) |
---|
2799 | diss_d = diss_t(k-1) |
---|
2800 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
2801 | flux_t(k) = w_comp * ( v(k+1,j,i) + v(k,j,i) ) * 0.25 |
---|
2802 | diss_t(k) = diss_2nd( v(nzt+1,j,i), v(nzt+1,j,i), v(k,j,i), & |
---|
2803 | v(k-1,j,i), v(k-2,j,i), w_comp, 0.25, ddzw(k)) |
---|
2804 | |
---|
2805 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2806 | - flux_d - diss_d ) * ddzw(k) |
---|
2807 | ! |
---|
2808 | !- At last vertical momentum flux is accumulated. |
---|
2809 | DO k = nzb_v_inner(j,i), nzt |
---|
2810 | sums_wsvs_ws_l(k) = sums_wsvs_ws_l(k) & |
---|
2811 | + ( flux_t(k) + diss_t(k) ) & |
---|
2812 | * weight_substep(intermediate_timestep_count) |
---|
2813 | ENDDO |
---|
2814 | sums_vs2_ws_l(nzb_v_inner(j,i)) = sums_vs2_ws_l(nzb_v_inner(j,i)+1) |
---|
2815 | ENDDO |
---|
2816 | ENDDO |
---|
2817 | |
---|
2818 | END SUBROUTINE advec_v_ws |
---|
2819 | |
---|
2820 | |
---|
2821 | !------------------------------------------------------------------------------! |
---|
2822 | ! Advection of w - Call for all grid points |
---|
2823 | !------------------------------------------------------------------------------! |
---|
2824 | SUBROUTINE advec_w_ws |
---|
2825 | |
---|
2826 | USE arrays_3d |
---|
2827 | USE constants |
---|
2828 | USE control_parameters |
---|
2829 | USE grid_variables |
---|
2830 | USE indices |
---|
2831 | USE statistics |
---|
2832 | |
---|
2833 | IMPLICIT NONE |
---|
2834 | |
---|
2835 | INTEGER :: i, j, k |
---|
2836 | REAL :: gu, gv, flux_d, diss_d, u_comp, v_comp, w_comp |
---|
2837 | REAL :: flux_t(nzb:nzt+1), diss_t(nzb:nzt+1) |
---|
2838 | REAL, DIMENSION(nzb:nzt+1) :: flux_r, diss_r, flux_n, diss_n |
---|
2839 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local_w, swap_diss_y_local_w |
---|
2840 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local_w, & |
---|
2841 | swap_diss_x_local_w |
---|
2842 | |
---|
2843 | gu = 2.0 * u_gtrans |
---|
2844 | gv = 2.0 * v_gtrans |
---|
2845 | ! |
---|
2846 | !-- compute the whole left boundary of the processor domain |
---|
2847 | i = nxl |
---|
2848 | DO j = nys, nyn |
---|
2849 | |
---|
2850 | IF ( boundary_flags(j,i) == 6 ) THEN |
---|
2851 | |
---|
2852 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2853 | u_comp = u(k+1,j,i) + u(k,j,i) - gu |
---|
2854 | swap_flux_x_local_w(k,j) = u_comp * & |
---|
2855 | (w(k,j,i)+w(k,j,i-1)) * 0.25 |
---|
2856 | swap_flux_x_local_w(k,j) = diss_2nd( w(k,j,i+2), w(k,j,i+1), & |
---|
2857 | w(k,j,i), w(k,j,i-1), & |
---|
2858 | w(k,j,i-1), u_comp, & |
---|
2859 | 0.25, ddx ) |
---|
2860 | ENDDO |
---|
2861 | |
---|
2862 | ELSE |
---|
2863 | |
---|
2864 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2865 | u_comp = u(k+1,j,i) + u(k,j,i) - gu |
---|
2866 | swap_flux_x_local_w(k,j) = u_comp * ( & |
---|
2867 | 37.0 * ( w(k,j,i) + w(k,j,i-1) ) & |
---|
2868 | - 8.0 * ( w(k,j,i+1) + w(k,j,i-2) ) & |
---|
2869 | + ( w(k,j,i+2) + w(k,j,i-3) ) )& |
---|
2870 | * adv_mom_5 |
---|
2871 | swap_diss_x_local_w(k,j) = - ABS( u_comp ) * ( & |
---|
2872 | 10.0 * ( w(k,j,i) - w(k,j,i-1) ) & |
---|
2873 | - 5.0 * ( w(k,j,i+1) - w(k,j,i-2) ) & |
---|
2874 | + ( w(k,j,i+2) - w(k,j,i-3) ) )& |
---|
2875 | * adv_mom_5 |
---|
2876 | ENDDO |
---|
2877 | |
---|
2878 | ENDIF |
---|
2879 | |
---|
2880 | ENDDO |
---|
2881 | |
---|
2882 | DO i = nxl, nxr |
---|
2883 | j = nys |
---|
2884 | IF ( boundary_flags(j,i) == 8 ) THEN |
---|
2885 | |
---|
2886 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2887 | v_comp = v(k+1,j,i) + v(k,j,i) - gv |
---|
2888 | swap_flux_y_local_w(k) = v_comp * & |
---|
2889 | ( w(k,j,i) + w(k,j-1,i) ) * 0.25 |
---|
2890 | swap_diss_y_local_w(k) = diss_2nd( w(k,j+2,i), w(k,j+1,i), & |
