1 | !> @file advec_ws.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
7 | ! (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
11 | ! Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
14 | ! <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2021 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ------------------ |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: advec_ws.f90 4828 2021-01-05 11:21:41Z banzhafs $ |
---|
26 | ! Implement snow and graupel (bulk microphysics) |
---|
27 | ! |
---|
28 | ! 4697 2020-09-25 08:24:29Z suehring |
---|
29 | ! To avoid numerical oscillations which may lead to a built-up of passive scalar near non-cyclic |
---|
30 | ! boundaries, employ a first-order scheme at the 3 grid points next to the boundary for passive |
---|
31 | ! scalars |
---|
32 | ! |
---|
33 | ! 4581 2020-06-29 08:49:58Z suehring |
---|
34 | ! Enable output of resolved-scale vertical fluxes of chemical species. |
---|
35 | ! |
---|
36 | ! 4509 2020-04-26 15:57:55Z raasch |
---|
37 | ! file re-formatted to follow the PALM coding standard |
---|
38 | ! |
---|
39 | ! 4502 2020-04-17 16:14:16Z schwenkel |
---|
40 | ! Implementation of ice microphysics |
---|
41 | ! |
---|
42 | ! 4469 2020-03-23 14:31:00Z suehring |
---|
43 | ! fix mistakenly committed version |
---|
44 | ! |
---|
45 | ! 4468 2020-03-23 13:49:05Z suehring |
---|
46 | ! - bugfix for last commit in openacc branch |
---|
47 | ! - some loop bounds revised (only to be consistent with cache version) |
---|
48 | ! - setting of nzb_max_l for advection of the w-component revised |
---|
49 | ! |
---|
50 | ! 4466 2020-03-20 16:14:41Z suehring |
---|
51 | ! - vector branch further optimized (linear dependencies along z removed and loops are splitted) |
---|
52 | ! - topography closed channel flow with symmetric boundaries also implemented in vector branch |
---|
53 | ! - some formatting adjustments made and comments added |
---|
54 | ! - cpu measures for vector branch added |
---|
55 | ! |
---|
56 | ! 4457 2020-03-11 14:20:43Z raasch |
---|
57 | ! use statement for exchange horiz added |
---|
58 | ! |
---|
59 | ! 4414 2020-02-19 20:16:04Z suehring |
---|
60 | ! Move call for initialization of control flags to ws_init |
---|
61 | ! |
---|
62 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
63 | ! Introduction of wall_flags_total_0, which currently sets bits based on static topography |
---|
64 | ! information used in wall_flags_static_0 |
---|
65 | ! |
---|
66 | ! 4340 2019-12-16 08:17:03Z Giersch |
---|
67 | ! Topography closed channel flow with symmetric boundaries implemented |
---|
68 | ! |
---|
69 | ! 4330 2019-12-10 16:16:33Z knoop |
---|
70 | ! Bugix: removed syntax error introduced by last commit |
---|
71 | ! |
---|
72 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
73 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
74 | ! |
---|
75 | ! 4328 2019-12-09 18:53:04Z suehring |
---|
76 | ! Minor formatting adjustments |
---|
77 | ! |
---|
78 | ! 4327 2019-12-06 14:48:31Z Giersch |
---|
79 | ! Setting of advection flags for vertical fluxes of w revised, air density for vertical flux |
---|
80 | ! calculation of w at k=1 is considered now |
---|
81 | ! |
---|
82 | ! 4325 2019-12-06 07:14:04Z Giersch |
---|
83 | ! Vertical fluxes of w are now set to zero at nzt and nzt+1, setting of advection flags for fluxes |
---|
84 | ! in z-direction revised, comments extended |
---|
85 | ! |
---|
86 | ! 4324 2019-12-06 07:11:33Z Giersch |
---|
87 | ! Indirect indexing for calculating vertical fluxes close to boundaries is only used for loop |
---|
88 | ! indizes where it is really necessary |
---|
89 | ! |
---|
90 | ! 4317 2019-12-03 12:43:22Z Giersch |
---|
91 | ! Comments revised/added, formatting improved, fluxes for u,v, and scalars are explicitly set to |
---|
92 | ! zero at nzt+1, fluxes of w-component are now calculated only until nzt-1 (Prognostic equation for |
---|
93 | ! w-velocity component ends at nzt-1) |
---|
94 | ! |
---|
95 | ! 4204 2019-08-30 12:30:17Z knoop |
---|
96 | ! Bugfix: Changed sk_num initialization default to avoid implicit SAVE-Attribut |
---|
97 | ! |
---|
98 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
99 | ! Corrected "Former revisions" section |
---|
100 | ! |
---|
101 | ! 4110 2019-07-22 17:05:21Z suehring |
---|
102 | ! - Separate initialization of advection flags for momentum and scalars. In this context, resort the |
---|
103 | ! bits and do some minor formatting. |
---|
104 | ! - Make flag initialization for scalars more flexible, introduce an arguemnt list to indicate |
---|
105 | ! non-cyclic boundaries (required for decycled scalars such as chemical species or aerosols) |
---|
106 | ! - Introduce extended 'degradation zones', where horizontal advection of passive scalars is |
---|
107 | ! discretized by first-order scheme at all grid points that in the vicinity of buildings (<= 3 |
---|
108 | ! grid points). Even though no building is within the numerical stencil, first-order scheme is |
---|
109 | ! used. At fourth and fifth grid point the order of the horizontal advection scheme is |
---|
110 | ! successively upgraded. These extended degradation zones are used to avoid stationary numerical |
---|
111 | ! oscillations, which are responsible for high concentration maxima that may appear under |
---|
112 | ! shear-free stable conditions. |
---|
113 | ! - Change interface for scalar advection routine. |
---|
114 | ! - Bugfix, avoid uninitialized value sk_num in vector version of scalar |
---|
115 | ! advection |
---|
116 | ! |
---|
117 | ! 4109 2019-07-22 17:00:34Z suehring |
---|
118 | ! Implementation of a flux limiter according to Skamarock (2006) for the vertical scalar advection. |
---|
119 | ! Please note, this is only implemented for the cache-optimized version at the moment. |
---|
120 | ! Implementation for the vector-optimized version will follow after critical issues concerning |
---|
121 | ! vectorization are fixed. |
---|
122 | ! |
---|
123 | ! 3873 2019-04-08 15:44:30Z knoop |
---|
124 | ! Moved ocean_mode specific code to ocean_mod |
---|
125 | ! |
---|
126 | ! 3872 2019-04-08 15:03:06Z knoop |
---|
127 | ! Moved all USE statements to module level + removed salsa dependency |
---|
128 | ! |
---|
129 | ! 3871 2019-04-08 14:38:39Z knoop |
---|
130 | ! Moving initialization of bcm specific flux arrays into bulk_cloud_model_mod |
---|
131 | ! |
---|
132 | ! 3864 2019-04-05 09:01:56Z monakurppa |
---|
133 | ! Remove tailing white spaces |
---|
134 | ! |
---|
135 | ! 3696 2019-01-24 16:37:35Z suehring |
---|
136 | ! Bugfix in degradation height |
---|
137 | ! |
---|
138 | ! 3661 2019-01-08 18:22:50Z suehring |
---|
139 | ! - Minor bugfix in divergence correction (only has implications at downward-facing wall surfaces) |
---|
140 | ! - Remove setting of Neumann condition for horizontal velocity variances |
---|
141 | ! - Split loops for tendency calculation and divergence correction in order to reduce bit queries |
---|
142 | ! - Introduce new parameter nzb_max_l to better control order degradation at non-cyclic boundaries |
---|
143 | ! |
---|
144 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
145 | ! OpenACC port for SPEC |
---|
146 | ! |
---|
147 | ! 411 2009-12-11 12:31:43 Z suehring |
---|
148 | ! Initial revision |
---|
149 | ! |
---|
150 | ! Authors: |
---|
151 | ! -------- |
---|
152 | ! @author Matthias Suehring |
---|
153 | ! |
---|
154 | ! |
---|
155 | ! Description: |
---|
156 | ! ------------ |
---|
157 | !> Advection scheme for scalars and momentum using the flux formulation of Wicker and Skamarock 5th |
---|
158 | !> order. Additionally the module contains of a routine using for initialisation and steering of the |
---|
159 | !> statical evaluation. |
---|
160 | !> The computation of turbulent fluxes takes place inside the advection routines. |
---|
161 | !> Near non-cyclic boundaries the order of the applied advection scheme is degraded. |
---|
162 | !> A divergence correction is applied. It is necessary for topography, since the divergence is not |
---|
163 | !> sufficiently reduced, resulting in erroneous fluxes and could lead to numerical instabilities. |
---|
164 | !> |
---|
165 | !> @todo Implement monotonic flux limiter also for vector version. |
---|
166 | !> @todo Move 3d arrays advc_flag, advc_flags_m from modules to advec_ws |
---|
167 | !> @todo Move arrays flux_l_x from modules to advec_ws |
---|
168 | !--------------------------------------------------------------------------------------------------! |
---|
169 | MODULE advec_ws |
---|
170 | |
---|
171 | USE arrays_3d, & |
---|
172 | ONLY: ddzu, ddzw, tend, u, v, w, & |
---|
173 | diss_l_diss, diss_l_e, diss_l_pt, diss_l_q, & |
---|
174 | diss_l_s, diss_l_u, diss_l_v, diss_l_w, & |
---|
175 | diss_s_diss, diss_s_e, diss_s_pt, diss_s_q, diss_s_s, & |
---|
176 | diss_s_u, diss_s_v, diss_s_w, & |
---|
177 | drho_air, drho_air_zw, rho_air, rho_air_zw, & |
---|
178 | flux_l_diss, flux_l_e, flux_l_pt, flux_l_q, flux_l_s, & |
---|
179 | flux_l_u, flux_l_v, flux_l_w, & |
---|
180 | flux_s_diss, flux_s_e, flux_s_pt, flux_s_q, flux_s_s, & |
---|
181 | flux_s_u, flux_s_v, flux_s_w, & |
---|
182 | u_stokes_zu, v_stokes_zu |
---|
183 | |
---|
184 | USE control_parameters, & |
---|
185 | ONLY: bc_dirichlet_l, & |
---|
186 | bc_dirichlet_n, & |
---|
187 | bc_dirichlet_r, & |
---|
188 | bc_dirichlet_s, & |
---|
189 | bc_radiation_l, & |
---|
190 | bc_radiation_n, & |
---|
191 | bc_radiation_r, & |
---|
192 | bc_radiation_s, & |
---|
193 | dt_3d, & |
---|
194 | humidity, & |
---|
195 | intermediate_timestep_count, & |
---|
196 | loop_optimization, & |
---|
197 | passive_scalar, & |
---|
198 | rans_tke_e, & |
---|
199 | symmetry_flag, & |
---|
200 | u_gtrans, & |
---|
201 | v_gtrans, & |
---|
202 | ws_scheme_mom, & |
---|
203 | ws_scheme_sca |
---|
204 | |
---|
205 | USE cpulog, & |
---|
206 | ONLY: cpu_log, & |
---|
207 | log_point_s |
---|
208 | |
---|
209 | USE exchange_horiz_mod, & |
---|
210 | ONLY: exchange_horiz_int |
---|
211 | |
---|
212 | USE indices, & |
---|
213 | ONLY: advc_flags_m, & |
---|
214 | advc_flags_s, & |
---|
215 | nbgp, & |
---|
216 | nx, & |
---|
217 | nxl, & |
---|
218 | nxlg, & |
---|
219 | nxlu, & |
---|
220 | nxr, & |
---|
221 | nxrg, & |
---|
222 | ny, & |
---|
223 | nyn, & |
---|
224 | nyng, & |
---|
225 | nys, & |
---|
226 | nysg, & |
---|
227 | nysv, & |
---|
228 | nzb, & |
---|
229 | nzb_max, & |
---|
230 | nzt, & |
---|
231 | wall_flags_total_0 |
---|
232 | |
---|
233 | USE grid_variables, & |
---|
234 | ONLY: ddx, ddy |
---|
235 | |
---|
236 | USE kinds |
---|
237 | |
---|
238 | USE pegrid, & |
---|
239 | ONLY: threads_per_task |
---|
240 | |
---|
241 | USE statistics, & |
---|
242 | ONLY: hom, & |
---|
243 | sums_salsa_ws_l, & |
---|
244 | sums_us2_ws_l, & |
---|
245 | sums_vs2_ws_l, & |
---|
246 | sums_ws2_ws_l, & |
---|
247 | sums_wschs_ws_l, & |
---|
248 | sums_wsncs_ws_l, & |
---|
249 | sums_wsnrs_ws_l, & |
---|
250 | sums_wspts_ws_l, & |
---|
251 | sums_wsqs_ws_l, & |
---|
252 | sums_wsss_ws_l, & |
---|
253 | sums_wsqcs_ws_l, & |
---|
254 | sums_wsqrs_ws_l, & |
---|
255 | sums_wsqis_ws_l, & |
---|
256 | sums_wsnis_ws_l, & |
---|
257 | sums_wsqgs_ws_l, & |
---|
258 | sums_wsngs_ws_l, & |
---|
259 | sums_wsqss_ws_l, & |
---|
260 | sums_wsnss_ws_l, & |
---|
261 | sums_wssas_ws_l, & |
---|
262 | sums_wsus_ws_l, & |
---|
263 | sums_wsvs_ws_l, & |
---|
264 | weight_substep |
---|
265 | |
---|
266 | |
---|
267 | |
---|
268 | IMPLICIT NONE |
---|
269 | |
---|
270 | REAL(wp) :: adv_mom_1 !< 1/4 - constant used in 5th-order advection scheme for momentum advection (1st-order part) |
---|
271 | REAL(wp) :: adv_mom_3 !< 1/24 - constant used in 5th-order advection scheme for momentum advection (3rd-order part) |
---|
272 | REAL(wp) :: adv_mom_5 !< 1/120 - constant used in 5th-order advection scheme for momentum advection (5th-order part) |
---|
273 | REAL(wp) :: adv_sca_1 !< 1/2 - constant used in 5th-order advection scheme for scalar advection (1st-order part) |
---|
274 | REAL(wp) :: adv_sca_3 !< 1/12 - constant used in 5th-order advection scheme for scalar advection (3rd-order part) |
---|
275 | REAL(wp) :: adv_sca_5 !< 1/60 - constant used in 5th-order advection scheme for scalar advection (5th-order part) |
---|
276 | |
---|
277 | PRIVATE |
---|
278 | PUBLIC advec_s_ws, advec_u_ws, advec_v_ws, advec_w_ws, ws_init, ws_init_flags_momentum, & |
---|
279 | ws_init_flags_scalar, ws_statistics |
---|
280 | |
---|
281 | INTERFACE ws_init |
---|
282 | MODULE PROCEDURE ws_init |
---|
283 | END INTERFACE ws_init |
---|
284 | |
---|
285 | INTERFACE ws_init_flags_momentum |
---|
286 | MODULE PROCEDURE ws_init_flags_momentum |
---|
287 | END INTERFACE ws_init_flags_momentum |
---|
288 | |
---|
289 | INTERFACE ws_init_flags_scalar |
---|
290 | MODULE PROCEDURE ws_init_flags_scalar |
---|
291 | END INTERFACE ws_init_flags_scalar |
---|
292 | |
---|
293 | INTERFACE ws_statistics |
---|
294 | MODULE PROCEDURE ws_statistics |
---|
295 | END INTERFACE ws_statistics |
---|
296 | |
---|
297 | INTERFACE advec_s_ws |
---|
298 | MODULE PROCEDURE advec_s_ws |
---|
299 | MODULE PROCEDURE advec_s_ws_ij |
---|
300 | END INTERFACE advec_s_ws |
---|
301 | |
---|
302 | INTERFACE advec_u_ws |
---|
303 | MODULE PROCEDURE advec_u_ws |
---|
304 | MODULE PROCEDURE advec_u_ws_ij |
---|
305 | END INTERFACE advec_u_ws |
---|
306 | |
---|
307 | INTERFACE advec_v_ws |
---|
308 | MODULE PROCEDURE advec_v_ws |
---|
309 | MODULE PROCEDURE advec_v_ws_ij |
---|
310 | END INTERFACE advec_v_ws |
---|
311 | |
---|
312 | INTERFACE advec_w_ws |
---|
313 | MODULE PROCEDURE advec_w_ws |
---|
314 | MODULE PROCEDURE advec_w_ws_ij |
---|
315 | END INTERFACE advec_w_ws |
---|
316 | |
---|
317 | CONTAINS |
---|
318 | |
---|
319 | |
---|
320 | !--------------------------------------------------------------------------------------------------! |
---|
321 | ! Description: |
---|
322 | ! ------------ |
---|
323 | !> Initialization of WS-scheme |
---|
324 | !--------------------------------------------------------------------------------------------------! |
---|
325 | SUBROUTINE ws_init |
---|
326 | |
---|
327 | ! |
---|
328 | !-- Set factors for scalar and momentum advection. |
---|
329 | adv_sca_5 = 1.0_wp / 60.0_wp |
---|
330 | adv_sca_3 = 1.0_wp / 12.0_wp |
---|
331 | adv_sca_1 = 1.0_wp / 2.0_wp |
---|
332 | adv_mom_5 = 1.0_wp / 120.0_wp |
---|
333 | adv_mom_3 = 1.0_wp / 24.0_wp |
---|
334 | adv_mom_1 = 1.0_wp / 4.0_wp |
---|
335 | ! |
---|
336 | !-- Arrays needed for statical evaluation of fluxes. |
---|
337 | IF ( ws_scheme_mom ) THEN |
---|
338 | |
---|
339 | ALLOCATE( sums_wsus_ws_l(nzb:nzt+1,0:threads_per_task-1), & |
---|
340 | sums_wsvs_ws_l(nzb:nzt+1,0:threads_per_task-1), & |
---|
341 | sums_us2_ws_l(nzb:nzt+1,0:threads_per_task-1), & |
---|
342 | sums_vs2_ws_l(nzb:nzt+1,0:threads_per_task-1), & |
---|
343 | sums_ws2_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
344 | |
---|
345 | sums_wsus_ws_l = 0.0_wp |
---|
346 | sums_wsvs_ws_l = 0.0_wp |
---|
347 | sums_us2_ws_l = 0.0_wp |
---|
348 | sums_vs2_ws_l = 0.0_wp |
---|
349 | sums_ws2_ws_l = 0.0_wp |
---|
350 | |
---|
351 | ENDIF |
---|
352 | |
---|
353 | IF ( ws_scheme_sca ) THEN |
---|
354 | |
---|
355 | ALLOCATE( sums_wspts_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
356 | sums_wspts_ws_l = 0.0_wp |
---|
357 | |
---|
358 | IF ( humidity ) THEN |
---|
359 | ALLOCATE( sums_wsqs_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
360 | sums_wsqs_ws_l = 0.0_wp |
---|
361 | ENDIF |
---|
362 | |
---|
363 | IF ( passive_scalar ) THEN |
---|
364 | ALLOCATE( sums_wsss_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
365 | sums_wsss_ws_l = 0.0_wp |
---|
366 | ENDIF |
---|
367 | |
---|
368 | ENDIF |
---|
369 | |
---|
370 | ! |
---|
371 | !-- Arrays needed for reasons of speed optimization |
---|
372 | IF ( ws_scheme_mom ) THEN |
---|
373 | |
---|
374 | ALLOCATE( flux_s_u(nzb+1:nzt,0:threads_per_task-1), & |
---|
375 | flux_s_v(nzb+1:nzt,0:threads_per_task-1), & |
---|
376 | flux_s_w(nzb+1:nzt,0:threads_per_task-1), & |
---|
377 | diss_s_u(nzb+1:nzt,0:threads_per_task-1), & |
---|
378 | diss_s_v(nzb+1:nzt,0:threads_per_task-1), & |
---|
379 | diss_s_w(nzb+1:nzt,0:threads_per_task-1) ) |
---|
380 | ALLOCATE( flux_l_u(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
381 | flux_l_v(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
382 | flux_l_w(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
383 | diss_l_u(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
384 | diss_l_v(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
385 | diss_l_w(nzb+1:nzt,nys:nyn,0:threads_per_task-1) ) |
---|
386 | |
---|
387 | ENDIF |
---|
388 | ! |
---|
389 | !-- For the vector version the buffer arrays for scalars are not necessary, since internal arrays |
---|
390 | !-- are used in the vector version. |
---|
391 | IF ( loop_optimization /= 'vector' ) THEN |
---|
392 | IF ( ws_scheme_sca ) THEN |
---|
393 | |
---|
394 | ALLOCATE( flux_s_pt(nzb+1:nzt,0:threads_per_task-1), & |
---|
395 | flux_s_e(nzb+1:nzt,0:threads_per_task-1), & |
---|
396 | diss_s_pt(nzb+1:nzt,0:threads_per_task-1), & |
---|
397 | diss_s_e(nzb+1:nzt,0:threads_per_task-1) ) |
---|
398 | ALLOCATE( flux_l_pt(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
399 | flux_l_e(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
400 | diss_l_pt(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
401 | diss_l_e(nzb+1:nzt,nys:nyn,0:threads_per_task-1) ) |
---|
402 | |
---|
403 | IF ( rans_tke_e ) THEN |
---|
404 | ALLOCATE( flux_s_diss(nzb+1:nzt,0:threads_per_task-1), & |
---|
405 | diss_s_diss(nzb+1:nzt,0:threads_per_task-1) ) |
---|
406 | ALLOCATE( flux_l_diss(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
407 | diss_l_diss(nzb+1:nzt,nys:nyn,0:threads_per_task-1) ) |
---|
408 | ENDIF |
---|
409 | |
---|
410 | IF ( humidity ) THEN |
---|
411 | ALLOCATE( flux_s_q(nzb+1:nzt,0:threads_per_task-1), & |
---|
412 | diss_s_q(nzb+1:nzt,0:threads_per_task-1) ) |
---|
413 | ALLOCATE( flux_l_q(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
414 | diss_l_q(nzb+1:nzt,nys:nyn,0:threads_per_task-1) ) |
---|
415 | ENDIF |
---|
416 | |
---|
417 | IF ( passive_scalar ) THEN |
---|
418 | ALLOCATE( flux_s_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
419 | diss_s_s(nzb+1:nzt,0:threads_per_task-1) ) |
---|
420 | ALLOCATE( flux_l_s(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
421 | diss_l_s(nzb+1:nzt,nys:nyn,0:threads_per_task-1) ) |
---|
422 | ENDIF |
---|
423 | |
---|
424 | ENDIF |
---|
425 | ENDIF |
---|
426 | ! |
---|
427 | !-- Initialize the flag arrays controlling degradation near walls, i.e. to decrease the numerical |
---|
428 | !-- stencil appropriately. The order of the scheme is degraded near solid walls as well as near |
---|
429 | !-- non-cyclic inflow and outflow boundaries. Do this separately for momentum and scalars. |
---|
430 | IF ( ws_scheme_mom ) CALL ws_init_flags_momentum |
---|
431 | |
---|
432 | IF ( ws_scheme_sca ) THEN |
---|
433 | ALLOCATE( advc_flags_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
434 | advc_flags_s = 0 |
---|
435 | CALL ws_init_flags_scalar( bc_dirichlet_l .OR. bc_radiation_l, & |
---|
436 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
437 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
438 | bc_dirichlet_s .OR. bc_radiation_s, & |
---|
439 | advc_flags_s ) |
---|
440 | ENDIF |
---|
441 | |
---|
442 | END SUBROUTINE ws_init |
---|
443 | |
---|
444 | !--------------------------------------------------------------------------------------------------! |