---|
2891 | w(k,j,i), w(k,j-1,i), & |
---|
2892 | w(k,j-1,i), v_comp, 0.25, ddy) |
---|
2893 | ENDDO |
---|
2894 | |
---|
2895 | ELSE |
---|
2896 | |
---|
2897 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2898 | v_comp = v(k+1,j,i) + v(k,j,i) - gv |
---|
2899 | swap_flux_y_local_w(k) = v_comp * ( & |
---|
2900 | 37.0 * ( w(k,j,i) + w(k,j-1,i) ) & |
---|
2901 | - 8.0 * ( w(k,j+1,i) +w(k,j-2,i) ) & |
---|
2902 | + ( w(k,j+2,i) +w(k,j-3,i) ) ) & |
---|
2903 | * adv_mom_5 |
---|
2904 | swap_diss_y_local_w(k) = - ABS( v_comp ) * ( & |
---|
2905 | 10.0 * ( w(k,j,i) - w(k,j-1,i) ) & |
---|
2906 | - 5.0 * ( w(k,j+1,i) - w(k,j-2,i) ) & |
---|
2907 | + ( w(k,j+2,i) - w(k,j-3,i) ) ) & |
---|
2908 | * adv_mom_5 |
---|
2909 | ENDDO |
---|
2910 | |
---|
2911 | ENDIF |
---|
2912 | |
---|
2913 | DO j = nys, nyn |
---|
2914 | |
---|
2915 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
2916 | ! |
---|
2917 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
2918 | SELECT CASE ( boundary_flags(j,i) ) |
---|
2919 | |
---|
2920 | CASE ( 1 ) |
---|
2921 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
2922 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
2923 | flux_r(k) = u_comp * ( & |
---|
2924 | 7.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
2925 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) & |
---|
2926 | * adv_mom_3 |
---|
2927 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
2928 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
2929 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) & |
---|
2930 | * adv_mom_3 |
---|
2931 | ENDDO |
---|
2932 | |
---|
2933 | CASE ( 2 ) |
---|
2934 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
2935 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
2936 | flux_r(k) = u_comp * ( w(k,j,i+1) + w(k,j,i) ) * 0.25 |
---|
2937 | diss_r(k) = diss_2nd( w(k,j,i+1), w(k,j,i+1), & |
---|
2938 | w(k,j,i), w(k,j,i-1), & |
---|
2939 | w(k,j,i-2), u_comp, 0.25, ddx ) |
---|
2940 | ENDDO |
---|
2941 | |
---|
2942 | CASE ( 3 ) |
---|
2943 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
2944 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
2945 | flux_n(k) = v_comp * ( & |
---|
2946 | 7.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
2947 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) & |
---|
2948 | * adv_mom_3 |
---|
2949 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
2950 | 3.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
2951 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) & |
---|
2952 | * adv_mom_3 |
---|
2953 | ENDDO |
---|
2954 | |
---|
2955 | CASE ( 4 ) |
---|
2956 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
2957 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
2958 | flux_n(k) = v_comp * ( w(k,j+1,i) + w(k,j,i) ) * 0.25 |
---|
2959 | diss_n(k) = diss_2nd( w(k,j+1,i), w(k,j+1,i), & |
---|
2960 | w(k,j,i), w(k,j-1,i), & |
---|
2961 | w(k,j-2,i), v_comp, 0.25, ddy ) |
---|
2962 | ENDDO |
---|
2963 | |
---|
2964 | CASE ( 5 ) |
---|
2965 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
2966 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
2967 | flux_r(k) = u_comp * ( & |
---|
2968 | 7.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
2969 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) & |
---|
2970 | * adv_mom_3 |
---|
2971 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
2972 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
2973 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) & |
---|
2974 | * adv_mom_3 |
---|
2975 | ENDDO |
---|
2976 | |
---|
2977 | CASE ( 6 ) |
---|
2978 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
2979 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
2980 | flux_r(k) = u_comp *( & |
---|
2981 | 7.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
2982 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) & |
---|
2983 | * adv_mom_3 |
---|
2984 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
2985 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
2986 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) & |
---|
2987 | * adv_mom_3 |
---|
2988 | ENDDO |
---|
2989 | |
---|
2990 | CASE ( 7 ) |
---|
2991 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
2992 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
2993 | flux_n(k) = v_comp *( & |
---|
2994 | 7.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
2995 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) & |
---|
2996 | * adv_mom_3 |
---|
2997 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2998 | 3.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
2999 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) & |
---|
3000 | * adv_mom_3 |
---|
3001 | ENDDO |
---|
3002 | |
---|
3003 | CASE ( 8 ) |
---|
3004 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
3005 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
3006 | flux_n(k) = v_comp * ( & |
---|
3007 | 7.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
3008 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) & |
---|
3009 | * adv_mom_3 |
---|
3010 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
3011 | 3.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
3012 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) & |
---|
3013 | * adv_mom_3 |
---|
3014 | |
---|
3015 | ENDDO |
---|
3016 | |
---|
3017 | CASE DEFAULT |
---|
3018 | |
---|
3019 | END SELECT |
---|
3020 | ! |
---|
3021 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
3022 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR.& |
---|
3023 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) & |
---|
3024 | THEN |
---|
3025 | |
---|
3026 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
3027 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
3028 | flux_n(k) = v_comp * ( & |
---|
3029 | 37.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
3030 | - 8.0 * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
3031 | + ( w(k,j+3,i) + w(k,j-2,i) ) ) & |
---|
3032 | * adv_mom_5 |
---|
3033 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
3034 | 10.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
3035 | - 5.0 * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
3036 | + ( w(k,j+3,i) - w(k,j-2,i) ) ) & |
---|
3037 | * adv_mom_5 |
---|
3038 | ENDDO |
---|
3039 | |
---|
3040 | ELSE |
---|
3041 | |
---|
3042 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
3043 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
3044 | flux_r(k) = u_comp * ( & |
---|
3045 | 37.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
3046 | - 8.0 * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
3047 | + ( w(k,j,i+3) + w(k,j,i-2) ) ) & |
---|
3048 | * adv_mom_5 |
---|
3049 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
3050 | 10.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
3051 | - 5.0 * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
3052 | + ( w(k,j,i+3) - w(k,j,i-2) ) ) & |
---|
3053 | * adv_mom_5 |
---|
3054 | ENDDO |
---|
3055 | |
---|
3056 | ENDIF |
---|
3057 | |
---|
3058 | ELSE |
---|
3059 | ! |
---|
3060 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
3061 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
3062 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
3063 | flux_r(k) = u_comp * ( & |
---|
3064 | 37.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