---|
445 | ! Description: |
---|
446 | ! ------------ |
---|
447 | !> Initialization of flags to control the order of the advection scheme near solid walls and |
---|
448 | !> non-cyclic inflow boundaries, where the order is sucessively degraded. |
---|
449 | !--------------------------------------------------------------------------------------------------! |
---|
450 | SUBROUTINE ws_init_flags_momentum |
---|
451 | |
---|
452 | |
---|
453 | INTEGER(iwp) :: i !< index variable along x |
---|
454 | INTEGER(iwp) :: j !< index variable along y |
---|
455 | INTEGER(iwp) :: k !< index variable along z |
---|
456 | INTEGER(iwp) :: k_mm !< dummy index along z |
---|
457 | INTEGER(iwp) :: k_pp !< dummy index along z |
---|
458 | INTEGER(iwp) :: k_ppp !< dummy index along z |
---|
459 | |
---|
460 | LOGICAL :: flag_set !< steering variable for advection flags |
---|
461 | |
---|
462 | ALLOCATE( advc_flags_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
463 | advc_flags_m = 0 |
---|
464 | ! |
---|
465 | !-- Set advc_flags_m to steer the degradation of the advection scheme in advec_ws near |
---|
466 | !-- topography, inflow- and outflow boundaries as well as bottom and top of model domain. |
---|
467 | !-- advc_flags_m remains zero for all non-prognostic grid points. |
---|
468 | !-- u-component |
---|
469 | DO i = nxl, nxr |
---|
470 | DO j = nys, nyn |
---|
471 | DO k = nzb+1, nzt |
---|
472 | ! |
---|
473 | !-- At first, set flags to WS1. |
---|
474 | !-- Since fluxes are swapped in advec_ws.f90, this is necessary to |
---|
475 | !-- in order to handle the left/south flux. |
---|
476 | !-- near vertical walls. |
---|
477 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 0 ) |
---|
478 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 3 ) |
---|
479 | ! |
---|
480 | !-- u component - x-direction |
---|
481 | !-- WS1 (0), WS3 (1), WS5 (2) |
---|
482 | IF ( .NOT. BTEST(wall_flags_total_0(k,j,i+1),1) .OR. & |
---|
483 | ( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i <= nxlu ) .OR. & |
---|
484 | ( ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i == nxr ) ) & |
---|
485 | THEN |
---|
486 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 0 ) |
---|
487 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k,j,i+2),1) .AND. & |
---|
488 | BTEST(wall_flags_total_0(k,j,i+1),1) .OR. & |
---|
489 | .NOT. BTEST(wall_flags_total_0(k,j,i-1),1) ) & |
---|
490 | .OR. & |
---|
491 | ( ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i == nxr-1 ) .OR. & |
---|
492 | ( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i == nxlu+1) ) & |
---|
493 | THEN |
---|
494 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 1 ) |
---|
495 | ! |
---|
496 | !-- Clear flag for WS1 |
---|
497 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 0 ) |
---|
498 | ELSEIF ( BTEST(wall_flags_total_0(k,j,i+1),1) .AND. & |
---|
499 | BTEST(wall_flags_total_0(k,j,i+2),1) .AND. & |
---|
500 | BTEST(wall_flags_total_0(k,j,i-1),1) ) & |
---|
501 | THEN |
---|
502 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 2 ) |
---|
503 | ! |
---|
504 | !-- Clear flag for WS1 |
---|
505 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 0 ) |
---|
506 | ENDIF |
---|
507 | ! |
---|
508 | !-- u component - y-direction |
---|
509 | !-- WS1 (3), WS3 (4), WS5 (5) |
---|
510 | IF ( .NOT. BTEST(wall_flags_total_0(k,j+1,i),1) .OR. & |
---|
511 | ( ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j == nys ) .OR. & |
---|
512 | ( ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j == nyn ) ) & |
---|
513 | THEN |
---|
514 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 3 ) |
---|
515 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k,j+2,i),1) .AND. & |
---|
516 | BTEST(wall_flags_total_0(k,j+1,i),1) .OR. & |
---|
517 | .NOT. BTEST(wall_flags_total_0(k,j-1,i),1) ) & |
---|
518 | .OR. & |
---|
519 | ( ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j == nysv ) .OR. & |
---|
520 | ( ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j == nyn-1 ) ) & |
---|
521 | THEN |
---|
522 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 4 ) |
---|
523 | ! |
---|
524 | !-- Clear flag for WS1 |
---|
525 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 3 ) |
---|
526 | ELSEIF ( BTEST(wall_flags_total_0(k,j+1,i),1) .AND. & |
---|
527 | BTEST(wall_flags_total_0(k,j+2,i),1) .AND. & |
---|
528 | BTEST(wall_flags_total_0(k,j-1,i),1) ) & |
---|
529 | THEN |
---|
530 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 5 ) |
---|
531 | ! |
---|
532 | !-- Clear flag for WS1 |
---|
533 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 3 ) |
---|
534 | ENDIF |
---|
535 | ! |
---|
536 | !-- u component - z-direction. Fluxes are calculated on w-grid level. Boundary u-values |
---|
537 | !-- at/within walls aren't used. |
---|
538 | !-- WS1 (6), WS3 (7), WS5 (8) |
---|
539 | IF ( k == nzb+1 ) THEN |
---|
540 | k_mm = nzb |
---|
541 | ELSE |
---|
542 | k_mm = k - 2 |
---|
543 | ENDIF |
---|
544 | IF ( k > nzt-1 ) THEN |
---|
545 | k_pp = nzt+1 |
---|
546 | ELSE |
---|
547 | k_pp = k + 2 |
---|
548 | ENDIF |
---|
549 | IF ( k > nzt-2 ) THEN |
---|
550 | k_ppp = nzt+1 |
---|
551 | ELSE |
---|
552 | k_ppp = k + 3 |
---|
553 | ENDIF |
---|
554 | |
---|
555 | flag_set = .FALSE. |
---|
556 | IF ( ( .NOT. BTEST(wall_flags_total_0(k-1,j,i),1) .AND. & |
---|
557 | BTEST(wall_flags_total_0(k,j,i),1) .AND. & |
---|
558 | BTEST(wall_flags_total_0(k+1,j,i),1) ) .OR. & |
---|
559 | ( .NOT. BTEST(wall_flags_total_0(k_pp,j,i),1) .AND. & |
---|
560 | BTEST(wall_flags_total_0(k+1,j,i),1) .AND. & |
---|
561 | BTEST(wall_flags_total_0(k,j,i),1) ) .OR. & |
---|
562 | ( k == nzt .AND. symmetry_flag == 0 ) ) & |
---|
563 | THEN |
---|
564 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 6 ) |
---|
565 | flag_set = .TRUE. |
---|
566 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k_mm,j,i),1) .OR. & |
---|
567 | .NOT. BTEST(wall_flags_total_0(k_ppp,j,i),1) ) .AND. & |
---|
568 | BTEST(wall_flags_total_0(k-1,j,i),1) .AND. & |
---|
569 | BTEST(wall_flags_total_0(k,j,i),1) .AND. & |
---|
570 | BTEST(wall_flags_total_0(k+1,j,i),1) .AND. & |
---|
571 | BTEST(wall_flags_total_0(k_pp,j,i),1) .AND. & |
---|
572 | .NOT. flag_set .OR. & |
---|
573 | ( k == nzt - 1 .AND. symmetry_flag == 0 ) ) & |
---|
574 | THEN |
---|
575 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 7 ) |
---|
576 | flag_set = .TRUE. |
---|
577 | ELSEIF ( BTEST(wall_flags_total_0(k_mm,j,i),1) .AND. & |
---|
578 | BTEST(wall_flags_total_0(k-1,j,i),1) .AND. & |
---|
579 | BTEST(wall_flags_total_0(k,j,i),1) .AND. & |
---|
580 | BTEST(wall_flags_total_0(k+1,j,i),1) .AND. & |
---|
581 | BTEST(wall_flags_total_0(k_pp,j,i),1) .AND. & |
---|
582 | BTEST(wall_flags_total_0(k_ppp,j,i),1) .AND. & |
---|
583 | .NOT. flag_set ) & |
---|
584 | THEN |
---|
585 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 8 ) |
---|
586 | ENDIF |
---|
587 | |
---|
588 | ENDDO |
---|
589 | ENDDO |
---|
590 | ENDDO |
---|
591 | ! |
---|
592 | !-- v-component |
---|
593 | DO i = nxl, nxr |
---|
594 | DO j = nys, nyn |
---|
595 | DO k = nzb+1, nzt |
---|
596 | ! |
---|
597 | !-- At first, set flags to WS1. |
---|
598 | !-- Since fluxes are swapped in advec_ws.f90, this is necessary to in order to handle the |
---|
599 | !-- left/south flux. |
---|
600 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 9 ) |
---|
601 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 12 ) |
---|
602 | ! |
---|
603 | !-- v component - x-direction |
---|
604 | !-- WS1 (9), WS3 (10), WS5 (11) |
---|
605 | IF ( .NOT. BTEST(wall_flags_total_0(k,j,i+1),2) .OR. & |
---|
606 | ( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i == nxl ) .OR. & |
---|
607 | ( ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i == nxr ) ) & |
---|
608 | THEN |
---|
609 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 9 ) |
---|
610 | ! |
---|
611 | !-- WS3 |
---|
612 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k,j,i+2),2) .AND. & |
---|
613 | BTEST(wall_flags_total_0(k,j,i+1),2) ) .OR. & |
---|
614 | .NOT. BTEST(wall_flags_total_0(k,j,i-1),2) & |
---|
615 | .OR. & |
---|
616 | ( ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i == nxr-1 ) .OR. & |
---|
617 | ( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i == nxlu ) ) & |
---|
618 | THEN |
---|
619 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 10 ) |
---|
620 | ! |
---|
621 | !-- Clear flag for WS1 |
---|
622 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 9 ) |
---|
623 | ELSEIF ( BTEST(wall_flags_total_0(k,j,i+1),2) .AND. & |
---|
624 | BTEST(wall_flags_total_0(k,j,i+2),2) .AND. & |
---|
625 | BTEST(wall_flags_total_0(k,j,i-1),2) ) & |
---|
626 | THEN |
---|
627 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 11 ) |
---|
628 | ! |
---|
629 | !-- Clear flag for WS1 |
---|
630 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 9 ) |
---|
631 | ENDIF |
---|
632 | ! |
---|
633 | !-- v component - y-direction |
---|
634 | !-- WS1 (12), WS3 (13), WS5 (14) |
---|
635 | IF ( .NOT. BTEST(wall_flags_total_0(k,j+1,i),2) .OR. & |
---|
636 | ( ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j <= nysv ) .OR. & |
---|
637 | ( ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j == nyn ) ) & |
---|
638 | THEN |
---|
639 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 12 ) |
---|
640 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k,j+2,i),2) .AND. & |
---|
641 | BTEST(wall_flags_total_0(k,j+1,i),2) .OR. & |
---|
642 | .NOT. BTEST(wall_flags_total_0(k,j-1,i),2) ) & |
---|
643 | .OR. & |
---|
644 | ( ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j == nysv+1) .OR. & |
---|
645 | ( ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j == nyn-1 ) ) & |
---|
646 | THEN |
---|
647 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 13 ) |
---|
648 | ! |
---|
649 | !-- Clear flag for WS1 |
---|
650 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 12 ) |
---|
651 | ELSEIF ( BTEST(wall_flags_total_0(k,j+1,i),2) .AND. & |
---|
652 | BTEST(wall_flags_total_0(k,j+2,i),2) .AND. & |
---|
653 | BTEST(wall_flags_total_0(k,j-1,i),2) ) & |
---|
654 | THEN |
---|
655 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 14 ) |
---|
656 | ! |
---|
657 | !-- Clear flag for WS1 |
---|
658 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 12 ) |
---|
659 | ENDIF |
---|
660 | ! |
---|
661 | !-- v component - z-direction. Fluxes are calculated on w-grid level. Boundary v-values |
---|
662 | !-- at/within walls aren't used. |
---|
663 | !-- WS1 (15), WS3 (16), WS5 (17) |
---|
664 | IF ( k == nzb+1 ) THEN |
---|
665 | k_mm = nzb |
---|
666 | ELSE |
---|
667 | k_mm = k - 2 |
---|
668 | ENDIF |
---|
669 | IF ( k > nzt-1 ) THEN |
---|
670 | k_pp = nzt+1 |
---|
671 | ELSE |
---|
672 | k_pp = k + 2 |
---|
673 | ENDIF |
---|
674 | IF ( k > nzt-2 ) THEN |
---|
675 | k_ppp = nzt+1 |
---|
676 | ELSE |
---|
677 | k_ppp = k + 3 |
---|
678 | ENDIF |
---|
679 | |
---|
680 | flag_set = .FALSE. |
---|
681 | IF ( ( .NOT. BTEST(wall_flags_total_0(k-1,j,i),2) .AND. & |
---|
682 | BTEST(wall_flags_total_0(k,j,i),2) .AND. & |
---|
683 | BTEST(wall_flags_total_0(k+1,j,i),2) ) .OR. & |
---|
684 | ( .NOT. BTEST(wall_flags_total_0(k_pp,j,i),2) .AND. & |
---|
685 | BTEST(wall_flags_total_0(k+1,j,i),2) .AND. & |
---|
686 | BTEST(wall_flags_total_0(k,j,i),2) ) .OR. & |
---|
687 | ( k == nzt .AND. symmetry_flag == 0 ) ) & |
---|
688 | THEN |
---|
689 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 15 ) |
---|
690 | flag_set = .TRUE. |
---|
691 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k_mm,j,i),2) .OR. & |
---|
692 | .NOT. BTEST(wall_flags_total_0(k_ppp,j,i),2) ) .AND. & |
---|
693 | BTEST(wall_flags_total_0(k-1,j,i),2) .AND. & |
---|
694 | BTEST(wall_flags_total_0(k,j,i),2) .AND. & |
---|
695 | BTEST(wall_flags_total_0(k+1,j,i),2) .AND. & |
---|
696 | BTEST(wall_flags_total_0(k_pp,j,i),2) .AND. & |
---|
697 | .NOT. flag_set .OR. & |
---|
698 | ( k == nzt - 1 .AND. symmetry_flag == 0 ) ) & |
---|
699 | THEN |
---|
700 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 16 ) |
---|
701 | flag_set = .TRUE. |
---|
702 | ELSEIF ( BTEST(wall_flags_total_0(k_mm,j,i),2) .AND. & |
---|
703 | BTEST(wall_flags_total_0(k-1,j,i),2) .AND. & |
---|
704 | BTEST(wall_flags_total_0(k,j,i),2) .AND. & |
---|
705 | BTEST(wall_flags_total_0(k+1,j,i),2) .AND. & |
---|
706 | BTEST(wall_flags_total_0(k_pp,j,i),2) .AND. & |
---|
707 | BTEST(wall_flags_total_0(k_ppp,j,i),2) .AND. & |
---|
708 | .NOT. flag_set ) & |
---|
709 | THEN |
---|
710 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 17 ) |
---|
711 | ENDIF |
---|
712 | |
---|
713 | ENDDO |
---|
714 | ENDDO |
---|
715 | ENDDO |
---|
716 | ! |
---|
717 | !-- w - component |
---|
718 | DO i = nxl, nxr |
---|
719 | DO j = nys, nyn |
---|
720 | DO k = nzb+1, nzt |
---|
721 | ! |
---|
722 | !-- At first, set flags to WS1. |
---|
723 | !-- Since fluxes are swapped in advec_ws.f90, this is necessary to in order to handle the |
---|
724 | !-- left/south flux. |
---|
725 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 18 ) |
---|
726 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 21 ) |
---|
727 | ! |
---|
728 | !-- w component - x-direction |
---|
729 | !-- WS1 (18), WS3 (19), WS5 (20) |
---|
730 | IF ( .NOT. BTEST(wall_flags_total_0(k,j,i+1),3) .OR. & |
---|
731 | ( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i == nxl ) .OR. & |
---|
732 | ( ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i == nxr ) ) & |
---|
733 | THEN |
---|
734 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 18 ) |
---|
735 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k,j,i+2),3) .AND. & |
---|
736 | BTEST(wall_flags_total_0(k,j,i+1),3) .OR. & |
---|
737 | .NOT. BTEST(wall_flags_total_0(k,j,i-1),3) ) & |
---|
738 | .OR. & |
---|
739 | ( ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i == nxr-1 ) .OR. & |
---|
740 | ( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i == nxlu ) ) & |
---|
741 | THEN |
---|
742 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 19 ) |
---|
743 | ! |
---|
744 | !-- Clear flag for WS1 |
---|
745 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 18 ) |
---|
746 | ELSEIF ( BTEST(wall_flags_total_0(k,j,i+1),3) .AND. & |
---|
747 | BTEST(wall_flags_total_0(k,j,i+2),3) .AND. & |
---|
748 | BTEST(wall_flags_total_0(k,j,i-1),3) ) & |
---|
749 | THEN |
---|
750 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i),20 ) |
---|
751 | ! |
---|
752 | !-- Clear flag for WS1 |
---|
753 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 18 ) |
---|
754 | ENDIF |
---|
755 | ! |
---|
756 | !-- w component - y-direction |
---|
757 | !-- WS1 (21), WS3 (22), WS5 (23) |
---|
758 | IF ( .NOT. BTEST(wall_flags_total_0(k,j+1,i),3) .OR. & |
---|
759 | ( ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j == nys ) .OR. & |
---|
760 | ( ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j == nyn ) ) & |
---|
761 | THEN |
---|
762 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 21 ) |
---|
763 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k,j+2,i),3) .AND. & |
---|
764 | BTEST(wall_flags_total_0(k,j+1,i),3) .OR. & |
---|
765 | .NOT. BTEST(wall_flags_total_0(k,j-1,i),3) ) & |
---|
766 | .OR. & |
---|
767 | ( ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j == nysv ) .OR. & |
---|
768 | ( ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j == nyn-1 ) ) & |
---|
769 | THEN |
---|
770 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 22 ) |
---|
771 | ! |
---|
772 | !-- Clear flag for WS1 |
---|
773 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 21 ) |
---|
774 | ELSEIF ( BTEST(wall_flags_total_0(k,j+1,i),3) .AND. & |
---|
775 | BTEST(wall_flags_total_0(k,j+2,i),3) .AND. & |
---|
776 | BTEST(wall_flags_total_0(k,j-1,i),3) ) & |
---|
777 | THEN |
---|
778 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 23 ) |
---|
779 | ! |
---|
780 | !-- Clear flag for WS1 |
---|
781 | advc_flags_m(k,j,i) = IBCLR( advc_flags_m(k,j,i), 21 ) |
---|
782 | ENDIF |
---|
783 | ! |
---|
784 | !-- w component - z-direction. Fluxes are calculated on scalar grid level. Boundary |
---|
785 | !-- w-values at walls are used. Flux at k=i is defined at scalar position k=i+1 with i |
---|
786 | !-- being an integer. |
---|
787 | !-- WS1 (24), WS3 (25), WS5 (26) |
---|
788 | IF ( k == nzb+1 ) THEN |
---|
789 | k_mm = nzb |
---|
790 | ELSE |
---|
791 | k_mm = k - 2 |
---|
792 | ENDIF |
---|
793 | IF ( k > nzt-1 ) THEN |
---|
794 | k_pp = nzt+1 |
---|
795 | ELSE |
---|
796 | k_pp = k + 2 |
---|
797 | ENDIF |
---|
798 | IF ( k > nzt-2 ) THEN |
---|
799 | k_ppp = nzt+1 |
---|
800 | ELSE |
---|
801 | k_ppp = k + 3 |
---|
802 | ENDIF |
---|
803 | |
---|
804 | flag_set = .FALSE. |
---|
805 | IF ( ( .NOT. BTEST(wall_flags_total_0(k,j,i),3) .AND. & |
---|
806 | BTEST(wall_flags_total_0(k+1,j,i),3) ) .OR. & |
---|
807 | ( .NOT. BTEST(wall_flags_total_0(k+1,j,i),3) .AND. & |
---|
808 | BTEST(wall_flags_total_0(k,j,i),3) ) .OR. & |
---|
809 | k == nzt -1 ) & |
---|
810 | THEN |
---|
811 | ! |
---|
812 | !-- Please note, at k == nzb_w_inner(j,i) a flag is explicitly set, although this is not |
---|
813 | !-- a prognostic level. However, contrary to the advection of u,v and s this is |
---|
814 | !-- necessary because flux_t(nzb_w_inner(j,i)) is used for the tendency at k == |
---|
815 | !-- 0nzb_w_inner(j,i)+1. |
---|
816 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 24 ) |
---|
817 | flag_set = .TRUE. |
---|
818 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k-1,j,i),3) .AND. & |
---|
819 | BTEST(wall_flags_total_0(k,j,i),3) .AND. & |
---|
820 | BTEST(wall_flags_total_0(k+1,j,i),3) .AND. & |
---|
821 | BTEST(wall_flags_total_0(k_pp,j,i),3) ) .OR. & |
---|
822 | ( .NOT. BTEST(wall_flags_total_0(k_pp,j,i),3) .AND. & |
---|
823 | BTEST(wall_flags_total_0(k+1,j,i),3) .AND. & |
---|
824 | BTEST(wall_flags_total_0(k,j,i),3) .AND. & |
---|
825 | BTEST(wall_flags_total_0(k-1,j,i),3) ) .AND. & |
---|
826 | .NOT. flag_set .OR. & |
---|
827 | k == nzt - 2 ) & |
---|
828 | THEN |
---|
829 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 25 ) |
---|
830 | flag_set = .TRUE. |
---|
831 | ELSEIF ( BTEST(wall_flags_total_0(k-1,j,i),3) .AND. & |
---|
832 | BTEST(wall_flags_total_0(k,j,i),3) .AND. & |
---|
833 | BTEST(wall_flags_total_0(k+1,j,i),3) .AND. & |
---|
834 | BTEST(wall_flags_total_0(k_pp,j,i),3) .AND. & |
---|
835 | .NOT. flag_set ) & |
---|
836 | THEN |
---|
837 | advc_flags_m(k,j,i) = IBSET( advc_flags_m(k,j,i), 26 ) |
---|
838 | ENDIF |
---|
839 | |
---|
840 | ENDDO |
---|
841 | ENDDO |
---|
842 | ENDDO |
---|
843 | ! |
---|
844 | !-- Exchange ghost points for advection flags |
---|
845 | CALL exchange_horiz_int( advc_flags_m, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
846 | ! |
---|
847 | !-- Set boundary flags at inflow and outflow boundary in case of |
---|
848 | !-- non-cyclic boundary conditions. |
---|
849 | IF ( bc_dirichlet_l .OR. bc_radiation_l ) THEN |
---|
850 | advc_flags_m(:,:,nxl-1) = advc_flags_m(:,:,nxl) |
---|
851 | ENDIF |
---|
852 | |
---|
853 | IF ( bc_dirichlet_r .OR. bc_radiation_r ) THEN |
---|
854 | advc_flags_m(:,:,nxr+1) = advc_flags_m(:,:,nxr) |
---|
855 | ENDIF |
---|
856 | |
---|
857 | IF ( bc_dirichlet_n .OR. bc_radiation_n ) THEN |
---|
858 | advc_flags_m(:,nyn+1,:) = advc_flags_m(:,nyn,:) |
---|
859 | ENDIF |
---|
860 | |
---|
861 | IF ( bc_dirichlet_s .OR. bc_radiation_s ) THEN |
---|
862 | advc_flags_m(:,nys-1,:) = advc_flags_m(:,nys,:) |
---|
863 | ENDIF |
---|
864 | |
---|
865 | END SUBROUTINE ws_init_flags_momentum |
---|