3065 | - 8.0 * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
3066 | + ( w(k,j,i+3) + w(k,j,i-2) ) ) & |
---|
3067 | * adv_mom_5 |
---|
3068 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
3069 | 10.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
3070 | - 5.0 * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
3071 | + ( w(k,j,i+3) - w(k,j,i-2) ) ) * adv_mom_5 |
---|
3072 | |
---|
3073 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
3074 | flux_n(k) = v_comp * ( & |
---|
3075 | 37.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
3076 | - 8.0 * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
3077 | + ( w(k,j+3,i) + w(k,j-2,i) ) ) * adv_mom_5 |
---|
3078 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
3079 | 10.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
3080 | - 5.0 * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
3081 | + ( w(k,j+3,i) - w(k,j-2,i) ) ) * adv_mom_5 |
---|
3082 | ENDDO |
---|
3083 | |
---|
3084 | ENDIF |
---|
3085 | |
---|
3086 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
3087 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
3088 | ( flux_r(k) + diss_r(k) & |
---|
3089 | - swap_flux_x_local_w(k,j) - swap_diss_x_local_w(k,j) ) * ddx & |
---|
3090 | + ( flux_n(k) + diss_n(k) & |
---|
3091 | - swap_flux_y_local_w(k) - swap_diss_y_local_w(k) ) * ddy ) |
---|
3092 | |
---|
3093 | swap_flux_x_local_w(k,j) = flux_r(k) |
---|
3094 | swap_diss_x_local_w(k,j) = diss_r(k) |
---|
3095 | swap_flux_y_local_w(k) = flux_n(k) |
---|
3096 | swap_diss_y_local_w(k) = diss_n(k) |
---|
3097 | ENDDO |
---|
3098 | ENDDO |
---|
3099 | ENDDO |
---|
3100 | |
---|
3101 | ! |
---|
3102 | !-- Vertical advection, degradation of order near surface and top. |
---|
3103 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
3104 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
3105 | DO i = nxl, nxr |
---|
3106 | DO j = nys, nyn |
---|
3107 | k = nzb_w_inner(j,i)+1 |
---|
3108 | flux_d = w(k-1,j,i) * ( w(k,j,i) + w(k-1,j,i)) |
---|
3109 | flux_t(k-1) = flux_d |
---|
3110 | diss_d = 0.0 |
---|
3111 | diss_t(k-1) = diss_d |
---|
3112 | ! |
---|
3113 | !-- 2nd order scheme (bottom) |
---|
3114 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
3115 | flux_t(k) = w_comp * ( w(k+1,j,i) + w(k,j,i) ) * 0.25 |
---|
3116 | diss_t(k) = diss_2nd( w(k+2,j,i), w(k+1,j,i), w(k,j,i), 0.0, 0.0, & |
---|
3117 | w_comp, 0.25, ddzu(k+1) ) |
---|
3118 | |
---|
3119 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
3120 | - flux_d - diss_d ) * ddzu(k+1) |
---|
3121 | ! |
---|
3122 | !-- WS3 as an intermediate step (bottom) |
---|
3123 | k = nzb_w_inner(j,i) + 2 |
---|
3124 | flux_d = flux_t(k-1) |
---|
3125 | diss_d = diss_t(k-1) |
---|
3126 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
3127 | flux_t(k) = w_comp * ( & |
---|
3128 | 7.0 * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
3129 | - ( w(k+2,j,i) + w(k-1,j,i) ) ) * adv_mom_3 |
---|
3130 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
3131 | 3.0 * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
3132 | - ( w(k+2,j,i) - w(k-1,j,i) ) ) * adv_mom_3 |
---|
3133 | |
---|
3134 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
3135 | - flux_d - diss_d ) * ddzu(k+1) |
---|
3136 | ! |
---|
3137 | !-- WS5 |
---|
3138 | DO k = nzb_v_inner(j,i)+3, nzt-2 |
---|
3139 | flux_d = flux_t(k-1) |
---|
3140 | diss_d = diss_t(k-1) |
---|
3141 | |
---|
3142 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
3143 | flux_t(k) = w_comp * ( & |
---|
3144 | 37.0 * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
3145 | - 8.0 * ( w(k+2,j,i) + w(k-1,j,i) ) & |
---|
3146 | + ( w(k+3,j,i) + w(k-2,j,i) ) ) * adv_mom_5 |
---|