866 | |
---|
867 | |
---|
868 | !--------------------------------------------------------------------------------------------------! |
---|
869 | ! Description: |
---|
870 | ! ------------ |
---|
871 | !> Initialization of flags to control the order of the advection scheme near solid walls and |
---|
872 | !> non-cyclic inflow boundaries, where the order is sucessively degraded. |
---|
873 | !--------------------------------------------------------------------------------------------------! |
---|
874 | SUBROUTINE ws_init_flags_scalar( non_cyclic_l, non_cyclic_n, non_cyclic_r, non_cyclic_s, & |
---|
875 | advc_flag, extensive_degrad ) |
---|
876 | |
---|
877 | |
---|
878 | INTEGER(iwp) :: i !< index variable along x |
---|
879 | INTEGER(iwp) :: j !< index variable along y |
---|
880 | INTEGER(iwp) :: k !< index variable along z |
---|
881 | INTEGER(iwp) :: k_mm !< dummy index along z |
---|
882 | INTEGER(iwp) :: k_pp !< dummy index along z |
---|
883 | INTEGER(iwp) :: k_ppp !< dummy index along z |
---|
884 | |
---|
885 | INTEGER(iwp), INTENT(INOUT), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: & |
---|
886 | advc_flag !< flag array to control order of scalar advection |
---|
887 | |
---|
888 | LOGICAL :: flag_set !< steering variable for advection flags |
---|
889 | LOGICAL :: non_cyclic_l !< flag that indicates non-cyclic boundary on the left |
---|
890 | LOGICAL :: non_cyclic_n !< flag that indicates non-cyclic boundary on the north |
---|
891 | LOGICAL :: non_cyclic_r !< flag that indicates non-cyclic boundary on the right |
---|
892 | LOGICAL :: non_cyclic_s !< flag that indicates non-cyclic boundary on the south |
---|
893 | |
---|
894 | LOGICAL, OPTIONAL :: extensive_degrad !< flag indicating that extensive degradation is required, e.g. for |
---|
895 | !< passive scalars nearby topography along the horizontal directions, |
---|
896 | !< as no monotonic limiter can be applied there |
---|
897 | ! |
---|
898 | !-- Set flags to steer the degradation of the advection scheme in advec_ws near topography, inflow- |
---|
899 | !-- and outflow boundaries as well as bottom and top of model domain. advc_flags_m remains zero for |
---|
900 | !-- all non-prognostic grid points. |
---|
901 | DO i = nxl, nxr |
---|
902 | DO j = nys, nyn |
---|
903 | DO k = nzb+1, nzt |
---|
904 | IF ( .NOT. BTEST(wall_flags_total_0(k,j,i),0) ) CYCLE |
---|
905 | ! |
---|
906 | !-- scalar - x-direction |
---|
907 | !-- WS1 (0), WS3 (1), WS5 (2) |
---|
908 | IF ( ( .NOT. BTEST(wall_flags_total_0(k,j,i+1),0) .OR. & |
---|
909 | .NOT. BTEST(wall_flags_total_0(k,j,i+2),0) .OR. & |
---|
910 | .NOT. BTEST(wall_flags_total_0(k,j,i-1),0) ) .OR. & |
---|
911 | ( non_cyclic_l .AND. i == 0 ) .OR. & |
---|
912 | ( non_cyclic_r .AND. i == nx ) ) & |
---|
913 | THEN |
---|
914 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 0 ) |
---|
915 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k,j,i+3),0) .AND. & |
---|
916 | BTEST(wall_flags_total_0(k,j,i+1),0) .AND. & |
---|
917 | BTEST(wall_flags_total_0(k,j,i+2),0) .AND. & |
---|
918 | BTEST(wall_flags_total_0(k,j,i-1),0) & |
---|
919 | ) .OR. & |
---|
920 | ( .NOT. BTEST(wall_flags_total_0(k,j,i-2),0) .AND. & |
---|
921 | BTEST(wall_flags_total_0(k,j,i+1),0) .AND. & |
---|
922 | BTEST(wall_flags_total_0(k,j,i+2),0) .AND. & |
---|
923 | BTEST(wall_flags_total_0(k,j,i-1),0) & |
---|
924 | ) .OR. & |
---|
925 | ( non_cyclic_r .AND. i == nx-1 ) .OR. & |
---|
926 | ( non_cyclic_l .AND. i == 1 ) ) & |
---|
927 | THEN |
---|
928 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 1 ) |
---|
929 | ELSEIF ( BTEST(wall_flags_total_0(k,j,i+1),0) .AND. & |
---|
930 | BTEST(wall_flags_total_0(k,j,i+2),0) .AND. & |
---|
931 | BTEST(wall_flags_total_0(k,j,i+3),0) .AND. & |
---|
932 | BTEST(wall_flags_total_0(k,j,i-1),0) .AND. & |
---|
933 | BTEST(wall_flags_total_0(k,j,i-2),0) ) & |
---|
934 | THEN |
---|
935 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 2 ) |
---|
936 | ENDIF |
---|
937 | ! |
---|
938 | !-- scalar - y-direction |
---|
939 | !-- WS1 (3), WS3 (4), WS5 (5) |
---|
940 | IF ( ( .NOT. BTEST(wall_flags_total_0(k,j+1,i),0) .OR. & |
---|
941 | .NOT. BTEST(wall_flags_total_0(k,j+2,i),0) .OR. & |
---|
942 | .NOT. BTEST(wall_flags_total_0(k,j-1,i),0)) .OR. & |
---|
943 | ( non_cyclic_s .AND. j == 0 ) .OR. & |
---|
944 | ( non_cyclic_n .AND. j == ny ) ) & |
---|
945 | THEN |
---|
946 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 3 ) |
---|
947 | ! |
---|
948 | !-- WS3 |
---|
949 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k,j+3,i),0) .AND. & |
---|
950 | BTEST(wall_flags_total_0(k,j+1,i),0) .AND. & |
---|
951 | BTEST(wall_flags_total_0(k,j+2,i),0) .AND. & |
---|
952 | BTEST(wall_flags_total_0(k,j-1,i),0) & |
---|
953 | ) .OR. & |
---|
954 | ( .NOT. BTEST(wall_flags_total_0(k,j-2,i),0) .AND. & |
---|
955 | BTEST(wall_flags_total_0(k,j+1,i),0) .AND. & |
---|
956 | BTEST(wall_flags_total_0(k,j+2,i),0) .AND. & |
---|
957 | BTEST(wall_flags_total_0(k,j-1,i),0) & |
---|
958 | ) .OR. & |
---|
959 | ( non_cyclic_s .AND. j == 1 ) .OR. & |
---|
960 | ( non_cyclic_n .AND. j == ny-1 ) ) & |
---|
961 | THEN |
---|
962 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 4 ) |
---|
963 | ! |
---|
964 | !-- WS5 |
---|
965 | ELSEIF ( BTEST(wall_flags_total_0(k,j+1,i),0) .AND. & |
---|
966 | BTEST(wall_flags_total_0(k,j+2,i),0) .AND. & |
---|
967 | BTEST(wall_flags_total_0(k,j+3,i),0) .AND. & |
---|
968 | BTEST(wall_flags_total_0(k,j-1,i),0) .AND. & |
---|
969 | BTEST(wall_flags_total_0(k,j-2,i),0) ) & |
---|
970 | THEN |
---|
971 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 5 ) |
---|
972 | ENDIF |
---|
973 | ! |
---|
974 | !-- Near topography, set horizontal advection scheme to 1st order for passive scalars, even |
---|
975 | !-- if only one direction may be blocked by topography. These locations will be identified |
---|
976 | !-- by wall_flags_total_0 bit 31. Note, since several modules define advection flags but |
---|
977 | !-- may apply different scalar boundary conditions, bit 31 is temporarily stored on |
---|
978 | !-- advc_flags. |
---|
979 | !-- Moreover, note that this extended degradtion for passive scalars is not required for |
---|
980 | !-- the vertical direction as there the monotonic limiter can be applied. |
---|
981 | IF ( PRESENT( extensive_degrad ) ) THEN |
---|
982 | IF ( extensive_degrad ) THEN |
---|
983 | ! |
---|
984 | !-- At all grid points that are within a three-grid point range to topography, set |
---|
985 | !-- 1st-order scheme. |
---|
986 | IF( BTEST( advc_flag(k,j,i), 31 ) ) THEN |
---|
987 | ! |
---|
988 | !-- Clear flags that might indicate higher-order advection along x- and |
---|
989 | !-- y-direction. |
---|
990 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 1 ) |
---|
991 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 2 ) |
---|
992 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 4 ) |
---|
993 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 5 ) |
---|
994 | ! |
---|
995 | !-- Set flags that indicate 1st-order advection along x- and y-direction. |
---|
996 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 0 ) |
---|
997 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 3 ) |
---|
998 | ENDIF |
---|
999 | ! |
---|
1000 | !-- Adjacent to this extended degradation zone, successively upgrade the order of the |
---|
1001 | !-- scheme if this grid point isn't flagged with bit 31 (indicating extended |
---|
1002 | !-- degradation zone). |
---|
1003 | IF ( .NOT. BTEST( advc_flag(k,j,i), 31 ) ) THEN |
---|
1004 | ! |
---|
1005 | !-- x-direction. First, clear all previous settings, then set flag for 3rd-order |
---|
1006 | !-- scheme. |
---|
1007 | IF ( BTEST( advc_flag(k,j,i-1), 31 ) .AND. & |
---|
1008 | BTEST( advc_flag(k,j,i+1), 31 ) ) THEN |
---|
1009 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 0 ) |
---|
1010 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 1 ) |
---|
1011 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 2 ) |
---|
1012 | |
---|
1013 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 1 ) |
---|
1014 | ENDIF |
---|
1015 | ! |
---|
1016 | !-- x-direction. First, clear all previous settings, then set flag for 5rd-order |
---|
1017 | !-- scheme. |
---|
1018 | IF ( .NOT. BTEST( advc_flag(k,j,i-1), 31 ) .AND. & |
---|
1019 | BTEST( advc_flag(k,j,i-2), 31 ) .AND. & |
---|
1020 | .NOT. BTEST( advc_flag(k,j,i+1), 31 ) .AND. & |
---|
1021 | BTEST( advc_flag(k,j,i+2), 31 ) ) THEN |
---|
1022 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 0 ) |
---|
1023 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 1 ) |
---|
1024 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 2 ) |
---|
1025 | |
---|
1026 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 2 ) |
---|
1027 | ENDIF |
---|
1028 | ! |
---|
1029 | !-- y-direction. First, clear all previous settings, then set flag for 3rd-order |
---|
1030 | !-- scheme. |
---|
1031 | IF ( BTEST( advc_flag(k,j-1,i), 31 ) .AND. & |
---|
1032 | BTEST( advc_flag(k,j+1,i), 31 ) ) THEN |
---|
1033 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 3 ) |
---|
1034 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 4 ) |
---|
1035 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 5 ) |
---|
1036 | |
---|
1037 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 4 ) |
---|
1038 | ENDIF |
---|
1039 | ! |
---|
1040 | !-- y-direction. First, clear all previous settings, then set flag for 5rd-order |
---|
1041 | !-- scheme. |
---|
1042 | IF ( .NOT. BTEST( advc_flag(k,j-1,i), 31 ) .AND. & |
---|
1043 | BTEST( advc_flag(k,j-2,i), 31 ) .AND. & |
---|
1044 | .NOT. BTEST( advc_flag(k,j+1,i), 31 ) .AND. & |
---|
1045 | BTEST( advc_flag(k,j+2,i), 31 ) ) THEN |
---|
1046 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 3 ) |
---|
1047 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 4 ) |
---|
1048 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 5 ) |
---|
1049 | |
---|
1050 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 5 ) |
---|
1051 | ENDIF |
---|
1052 | ENDIF |
---|
1053 | |
---|
1054 | ENDIF |
---|
1055 | |
---|
1056 | ! |
---|
1057 | !-- Near lateral boundaries set the flags again. In order to avoid strong numerical |
---|
1058 | !-- oscillations near the boundaries, which may lead to scalar built-up, also employ |
---|
1059 | !-- extended degradation zones here. |
---|
1060 | !-- x-direction |
---|
1061 | IF ( ( non_cyclic_l .AND. i <= 3 ) .OR. & |
---|
1062 | ( non_cyclic_r .AND. i >= nx-3 ) ) THEN |
---|
1063 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 0 ) |
---|
1064 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 1 ) |
---|
1065 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 2 ) |
---|
1066 | |
---|
1067 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 0 ) |
---|
1068 | ENDIF |
---|
1069 | |
---|
1070 | IF ( ( non_cyclic_l .AND. i == 4 ) .OR. & |
---|
1071 | ( non_cyclic_r .AND. i == nx-4 ) ) THEN |
---|
1072 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 0 ) |
---|
1073 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 1 ) |
---|
1074 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 2 ) |
---|
1075 | |
---|
1076 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 1 ) |
---|
1077 | ENDIF |
---|
1078 | ! |
---|
1079 | !-- y-direction |
---|
1080 | IF ( ( non_cyclic_n .AND. j <= 3 ) .OR. & |
---|
1081 | ( non_cyclic_s .AND. j >= ny-3 ) ) THEN |
---|
1082 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 3 ) |
---|
1083 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 4 ) |
---|
1084 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 5 ) |
---|
1085 | |
---|
1086 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 3 ) |
---|
1087 | ENDIF |
---|
1088 | |
---|
1089 | IF ( ( non_cyclic_n .AND. j == 4 ) .OR. & |
---|
1090 | ( non_cyclic_s .AND. j == ny-4 ) ) THEN |
---|
1091 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 3 ) |
---|
1092 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 4 ) |
---|
1093 | advc_flag(k,j,i) = IBCLR( advc_flag(k,j,i), 5 ) |
---|
1094 | |
---|
1095 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 4 ) |
---|
1096 | ENDIF |
---|
1097 | |
---|
1098 | ENDIF |
---|
1099 | ! |
---|
1100 | !-- scalar - z-direction. Fluxes are calculated on w-grid level. Boundary values at/within |
---|
1101 | !-- walls aren't used. |
---|
1102 | !-- WS1 (6), WS3 (7), WS5 (8) |
---|
1103 | IF ( k == nzb+1 ) THEN |
---|
1104 | k_mm = nzb |
---|
1105 | ELSE |
---|
1106 | k_mm = k - 2 |
---|
1107 | ENDIF |
---|
1108 | IF ( k > nzt-1 ) THEN |
---|
1109 | k_pp = nzt+1 |
---|
1110 | ELSE |
---|
1111 | k_pp = k + 2 |
---|
1112 | ENDIF |
---|
1113 | IF ( k > nzt-2 ) THEN |
---|
1114 | k_ppp = nzt+1 |
---|
1115 | ELSE |
---|
1116 | k_ppp = k + 3 |
---|
1117 | ENDIF |
---|
1118 | |
---|
1119 | flag_set = .FALSE. |
---|
1120 | IF ( ( .NOT. BTEST(wall_flags_total_0(k-1,j,i),0) .AND. & |
---|
1121 | BTEST(wall_flags_total_0(k,j,i),0) .AND. & |
---|
1122 | BTEST(wall_flags_total_0(k+1,j,i),0) ) .OR. & |
---|
1123 | ( .NOT. BTEST(wall_flags_total_0(k_pp,j,i),0) .AND. & |
---|
1124 | BTEST(wall_flags_total_0(k+1,j,i),0) .AND. & |
---|
1125 | BTEST(wall_flags_total_0(k,j,i),0) ) .OR. & |
---|
1126 | ( k == nzt .AND. symmetry_flag == 0 ) ) & |
---|
1127 | THEN |
---|
1128 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 6 ) |
---|
1129 | flag_set = .TRUE. |
---|
1130 | ELSEIF ( ( .NOT. BTEST(wall_flags_total_0(k_mm,j,i),0) .OR. & |
---|
1131 | .NOT. BTEST(wall_flags_total_0(k_ppp,j,i),0) ) .AND. & |
---|
1132 | BTEST(wall_flags_total_0(k-1,j,i),0) .AND. & |
---|
1133 | BTEST(wall_flags_total_0(k,j,i),0) .AND. & |
---|
1134 | BTEST(wall_flags_total_0(k+1,j,i),0) .AND. & |
---|
1135 | BTEST(wall_flags_total_0(k_pp,j,i),0) .AND. & |
---|
1136 | .NOT. flag_set .OR. & |
---|
1137 | ( k == nzt - 1 .AND. symmetry_flag == 0 ) ) & |
---|
1138 | THEN |
---|
1139 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 7 ) |
---|
1140 | flag_set = .TRUE. |
---|
1141 | ELSEIF ( BTEST(wall_flags_total_0(k_mm,j,i),0) .AND. & |
---|
1142 | BTEST(wall_flags_total_0(k-1,j,i),0) .AND. & |
---|
1143 | BTEST(wall_flags_total_0(k,j,i),0) .AND. & |
---|
1144 | BTEST(wall_flags_total_0(k+1,j,i),0) .AND. & |
---|
1145 | BTEST(wall_flags_total_0(k_pp,j,i),0) .AND. & |
---|
1146 | BTEST(wall_flags_total_0(k_ppp,j,i),0) .AND. & |
---|
1147 | .NOT. flag_set ) & |
---|
1148 | THEN |
---|
1149 | advc_flag(k,j,i) = IBSET( advc_flag(k,j,i), 8 ) |
---|
1150 | ENDIF |
---|
1151 | |
---|
1152 | ENDDO |
---|
1153 | ENDDO |
---|
1154 | ENDDO |
---|
1155 | ! |
---|
1156 | !-- Exchange 3D integer wall_flags. |
---|
1157 | ! |
---|
1158 | !-- Exchange ghost points for advection flags |
---|
1159 | CALL exchange_horiz_int( advc_flag, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
1160 | ! |
---|
1161 | !-- Set boundary flags at inflow and outflow boundary in case of non-cyclic boundary conditions. |
---|
1162 | IF ( non_cyclic_l ) THEN |
---|
1163 | advc_flag(:,:,nxl-1) = advc_flag(:,:,nxl) |
---|
1164 | ENDIF |
---|
1165 | |
---|
1166 | IF ( non_cyclic_r ) THEN |
---|
1167 | advc_flag(:,:,nxr+1) = advc_flag(:,:,nxr) |
---|
1168 | ENDIF |
---|
1169 | |
---|
1170 | IF ( non_cyclic_n ) THEN |
---|
1171 | advc_flag(:,nyn+1,:) = advc_flag(:,nyn,:) |
---|
1172 | ENDIF |
---|
1173 | |
---|
1174 | IF ( non_cyclic_s ) THEN |
---|
1175 | advc_flag(:,nys-1,:) = advc_flag(:,nys,:) |
---|
1176 | ENDIF |
---|
1177 | |
---|
1178 | |
---|
1179 | |
---|
1180 | END SUBROUTINE ws_init_flags_scalar |
---|
1181 | |
---|
1182 | !--------------------------------------------------------------------------------------------------! |
---|
1183 | ! Description: |
---|
1184 | ! ------------ |
---|
1185 | !> Initialize variables used for storing statistic quantities (fluxes, variances) |
---|
1186 | !--------------------------------------------------------------------------------------------------! |
---|
1187 | SUBROUTINE ws_statistics |
---|
1188 | |
---|
1189 | |
---|
1190 | ! |
---|
1191 | !-- The arrays needed for statistical evaluation are set to to 0 at the beginning of |
---|
1192 | !-- prognostic_equations. |
---|
1193 | IF ( ws_scheme_mom ) THEN |
---|
1194 | !$ACC KERNELS PRESENT(sums_wsus_ws_l, sums_wsvs_ws_l) & |
---|
1195 | !$ACC PRESENT(sums_us2_ws_l, sums_vs2_ws_l, sums_ws2_ws_l) |
---|
1196 | sums_wsus_ws_l = 0.0_wp |
---|
1197 | sums_wsvs_ws_l = 0.0_wp |
---|
1198 | sums_us2_ws_l = 0.0_wp |
---|
1199 | sums_vs2_ws_l = 0.0_wp |
---|
1200 | sums_ws2_ws_l = 0.0_wp |
---|
1201 | !$ACC END KERNELS |
---|
1202 | ENDIF |
---|
1203 | |
---|
1204 | IF ( ws_scheme_sca ) THEN |
---|
1205 | !$ACC KERNELS PRESENT(sums_wspts_ws_l) |
---|
1206 | sums_wspts_ws_l = 0.0_wp |
---|
1207 | !$ACC END KERNELS |
---|
1208 | IF ( humidity ) sums_wsqs_ws_l = 0.0_wp |
---|
1209 | IF ( passive_scalar ) sums_wsss_ws_l = 0.0_wp |
---|
1210 | |
---|
1211 | ENDIF |
---|
1212 | |
---|
1213 | END SUBROUTINE ws_statistics |
---|
1214 | |
---|
1215 | |
---|
1216 | !--------------------------------------------------------------------------------------------------! |
---|
1217 | ! Description: |
---|
1218 | ! ------------ |
---|
1219 | !> Scalar advection - Call for grid point i,j |
---|
1220 | !--------------------------------------------------------------------------------------------------! |
---|
1221 | SUBROUTINE advec_s_ws_ij( advc_flag, i, j, sk, sk_char, swap_flux_y_local, swap_diss_y_local, & |
---|
1222 | swap_flux_x_local, swap_diss_x_local, i_omp, tn, non_cyclic_l, & |
---|
1223 | non_cyclic_n, non_cyclic_r, non_cyclic_s, flux_limitation ) |
---|
1224 | |
---|
1225 | |
---|
1226 | CHARACTER (LEN = *), INTENT(IN) :: sk_char !< string identifier, used for assign fluxes to the |
---|
1227 | !<correct dimension in the analysis array |
---|
1228 | |
---|
1229 | INTEGER(iwp) :: i !< grid index along x-direction |
---|
1230 | INTEGER(iwp) :: i_omp !< leftmost index on subdomain, or in case of OpenMP, on thread |
---|
1231 | INTEGER(iwp) :: j !< grid index along y-direction |
---|
1232 | INTEGER(iwp) :: k !< grid index along z-direction |
---|
1233 | INTEGER(iwp) :: k_mm !< k-2 index in disretization, can be modified to avoid segmentation faults |
---|
1234 | INTEGER(iwp) :: k_mmm !< k-3 index in disretization, can be modified to avoid segmentation faults |
---|
1235 | INTEGER(iwp) :: k_pp !< k+2 index in disretization, can be modified to avoid segmentation faults |
---|
1236 | INTEGER(iwp) :: k_ppp !< k+3 index in disretization, can be modified to avoid segmentation faults |
---|
1237 | INTEGER(iwp) :: nzb_max_l !< index indicating upper bound for order degradation of horizontal advection terms |
---|
1238 | INTEGER(iwp) :: tn !< number of OpenMP thread |
---|
1239 | |
---|
1240 | INTEGER(iwp), INTENT(IN), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: & |
---|
1241 | advc_flag !< flag array to control order of scalar advection |
---|
1242 | |
---|
1243 | LOGICAL :: limiter !< control flag indicating the application of flux limitation |
---|
1244 | LOGICAL :: non_cyclic_l !< flag that indicates non-cyclic boundary on the left |
---|
1245 | LOGICAL :: non_cyclic_n !< flag that indicates non-cyclic boundary on the north |
---|
1246 | LOGICAL :: non_cyclic_r !< flag that indicates non-cyclic boundary on the right |
---|
1247 | LOGICAL :: non_cyclic_s !< flag that indicates non-cyclic boundary on the south |
---|
1248 | LOGICAL, OPTIONAL :: flux_limitation !< flag indicating flux limitation of the vertical advection |
---|
1249 | |
---|
1250 | REAL(wp) :: diss_d !< artificial dissipation term at grid box bottom |
---|
1251 | REAL(wp) :: div !< velocity diverence on scalar grid |
---|
1252 | REAL(wp) :: div_in !< vertical flux divergence of ingoing fluxes |
---|
1253 | REAL(wp) :: div_out !< vertical flux divergence of outgoing fluxes |
---|
1254 | REAL(wp) :: f_corr_d !< correction flux at grid-cell bottom, i.e. the difference between high and low-order flux |
---|
1255 | REAL(wp) :: f_corr_t !< correction flux at grid-cell top, i.e. the difference between high and low-order flux |
---|
1256 | REAL(wp) :: f_corr_d_in !< correction flux of ingoing flux part at grid-cell bottom |
---|
1257 | REAL(wp) :: f_corr_t_in !< correction flux of ingoing flux part at grid-cell top |
---|
1258 | REAL(wp) :: f_corr_d_out !< correction flux of outgoing flux part at grid-cell bottom |
---|
1259 | REAL(wp) :: f_corr_t_out !< correction flux of outgoing flux part at grid-cell top |
---|
1260 | REAL(wp) :: fac_correction!< factor to limit the in- and outgoing fluxes |
---|
1261 | REAL(wp) :: flux_d !< 6th-order flux at grid box bottom |
---|
1262 | REAL(wp) :: ibit0 !< flag indicating 1st-order scheme along x-direction |
---|
1263 | REAL(wp) :: ibit1 !< flag indicating 3rd-order scheme along x-direction |
---|
1264 | REAL(wp) :: ibit2 !< flag indicating 5th-order scheme along x-direction |
---|
1265 | REAL(wp) :: ibit3 !< flag indicating 1st-order scheme along y-direction |
---|
1266 | REAL(wp) :: ibit4 !< flag indicating 3rd-order scheme along y-direction |
---|
1267 | REAL(wp) :: ibit5 !< flag indicating 5th-order scheme along y-direction |
---|
1268 | REAL(wp) :: ibit6 !< flag indicating 1st-order scheme along z-direction |
---|
1269 | REAL(wp) :: ibit7 !< flag indicating 3rd-order scheme along z-direction |
---|
1270 | REAL(wp) :: ibit8 !< flag indicating 5th-order scheme along z-direction |
---|
1271 | REAL(wp) :: max_val !< maximum value of the quanitity along the numerical stencil (in vertical direction) |
---|
1272 | REAL(wp) :: min_val !< maximum value of the quanitity along the numerical stencil (in vertical direction) |
---|
1273 | REAL(wp) :: mon !< monotone solution of the advection equation using 1st-order fluxes |
---|
1274 | REAL(wp) :: u_comp !< advection velocity along x-direction |
---|
1275 | REAL(wp) :: v_comp !< advection velocity along y-direction |
---|
1276 | |
---|
1277 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_n !< discretized artificial dissipation at northward-side |
---|
1278 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_r !< discretized artificial dissipation at rightward-side |
---|
1279 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_t !< discretized artificial dissipation at top |
---|
1280 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_n !< discretized 6th-order flux at northward-side |
---|
1281 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_r !< discretized 6th-order flux at rightward-side |
---|
1282 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_t !< discretized 6th-order flux at top |
---|
1283 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_t_1st !< discretized 1st-order flux at top |
---|
1284 | |
---|
1285 | REAL(wp), DIMENSION(nzb+1:nzt,0:threads_per_task-1) :: swap_diss_y_local !< discretized artificial dissipation at southward-side |
---|
1286 | REAL(wp), DIMENSION(nzb+1:nzt,0:threads_per_task-1) :: swap_flux_y_local !< discretized 6th-order flux at northward-side |
---|
1287 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn,0:threads_per_task-1) :: swap_diss_x_local !< discretized artificial dissipation at leftward-side |
---|
1288 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn,0:threads_per_task-1) :: swap_flux_x_local !< discretized 6th-order flux at leftward-side |
---|
1289 | |
---|
1290 | ! |
---|
1291 | !-- sk is an array from parameter list. It should not be a pointer, because in that case the |
---|
1292 | !-- compiler can not assume a stride 1 and cannot perform a strided one vector load. Adding the |
---|
1293 | !-- CONTIGUOUS keyword makes things even worse, because the compiler cannot assume strided one in |
---|
1294 | !-- the caller side. |
---|
1295 | REAL(wp), INTENT(IN),DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !< advected scalar |
---|
1296 | |
---|
1297 | ! |
---|
1298 | !-- Used local modified copy of nzb_max (used to degrade order of discretization) at non-cyclic |
---|
1299 | !-- boundaries. Modify only at relevant points instead of the entire subdomain. This should lead to |
---|
1300 | !-- betterload balance between boundary and non-boundary PEs. |
---|
1301 | IF( non_cyclic_l .AND. i <= nxl + 2 .OR. & |
---|
1302 | non_cyclic_r .AND. i >= nxr - 2 .OR. & |
---|
1303 | non_cyclic_s .AND. j <= nys + 2 .OR. & |
---|
1304 | non_cyclic_n .AND. j >= nyn - 2 ) THEN |
---|
1305 | nzb_max_l = nzt |
---|
1306 | ELSE |
---|
1307 | nzb_max_l = nzb_max |
---|
1308 | END IF |
---|
1309 | ! |
---|
1310 | !-- Set control flag for flux limiter |
---|
1311 | limiter = .FALSE. |
---|
1312 | IF ( PRESENT( flux_limitation) ) limiter = flux_limitation |
---|
1313 | ! |
---|
1314 | !-- Compute southside fluxes of the respective PE bounds. |
---|
1315 | IF ( j == nys ) THEN |
---|
1316 | ! |
---|
1317 | !-- Up to the top of the highest topography. |
---|
1318 | DO k = nzb+1, nzb_max_l |
---|
1319 | |
---|
1320 | ibit5 = REAL( IBITS(advc_flag(k,j-1,i),5,1), KIND = wp ) |
---|
1321 | ibit4 = REAL( IBITS(advc_flag(k,j-1,i),4,1), KIND = wp ) |
---|
1322 | ibit3 = REAL( IBITS(advc_flag(k,j-1,i),3,1), KIND = wp ) |
---|
1323 | |
---|
1324 | v_comp = v(k,j,i) - v_gtrans + v_stokes_zu(k) |
---|
1325 | swap_flux_y_local(k,tn) = v_comp * ( & |
---|
1326 | ( 37.0_wp * ibit5 * adv_sca_5 & |
---|
1327 | + 7.0_wp * ibit4 * adv_sca_3 & |
---|
1328 | + ibit3 * adv_sca_1 & |
---|
1329 | ) * ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
1330 | - ( 8.0_wp * ibit5 * adv_sca_5 & |
---|
1331 | + ibit4 * adv_sca_3 & |
---|
1332 | ) * ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
1333 | + ( ibit5 * adv_sca_5 ) & |
---|
1334 | * ( sk(k,j+2,i) + sk(k,j-3,i) ) & |
---|
1335 | ) |
---|
1336 | |
---|
1337 | swap_diss_y_local(k,tn) = - ABS( v_comp ) * ( & |
---|
1338 | ( 10.0_wp * ibit5 * adv_sca_5 & |
---|
1339 | + 3.0_wp * ibit4 * adv_sca_3 & |
---|
1340 | + ibit3 * adv_sca_1 & |
---|
1341 | ) * ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
1342 | - ( 5.0_wp * ibit5 * adv_sca_5 & |
---|
1343 | + ibit4 * adv_sca_3 & |
---|
1344 | ) * ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
1345 | + ( ibit5 * adv_sca_5 ) & |
---|
1346 | * ( sk(k,j+2,i) - sk(k,j-3,i) ) & |
---|
1347 | ) |
---|
1348 | |
---|
1349 | ENDDO |
---|
1350 | ! |
---|
1351 | !-- Above to the top of the highest topography. No degradation necessary. |
---|
1352 | DO k = nzb_max_l+1, nzt |
---|
1353 | |
---|
1354 | v_comp = v(k,j,i) - v_gtrans + v_stokes_zu(k) |
---|
1355 | swap_flux_y_local(k,tn) = v_comp * ( 37.0_wp * ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
1356 | - 8.0_wp * ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
1357 | + ( sk(k,j+2,i) + sk(k,j-3,i) ) & |
---|
1358 | ) * adv_sca_5 |
---|
1359 | swap_diss_y_local(k,tn) = - ABS( v_comp ) * ( & |
---|
1360 | 10.0_wp * ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
1361 | - 5.0_wp * ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
1362 | + sk(k,j+2,i) - sk(k,j-3,i) & |
---|
1363 | ) * adv_sca_5 |
---|
1364 | |
---|
1365 | ENDDO |
---|
1366 | |
---|
1367 | ENDIF |
---|
1368 | ! |
---|
1369 | !-- Compute leftside fluxes of the respective PE bounds. |
---|
1370 | IF ( i == i_omp ) THEN |
---|
1371 | |
---|
1372 | DO k = nzb+1, nzb_max_l |
---|
1373 | |
---|
1374 | ibit2 = REAL( IBITS(advc_flag(k,j,i-1),2,1), KIND = wp ) |
---|
1375 | ibit1 = REAL( IBITS(advc_flag(k,j,i-1),1,1), KIND = wp ) |
---|
1376 | ibit0 = REAL( IBITS(advc_flag(k,j,i-1),0,1), KIND = wp ) |
---|
1377 | |
---|
1378 | u_comp = u(k,j,i) - u_gtrans + u_stokes_zu(k) |
---|
1379 | swap_flux_x_local(k,j,tn) = u_comp * ( & |
---|
1380 | ( 37.0_wp * ibit2 * adv_sca_5 & |
---|
1381 | + 7.0_wp * ibit1 * adv_sca_3 & |
---|
1382 | + ibit0 * adv_sca_1 & |
---|
1383 | ) * ( sk(k,j,i) + sk(k,j,i-1) ) & |
---|
1384 | - ( 8.0_wp * ibit2 * adv_sca_5 & |
---|
1385 | + ibit1 * adv_sca_3 & |
---|
1386 | ) * ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
1387 | + ( ibit2 * adv_sca_5 & |
---|
1388 | ) * ( sk(k,j,i+2) + sk(k,j,i-3) ) & |
---|
1389 | ) |
---|
1390 | |
---|
1391 | swap_diss_x_local(k,j,tn) = - ABS( u_comp ) * ( & |
---|
1392 | ( 10.0_wp * ibit2 * adv_sca_5 & |
---|
1393 | + 3.0_wp * ibit1 * adv_sca_3 & |
---|
1394 | + ibit0 * adv_sca_1 & |
---|
1395 | ) * ( sk(k,j,i) - sk(k,j,i-1) ) & |
---|
1396 | - ( 5.0_wp * ibit2 * adv_sca_5 & |
---|
1397 | + ibit1 * adv_sca_3 & |
---|
1398 | ) * ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
1399 | + ( ibit2 * adv_sca_5 & |
---|
1400 | ) * ( sk(k,j,i+2) - sk(k,j,i-3) ) & |
---|
1401 | ) |
---|
1402 | |
---|
1403 | ENDDO |
---|
1404 | |
---|
1405 | DO k = nzb_max_l+1, nzt |
---|
1406 | |
---|
1407 | u_comp = u(k,j,i) - u_gtrans + u_stokes_zu(k) |
---|
1408 | swap_flux_x_local(k,j,tn) = u_comp * ( & |
---|
1409 | 37.0_wp * ( sk(k,j,i) + sk(k,j,i-1) ) & |
---|
1410 | - 8.0_wp * ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
1411 | + ( sk(k,j,i+2) + sk(k,j,i-3) ) & |
---|
1412 | ) * adv_sca_5 |
---|
1413 | |
---|
1414 | swap_diss_x_local(k,j,tn) = - ABS( u_comp ) * ( & |
---|
1415 | 10.0_wp * ( sk(k,j,i) - sk(k,j,i-1) ) & |
---|
1416 | - 5.0_wp * ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
1417 | + ( sk(k,j,i+2) - sk(k,j,i-3) ) & |
---|
1418 | ) * adv_sca_5 |
---|
1419 | |
---|
1420 | ENDDO |
---|
1421 | |
---|
1422 | ENDIF |
---|
1423 | ! |
---|
1424 | !-- Now compute the fluxes for the horizontal termns up to the highest |
---|
1425 | !-- topography. |
---|
1426 | DO k = nzb+1, nzb_max_l |
---|
1427 | |
---|
1428 | ibit2 = REAL( IBITS(advc_flag(k,j,i),2,1), KIND = wp ) |
---|
1429 | ibit1 = REAL( IBITS(advc_flag(k,j,i),1,1), KIND = wp ) |
---|
1430 | ibit0 = REAL( IBITS(advc_flag(k,j,i),0,1), KIND = wp ) |
---|
1431 | |
---|
1432 | u_comp = u(k,j,i+1) - u_gtrans + u_stokes_zu(k) |
---|
1433 | flux_r(k) = u_comp * ( & |
---|
1434 | ( 37.0_wp * ibit2 * adv_sca_5 & |
---|
1435 | + 7.0_wp * ibit1 * adv_sca_3 & |
---|
1436 | + ibit0 * adv_sca_1 ) * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1437 | - ( 8.0_wp * ibit2 * adv_sca_5 & |
---|
1438 | + ibit1 * adv_sca_3 ) * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
1439 | + ( ibit2 * adv_sca_5 ) * ( sk(k,j,i+3) + sk(k,j,i-2) ) & |
---|
1440 | ) |
---|
1441 | |
---|
1442 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1443 | ( 10.0_wp * ibit2 * adv_sca_5 & |
---|
1444 | + 3.0_wp * ibit1 * adv_sca_3 & |
---|
1445 | + ibit0 * adv_sca_1 ) * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1446 | - ( 5.0_wp * ibit2 * adv_sca_5 & |
---|
1447 | + ibit1 * adv_sca_3 ) * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
1448 | + ( ibit2 * adv_sca_5 ) * ( sk(k,j,i+3) - sk(k,j,i-2) ) & |
---|
1449 | ) |
---|
1450 | |
---|
1451 | ibit5 = REAL( IBITS(advc_flag(k,j,i),5,1), KIND = wp ) |
---|
1452 | ibit4 = REAL( IBITS(advc_flag(k,j,i),4,1), KIND = wp ) |
---|
1453 | ibit3 = REAL( IBITS(advc_flag(k,j,i),3,1), KIND = wp ) |
---|
1454 | |
---|
1455 | v_comp = v(k,j+1,i) - v_gtrans + v_stokes_zu(k) |
---|
1456 | flux_n(k) = v_comp * ( & |
---|
1457 | ( 37.0_wp * ibit5 * adv_sca_5 & |
---|
1458 | + 7.0_wp * ibit4 * adv_sca_3 & |
---|
1459 | + ibit3 * adv_sca_1 ) * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1460 | - ( 8.0_wp * ibit5 * adv_sca_5 & |
---|
1461 | + ibit4 * adv_sca_3 ) * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
1462 | + ( ibit5 * adv_sca_5 ) * ( sk(k,j+3,i) + sk(k,j-2,i) ) & |
---|
1463 | ) |
---|
1464 | |
---|
1465 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1466 | ( 10.0_wp * ibit5 * adv_sca_5 & |
---|
1467 | + 3.0_wp * ibit4 * adv_sca_3 & |
---|
1468 | + ibit3 * adv_sca_1 ) * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1469 | - ( 5.0_wp * ibit5 * adv_sca_5 & |
---|
1470 | + ibit4 * adv_sca_3 ) * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
1471 | + ( ibit5 * adv_sca_5 ) * ( sk(k,j+3,i) - sk(k,j-2,i) ) & |
---|
1472 | ) |
---|
1473 | ENDDO |
---|
1474 | ! |
---|
1475 | !-- Now compute the fluxes for the horizontal terms above the topography |
---|
1476 | !-- where no degradation along the horizontal parts is necessary (except |
---|
1477 | !-- for the non-cyclic lateral boundaries treated by nzb_max_l). |
---|
1478 | DO k = nzb_max_l+1, nzt |
---|
1479 | |
---|
1480 | u_comp = u(k,j,i+1) - u_gtrans + u_stokes_zu(k) |
---|
1481 | flux_r(k) = u_comp * ( & |
---|
1482 | 37.0_wp * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1483 | - 8.0_wp * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
1484 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) * adv_sca_5 |
---|
1485 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1486 | 10.0_wp * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1487 | - 5.0_wp * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
1488 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) * adv_sca_5 |
---|
1489 | |
---|
1490 | v_comp = v(k,j+1,i) - v_gtrans + v_stokes_zu(k) |
---|
1491 | flux_n(k) = v_comp * ( & |
---|
1492 | 37.0_wp * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1493 | - 8.0_wp * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
1494 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) * adv_sca_5 |
---|
1495 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1496 | 10.0_wp * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1497 | - 5.0_wp * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
1498 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) * adv_sca_5 |
---|
1499 | |
---|
1500 | ENDDO |
---|
1501 | ! |
---|
1502 | !-- Now, compute vertical fluxes. Split loop into a part treating the lowest grid points with |
---|
1503 | !-- indirect indexing, a main loop without indirect indexing, and a loop for the uppermost grid |
---|
1504 | !-- points with indirect indexing. This allows better vectorization for the main loop. |
---|
1505 | !-- First, compute the flux at model surface, which need has to be calculated explicetely for the |
---|
1506 | !-- tendency at the first w-level. For topography wall this is done implicitely by advc_flag. |
---|
1507 | flux_t(nzb) = 0.0_wp |
---|
1508 | diss_t(nzb) = 0.0_wp |
---|
1509 | |
---|
1510 | DO k = nzb+1, nzb+1 |
---|
1511 | ibit8 = REAL( IBITS(advc_flag(k,j,i),8,1), KIND = wp ) |
---|
1512 | ibit7 = REAL( IBITS(advc_flag(k,j,i),7,1), KIND = wp ) |
---|
1513 | ibit6 = REAL( IBITS(advc_flag(k,j,i),6,1), KIND = wp ) |
---|
1514 | ! |
---|
1515 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
1516 | k_ppp = k + 3 * ibit8 |
---|
1517 | k_pp = k + 2 * ( 1 - ibit6 ) |
---|
1518 | k_mm = k - 2 * ibit8 |
---|
1519 | |
---|
1520 | flux_t(k) = w(k,j,i) * rho_air_zw(k) * ( & |
---|
1521 | ( 37.0_wp * ibit8 * adv_sca_5 & |
---|
1522 | + 7.0_wp * ibit7 * adv_sca_3 & |
---|
1523 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1524 | - ( 8.0_wp * ibit8 * adv_sca_5 & |
---|
1525 | + ibit7 * adv_sca_3 ) * ( sk(k_pp,j,i) + sk(k-1,j,i) ) & |
---|
1526 | + ( ibit8 * adv_sca_5 ) * ( sk(k_ppp,j,i)+ sk(k_mm,j,i) ) & |
---|
1527 | ) |
---|
1528 | |
---|
1529 | diss_t(k) = - ABS( w(k,j,i) ) * rho_air_zw(k) * ( & |
---|
1530 | ( 10.0_wp * ibit8 * adv_sca_5 & |
---|
1531 | + 3.0_wp * ibit7 * adv_sca_3 & |
---|
1532 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
1533 | - ( 5.0_wp * ibit8 * adv_sca_5 & |
---|
1534 | + ibit7 * adv_sca_3 ) * ( sk(k_pp,j,i) - sk(k-1,j,i) ) & |
---|
1535 | + ( ibit8 * adv_sca_5 ) * ( sk(k_ppp,j,i) - sk(k_mm,j,i) ) & |
---|
1536 | ) |
---|
1537 | ENDDO |
---|
1538 | |
---|
1539 | DO k = nzb+2, nzt-2 |
---|
1540 | ibit8 = REAL( IBITS(advc_flag(k,j,i),8,1), KIND = wp ) |
---|
1541 | ibit7 = REAL( IBITS(advc_flag(k,j,i),7,1), KIND = wp ) |
---|
1542 | ibit6 = REAL( IBITS(advc_flag(k,j,i),6,1), KIND = wp ) |
---|
1543 | |
---|
1544 | flux_t(k) = w(k,j,i) * rho_air_zw(k) * ( & |
---|
1545 | ( 37.0_wp * ibit8 * adv_sca_5 & |
---|
1546 | + 7.0_wp * ibit7 * adv_sca_3 & |
---|
1547 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1548 | - ( 8.0_wp * ibit8 * adv_sca_5 & |
---|
1549 | + ibit7 * adv_sca_3 ) * ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
1550 | + ( ibit8 * adv_sca_5 ) * ( sk(k+3,j,i) + sk(k-2,j,i) ) & |
---|
1551 | ) |
---|
1552 | |
---|
1553 | diss_t(k) = - ABS( w(k,j,i) ) * rho_air_zw(k) * ( & |
---|
1554 | ( 10.0_wp * ibit8 * adv_sca_5 & |
---|
1555 | + 3.0_wp * ibit7 * adv_sca_3 & |
---|
1556 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
1557 | - ( 5.0_wp * ibit8 * adv_sca_5 & |
---|
1558 | + ibit7 * adv_sca_3 ) * ( sk(k+2,j,i) - sk(k-1,j,i) ) & |
---|
1559 | + ( ibit8 * adv_sca_5 ) * ( sk(k+3,j,i) - sk(k-2,j,i) ) & |
---|
1560 | ) |
---|
1561 | ENDDO |
---|
1562 | |
---|
1563 | DO k = nzt-1, nzt-symmetry_flag |
---|
1564 | ibit8 = REAL( IBITS(advc_flag(k,j,i),8,1), KIND = wp ) |
---|
1565 | ibit7 = REAL( IBITS(advc_flag(k,j,i),7,1), KIND = wp ) |
---|
1566 | ibit6 = REAL( IBITS(advc_flag(k,j,i),6,1), KIND = wp ) |
---|
1567 | ! |
---|
1568 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
1569 | k_ppp = k + 3 * ibit8 |
---|
1570 | k_pp = k + 2 * ( 1 - ibit6 ) |
---|
1571 | k_mm = k - 2 * ibit8 |
---|
1572 | |
---|
1573 | |
---|
1574 | flux_t(k) = w(k,j,i) * rho_air_zw(k) * ( & |
---|
1575 | ( 37.0_wp * ibit8 * adv_sca_5 & |
---|
1576 | + 7.0_wp * ibit7 * adv_sca_3 & |
---|
1577 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1578 | - ( 8.0_wp * ibit8 * adv_sca_5 & |
---|
1579 | + ibit7 * adv_sca_3 ) * ( sk(k_pp,j,i) + sk(k-1,j,i) ) & |
---|
1580 | + ( ibit8 * adv_sca_5 ) * ( sk(k_ppp,j,i)+ sk(k_mm,j,i) ) & |
---|
1581 | ) |
---|
1582 | |
---|
1583 | diss_t(k) = - ABS( w(k,j,i) ) * rho_air_zw(k) * ( & |
---|
1584 | ( 10.0_wp * ibit8 * adv_sca_5 & |
---|
1585 | + 3.0_wp * ibit7 * adv_sca_3 & |
---|
1586 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
1587 | - ( 5.0_wp * ibit8 * adv_sca_5 & |
---|
1588 | + ibit7 * adv_sca_3 ) * ( sk(k_pp,j,i) - sk(k-1,j,i) ) & |
---|
1589 | + ( ibit8 * adv_sca_5 ) * ( sk(k_ppp,j,i) - sk(k_mm,j,i) ) & |
---|
1590 | ) |
---|
1591 | ENDDO |
---|
1592 | |
---|
1593 | ! |
---|
1594 | !-- Set resolved/turbulent flux at model top to zero (w-level). In case that a symmetric behavior |
---|
1595 | !-- between bottom and top shall be guaranteed (closed channel flow), the flux at nzt is also set to |
---|
1596 | !-- zero. |
---|
1597 | IF ( symmetry_flag == 1 ) THEN |
---|
1598 | flux_t(nzt) = 0.0_wp |
---|
1599 | diss_t(nzt) = 0.0_wp |
---|
1600 | ENDIF |
---|
1601 | flux_t(nzt+1) = 0.0_wp |
---|
1602 | diss_t(nzt+1) = 0.0_wp |
---|
1603 | |
---|
1604 | |
---|
1605 | IF ( limiter ) THEN |
---|
1606 | ! |
---|
1607 | !-- Compute monotone first-order fluxes which are required for mononteflux limitation. |
---|
1608 | flux_t_1st(nzb) = 0.0_wp |
---|
1609 | DO k = nzb+1, nzb_max_l |
---|
1610 | flux_t_1st(k) = ( w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1611 | - ABS( w(k,j,i) ) * ( sk(k+1,j,i) - sk(k,j,i) ) ) & |
---|
1612 | * rho_air_zw(k) * adv_sca_1 |
---|
1613 | ! |
---|
1614 | !-- In flux limitation the total flux will be corrected. For the sake of cleariness the |
---|
1615 | !-- higher-order advective and disspative fluxes will be merged onto flux_t. |
---|
1616 | flux_t(k) = flux_t(k) + diss_t(k) |
---|
1617 | diss_t(k) = 0.0_wp |
---|
1618 | ENDDO |
---|
1619 | ! |
---|
1620 | !-- Flux limitation of vertical fluxes according to Skamarock (2006). |