3147 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
3148 | 10.0 * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
3149 | - 5.0 * ( w(k+2,j,i) - w(k-1,j,i) ) & |
---|
3150 | + ( w(k+3,j,i) - w(k-2,j,i) ) ) * adv_mom_5 |
---|
3151 | |
---|
3152 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
3153 | - flux_d - diss_d ) * ddzu(k+1) |
---|
3154 | ENDDO |
---|
3155 | ! |
---|
3156 | !-- WS3 as an intermediate step (top) |
---|
3157 | k = nzt-1 |
---|
3158 | flux_d = flux_t(k-1) |
---|
3159 | diss_d = diss_t(k-1) |
---|
3160 | w_comp = w(k+1,j,i)+w(k,j,i) |
---|
3161 | flux_t(k) = w_comp * ( & |
---|
3162 | 7.0 * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
3163 | - ( w(k+2,j,i) + w(k-1,j,i) ) ) * adv_mom_3 |
---|
3164 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
3165 | 3.0 * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
3166 | - ( w(k+2,j,i) - w(k-1,j,i) ) ) * adv_mom_3 |
---|
3167 | |
---|
3168 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
3169 | - flux_d - diss_d ) * ddzu(k+1) |
---|
3170 | ! |
---|
3171 | !-- 2nd order scheme (top) |
---|
3172 | k = nzt |
---|
3173 | flux_d = flux_t(k-1) |
---|
3174 | diss_d = diss_t(k-1) |
---|
3175 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
3176 | flux_t(k) = w_comp * ( w(k+1,j,i) + w(k,j,i) ) * 0.25 |
---|
3177 | diss_t(k) = diss_2nd( w(nzt+1,j,i), w(nzt+1,j,i), w(k,j,i), & |
---|
3178 | w(k-1,j,i), w(k-2,j,i), w_comp, & |
---|
3179 | 0.25, ddzu(k+1) ) |
---|
3180 | |
---|
3181 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
3182 | - flux_d - diss_d ) * ddzu(k+1) |
---|
3183 | ! |
---|
3184 | !-- at last vertical momentum flux is accumulated |
---|
3185 | DO k = nzb_w_inner(j,i), nzt |
---|
3186 | sums_ws2_ws_l(k) = sums_ws2_ws_l(k) & |
---|
3187 | + ( flux_t(k) + diss_t(k) ) & |
---|
3188 | * weight_substep(intermediate_timestep_count) |
---|
3189 | ENDDO |
---|
3190 | |
---|
3191 | ENDDO |
---|
3192 | ENDDO |
---|
3193 | |
---|
3194 | END SUBROUTINE advec_w_ws |
---|
3195 | |
---|
3196 | |
---|
3197 | |
---|
3198 | SUBROUTINE local_diss_ij( i, j, ar, var_char ) |
---|
3199 | |
---|
3200 | END SUBROUTINE local_diss_ij |
---|
3201 | |
---|
3202 | SUBROUTINE local_diss( ar ) |
---|
3203 | |
---|
3204 | |
---|
3205 | END SUBROUTINE local_diss |
---|
3206 | |
---|
3207 | ! |
---|
3208 | !-- Computation of 2nd order dissipation. This numerical dissipation is |
---|
3209 | !-- necessary to keep a stable numerical solution in regions where the |
---|
3210 | !-- order of the schemes is degraded. |
---|
3211 | |
---|
3212 | REAL FUNCTION diss_2nd( v2, v1, v0, vm1, vm2, vel_comp, factor, grid ) & |
---|
3213 | RESULT( dissip ) |
---|
3214 | |
---|
3215 | IMPLICIT NONE |
---|
3216 | |
---|
3217 | REAL, INTENT(IN) :: v2, v1, v0, vm1, vm2, vel_comp, factor, & |
---|
3218 | grid |
---|
3219 | REAL :: value_min_m, value_max_m, value_min, value_max, & |
---|
3220 | value_min_p, value_max_p, diss_m, diss_0, diss_p |
---|
3221 | |
---|
3222 | value_min_m = MIN( v0, vm1, vm2 ) |
---|
3223 | value_max_m = MAX( v0, vm1, vm2 ) |
---|
3224 | value_min = MIN( v1, v0, vm2 ) |
---|
3225 | value_max = MAX( v1, v0, vm2 ) |
---|
3226 | value_min_p = MIN( v2, v1, v0 ) |
---|
3227 | value_max_p = MAX( v2, v1, v0 ) |
---|
3228 | |
---|
3229 | diss_m = MAX( 0.0, vm1 - value_max_m ) + MIN( 0.0, vm1 - value_min_m ) |
---|
3230 | diss_0 = MAX( 0.0, v0 - value_max ) + MIN( 0.0, v0 - value_min ) |
---|
3231 | diss_p = MAX( 0.0, v1 - value_max_p ) + MIN( 0.0, v1 - value_min_p ) |
---|
3232 | |
---|
3233 | dissip = ABS( vel_comp ) * ( diss_p - 2.0 * diss_0 + diss_m ) & |
---|
3234 | * grid**2 * factor |
---|
3235 | |
---|
3236 | END FUNCTION diss_2nd |
---|
3237 | |
---|
3238 | END MODULE advec_ws |
---|