---|
1621 | !-- Please note, as flux limitation implies linear dependencies of fluxes, flux limitation is |
---|
1622 | !-- only made for the vertical advection term. Limitation of the horizontal terms cannot be |
---|
1623 | !-- parallelized. |
---|
1624 | !-- Due to the linear dependency, the following loop will not be vectorized. |
---|
1625 | !-- Further, note that the flux limiter is only applied within the urban layer, i.e up to the |
---|
1626 | !-- topography top. |
---|
1627 | DO k = nzb+1, nzb_max_l |
---|
1628 | ! |
---|
1629 | !-- Compute one-dimensional divergence along the vertical direction, which is used to correct |
---|
1630 | !-- the advection discretization. This is necessary as in one-dimensional space the advection |
---|
1631 | !-- velocity should actually be constant. |
---|
1632 | div = ( w(k,j,i) * rho_air_zw(k) & |
---|
1633 | - w(k-1,j,i) * rho_air_zw(k-1) & |
---|
1634 | ) * drho_air(k) * ddzw(k) |
---|
1635 | ! |
---|
1636 | !-- Compute monotone solution of the advection equation from 1st-order fluxes. Please note, |
---|
1637 | !-- the advection equation is corrected by the divergence term (in 1D the advective flow |
---|
1638 | !-- should be divergence free). Moreover, please note, as time-increment the full timestep is |
---|
1639 | !-- used, even though a Runge-Kutta scheme will be used. However, the length of the actual |
---|
1640 | !-- time increment is not important at all since it cancels out later when the fluxes are |
---|
1641 | !-- limited. |
---|
1642 | mon = sk(k,j,i) + ( - ( flux_t_1st(k) - flux_t_1st(k-1) ) & |
---|
1643 | * drho_air(k) * ddzw(k) & |
---|
1644 | + div * sk(k,j,i) & |
---|
1645 | ) * dt_3d |
---|
1646 | ! |
---|
1647 | !-- Determine minimum and maximum values along the numerical stencil. |
---|
1648 | k_mmm = MAX( k - 3, nzb + 1 ) |
---|
1649 | k_ppp = MIN( k + 3, nzt + 1 ) |
---|
1650 | |
---|
1651 | min_val = MINVAL( sk(k_mmm:k_ppp,j,i) ) |
---|
1652 | max_val = MAXVAL( sk(k_mmm:k_ppp,j,i) ) |
---|
1653 | ! |
---|
1654 | !-- Compute difference between high- and low-order fluxes, which may act as correction fluxes |
---|
1655 | f_corr_t = flux_t(k) - flux_t_1st(k) |
---|
1656 | f_corr_d = flux_t(k-1) - flux_t_1st(k-1) |
---|
1657 | ! |
---|
1658 | !-- Determine outgoing fluxes, i.e. the part of the fluxes which can decrease the value within |
---|
1659 | !-- the grid box |
---|
1660 | f_corr_t_out = MAX( 0.0_wp, f_corr_t ) |
---|
1661 | f_corr_d_out = MIN( 0.0_wp, f_corr_d ) |
---|
1662 | ! |
---|
1663 | !-- Determine ingoing fluxes, i.e. the part of the fluxes which can increase the value within |
---|
1664 | !-- the grid box |
---|
1665 | f_corr_t_in = MIN( 0.0_wp, f_corr_t) |
---|
1666 | f_corr_d_in = MAX( 0.0_wp, f_corr_d) |
---|
1667 | ! |
---|
1668 | !-- Compute divergence of outgoing correction fluxes |
---|
1669 | div_out = - ( f_corr_t_out - f_corr_d_out ) * drho_air(k) * ddzw(k) * dt_3d |
---|
1670 | ! |
---|
1671 | !-- Compute divergence of ingoing correction fluxes |
---|
1672 | div_in = - ( f_corr_t_in - f_corr_d_in ) * drho_air(k) * ddzw(k) * dt_3d |
---|
1673 | ! |
---|
1674 | !-- Check if outgoing fluxes can lead to undershoots, i.e. values smaller than the minimum |
---|
1675 | !-- value within the numerical stencil. If so, limit them. |
---|
1676 | IF ( mon - min_val < - div_out .AND. ABS( div_out ) > 0.0_wp ) THEN |
---|
1677 | fac_correction = ( mon - min_val ) / ( - div_out ) |
---|
1678 | f_corr_t_out = f_corr_t_out * fac_correction |
---|
1679 | f_corr_d_out = f_corr_d_out * fac_correction |
---|
1680 | ENDIF |
---|
1681 | ! |
---|
1682 | !-- Check if ingoing fluxes can lead to overshoots, i.e. values larger than the maximum value |
---|
1683 | !-- within the numerical stencil. If so, limit them. |
---|
1684 | IF ( mon - max_val > - div_in .AND. ABS( div_in ) > 0.0_wp ) THEN |
---|
1685 | fac_correction = ( mon - max_val ) / ( - div_in ) |
---|
1686 | f_corr_t_in = f_corr_t_in * fac_correction |
---|
1687 | f_corr_d_in = f_corr_d_in * fac_correction |
---|
1688 | ENDIF |
---|
1689 | ! |
---|
1690 | !-- Finally add the limited fluxes to the original ones. If no flux limitation was done, the |
---|
1691 | !-- fluxes equal the original ones. |
---|
1692 | flux_t(k) = flux_t_1st(k) + f_corr_t_out + f_corr_t_in |
---|
1693 | flux_t(k-1) = flux_t_1st(k-1) + f_corr_d_out + f_corr_d_in |
---|
1694 | ENDDO |
---|
1695 | ENDIF |
---|
1696 | ! |
---|
1697 | !-- Now compute the tendency term including divergence correction. |
---|
1698 | DO k = nzb+1, nzb_max_l |
---|
1699 | |
---|
1700 | flux_d = flux_t(k-1) |
---|
1701 | diss_d = diss_t(k-1) |
---|
1702 | |
---|
1703 | ibit2 = REAL( IBITS(advc_flag(k,j,i),2,1), KIND = wp ) |
---|
1704 | ibit1 = REAL( IBITS(advc_flag(k,j,i),1,1), KIND = wp ) |
---|
1705 | ibit0 = REAL( IBITS(advc_flag(k,j,i),0,1), KIND = wp ) |
---|
1706 | |
---|
1707 | ibit5 = REAL( IBITS(advc_flag(k,j,i),5,1), KIND = wp ) |
---|
1708 | ibit4 = REAL( IBITS(advc_flag(k,j,i),4,1), KIND = wp ) |
---|
1709 | ibit3 = REAL( IBITS(advc_flag(k,j,i),3,1), KIND = wp ) |
---|
1710 | |
---|
1711 | ibit8 = REAL( IBITS(advc_flag(k,j,i),8,1), KIND = wp ) |
---|
1712 | ibit7 = REAL( IBITS(advc_flag(k,j,i),7,1), KIND = wp ) |
---|
1713 | ibit6 = REAL( IBITS(advc_flag(k,j,i),6,1), KIND = wp ) |
---|
1714 | ! |
---|
1715 | !-- Calculate the divergence of the velocity field. A respective correction is needed to overcome |
---|
1716 | !-- numerical instabilities introduced by an insufficient reduction of divergences near |
---|
1717 | !-- topography. |
---|
1718 | div = ( u(k,j,i+1) * ( ibit0 + ibit1 + ibit2 ) & |
---|
1719 | - u(k,j,i) * ( & |
---|
1720 | REAL( IBITS(advc_flag(k,j,i-1),0,1), KIND = wp ) & |
---|
1721 | + REAL( IBITS(advc_flag(k,j,i-1),1,1), KIND = wp ) & |
---|
1722 | + REAL( IBITS(advc_flag(k,j,i-1),2,1), KIND = wp ) & |
---|
1723 | ) & |
---|
1724 | ) * ddx & |
---|
1725 | + ( v(k,j+1,i) * ( ibit3 + ibit4 + ibit5 ) & |
---|
1726 | - v(k,j,i) * ( & |
---|
1727 | REAL( IBITS(advc_flag(k,j-1,i),3,1), KIND = wp ) & |
---|
1728 | + REAL( IBITS(advc_flag(k,j-1,i),4,1), KIND = wp ) & |
---|
1729 | + REAL( IBITS(advc_flag(k,j-1,i),5,1), KIND = wp ) & |
---|
1730 | ) & |
---|
1731 | ) * ddy & |
---|
1732 | + ( w(k,j,i) * rho_air_zw(k) * ( ibit6 + ibit7 + ibit8 ) & |
---|
1733 | - w(k-1,j,i) * rho_air_zw(k-1) * & |
---|
1734 | ( & |
---|
1735 | REAL( IBITS(advc_flag(k-1,j,i),6,1), KIND = wp ) & |
---|
1736 | + REAL( IBITS(advc_flag(k-1,j,i),7,1), KIND = wp ) & |
---|
1737 | + REAL( IBITS(advc_flag(k-1,j,i),8,1), KIND = wp ) & |
---|
1738 | ) & |
---|
1739 | ) * drho_air(k) * ddzw(k) |
---|
1740 | |
---|
1741 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1742 | ( flux_r(k) + diss_r(k) - swap_flux_x_local(k,j,tn) & |
---|
1743 | - swap_diss_x_local(k,j,tn) ) * ddx & |
---|
1744 | + ( flux_n(k) + diss_n(k) - swap_flux_y_local(k,tn) & |
---|
1745 | - swap_diss_y_local(k,tn) ) * ddy & |
---|
1746 | + ( ( flux_t(k) + diss_t(k) ) - ( flux_d + diss_d ) & |
---|
1747 | ) * drho_air(k) * ddzw(k) & |
---|
1748 | ) + sk(k,j,i) * div |
---|
1749 | |
---|
1750 | |
---|
1751 | swap_flux_y_local(k,tn) = flux_n(k) |
---|
1752 | swap_diss_y_local(k,tn) = diss_n(k) |
---|
1753 | swap_flux_x_local(k,j,tn) = flux_r(k) |
---|
1754 | swap_diss_x_local(k,j,tn) = diss_r(k) |
---|
1755 | |
---|
1756 | ENDDO |
---|
1757 | |
---|
1758 | DO k = nzb_max_l+1, nzt |
---|
1759 | |
---|
1760 | flux_d = flux_t(k-1) |
---|
1761 | diss_d = diss_t(k-1) |
---|
1762 | ! |
---|
1763 | !-- Calculate the divergence of the velocity field. A respective correction is needed to overcome |
---|
1764 | !-- numerical instabilities introduced by an insufficient reduction of divergences near |
---|
1765 | !-- topography. |
---|
1766 | div = ( u(k,j,i+1) - u(k,j,i) ) * ddx & |
---|
1767 | + ( v(k,j+1,i) - v(k,j,i) ) * ddy & |
---|
1768 | + ( w(k,j,i) * rho_air_zw(k) & |
---|
1769 | - w(k-1,j,i) * rho_air_zw(k-1) & |
---|
1770 | ) * drho_air(k) * ddzw(k) |
---|
1771 | |
---|
1772 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1773 | ( flux_r(k) + diss_r(k) - swap_flux_x_local(k,j,tn) & |
---|
1774 | - swap_diss_x_local(k,j,tn) ) * ddx & |
---|
1775 | + ( flux_n(k) + diss_n(k) - swap_flux_y_local(k,tn) & |
---|
1776 | - swap_diss_y_local(k,tn) ) * ddy & |
---|
1777 | + ( ( flux_t(k) + diss_t(k) ) - ( flux_d + diss_d ) & |
---|
1778 | ) * drho_air(k) * ddzw(k) & |
---|
1779 | ) + sk(k,j,i) * div |
---|
1780 | |
---|
1781 | |
---|
1782 | swap_flux_y_local(k,tn) = flux_n(k) |
---|
1783 | swap_diss_y_local(k,tn) = diss_n(k) |
---|
1784 | swap_flux_x_local(k,j,tn) = flux_r(k) |
---|
1785 | swap_diss_x_local(k,j,tn) = diss_r(k) |
---|
1786 | |
---|
1787 | ENDDO |
---|
1788 | |
---|
1789 | ! |
---|
1790 | !-- Evaluation of statistics. |
---|
1791 | SELECT CASE ( sk_char ) |
---|
1792 | |
---|
1793 | CASE ( 'pt' ) |
---|
1794 | |
---|
1795 | DO k = nzb, nzt |
---|
1796 | sums_wspts_ws_l(k,tn) = sums_wspts_ws_l(k,tn) + & |
---|
1797 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1798 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1799 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1800 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1801 | ) * weight_substep(intermediate_timestep_count) |
---|
1802 | ENDDO |
---|
1803 | |
---|
1804 | CASE ( 'sa' ) |
---|
1805 | |
---|
1806 | DO k = nzb, nzt |
---|
1807 | sums_wssas_ws_l(k,tn) = sums_wssas_ws_l(k,tn) + & |
---|
1808 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1809 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1810 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1811 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1812 | ) * weight_substep(intermediate_timestep_count) |
---|
1813 | ENDDO |
---|
1814 | |
---|
1815 | CASE ( 'q' ) |
---|
1816 | |
---|
1817 | DO k = nzb, nzt |
---|
1818 | sums_wsqs_ws_l(k,tn) = sums_wsqs_ws_l(k,tn) + & |
---|
1819 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1820 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1821 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1822 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1823 | ) * weight_substep(intermediate_timestep_count) |
---|
1824 | ENDDO |
---|
1825 | |
---|
1826 | CASE ( 'qc' ) |
---|
1827 | |
---|
1828 | DO k = nzb, nzt |
---|
1829 | sums_wsqcs_ws_l(k,tn) = sums_wsqcs_ws_l(k,tn) + & |
---|
1830 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1831 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1832 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1833 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1834 | ) * weight_substep(intermediate_timestep_count) |
---|
1835 | ENDDO |
---|
1836 | |
---|
1837 | CASE ( 'qg' ) |
---|
1838 | |
---|
1839 | DO k = nzb, nzt |
---|
1840 | sums_wsqgs_ws_l(k,tn) = sums_wsqgs_ws_l(k,tn) + & |
---|
1841 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1842 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1843 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1844 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1845 | ) * weight_substep(intermediate_timestep_count) |
---|
1846 | ENDDO |
---|
1847 | |
---|
1848 | CASE ( 'qi' ) |
---|
1849 | |
---|
1850 | DO k = nzb, nzt |
---|
1851 | sums_wsqis_ws_l(k,tn) = sums_wsqis_ws_l(k,tn) + & |
---|
1852 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1853 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1854 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1855 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1856 | ) * weight_substep(intermediate_timestep_count) |
---|
1857 | ENDDO |
---|
1858 | |
---|
1859 | CASE ( 'qr' ) |
---|
1860 | |
---|
1861 | DO k = nzb, nzt |
---|
1862 | sums_wsqrs_ws_l(k,tn) = sums_wsqrs_ws_l(k,tn) + & |
---|
1863 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1864 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1865 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1866 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1867 | ) * weight_substep(intermediate_timestep_count) |
---|
1868 | ENDDO |
---|
1869 | |
---|
1870 | CASE ( 'qs' ) |
---|
1871 | |
---|
1872 | DO k = nzb, nzt |
---|
1873 | sums_wsqss_ws_l(k,tn) = sums_wsqss_ws_l(k,tn) + & |
---|
1874 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1875 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1876 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1877 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1878 | ) * weight_substep(intermediate_timestep_count) |
---|
1879 | ENDDO |
---|
1880 | |
---|
1881 | CASE ( 'nc' ) |
---|
1882 | |
---|
1883 | DO k = nzb, nzt |
---|
1884 | sums_wsncs_ws_l(k,tn) = sums_wsncs_ws_l(k,tn) + & |
---|
1885 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1886 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1887 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1888 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1889 | ) * weight_substep(intermediate_timestep_count) |
---|
1890 | ENDDO |
---|
1891 | |
---|
1892 | CASE ( 'ng' ) |
---|
1893 | |
---|
1894 | DO k = nzb, nzt |
---|
1895 | sums_wsngs_ws_l(k,tn) = sums_wsngs_ws_l(k,tn) + & |
---|
1896 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1897 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1898 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1899 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1900 | ) * weight_substep(intermediate_timestep_count) |
---|
1901 | ENDDO |
---|
1902 | |
---|
1903 | |
---|
1904 | CASE ( 'ni' ) |
---|
1905 | |
---|
1906 | DO k = nzb, nzt |
---|
1907 | sums_wsnis_ws_l(k,tn) = sums_wsnis_ws_l(k,tn) + & |
---|
1908 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1909 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1910 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1911 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1912 | ) * weight_substep(intermediate_timestep_count) |
---|
1913 | ENDDO |
---|
1914 | |
---|
1915 | CASE ( 'nr' ) |
---|
1916 | |
---|
1917 | DO k = nzb, nzt |
---|
1918 | sums_wsnrs_ws_l(k,tn) = sums_wsnrs_ws_l(k,tn) + & |
---|
1919 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1920 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1921 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1922 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1923 | ) * weight_substep(intermediate_timestep_count) |
---|
1924 | ENDDO |
---|
1925 | |
---|
1926 | CASE ( 'ns' ) |
---|
1927 | |
---|
1928 | DO k = nzb, nzt |
---|
1929 | sums_wsnss_ws_l(k,tn) = sums_wsnss_ws_l(k,tn) + & |
---|
1930 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1931 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1932 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1933 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1934 | ) * weight_substep(intermediate_timestep_count) |
---|
1935 | ENDDO |
---|
1936 | |
---|
1937 | CASE ( 's' ) |
---|
1938 | |
---|
1939 | DO k = nzb, nzt |
---|
1940 | sums_wsss_ws_l(k,tn) = sums_wsss_ws_l(k,tn) + & |
---|
1941 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1942 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1943 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1944 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1945 | ) * weight_substep(intermediate_timestep_count) |
---|
1946 | ENDDO |
---|
1947 | |
---|
1948 | CASE ( 'aerosol_mass', 'aerosol_number', 'salsa_gas' ) |
---|
1949 | |
---|
1950 | DO k = nzb, nzt |
---|
1951 | sums_salsa_ws_l(k,tn) = sums_salsa_ws_l(k,tn) + & |
---|
1952 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1953 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1954 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1955 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1956 | ) * weight_substep(intermediate_timestep_count) |
---|
1957 | ENDDO |
---|
1958 | |
---|
1959 | CASE ( 'kc' ) |
---|
1960 | DO k = nzb, nzt |
---|
1961 | sums_wschs_ws_l(k,tn) = sums_wschs_ws_l(k,tn) + & |
---|
1962 | ( flux_t(k) / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
1963 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1964 | + diss_t(k) / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
1965 | * ABS( w(k,j,i) - hom(k,1,3,0) ) & |
---|
1966 | ) * weight_substep(intermediate_timestep_count) |
---|
1967 | ENDDO |
---|
1968 | |
---|
1969 | END SELECT |
---|
1970 | |
---|
1971 | END SUBROUTINE advec_s_ws_ij |
---|
1972 | |
---|
1973 | |
---|
1974 | |
---|
1975 | |
---|
1976 | !--------------------------------------------------------------------------------------------------! |
---|
1977 | ! Description: |
---|
1978 | ! ------------ |
---|
1979 | !> Advection of u-component - Call for grid point i,j |
---|
1980 | !--------------------------------------------------------------------------------------------------! |
---|
1981 | SUBROUTINE advec_u_ws_ij( i, j, i_omp, tn ) |
---|
1982 | |
---|
1983 | |
---|
1984 | INTEGER(iwp) :: i !< grid index along x-direction |
---|
1985 | INTEGER(iwp) :: i_omp !< leftmost index on subdomain, or in case of OpenMP, on thread |
---|
1986 | INTEGER(iwp) :: j !< grid index along y-direction |
---|
1987 | INTEGER(iwp) :: k !< grid index along z-direction |
---|
1988 | INTEGER(iwp) :: k_mm !< k-2 index in disretization, can be modified to avoid segmentation faults |
---|
1989 | INTEGER(iwp) :: k_pp !< k+2 index in disretization, can be modified to avoid segmentation faults |
---|
1990 | INTEGER(iwp) :: k_ppp !< k+3 index in disretization, can be modified to avoid segmentation faults |
---|
1991 | INTEGER(iwp) :: nzb_max_l !< index indicating upper bound for order degradation of horizontal advection terms |
---|
1992 | INTEGER(iwp) :: tn !< number of OpenMP thread |
---|
1993 | |
---|
1994 | REAL(wp) :: diss_d !< artificial dissipation term at grid box bottom |
---|
1995 | REAL(wp) :: div !< diverence on u-grid |
---|
1996 | REAL(wp) :: flux_d !< 6th-order flux at grid box bottom |
---|
1997 | REAL(wp) :: gu !< Galilei-transformation velocity along x |
---|
1998 | REAL(wp) :: gv !< Galilei-transformation velocity along y |
---|
1999 | REAL(wp) :: ibit0 !< flag indicating 1st-order scheme along x-direction |
---|
2000 | REAL(wp) :: ibit1 !< flag indicating 3rd-order scheme along x-direction |
---|
2001 | REAL(wp) :: ibit2 !< flag indicating 5th-order scheme along x-direction |
---|
2002 | REAL(wp) :: ibit3 !< flag indicating 1st-order scheme along y-direction |
---|
2003 | REAL(wp) :: ibit4 !< flag indicating 3rd-order scheme along y-direction |
---|
2004 | REAL(wp) :: ibit5 !< flag indicating 5th-order scheme along y-direction |
---|
2005 | REAL(wp) :: ibit6 !< flag indicating 1st-order scheme along z-direction |
---|
2006 | REAL(wp) :: ibit7 !< flag indicating 3rd-order scheme along z-direction |
---|
2007 | REAL(wp) :: ibit8 !< flag indicating 5th-order scheme along z-direction |
---|
2008 | REAL(wp) :: u_comp_l !< advection velocity along x at leftmost grid point on subdomain |
---|
2009 | |
---|
2010 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_n !< discretized artificial dissipation at northward-side of the grid box |
---|
2011 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_r !< discretized artificial dissipation at rightward-side of the grid box |
---|
2012 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_t !< discretized artificial dissipation at top of the grid box |
---|
2013 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_n !< discretized 6th-order flux at northward-side of the grid box |
---|
2014 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_r !< discretized 6th-order flux at rightward-side of the grid box |
---|
2015 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_t !< discretized 6th-order flux at top of the grid box |
---|
2016 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_comp !< advection velocity along x |
---|
2017 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_comp !< advection velocity along y |
---|
2018 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_comp !< advection velocity along z |
---|
2019 | ! |
---|
2020 | !-- Used local modified copy of nzb_max (used to degrade order of discretization) at non-cyclic |
---|
2021 | !-- boundaries. Modify only at relevant points instead of the entire subdomain. This should lead to |
---|
2022 | !-- better load balance between boundary and non-boundary PEs. |
---|
2023 | IF( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i <= nxl + 2 .OR. & |
---|
2024 | ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i >= nxr - 2 .OR. & |
---|
2025 | ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j <= nys + 2 .OR. & |
---|
2026 | ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j >= nyn - 2 ) THEN |
---|
2027 | nzb_max_l = nzt |
---|
2028 | ELSE |
---|
2029 | nzb_max_l = nzb_max |
---|
2030 | END IF |
---|
2031 | |
---|
2032 | gu = 2.0_wp * u_gtrans |
---|
2033 | gv = 2.0_wp * v_gtrans |
---|
2034 | ! |
---|
2035 | !-- Compute southside fluxes for the respective boundary of PE |
---|
2036 | IF ( j == nys ) THEN |
---|
2037 | |
---|
2038 | DO k = nzb+1, nzb_max_l |
---|
2039 | |
---|
2040 | ibit5 = REAL( IBITS(advc_flags_m(k,j-1,i),5,1), KIND = wp ) |
---|
2041 | ibit4 = REAL( IBITS(advc_flags_m(k,j-1,i),4,1), KIND = wp ) |
---|
2042 | ibit3 = REAL( IBITS(advc_flags_m(k,j-1,i),3,1), KIND = wp ) |
---|
2043 | |
---|
2044 | v_comp(k) = v(k,j,i) + v(k,j,i-1) - gv |
---|
2045 | flux_s_u(k,tn) = v_comp(k) * ( & |
---|
2046 | ( 37.0_wp * ibit5 * adv_mom_5 & |
---|
2047 | + 7.0_wp * ibit4 * adv_mom_3 & |
---|
2048 | + ibit3 * adv_mom_1 ) * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
2049 | - ( 8.0_wp * ibit5 * adv_mom_5 & |
---|
2050 | + ibit4 * adv_mom_3 ) * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
2051 | + ( ibit5 * adv_mom_5 ) * ( u(k,j+2,i) + u(k,j-3,i) ) & |
---|
2052 | ) |
---|
2053 | |
---|
2054 | diss_s_u(k,tn) = - ABS ( v_comp(k) ) * ( & |
---|
2055 | ( 10.0_wp * ibit5 * adv_mom_5 & |
---|
2056 | + 3.0_wp * ibit4 * adv_mom_3 & |
---|
2057 | + ibit3 * adv_mom_1 ) * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
2058 | - ( 5.0_wp * ibit5 * adv_mom_5 & |
---|
2059 | + ibit4 * adv_mom_3 ) * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
2060 | + ( ibit5 * adv_mom_5 ) * ( u(k,j+2,i) - u(k,j-3,i) ) & |
---|
2061 | ) |
---|
2062 | |
---|
2063 | ENDDO |
---|
2064 | |
---|
2065 | DO k = nzb_max_l+1, nzt |
---|
2066 | |
---|
2067 | v_comp(k) = v(k,j,i) + v(k,j,i-1) - gv |
---|
2068 | flux_s_u(k,tn) = v_comp(k) * ( & |
---|
2069 | 37.0_wp * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
2070 | - 8.0_wp * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
2071 | + ( u(k,j+2,i) + u(k,j-3,i) ) ) * adv_mom_5 |
---|
2072 | diss_s_u(k,tn) = - ABS(v_comp(k)) * ( & |
---|
2073 | 10.0_wp * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
2074 | - 5.0_wp * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
2075 | + ( u(k,j+2,i) - u(k,j-3,i) ) ) * adv_mom_5 |
---|
2076 | |
---|
2077 | ENDDO |
---|
2078 | |
---|
2079 | ENDIF |
---|
2080 | ! |
---|
2081 | !-- Compute leftside fluxes for the respective boundary of PE |
---|
2082 | IF ( i == i_omp .OR. i == nxlu ) THEN |
---|
2083 | |
---|
2084 | DO k = nzb+1, nzb_max_l |
---|
2085 | |
---|
2086 | ibit2 = REAL( IBITS(advc_flags_m(k,j,i-1),2,1), KIND = wp ) |
---|
2087 | ibit1 = REAL( IBITS(advc_flags_m(k,j,i-1),1,1), KIND = wp ) |
---|
2088 | ibit0 = REAL( IBITS(advc_flags_m(k,j,i-1),0,1), KIND = wp ) |
---|
2089 | |
---|
2090 | u_comp_l = u(k,j,i) + u(k,j,i-1) - gu |
---|
2091 | flux_l_u(k,j,tn) = u_comp_l * ( & |
---|
2092 | ( 37.0_wp * ibit2 * adv_mom_5 & |
---|
2093 | + 7.0_wp * ibit1 * adv_mom_3 & |
---|
2094 | + ibit0 * adv_mom_1 ) * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
2095 | - ( 8.0_wp * ibit2 * adv_mom_5 & |
---|
2096 | + ibit1 * adv_mom_3 ) * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
2097 | + ( ibit2 * adv_mom_5 ) * ( u(k,j,i+2) + u(k,j,i-3) ) & |
---|
2098 | ) |
---|
2099 | |
---|
2100 | diss_l_u(k,j,tn) = - ABS( u_comp_l ) * ( & |
---|
2101 | ( 10.0_wp * ibit2 * adv_mom_5 & |
---|
2102 | + 3.0_wp * ibit1 * adv_mom_3 & |
---|
2103 | + ibit0 * adv_mom_1 ) * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
2104 | - ( 5.0_wp * ibit2 * adv_mom_5 & |
---|
2105 | + ibit1 * adv_mom_3 ) * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
2106 | + ( ibit2 * adv_mom_5 ) * ( u(k,j,i+2) - u(k,j,i-3) ) & |
---|
2107 | ) |
---|
2108 | |
---|
2109 | ENDDO |
---|
2110 | |
---|
2111 | DO k = nzb_max_l+1, nzt |
---|
2112 | |
---|
2113 | u_comp_l = u(k,j,i) + u(k,j,i-1) - gu |
---|
2114 | flux_l_u(k,j,tn) = u_comp_l * ( & |
---|
2115 | 37.0_wp * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
2116 | - 8.0_wp * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
2117 | + ( u(k,j,i+2) + u(k,j,i-3) ) ) * adv_mom_5 |
---|
2118 | diss_l_u(k,j,tn) = - ABS(u_comp_l) * ( & |
---|
2119 | 10.0_wp * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
2120 | - 5.0_wp * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
2121 | + ( u(k,j,i+2) - u(k,j,i-3) ) ) * adv_mom_5 |
---|
2122 | |
---|
2123 | ENDDO |
---|
2124 | |
---|
2125 | ENDIF |
---|
2126 | ! |
---|
2127 | !-- Now compute the fluxes tendency terms for the horizontal and vertical parts. |
---|
2128 | DO k = nzb+1, nzb_max_l |
---|
2129 | |
---|
2130 | ibit2 = REAL( IBITS(advc_flags_m(k,j,i),2,1), KIND = wp ) |
---|
2131 | ibit1 = REAL( IBITS(advc_flags_m(k,j,i),1,1), KIND = wp ) |
---|
2132 | ibit0 = REAL( IBITS(advc_flags_m(k,j,i),0,1), KIND = wp ) |
---|
2133 | |
---|
2134 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2135 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2136 | ( 37.0_wp * ibit2 * adv_mom_5 & |
---|
2137 | + 7.0_wp * ibit1 * adv_mom_3 & |
---|
2138 | + ibit0 * adv_mom_1 ) * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2139 | - ( 8.0_wp * ibit2 * adv_mom_5 & |
---|
2140 | + ibit1 * adv_mom_3 ) * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
2141 | + ( ibit2 * adv_mom_5 ) * ( u(k,j,i+3) + u(k,j,i-2) ) & |
---|
2142 | ) |
---|
2143 | |
---|
2144 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
2145 | ( 10.0_wp * ibit2 * adv_mom_5 & |
---|
2146 | + 3.0_wp * ibit1 * adv_mom_3 & |
---|
2147 | + ibit0 * adv_mom_1 ) * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2148 | - ( 5.0_wp * ibit2 * adv_mom_5 & |
---|
2149 | + ibit1 * adv_mom_3 ) * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
2150 | + ( ibit2 * adv_mom_5 ) * ( u(k,j,i+3) - u(k,j,i-2) ) & |
---|
2151 | ) |
---|
2152 | |
---|
2153 | ibit5 = REAL( IBITS(advc_flags_m(k,j,i),5,1), KIND = wp ) |
---|
2154 | ibit4 = REAL( IBITS(advc_flags_m(k,j,i),4,1), KIND = wp ) |
---|
2155 | ibit3 = REAL( IBITS(advc_flags_m(k,j,i),3,1), KIND = wp ) |
---|
2156 | |
---|
2157 | v_comp(k) = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2158 | flux_n(k) = v_comp(k) * ( & |
---|
2159 | ( 37.0_wp * ibit5 * adv_mom_5 & |
---|
2160 | + 7.0_wp * ibit4 * adv_mom_3 & |
---|
2161 | + ibit3 * adv_mom_1 ) * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2162 | - ( 8.0_wp * ibit5 * adv_mom_5 & |
---|
2163 | + ibit4 * adv_mom_3 ) * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
2164 | + ( ibit5 * adv_mom_5 ) * ( u(k,j+3,i) + u(k,j-2,i) ) & |
---|
2165 | ) |
---|
2166 | |
---|
2167 | diss_n(k) = - ABS ( v_comp(k) ) * ( & |
---|
2168 | ( 10.0_wp * ibit5 * adv_mom_5 & |
---|
2169 | + 3.0_wp * ibit4 * adv_mom_3 & |
---|
2170 | + ibit3 * adv_mom_1 ) * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2171 | - ( 5.0_wp * ibit5 * adv_mom_5 & |
---|
2172 | + ibit4 * adv_mom_3 ) * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
2173 | + ( ibit5 * adv_mom_5 ) * ( u(k,j+3,i) - u(k,j-2,i) ) & |
---|
2174 | ) |
---|
2175 | ENDDO |
---|
2176 | |
---|
2177 | DO k = nzb_max_l+1, nzt |
---|
2178 | |
---|
2179 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2180 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2181 | 37.0_wp * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2182 | - 8.0_wp * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
2183 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) * adv_mom_5 |
---|
2184 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
2185 | 10.0_wp * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2186 | - 5.0_wp * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
2187 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
2188 | |
---|
2189 | v_comp(k) = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2190 | flux_n(k) = v_comp(k) * ( & |
---|
2191 | 37.0_wp * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2192 | - 8.0_wp * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
2193 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
2194 | diss_n(k) = - ABS( v_comp(k) ) * ( & |
---|
2195 | 10.0_wp * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2196 | - 5.0_wp * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
2197 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
2198 | |
---|
2199 | ENDDO |
---|
2200 | ! |
---|
2201 | !-- Now, compute vertical fluxes. Split loop into a part treating the lowest grid points with |
---|
2202 | !-- indirect indexing, a main loop without indirect indexing, and a loop for the uppermost grid |
---|
2203 | !-- points with indirect indexing. This allows better vectorization for the main loop. |
---|
2204 | !-- First, compute the flux at model surface, which need has to be calculated explicitly for the |
---|
2205 | !-- tendency at the first w-level. For topography wall this is done implicitely by advc_flags_m. |
---|
2206 | flux_t(nzb) = 0.0_wp |
---|
2207 | diss_t(nzb) = 0.0_wp |
---|
2208 | w_comp(nzb) = 0.0_wp |
---|
2209 | |
---|
2210 | DO k = nzb+1, nzb+1 |
---|
2211 | ! |
---|
2212 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
2213 | ibit8 = REAL( IBITS(advc_flags_m(k,j,i),8,1), KIND = wp ) |
---|
2214 | ibit7 = REAL( IBITS(advc_flags_m(k,j,i),7,1), KIND = wp ) |
---|
2215 | ibit6 = REAL( IBITS(advc_flags_m(k,j,i),6,1), KIND = wp ) |
---|
2216 | |
---|
2217 | k_ppp = k + 3 * ibit8 |
---|
2218 | k_pp = k + 2 * ( 1 - ibit6 ) |
---|
2219 | k_mm = k - 2 * ibit8 |
---|
2220 | |
---|
2221 | w_comp(k) = w(k,j,i) + w(k,j,i-1) |
---|
2222 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
2223 | ( 37.0_wp * ibit8 * adv_mom_5 & |
---|
2224 | + 7.0_wp * ibit7 * adv_mom_3 & |
---|
2225 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2226 | - ( 8.0_wp * ibit8 * adv_mom_5 & |
---|
2227 | + ibit7 * adv_mom_3 ) * ( u(k_pp,j,i) + u(k-1,j,i) ) & |
---|
2228 | + ( ibit8 * adv_mom_5 ) * ( u(k_ppp,j,i) + u(k_mm,j,i) ) & |
---|
2229 | ) |
---|
2230 | |
---|
2231 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
2232 | ( 10.0_wp * ibit8 * adv_mom_5 & |
---|
2233 | + 3.0_wp * ibit7 * adv_mom_3 & |
---|
2234 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2235 | - ( 5.0_wp * ibit8 * adv_mom_5 & |
---|
2236 | + ibit7 * adv_mom_3 ) * ( u(k_pp,j,i) - u(k-1,j,i) ) & |
---|
2237 | + ( ibit8 * adv_mom_5 ) * ( u(k_ppp,j,i) - u(k_mm,j,i) ) & |
---|
2238 | ) |
---|
2239 | ENDDO |
---|
2240 | |
---|
2241 | DO k = nzb+2, nzt-2 |
---|
2242 | |
---|
2243 | ibit8 = REAL( IBITS(advc_flags_m(k,j,i),8,1), KIND = wp ) |
---|
2244 | ibit7 = REAL( IBITS(advc_flags_m(k,j,i),7,1), KIND = wp ) |
---|
2245 | ibit6 = REAL( IBITS(advc_flags_m(k,j,i),6,1), KIND = wp ) |
---|
2246 | |
---|
2247 | w_comp(k) = w(k,j,i) + w(k,j,i-1) |
---|
2248 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
2249 | ( 37.0_wp * ibit8 * adv_mom_5 & |
---|
2250 | + 7.0_wp * ibit7 * adv_mom_3 & |
---|
2251 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2252 | - ( 8.0_wp * ibit8 * adv_mom_5 & |
---|
2253 | + ibit7 * adv_mom_3 ) * ( u(k+2,j,i) + u(k-1,j,i) ) & |
---|
2254 | + ( ibit8 * adv_mom_5 ) * ( u(k+3,j,i) + u(k-2,j,i) ) & |
---|
2255 | ) |
---|
2256 | |
---|
2257 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
2258 | ( 10.0_wp * ibit8 * adv_mom_5 & |
---|
2259 | + 3.0_wp * ibit7 * adv_mom_3 & |
---|
2260 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2261 | - ( 5.0_wp * ibit8 * adv_mom_5 & |
---|
2262 | + ibit7 * adv_mom_3 ) * ( u(k+2,j,i) - u(k-1,j,i) ) & |
---|
2263 | + ( ibit8 * adv_mom_5 ) * ( u(k+3,j,i) - u(k-2,j,i) ) & |
---|
2264 | ) |
---|
2265 | ENDDO |
---|
2266 | |
---|
2267 | DO k = nzt-1, nzt-symmetry_flag |
---|
2268 | ! |
---|
2269 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
2270 | ibit8 = REAL( IBITS(advc_flags_m(k,j,i),8,1), KIND = wp ) |
---|
2271 | ibit7 = REAL( IBITS(advc_flags_m(k,j,i),7,1), KIND = wp ) |
---|
2272 | ibit6 = REAL( IBITS(advc_flags_m(k,j,i),6,1), KIND = wp ) |
---|
2273 | |
---|
2274 | k_ppp = k + 3 * ibit8 |
---|
2275 | k_pp = k + 2 * ( 1 - ibit6 ) |
---|
2276 | k_mm = k - 2 * ibit8 |
---|
2277 | |
---|
2278 | w_comp(k) = w(k,j,i) + w(k,j,i-1) |
---|
2279 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
2280 | ( 37.0_wp * ibit8 * adv_mom_5 & |
---|
2281 | + 7.0_wp * ibit7 * adv_mom_3 & |
---|
2282 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2283 | - ( 8.0_wp * ibit8 * adv_mom_5 & |
---|
2284 | + ibit7 * adv_mom_3 ) * ( u(k_pp,j,i) + u(k-1,j,i) ) & |
---|
2285 | + ( ibit8 * adv_mom_5 ) * ( u(k_ppp,j,i) + u(k_mm,j,i) ) & |
---|
2286 | ) |
---|
2287 | |
---|
2288 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
2289 | ( 10.0_wp * ibit8 * adv_mom_5 & |
---|
2290 | + 3.0_wp * ibit7 * adv_mom_3 & |
---|
2291 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2292 | - ( 5.0_wp * ibit8 * adv_mom_5 & |
---|
2293 | + ibit7 * adv_mom_3 ) * ( u(k_pp,j,i) - u(k-1,j,i) ) & |
---|
2294 | + ( ibit8 * adv_mom_5 ) * ( u(k_ppp,j,i) - u(k_mm,j,i) ) & |
---|
2295 | ) |
---|
2296 | ENDDO |
---|
2297 | |
---|
2298 | ! |
---|
2299 | !-- Set resolved/turbulent flux at model top to zero (w-level). In case that a symmetric behavior |
---|
2300 | !-- between bottom and top shall be guaranteed (closed channel flow), the flux at nzt is also set to |
---|
2301 | !-- zero. |
---|
2302 | IF ( symmetry_flag == 1 ) THEN |
---|
2303 | flux_t(nzt) = 0.0_wp |
---|
2304 | diss_t(nzt) = 0.0_wp |
---|
2305 | w_comp(nzt) = 0.0_wp |
---|
2306 | ENDIF |
---|
2307 | flux_t(nzt+1) = 0.0_wp |
---|
2308 | diss_t(nzt+1) = 0.0_wp |
---|
2309 | w_comp(nzt+1) = 0.0_wp |
---|
2310 | |
---|
2311 | DO k = nzb+1, nzb_max_l |
---|
2312 | |
---|
2313 | flux_d = flux_t(k-1) |
---|
2314 | diss_d = diss_t(k-1) |
---|
2315 | |
---|
2316 | ibit2 = REAL( IBITS(advc_flags_m(k,j,i),2,1), KIND = wp ) |
---|
2317 | ibit1 = REAL( IBITS(advc_flags_m(k,j,i),1,1), KIND = wp ) |
---|
2318 | ibit0 = REAL( IBITS(advc_flags_m(k,j,i),0,1), KIND = wp ) |
---|
2319 | |
---|
2320 | ibit5 = REAL( IBITS(advc_flags_m(k,j,i),5,1), KIND = wp ) |
---|
2321 | ibit4 = REAL( IBITS(advc_flags_m(k,j,i),4,1), KIND = wp ) |
---|
2322 | ibit3 = REAL( IBITS(advc_flags_m(k,j,i),3,1), KIND = wp ) |
---|
2323 | |
---|
2324 | ibit8 = REAL( IBITS(advc_flags_m(k,j,i),8,1), KIND = wp ) |
---|
2325 | ibit7 = REAL( IBITS(advc_flags_m(k,j,i),7,1), KIND = wp ) |
---|
2326 | ibit6 = REAL( IBITS(advc_flags_m(k,j,i),6,1), KIND = wp ) |
---|
2327 | ! |
---|
2328 | !-- Calculate the divergence of the velocity field. A respective correction is needed to overcome |
---|
2329 | !-- numerical instabilities introduced by an insufficient reduction of divergences near |
---|
2330 | !-- topography. |
---|
2331 | div = ( ( u_comp(k) * ( ibit0 + ibit1 + ibit2 ) & |
---|
2332 | - ( u(k,j,i) + u(k,j,i-1) ) & |
---|
2333 | * ( & |
---|
2334 | REAL( IBITS(advc_flags_m(k,j,i-1),0,1), KIND = wp ) & |
---|
2335 | + REAL( IBITS(advc_flags_m(k,j,i-1),1,1), KIND = wp ) & |
---|
2336 | + REAL( IBITS(advc_flags_m(k,j,i-1),2,1), KIND = wp ) & |
---|
2337 | ) & |
---|
2338 | ) * ddx & |
---|
2339 | + ( ( v_comp(k) + gv ) * ( ibit3 + ibit4 + ibit5 ) & |
---|
2340 | - ( v(k,j,i) + v(k,j,i-1 ) ) & |
---|
2341 | * ( & |
---|
2342 | REAL( IBITS(advc_flags_m(k,j-1,i),3,1), KIND = wp ) & |
---|
2343 | + REAL( IBITS(advc_flags_m(k,j-1,i),4,1), KIND = wp ) & |
---|
2344 | + REAL( IBITS(advc_flags_m(k,j-1,i),5,1), KIND = wp ) & |
---|
2345 | ) & |
---|
2346 | ) * ddy & |
---|
2347 | + ( w_comp(k) * rho_air_zw(k) * ( ibit6 + ibit7 + ibit8 ) & |
---|
2348 | - w_comp(k-1) * rho_air_zw(k-1) & |
---|
2349 | * ( & |
---|
2350 | REAL( IBITS(advc_flags_m(k-1,j,i),6,1), KIND = wp ) & |
---|
2351 | + REAL( IBITS(advc_flags_m(k-1,j,i),7,1), KIND = wp ) & |
---|
2352 | + REAL( IBITS(advc_flags_m(k-1,j,i),8,1), KIND = wp ) & |
---|
2353 | ) & |
---|
2354 | ) * drho_air(k) * ddzw(k) & |
---|
2355 | ) * 0.5_wp |
---|
2356 | |
---|
2357 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
2358 | ( flux_r(k) + diss_r(k) & |
---|
2359 | - flux_l_u(k,j,tn) - diss_l_u(k,j,tn) ) * ddx & |
---|
2360 | + ( flux_n(k) + diss_n(k) & |
---|
2361 | - flux_s_u(k,tn) - diss_s_u(k,tn) ) * ddy & |
---|
2362 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
2363 | - ( flux_d + diss_d ) & |
---|
2364 | ) * drho_air(k) * ddzw(k) & |
---|
2365 | ) + div * u(k,j,i) |
---|
2366 | |
---|
2367 | flux_l_u(k,j,tn) = flux_r(k) |
---|
2368 | diss_l_u(k,j,tn) = diss_r(k) |
---|
2369 | flux_s_u(k,tn) = flux_n(k) |
---|
2370 | diss_s_u(k,tn) = diss_n(k) |
---|
2371 | ! |
---|
2372 | !-- Statistical Evaluation of u'u'. The factor has to be applied for right evaluation when |
---|
2373 | !-- gallilei_trans = .T. . |
---|
2374 | sums_us2_ws_l(k,tn) = sums_us2_ws_l(k,tn) + & |
---|
2375 | ( flux_r(k) & |
---|
2376 | * ( u_comp(k) - 2.0_wp * hom(k,1,1,0) ) & |
---|
2377 | / ( u_comp(k) - gu + SIGN( 1.0E-20_wp, u_comp(k) - gu ) ) & |
---|
2378 | + diss_r(k) & |
---|
2379 | * ABS( u_comp(k) - 2.0_wp * hom(k,1,1,0) ) & |
---|
2380 | / ( ABS( u_comp(k) - gu ) + 1.0E-20_wp ) & |
---|
2381 | ) * weight_substep(intermediate_timestep_count) |
---|
2382 | ! |
---|
2383 | !-- Statistical Evaluation of w'u'. |
---|
2384 | sums_wsus_ws_l(k,tn) = sums_wsus_ws_l(k,tn) + & |
---|
2385 | ( flux_t(k) & |
---|
2386 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
2387 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
2388 | + diss_t(k) & |
---|
2389 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
2390 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
2391 | ) * weight_substep(intermediate_timestep_count) |
---|
2392 | ENDDO |
---|
2393 | |
---|
2394 | DO k = nzb_max_l+1, nzt |
---|
2395 | |
---|
2396 | flux_d = flux_t(k-1) |
---|
2397 | diss_d = diss_t(k-1) |
---|
2398 | ! |
---|
2399 | !-- Calculate the divergence of the velocity field. A respective correction is needed to overcome |
---|
2400 | !-- numerical instabilities introduced by an insufficient reduction of divergences near |
---|
2401 | !-- topography. |
---|
2402 | div = ( ( u_comp(k) - ( u(k,j,i) + u(k,j,i-1) ) ) * ddx & |
---|
2403 | + ( v_comp(k) + gv - ( v(k,j,i) + v(k,j,i-1) ) ) * ddy & |
---|
2404 | + ( w_comp(k) * rho_air_zw(k) & |
---|
2405 | - w_comp(k-1) * rho_air_zw(k-1) & |
---|
2406 | ) * drho_air(k) * ddzw(k) & |
---|
2407 | ) * 0.5_wp |
---|
2408 | |
---|
2409 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
2410 | ( flux_r(k) + diss_r(k) & |
---|
2411 | - flux_l_u(k,j,tn) - diss_l_u(k,j,tn) ) * ddx & |
---|
2412 | + ( flux_n(k) + diss_n(k) & |
---|
2413 | - flux_s_u(k,tn) - diss_s_u(k,tn) ) * ddy & |
---|
2414 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
2415 | - ( flux_d + diss_d ) & |
---|
2416 | ) * drho_air(k) * ddzw(k) & |
---|
2417 | ) + div * u(k,j,i) |
---|
2418 | |
---|
2419 | flux_l_u(k,j,tn) = flux_r(k) |
---|
2420 | diss_l_u(k,j,tn) = diss_r(k) |
---|
2421 | flux_s_u(k,tn) = flux_n(k) |
---|
2422 | diss_s_u(k,tn) = diss_n(k) |
---|
2423 | ! |
---|
2424 | !-- Statistical Evaluation of u'u'. The factor has to be applied for right evaluation when |
---|
2425 | !-- gallilei_trans = .T. . |
---|
2426 | sums_us2_ws_l(k,tn) = sums_us2_ws_l(k,tn) + & |
---|
2427 | ( flux_r(k) & |
---|
2428 | * ( u_comp(k) - 2.0_wp * hom(k,1,1,0) ) & |
---|
2429 | / ( u_comp(k) - gu + SIGN( 1.0E-20_wp, u_comp(k) - gu ) ) & |
---|
2430 | + diss_r(k) & |
---|
2431 | * ABS( u_comp(k) - 2.0_wp * hom(k,1,1,0) ) & |
---|
2432 | / ( ABS( u_comp(k) - gu ) + 1.0E-20_wp ) & |
---|
2433 | ) * weight_substep(intermediate_timestep_count) |
---|
2434 | ! |
---|
2435 | !-- Statistical Evaluation of w'u'. |
---|
2436 | sums_wsus_ws_l(k,tn) = sums_wsus_ws_l(k,tn) + & |
---|
2437 | ( flux_t(k) & |
---|
2438 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
2439 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
2440 | + diss_t(k) & |
---|
2441 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
2442 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
2443 | ) * weight_substep(intermediate_timestep_count) |
---|
2444 | ENDDO |
---|
2445 | |
---|
2446 | |
---|
2447 | |
---|
2448 | END SUBROUTINE advec_u_ws_ij |
---|
2449 | |
---|
2450 | |
---|
2451 | |
---|
2452 | !--------------------------------------------------------------------------------------------------! |
---|
2453 | ! Description: |
---|
2454 | ! ------------ |
---|
2455 | !> Advection of v-component - Call for grid point i,j |
---|
2456 | !--------------------------------------------------------------------------------------------------! |
---|
2457 | SUBROUTINE advec_v_ws_ij( i, j, i_omp, tn ) |
---|
2458 | |
---|
2459 | |
---|
2460 | INTEGER(iwp) :: i !< grid index along x-direction |
---|
2461 | INTEGER(iwp) :: i_omp !< leftmost index on subdomain, or in case of OpenMP, on thread |
---|
2462 | INTEGER(iwp) :: j !< grid index along y-direction |
---|
2463 | INTEGER(iwp) :: k !< grid index along z-direction |
---|
2464 | INTEGER(iwp) :: k_mm !< k-2 index in disretization, can be modified to avoid segmentation faults |
---|
2465 | INTEGER(iwp) :: k_pp !< k+2 index in disretization, can be modified to avoid segmentation faults |
---|
2466 | INTEGER(iwp) :: k_ppp !< k+3 index in disretization, can be modified to avoid segmentation faults |
---|
2467 | INTEGER(iwp) :: nzb_max_l !< index indicating upper bound for order degradation of horizontal advection terms |
---|
2468 | INTEGER(iwp) :: tn !< number of OpenMP thread |
---|
2469 | |
---|
2470 | REAL(wp) :: diss_d !< artificial dissipation term at grid box bottom |
---|
2471 | REAL(wp) :: div !< divergence on v-grid |
---|
2472 | REAL(wp) :: flux_d !< 6th-order flux at grid box bottom |
---|
2473 | REAL(wp) :: gu !< Galilei-transformation velocity along x |
---|
2474 | REAL(wp) :: gv !< Galilei-transformation velocity along y |
---|
2475 | REAL(wp) :: ibit9 !< flag indicating 1st-order scheme along x-direction |
---|
2476 | REAL(wp) :: ibit10 !< flag indicating 3rd-order scheme along x-direction |
---|
2477 | REAL(wp) :: ibit11 !< flag indicating 5th-order scheme along x-direction |
---|
2478 | REAL(wp) :: ibit12 !< flag indicating 1st-order scheme along y-direction |
---|
2479 | REAL(wp) :: ibit13 !< flag indicating 3rd-order scheme along y-direction |
---|
2480 | REAL(wp) :: ibit14 !< flag indicating 3rd-order scheme along y-direction |
---|
2481 | REAL(wp) :: ibit15 !< flag indicating 1st-order scheme along z-direction |
---|
2482 | REAL(wp) :: ibit16 !< flag indicating 3rd-order scheme along z-direction |
---|
2483 | REAL(wp) :: ibit17 !< flag indicating 3rd-order scheme along z-direction |
---|
2484 | REAL(wp) :: v_comp_l !< advection velocity along y on leftmost grid point on subdomain |
---|
2485 | |
---|
2486 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_n !< discretized artificial dissipation at northward-side of the grid box |
---|
2487 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_r !< discretized artificial dissipation at rightward-side of the grid box |
---|
2488 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_t !< discretized artificial dissipation at top of the grid box |
---|
2489 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_n !< discretized 6th-order flux at northward-side of the grid box |
---|
2490 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_r !< discretized 6th-order flux at rightward-side of the grid box |
---|
2491 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_t !< discretized 6th-order flux at top of the grid box |
---|
2492 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_comp !< advection velocity along x |
---|
2493 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_comp !< advection velocity along y |
---|
2494 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_comp !< advection velocity along z |
---|
2495 | ! |
---|
2496 | !-- Used local modified copy of nzb_max (used to degrade order of discretization) at non-cyclic |
---|
2497 | !-- boundaries. Modify only at relevant points instead of the entire subdomain. This should lead to |
---|
2498 | !-- better load balance between boundary and non-boundary PEs. |
---|
2499 | IF( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i <= nxl + 2 .OR. & |
---|
2500 | ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i >= nxr - 2 .OR. & |
---|
2501 | ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j <= nys + 2 .OR. & |
---|
2502 | ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j >= nyn - 2 ) THEN |
---|
2503 | nzb_max_l = nzt |
---|
2504 | ELSE |
---|
2505 | nzb_max_l = nzb_max |
---|
2506 | END IF |
---|
2507 | |
---|
2508 | gu = 2.0_wp * u_gtrans |
---|
2509 | gv = 2.0_wp * v_gtrans |
---|
2510 | |
---|
2511 | ! |
---|
2512 | !-- Compute leftside fluxes for the respective boundary. |
---|
2513 | IF ( i == i_omp ) THEN |
---|
2514 | |
---|
2515 | DO k = nzb+1, nzb_max_l |
---|
2516 | |
---|
2517 | ibit11 = REAL( IBITS(advc_flags_m(k,j,i-1),11,1), KIND = wp ) |
---|
2518 | ibit10 = REAL( IBITS(advc_flags_m(k,j,i-1),10,1), KIND = wp ) |
---|
2519 | ibit9 = REAL( IBITS(advc_flags_m(k,j,i-1),9,1), KIND = wp ) |
---|
2520 | |
---|
2521 | u_comp(k) = u(k,j-1,i) + u(k,j,i) - gu |
---|
2522 | flux_l_v(k,j,tn) = u_comp(k) * ( & |
---|
2523 | ( 37.0_wp * ibit11 * adv_mom_5 & |
---|
2524 | + 7.0_wp * ibit10 * adv_mom_3 & |
---|
2525 | + ibit9 * adv_mom_1 ) * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
2526 | - ( 8.0_wp * ibit11 * adv_mom_5 & |
---|
2527 | + ibit10 * adv_mom_3 ) * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
2528 | + ( ibit11 * adv_mom_5 ) * ( v(k,j,i+2) + v(k,j,i-3) ) & |
---|
2529 | ) |
---|
2530 | |
---|
2531 | diss_l_v(k,j,tn) = - ABS( u_comp(k) ) * ( & |
---|
2532 | ( 10.0_wp * ibit11 * adv_mom_5 & |
---|
2533 | + 3.0_wp * ibit10 * adv_mom_3 & |
---|
2534 | + ibit9 * adv_mom_1 ) * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
2535 | - ( 5.0_wp * ibit11 * adv_mom_5 & |
---|
2536 | + ibit10 * adv_mom_3 ) * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
2537 | + ( ibit11 * adv_mom_5 ) * ( v(k,j,i+2) - v(k,j,i-3) ) & |
---|
2538 | ) |
---|
2539 | |
---|
2540 | ENDDO |
---|
2541 | |
---|
2542 | DO k = nzb_max_l+1, nzt |
---|
2543 | |
---|
2544 | u_comp(k) = u(k,j-1,i) + u(k,j,i) - gu |
---|
2545 | flux_l_v(k,j,tn) = u_comp(k) * ( & |
---|
2546 | 37.0_wp * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
2547 | - 8.0_wp * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
2548 | + ( v(k,j,i+2) + v(k,j,i-3) ) ) * adv_mom_5 |
---|
2549 | diss_l_v(k,j,tn) = - ABS( u_comp(k) ) * ( & |
---|
2550 | 10.0_wp * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
2551 | - 5.0_wp * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
2552 | + ( v(k,j,i+2) - v(k,j,i-3) ) ) * adv_mom_5 |
---|
2553 | |
---|
2554 | ENDDO |
---|
2555 | |
---|
2556 | ENDIF |
---|
2557 | ! |
---|
2558 | !-- Compute southside fluxes for the respective boundary. |
---|
2559 | IF ( j == nysv ) THEN |
---|
2560 | |
---|
2561 | DO k = nzb+1, nzb_max_l |
---|
2562 | |
---|
2563 | ibit14 = REAL( IBITS(advc_flags_m(k,j-1,i),14,1), KIND = wp ) |
---|
2564 | ibit13 = REAL( IBITS(advc_flags_m(k,j-1,i),13,1), KIND = wp ) |
---|
2565 | ibit12 = REAL( IBITS(advc_flags_m(k,j-1,i),12,1), KIND = wp ) |
---|
2566 | |
---|
2567 | v_comp_l = v(k,j,i) + v(k,j-1,i) - gv |
---|
2568 | flux_s_v(k,tn) = v_comp_l * ( & |
---|
2569 | ( 37.0_wp * ibit14 * adv_mom_5 & |
---|
2570 | + 7.0_wp * ibit13 * adv_mom_3 & |
---|
2571 | + ibit12 * adv_mom_1 ) * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
2572 | - ( 8.0_wp * ibit14 * adv_mom_5 & |
---|
2573 | + ibit13 * adv_mom_3 ) * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
2574 | + ( ibit14 * adv_mom_5 ) * ( v(k,j+2,i) + v(k,j-3,i) ) & |
---|
2575 | ) |
---|
2576 | |
---|
2577 | diss_s_v(k,tn) = - ABS( v_comp_l ) * ( & |
---|
2578 | ( 10.0_wp * ibit14 * adv_mom_5 & |
---|
2579 | + 3.0_wp * ibit13 * adv_mom_3 & |
---|
2580 | + ibit12 * adv_mom_1 ) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
2581 | - ( 5.0_wp * ibit14 * adv_mom_5 & |
---|
2582 | + ibit13 * adv_mom_3 ) * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
2583 | + ( ibit14 * adv_mom_5 ) * ( v(k,j+2,i) - v(k,j-3,i) ) & |
---|
2584 | ) |
---|
2585 | |
---|
2586 | ENDDO |
---|
2587 | |
---|
2588 | DO k = nzb_max_l+1, nzt |
---|
2589 | |
---|
2590 | v_comp_l = v(k,j,i) + v(k,j-1,i) - gv |
---|
2591 | flux_s_v(k,tn) = v_comp_l * ( & |
---|
2592 | 37.0_wp * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
2593 | - 8.0_wp * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
2594 | + ( v(k,j+2,i) + v(k,j-3,i) ) ) * adv_mom_5 |
---|
2595 | diss_s_v(k,tn) = - ABS( v_comp_l ) * ( & |
---|
2596 | 10.0_wp * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
2597 | - 5.0_wp * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
2598 | + ( v(k,j+2,i) - v(k,j-3,i) ) ) * adv_mom_5 |
---|
2599 | |
---|
2600 | ENDDO |
---|
2601 | |
---|
2602 | ENDIF |
---|
2603 | ! |
---|
2604 | !-- Now compute the fluxes and tendency terms for the horizontal and |
---|
2605 | !-- verical parts. |
---|
2606 | DO k = nzb+1, nzb_max_l |
---|
2607 | |
---|
2608 | ibit11 = REAL( IBITS(advc_flags_m(k,j,i),11,1), KIND = wp ) |
---|
2609 | ibit10 = REAL( IBITS(advc_flags_m(k,j,i),10,1), KIND = wp ) |
---|
2610 | ibit9 = REAL( IBITS(advc_flags_m(k,j,i),9,1), KIND = wp ) |
---|
2611 | |
---|
2612 | u_comp(k) = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2613 | flux_r(k) = u_comp(k) * ( & |
---|
2614 | ( 37.0_wp * ibit11 * adv_mom_5 & |
---|
2615 | + 7.0_wp * ibit10 * adv_mom_3 & |
---|
2616 | + ibit9 * adv_mom_1 ) * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2617 | - ( 8.0_wp * ibit11 * adv_mom_5 & |
---|
2618 | + ibit10 * adv_mom_3 ) * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
2619 | + ( ibit11 * adv_mom_5 ) * ( v(k,j,i+3) + v(k,j,i-2) ) & |
---|
2620 | ) |
---|
2621 | |
---|
2622 | diss_r(k) = - ABS( u_comp(k) ) * ( & |
---|
2623 | ( 10.0_wp * ibit11 * adv_mom_5 & |
---|
2624 | + 3.0_wp * ibit10 * adv_mom_3 & |
---|
2625 | + ibit9 * adv_mom_1 ) * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2626 | - ( 5.0_wp * ibit11 * adv_mom_5 & |
---|
2627 | + ibit10 * adv_mom_3 ) * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
2628 | + ( ibit11 * adv_mom_5 ) * ( v(k,j,i+3) - v(k,j,i-2) ) & |
---|
2629 | ) |
---|
2630 | |
---|
2631 | ibit14 = REAL( IBITS(advc_flags_m(k,j,i),14,1), KIND = wp ) |
---|
2632 | ibit13 = REAL( IBITS(advc_flags_m(k,j,i),13,1), KIND = wp ) |
---|
2633 | ibit12 = REAL( IBITS(advc_flags_m(k,j,i),12,1), KIND = wp ) |
---|
2634 | |
---|
2635 | |
---|
2636 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2637 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
2638 | ( 37.0_wp * ibit14 * adv_mom_5 & |
---|
2639 | + 7.0_wp * ibit13 * adv_mom_3 & |
---|
2640 | + ibit12 * adv_mom_1 ) * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2641 | - ( 8.0_wp * ibit14 * adv_mom_5 & |
---|
2642 | + ibit13 * adv_mom_3 ) * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
2643 | + ( ibit14 * adv_mom_5 ) * ( v(k,j+3,i) + v(k,j-2,i) ) & |
---|
2644 | ) |
---|
2645 | |
---|
2646 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
2647 | ( 10.0_wp * ibit14 * adv_mom_5 & |
---|
2648 | + 3.0_wp * ibit13 * adv_mom_3 & |
---|
2649 | + ibit12 * adv_mom_1 ) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2650 | - ( 5.0_wp * ibit14 * adv_mom_5 & |
---|
2651 | + ibit13 * adv_mom_3 ) * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
2652 | + ( ibit14 * adv_mom_5 ) * ( v(k,j+3,i) - v(k,j-2,i) ) & |
---|
2653 | ) |
---|
2654 | ENDDO |
---|
2655 | |
---|
2656 | DO k = nzb_max_l+1, nzt |
---|
2657 | |
---|
2658 | u_comp(k) = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2659 | flux_r(k) = u_comp(k) * ( & |
---|
2660 | 37.0_wp * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2661 | - 8.0_wp * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
2662 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) * adv_mom_5 |
---|
2663 | |
---|
2664 | diss_r(k) = - ABS( u_comp(k) ) * ( & |
---|
2665 | 10.0_wp * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2666 | - 5.0_wp * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
2667 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
2668 | |
---|
2669 | |
---|
2670 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2671 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
2672 | 37.0_wp * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2673 | - 8.0_wp * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
2674 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
2675 | |
---|
2676 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
2677 | 10.0_wp * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2678 | - 5.0_wp * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
2679 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) * adv_mom_5 |
---|
2680 | ENDDO |
---|
2681 | ! |
---|
2682 | !-- Now, compute vertical fluxes. Split loop into a part treating the lowest grid points with |
---|
2683 | !-- indirect indexing, a main loop without indirect indexing, and a loop for the uppermost grid |
---|
2684 | !-- points with indirect indexing. This allows better vectorization for the main loop. |
---|
2685 | !-- First, compute the flux at model surface, which need has to be calculated explicitly for the |
---|
2686 | !-- tendency at the first w-level. For topography wall this is done implicitely by advc_flags_m. |
---|
2687 | flux_t(nzb) = 0.0_wp |
---|
2688 | diss_t(nzb) = 0.0_wp |
---|
2689 | w_comp(nzb) = 0.0_wp |
---|
2690 | |
---|
2691 | DO k = nzb+1, nzb+1 |
---|
2692 | ! |
---|
2693 | !-- k index has to be modified near bottom and top, else array |
---|
2694 | !-- subscripts will be exceeded. |
---|
2695 | ibit17 = REAL( IBITS(advc_flags_m(k,j,i),17,1), KIND = wp ) |
---|
2696 | ibit16 = REAL( IBITS(advc_flags_m(k,j,i),16,1), KIND = wp ) |
---|
2697 | ibit15 = REAL( IBITS(advc_flags_m(k,j,i),15,1), KIND = wp ) |
---|
2698 | |
---|
2699 | k_ppp = k + 3 * ibit17 |
---|
2700 | k_pp = k + 2 * ( 1 - ibit15 ) |
---|
2701 | k_mm = k - 2 * ibit17 |
---|
2702 | |
---|
2703 | w_comp(k) = w(k,j-1,i) + w(k,j,i) |
---|
2704 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
2705 | ( 37.0_wp * ibit17 * adv_mom_5 & |
---|
2706 | + 7.0_wp * ibit16 * adv_mom_3 & |
---|
2707 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
2708 | - ( 8.0_wp * ibit17 * adv_mom_5 & |
---|
2709 | + ibit16 * adv_mom_3 ) * ( v(k_pp,j,i) + v(k-1,j,i) ) & |
---|
2710 | + ( ibit17 * adv_mom_5 ) * ( v(k_ppp,j,i) + v(k_mm,j,i) ) & |
---|
2711 | ) |
---|
2712 | |
---|
2713 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
2714 | ( 10.0_wp * ibit17 * adv_mom_5 & |
---|
2715 | + 3.0_wp * ibit16 * adv_mom_3 & |
---|
2716 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
2717 | - ( 5.0_wp * ibit17 * adv_mom_5 & |
---|
2718 | + ibit16 * adv_mom_3 ) * ( v(k_pp,j,i) - v(k-1,j,i) ) & |
---|
2719 | + ( ibit17 * adv_mom_5 ) * ( v(k_ppp,j,i) - v(k_mm,j,i) ) & |
---|
2720 | ) |
---|
2721 | ENDDO |
---|
2722 | |
---|
2723 | DO k = nzb+2, nzt-2 |
---|
2724 | |
---|
2725 | ibit17 = REAL( IBITS(advc_flags_m(k,j,i),17,1), KIND = wp ) |
---|
2726 | ibit16 = REAL( IBITS(advc_flags_m(k,j,i),16,1), KIND = wp ) |
---|
2727 | ibit15 = REAL( IBITS(advc_flags_m(k,j,i),15,1), KIND = wp ) |
---|
2728 | |
---|
2729 | w_comp(k) = w(k,j-1,i) + w(k,j,i) |
---|
2730 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
2731 | ( 37.0_wp * ibit17 * adv_mom_5 & |
---|
2732 | + 7.0_wp * ibit16 * adv_mom_3 & |
---|
2733 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
2734 | - ( 8.0_wp * ibit17 * adv_mom_5 & |
---|
2735 | + ibit16 * adv_mom_3 ) * ( v(k+2,j,i) + v(k-1,j,i) ) & |
---|
2736 | + ( ibit17 * adv_mom_5 ) * ( v(k+3,j,i) + v(k-2,j,i) ) & |
---|
2737 | ) |
---|
2738 | |
---|
2739 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
2740 | ( 10.0_wp * ibit17 * adv_mom_5 & |
---|
2741 | + 3.0_wp * ibit16 * adv_mom_3 & |
---|
2742 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
2743 | - ( 5.0_wp * ibit17 * adv_mom_5 & |
---|
2744 | + ibit16 * adv_mom_3 ) * ( v(k+2,j,i) - v(k-1,j,i) ) & |
---|
2745 | + ( ibit17 * adv_mom_5 ) * ( v(k+3,j,i) - v(k-2,j,i) ) & |
---|
2746 | ) |
---|
2747 | ENDDO |
---|
2748 | |
---|
2749 | DO k = nzt-1, nzt-symmetry_flag |
---|
2750 | ! |
---|
2751 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
2752 | ibit17 = REAL( IBITS(advc_flags_m(k,j,i),17,1), KIND = wp ) |
---|
2753 | ibit16 = REAL( IBITS(advc_flags_m(k,j,i),16,1), KIND = wp ) |
---|
2754 | ibit15 = REAL( IBITS(advc_flags_m(k,j,i),15,1), KIND = wp ) |
---|
2755 | |
---|
2756 | k_ppp = k + 3 * ibit17 |
---|
2757 | k_pp = k + 2 * ( 1 - ibit15 ) |
---|
2758 | k_mm = k - 2 * ibit17 |
---|
2759 | |
---|
2760 | w_comp(k) = w(k,j-1,i) + w(k,j,i) |
---|
2761 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
2762 | ( 37.0_wp * ibit17 * adv_mom_5 & |
---|
2763 | + 7.0_wp * ibit16 * adv_mom_3 & |
---|
2764 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
2765 | - ( 8.0_wp * ibit17 * adv_mom_5 & |
---|
2766 | + ibit16 * adv_mom_3 ) * ( v(k_pp,j,i) + v(k-1,j,i) ) & |
---|
2767 | + ( ibit17 * adv_mom_5 ) * ( v(k_ppp,j,i) + v(k_mm,j,i) ) & |
---|
2768 | ) |
---|
2769 | |
---|
2770 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
2771 | ( 10.0_wp * ibit17 * adv_mom_5 & |
---|
2772 | + 3.0_wp * ibit16 * adv_mom_3 & |
---|
2773 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
2774 | - ( 5.0_wp * ibit17 * adv_mom_5 & |
---|
2775 | + ibit16 * adv_mom_3 ) * ( v(k_pp,j,i) - v(k-1,j,i) ) & |
---|
2776 | + ( ibit17 * adv_mom_5 ) * ( v(k_ppp,j,i) - v(k_mm,j,i) ) & |
---|
2777 | ) |
---|
2778 | ENDDO |
---|
2779 | |
---|
2780 | ! |
---|
2781 | !-- Set resolved/turbulent flux at model top to zero (w-level). In case that a symmetric behavior |
---|
2782 | !-- between bottom and top shall be guaranteed (closed channel flow), the flux at nzt is also set to |
---|
2783 | !-- zero. |
---|
2784 | IF ( symmetry_flag == 1 ) THEN |
---|
2785 | flux_t(nzt) = 0.0_wp |
---|
2786 | diss_t(nzt) = 0.0_wp |
---|
2787 | w_comp(nzt) = 0.0_wp |
---|
2788 | ENDIF |
---|
2789 | flux_t(nzt+1) = 0.0_wp |
---|
2790 | diss_t(nzt+1) = 0.0_wp |
---|
2791 | w_comp(nzt+1) = 0.0_wp |
---|
2792 | |
---|
2793 | DO k = nzb+1, nzb_max_l |
---|
2794 | |
---|
2795 | flux_d = flux_t(k-1) |
---|
2796 | diss_d = diss_t(k-1) |
---|
2797 | |
---|
2798 | ibit11 = REAL( IBITS(advc_flags_m(k,j,i),11,1), KIND = wp ) |
---|
2799 | ibit10 = REAL( IBITS(advc_flags_m(k,j,i),10,1), KIND = wp ) |
---|
2800 | ibit9 = REAL( IBITS(advc_flags_m(k,j,i),9,1), KIND = wp ) |
---|
2801 | |
---|
2802 | ibit14 = REAL( IBITS(advc_flags_m(k,j,i),14,1), KIND = wp ) |
---|
2803 | ibit13 = REAL( IBITS(advc_flags_m(k,j,i),13,1), KIND = wp ) |
---|
2804 | ibit12 = REAL( IBITS(advc_flags_m(k,j,i),12,1), KIND = wp ) |
---|
2805 | |
---|
2806 | ibit17 = REAL( IBITS(advc_flags_m(k,j,i),17,1), KIND = wp ) |
---|
2807 | ibit16 = REAL( IBITS(advc_flags_m(k,j,i),16,1), KIND = wp ) |
---|
2808 | ibit15 = REAL( IBITS(advc_flags_m(k,j,i),15,1), KIND = wp ) |
---|
2809 | ! |
---|
2810 | !-- Calculate the divergence of the velocity field. A respective correction is needed to overcome |
---|
2811 | !-- numerical instabilities introduced by an insufficient reduction of divergences near |
---|
2812 | !-- topography. |
---|
2813 | div = ( ( ( u_comp(k) + gu ) & |
---|
2814 | * ( ibit9 + ibit10 + ibit11 ) & |
---|
2815 | - ( u(k,j-1,i) + u(k,j,i) ) & |
---|
2816 | * ( & |
---|
2817 | REAL( IBITS(advc_flags_m(k,j,i-1),9,1), KIND = wp ) & |
---|
2818 | + REAL( IBITS(advc_flags_m(k,j,i-1),10,1), KIND = wp ) & |
---|
2819 | + REAL( IBITS(advc_flags_m(k,j,i-1),11,1), KIND = wp ) & |
---|
2820 | ) & |
---|
2821 | ) * ddx & |
---|
2822 | + ( v_comp(k) & |
---|
2823 | * ( ibit12 + ibit13 + ibit14 ) & |
---|
2824 | - ( v(k,j,i) + v(k,j-1,i) ) & |
---|
2825 | * ( & |
---|
2826 | REAL( IBITS(advc_flags_m(k,j-1,i),12,1), KIND = wp ) & |
---|
2827 | + REAL( IBITS(advc_flags_m(k,j-1,i),13,1), KIND = wp ) & |
---|
2828 | + REAL( IBITS(advc_flags_m(k,j-1,i),14,1), KIND = wp ) & |
---|
2829 | ) & |
---|
2830 | ) * ddy & |
---|
2831 | + ( w_comp(k) * rho_air_zw(k) * ( ibit15 + ibit16 + ibit17 ) & |
---|
2832 | - w_comp(k-1) * rho_air_zw(k-1) & |
---|
2833 | * ( & |
---|
2834 | REAL( IBITS(advc_flags_m(k-1,j,i),15,1), KIND = wp ) & |
---|
2835 | + REAL( IBITS(advc_flags_m(k-1,j,i),16,1), KIND = wp ) & |
---|
2836 | + REAL( IBITS(advc_flags_m(k-1,j,i),17,1), KIND = wp ) & |
---|
2837 | ) & |
---|
2838 | ) * drho_air(k) * ddzw(k) & |
---|
2839 | ) * 0.5_wp |
---|
2840 | |
---|
2841 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
2842 | ( flux_r(k) + diss_r(k) & |
---|
2843 | - flux_l_v(k,j,tn) - diss_l_v(k,j,tn) ) * ddx & |
---|
2844 | + ( flux_n(k) + diss_n(k) & |
---|
2845 | - flux_s_v(k,tn) - diss_s_v(k,tn) ) * ddy & |
---|
2846 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
2847 | - ( flux_d + diss_d ) & |
---|
2848 | ) * drho_air(k) * ddzw(k) & |
---|
2849 | ) + v(k,j,i) * div |
---|
2850 | |
---|
2851 | flux_l_v(k,j,tn) = flux_r(k) |
---|
2852 | diss_l_v(k,j,tn) = diss_r(k) |
---|
2853 | flux_s_v(k,tn) = flux_n(k) |
---|
2854 | diss_s_v(k,tn) = diss_n(k) |
---|
2855 | ! |
---|
2856 | !-- Statistical Evaluation of v'v'. The factor has to be applied for right evaluation when |
---|
2857 | !-- gallilei_trans = .T. . |
---|
2858 | sums_vs2_ws_l(k,tn) = sums_vs2_ws_l(k,tn) + & |
---|
2859 | ( flux_n(k) & |
---|
2860 | * ( v_comp(k) - 2.0_wp * hom(k,1,2,0) ) & |
---|
2861 | / ( v_comp(k) - gv + SIGN( 1.0E-20_wp, v_comp(k) - gv ) ) & |
---|
2862 | + diss_n(k) & |
---|
2863 | * ABS( v_comp(k) - 2.0_wp * hom(k,1,2,0) ) & |
---|
2864 | / ( ABS( v_comp(k) - gv ) + 1.0E-20_wp ) & |
---|
2865 | ) * weight_substep(intermediate_timestep_count) |
---|
2866 | ! |
---|
2867 | !-- Statistical Evaluation of w'u'. |
---|
2868 | sums_wsvs_ws_l(k,tn) = sums_wsvs_ws_l(k,tn) + & |
---|
2869 | ( flux_t(k) & |
---|
2870 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
2871 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
2872 | + diss_t(k) & |
---|
2873 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
2874 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
2875 | ) * weight_substep(intermediate_timestep_count) |
---|
2876 | |
---|
2877 | ENDDO |
---|
2878 | |
---|
2879 | DO k = nzb_max_l+1, nzt |
---|
2880 | |
---|
2881 | flux_d = flux_t(k-1) |
---|
2882 | diss_d = diss_t(k-1) |
---|
2883 | ! |
---|
2884 | !-- Calculate the divergence of the velocity field. A respective correction is needed to overcome |
---|
2885 | !-- numerical instabilities introduced by an insufficient reduction of divergences near |
---|
2886 | !-- topography. |
---|
2887 | div = ( ( u_comp(k) + gu - ( u(k,j-1,i) + u(k,j,i) ) ) * ddx & |
---|
2888 | + ( v_comp(k) - ( v(k,j,i) + v(k,j-1,i) ) ) * ddy & |
---|
2889 | + ( w_comp(k) * rho_air_zw(k) & |
---|
2890 | - w_comp(k-1) * rho_air_zw(k-1) & |
---|
2891 | ) * drho_air(k) * ddzw(k) & |
---|
2892 | ) * 0.5_wp |
---|
2893 | |
---|
2894 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
2895 | ( flux_r(k) + diss_r(k) & |
---|
2896 | - flux_l_v(k,j,tn) - diss_l_v(k,j,tn) ) * ddx & |
---|
2897 | + ( flux_n(k) + diss_n(k) & |
---|
2898 | - flux_s_v(k,tn) - diss_s_v(k,tn) ) * ddy & |
---|
2899 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
2900 | - ( flux_d + diss_d ) & |
---|
2901 | ) * drho_air(k) * ddzw(k) & |
---|
2902 | ) + v(k,j,i) * div |
---|
2903 | |
---|
2904 | flux_l_v(k,j,tn) = flux_r(k) |
---|
2905 | diss_l_v(k,j,tn) = diss_r(k) |
---|
2906 | flux_s_v(k,tn) = flux_n(k) |
---|
2907 | diss_s_v(k,tn) = diss_n(k) |
---|
2908 | ! |
---|
2909 | !-- Statistical Evaluation of v'v'. The factor has to be applied for right evaluation when |
---|
2910 | !-- gallilei_trans = .T. . |
---|
2911 | sums_vs2_ws_l(k,tn) = sums_vs2_ws_l(k,tn) + & |
---|
2912 | ( flux_n(k) & |
---|
2913 | * ( v_comp(k) - 2.0_wp * hom(k,1,2,0) ) & |
---|
2914 | / ( v_comp(k) - gv + SIGN( 1.0E-20_wp, v_comp(k) - gv ) ) & |
---|
2915 | + diss_n(k) & |
---|
2916 | * ABS( v_comp(k) - 2.0_wp * hom(k,1,2,0) ) & |
---|
2917 | / ( ABS( v_comp(k) - gv ) + 1.0E-20_wp ) & |
---|
2918 | ) * weight_substep(intermediate_timestep_count) |
---|
2919 | ! |
---|
2920 | !-- Statistical Evaluation of w'u'. |
---|
2921 | sums_wsvs_ws_l(k,tn) = sums_wsvs_ws_l(k,tn) + & |
---|
2922 | ( flux_t(k) & |
---|
2923 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
2924 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
2925 | + diss_t(k) & |
---|
2926 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
2927 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
2928 | ) * weight_substep(intermediate_timestep_count) |
---|
2929 | |
---|
2930 | ENDDO |
---|
2931 | |
---|
2932 | |
---|
2933 | END SUBROUTINE advec_v_ws_ij |
---|
2934 | |
---|
2935 | |
---|
2936 | |
---|
2937 | !--------------------------------------------------------------------------------------------------! |
---|
2938 | ! Description: |
---|
2939 | ! ------------ |
---|
2940 | !> Advection of w-component - Call for grid point i,j |
---|
2941 | !--------------------------------------------------------------------------------------------------! |
---|
2942 | SUBROUTINE advec_w_ws_ij( i, j, i_omp, tn ) |
---|
2943 | |
---|
2944 | |
---|
2945 | INTEGER(iwp) :: i !< grid index along x-direction |
---|
2946 | INTEGER(iwp) :: i_omp !< leftmost index on subdomain, or in case of OpenMP, on thread |
---|
2947 | INTEGER(iwp) :: j !< grid index along y-direction |
---|
2948 | INTEGER(iwp) :: k !< grid index along z-direction |
---|
2949 | INTEGER(iwp) :: k_mm !< k-2 index in disretization, can be modified to avoid segmentation faults |
---|
2950 | INTEGER(iwp) :: k_pp !< k+2 index in disretization, can be modified to avoid segmentation faults |
---|
2951 | INTEGER(iwp) :: k_ppp !< k+3 index in disretization, can be modified to avoid segmentation faults |
---|
2952 | INTEGER(iwp) :: nzb_max_l !< index indicating upper bound for order degradation of horizontal advection terms |
---|
2953 | INTEGER(iwp) :: tn !< number of OpenMP thread |
---|
2954 | |
---|
2955 | REAL(wp) :: diss_d !< discretized artificial dissipation at top of the grid box |
---|
2956 | REAL(wp) :: div !< divergence on w-grid |
---|
2957 | REAL(wp) :: flux_d !< discretized 6th-order flux at top of the grid box |
---|
2958 | REAL(wp) :: gu !< Galilei-transformation velocity along x |
---|
2959 | REAL(wp) :: gv !< Galilei-transformation velocity along y |
---|
2960 | REAL(wp) :: ibit18 !< flag indicating 1st-order scheme along x-direction |
---|
2961 | REAL(wp) :: ibit19 !< flag indicating 3rd-order scheme along x-direction |
---|
2962 | REAL(wp) :: ibit20 !< flag indicating 5th-order scheme along x-direction |
---|
2963 | REAL(wp) :: ibit21 !< flag indicating 1st-order scheme along y-direction |
---|
2964 | REAL(wp) :: ibit22 !< flag indicating 3rd-order scheme along y-direction |
---|
2965 | REAL(wp) :: ibit23 !< flag indicating 5th-order scheme along y-direction |
---|
2966 | REAL(wp) :: ibit24 !< flag indicating 1st-order scheme along z-direction |
---|
2967 | REAL(wp) :: ibit25 !< flag indicating 3rd-order scheme along z-direction |
---|
2968 | REAL(wp) :: ibit26 !< flag indicating 5th-order scheme along z-direction |
---|
2969 | |
---|
2970 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_n !< discretized artificial dissipation at northward-side of the grid box |
---|
2971 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_r !< discretized artificial dissipation at rightward-side of the grid box |
---|
2972 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_t !< discretized artificial dissipation at top of the grid box |
---|
2973 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_n !< discretized 6th-order flux at northward-side of the grid box |
---|
2974 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_r !< discretized 6th-order flux at rightward-side of the grid box |
---|
2975 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_t !< discretized 6th-order flux at top of the grid box |
---|
2976 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_comp !< advection velocity along x |
---|
2977 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_comp !< advection velocity along y |
---|
2978 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_comp !< advection velocity along z |
---|
2979 | ! |
---|
2980 | !-- Used local modified copy of nzb_max (used to degrade order of discretization) at non-cyclic |
---|
2981 | !-- boundaries. Modify only at relevant points instead of the entire subdomain. This should lead to |
---|
2982 | !-- better load balance between boundary and non-boundary PEs. |
---|
2983 | IF( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i <= nxl + 2 .OR. & |
---|
2984 | ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i >= nxr - 2 .OR. & |
---|
2985 | ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j <= nys + 2 .OR. & |
---|
2986 | ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j >= nyn - 2 ) THEN |
---|
2987 | nzb_max_l = nzt - 1 |
---|
2988 | ELSE |
---|
2989 | nzb_max_l = nzb_max |
---|
2990 | END IF |
---|
2991 | |
---|
2992 | gu = 2.0_wp * u_gtrans |
---|
2993 | gv = 2.0_wp * v_gtrans |
---|
2994 | ! |
---|
2995 | !-- Compute southside fluxes for the respective boundary. |
---|
2996 | IF ( j == nys ) THEN |
---|
2997 | |
---|
2998 | DO k = nzb+1, nzb_max_l |
---|
2999 | ibit23 = REAL( IBITS(advc_flags_m(k,j-1,i),23,1), KIND = wp ) |
---|
3000 | ibit22 = REAL( IBITS(advc_flags_m(k,j-1,i),22,1), KIND = wp ) |
---|
3001 | ibit21 = REAL( IBITS(advc_flags_m(k,j-1,i),21,1), KIND = wp ) |
---|
3002 | |
---|
3003 | v_comp(k) = v(k+1,j,i) + v(k,j,i) - gv |
---|
3004 | flux_s_w(k,tn) = v_comp(k) * ( & |
---|
3005 | ( 37.0_wp * ibit23 * adv_mom_5 & |
---|
3006 | + 7.0_wp * ibit22 * adv_mom_3 & |
---|
3007 | + ibit21 * adv_mom_1 ) * ( w(k,j,i) + w(k,j-1,i) ) & |
---|
3008 | - ( 8.0_wp * ibit23 * adv_mom_5 & |
---|
3009 | + ibit22 * adv_mom_3 ) * ( w(k,j+1,i) + w(k,j-2,i) ) & |
---|
3010 | + ( ibit23 * adv_mom_5 ) * ( w(k,j+2,i) + w(k,j-3,i) ) & |
---|
3011 | ) |
---|
3012 | |
---|
3013 | diss_s_w(k,tn) = - ABS( v_comp(k) ) * ( & |
---|
3014 | ( 10.0_wp * ibit23 * adv_mom_5 & |
---|
3015 | + 3.0_wp * ibit22 * adv_mom_3 & |
---|
3016 | + ibit21 * adv_mom_1 ) * ( w(k,j,i) - w(k,j-1,i) ) & |
---|
3017 | - ( 5.0_wp * ibit23 * adv_mom_5 & |
---|
3018 | + ibit22 * adv_mom_3 ) * ( w(k,j+1,i) - w(k,j-2,i) ) & |
---|
3019 | + ( ibit23 * adv_mom_5 ) * ( w(k,j+2,i) - w(k,j-3,i) ) & |
---|
3020 | ) |
---|
3021 | |
---|
3022 | ENDDO |
---|
3023 | |
---|
3024 | DO k = nzb_max_l+1, nzt-1 |
---|
3025 | |
---|
3026 | v_comp(k) = v(k+1,j,i) + v(k,j,i) - gv |
---|
3027 | flux_s_w(k,tn) = v_comp(k) * ( & |
---|
3028 | 37.0_wp * ( w(k,j,i) + w(k,j-1,i) ) & |
---|
3029 | - 8.0_wp * ( w(k,j+1,i) + w(k,j-2,i) ) & |
---|
3030 | + ( w(k,j+2,i) + w(k,j-3,i) ) ) * adv_mom_5 |
---|
3031 | diss_s_w(k,tn) = - ABS( v_comp(k) ) * ( & |
---|
3032 | 10.0_wp * ( w(k,j,i) - w(k,j-1,i) ) & |
---|
3033 | - 5.0_wp * ( w(k,j+1,i) - w(k,j-2,i) ) & |
---|
3034 | + ( w(k,j+2,i) - w(k,j-3,i) ) ) * adv_mom_5 |
---|
3035 | |
---|
3036 | ENDDO |
---|
3037 | |
---|
3038 | ENDIF |
---|
3039 | ! |
---|
3040 | !-- Compute leftside fluxes for the respective boundary. |
---|
3041 | IF ( i == i_omp ) THEN |
---|
3042 | |
---|
3043 | DO k = nzb+1, nzb_max_l |
---|
3044 | |
---|
3045 | ibit20 = REAL( IBITS(advc_flags_m(k,j,i-1),20,1), KIND = wp ) |
---|
3046 | ibit19 = REAL( IBITS(advc_flags_m(k,j,i-1),19,1), KIND = wp ) |
---|
3047 | ibit18 = REAL( IBITS(advc_flags_m(k,j,i-1),18,1), KIND = wp ) |
---|
3048 | |
---|
3049 | u_comp(k) = u(k+1,j,i) + u(k,j,i) - gu |
---|
3050 | flux_l_w(k,j,tn) = u_comp(k) * ( & |
---|
3051 | ( 37.0_wp * ibit20 * adv_mom_5 & |
---|
3052 | + 7.0_wp * ibit19 * adv_mom_3 & |
---|
3053 | + ibit18 * adv_mom_1 ) * ( w(k,j,i) + w(k,j,i-1) ) & |
---|
3054 | - ( 8.0_wp * ibit20 * adv_mom_5 & |
---|
3055 | + ibit19 * adv_mom_3 ) * ( w(k,j,i+1) + w(k,j,i-2) ) & |
---|
3056 | + ( ibit20 * adv_mom_5 ) * ( w(k,j,i+2) + w(k,j,i-3) ) & |
---|
3057 | ) |
---|
3058 | |
---|
3059 | diss_l_w(k,j,tn) = - ABS( u_comp(k) ) * ( & |
---|
3060 | ( 10.0_wp * ibit20 * adv_mom_5 & |
---|
3061 | + 3.0_wp * ibit19 * adv_mom_3 & |
---|
3062 | + ibit18 * adv_mom_1 ) * ( w(k,j,i) - w(k,j,i-1) ) & |
---|
3063 | - ( 5.0_wp * ibit20 * adv_mom_5 & |
---|
3064 | + ibit19 * adv_mom_3 ) * ( w(k,j,i+1) - w(k,j,i-2) ) & |
---|
3065 | + ( ibit20 * adv_mom_5 ) * ( w(k,j,i+2) - w(k,j,i-3) ) & |
---|
3066 | ) |
---|
3067 | |
---|
3068 | ENDDO |
---|
3069 | |
---|
3070 | DO k = nzb_max_l+1, nzt-1 |
---|
3071 | |
---|
3072 | u_comp(k) = u(k+1,j,i) + u(k,j,i) - gu |
---|
3073 | flux_l_w(k,j,tn) = u_comp(k) * ( & |
---|
3074 | 37.0_wp * ( w(k,j,i) + w(k,j,i-1) ) & |
---|
3075 | - 8.0_wp * ( w(k,j,i+1) + w(k,j,i-2) ) & |
---|
3076 | + ( w(k,j,i+2) + w(k,j,i-3) ) ) * adv_mom_5 |
---|
3077 | diss_l_w(k,j,tn) = - ABS( u_comp(k) ) * ( & |
---|
3078 | 10.0_wp * ( w(k,j,i) - w(k,j,i-1) ) & |
---|
3079 | - 5.0_wp * ( w(k,j,i+1) - w(k,j,i-2) ) & |
---|
3080 | + ( w(k,j,i+2) - w(k,j,i-3) ) ) * adv_mom_5 |
---|
3081 | |
---|
3082 | ENDDO |
---|
3083 | |
---|
3084 | ENDIF |
---|
3085 | ! |
---|
3086 | !-- Now compute the fluxes and tendency terms for the horizontal and vertical parts. |
---|
3087 | DO k = nzb+1, nzb_max_l |
---|
3088 | |
---|
3089 | ibit20 = REAL( IBITS(advc_flags_m(k,j,i),20,1), KIND = wp ) |
---|
3090 | ibit19 = REAL( IBITS(advc_flags_m(k,j,i),19,1), KIND = wp ) |
---|
3091 | ibit18 = REAL( IBITS(advc_flags_m(k,j,i),18,1), KIND = wp ) |
---|
3092 | |
---|
3093 | u_comp(k) = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
3094 | flux_r(k) = u_comp(k) * ( & |
---|
3095 | ( 37.0_wp * ibit20 * adv_mom_5 & |
---|
3096 | + 7.0_wp * ibit19 * adv_mom_3 & |
---|
3097 | + ibit18 * adv_mom_1 ) * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
3098 | - ( 8.0_wp * ibit20 * adv_mom_5 & |
---|
3099 | + ibit19 * adv_mom_3 ) * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
3100 | + ( ibit20 * adv_mom_5 ) * ( w(k,j,i+3) + w(k,j,i-2) ) & |
---|
3101 | ) |
---|
3102 | |
---|
3103 | diss_r(k) = - ABS( u_comp(k) ) * ( & |
---|
3104 | ( 10.0_wp * ibit20 * adv_mom_5 & |
---|
3105 | + 3.0_wp * ibit19 * adv_mom_3 & |
---|
3106 | + ibit18 * adv_mom_1 ) * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
3107 | - ( 5.0_wp * ibit20 * adv_mom_5 & |
---|
3108 | + ibit19 * adv_mom_3 ) * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
3109 | + ( ibit20 * adv_mom_5 ) * ( w(k,j,i+3) - w(k,j,i-2) ) & |
---|
3110 | ) |
---|
3111 | |
---|
3112 | ibit23 = REAL( IBITS(advc_flags_m(k,j,i),23,1), KIND = wp ) |
---|
3113 | ibit22 = REAL( IBITS(advc_flags_m(k,j,i),22,1), KIND = wp ) |
---|
3114 | ibit21 = REAL( IBITS(advc_flags_m(k,j,i),21,1), KIND = wp ) |
---|
3115 | |
---|
3116 | v_comp(k) = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
3117 | flux_n(k) = v_comp(k) * ( & |
---|
3118 | ( 37.0_wp * ibit23 * adv_mom_5 & |
---|
3119 | + 7.0_wp * ibit22 * adv_mom_3 & |
---|
3120 | + ibit21 * adv_mom_1 ) * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
3121 | - ( 8.0_wp * ibit23 * adv_mom_5 & |
---|
3122 | + ibit22 * adv_mom_3 ) * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
3123 | + ( ibit23 * adv_mom_5) * ( w(k,j+3,i) + w(k,j-2,i) ) & |
---|
3124 | ) |
---|
3125 | |
---|
3126 | diss_n(k) = - ABS( v_comp(k) ) * ( & |
---|
3127 | ( 10.0_wp * ibit23 * adv_mom_5 & |
---|
3128 | + 3.0_wp * ibit22 * adv_mom_3 & |
---|
3129 | + ibit21 * adv_mom_1 ) * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
3130 | - ( 5.0_wp * ibit23 * adv_mom_5 & |
---|
3131 | + ibit22 * adv_mom_3 ) * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
3132 | + ( ibit23 * adv_mom_5 ) * ( w(k,j+3,i) - w(k,j-2,i) ) & |
---|
3133 | ) |
---|
3134 | ENDDO |
---|
3135 | |
---|
3136 | DO k = nzb_max_l+1, nzt-1 |
---|
3137 | |
---|
3138 | u_comp(k) = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
3139 | flux_r(k) = u_comp(k) * ( & |
---|
3140 | 37.0_wp * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
3141 | - 8.0_wp * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
3142 | + ( w(k,j,i+3) + w(k,j,i-2) ) ) * adv_mom_5 |
---|
3143 | |
---|
3144 | diss_r(k) = - ABS( u_comp(k) ) * ( & |
---|
3145 | 10.0_wp * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
3146 | - 5.0_wp * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
3147 | + ( w(k,j,i+3) - w(k,j,i-2) ) ) * adv_mom_5 |
---|
3148 | |
---|
3149 | v_comp(k) = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
3150 | flux_n(k) = v_comp(k) * ( & |
---|
3151 | 37.0_wp * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
3152 | - 8.0_wp * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
3153 | + ( w(k,j+3,i) + w(k,j-2,i) ) ) * adv_mom_5 |
---|
3154 | |
---|
3155 | diss_n(k) = - ABS( v_comp(k) ) * ( & |
---|
3156 | 10.0_wp * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
3157 | - 5.0_wp * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
3158 | + ( w(k,j+3,i) - w(k,j-2,i) ) ) * adv_mom_5 |
---|
3159 | ENDDO |
---|
3160 | |
---|
3161 | ! |
---|
3162 | !-- Now, compute vertical fluxes. Split loop into a part treating the lowest grid points with |
---|
3163 | !-- indirect indexing, a main loop without indirect indexing, and a loop for the uppermost grid |
---|
3164 | !-- points with indirect indexing. This allows better vectorization for the main loop. |
---|
3165 | !-- First, compute the flux at model surface, which need has to be calculated explicitly for the |
---|
3166 | !-- tendency at the first w-level. For topography wall this is done implicitely by advc_flags_m. |
---|
3167 | !-- First, compute flux at lowest level, located at z=dz/2. |
---|
3168 | k = nzb + 1 |
---|
3169 | w_comp(k) = w(k,j,i) + w(k-1,j,i) |
---|
3170 | flux_t(0) = w_comp(k) * rho_air(k) * ( w(k,j,i) + w(k-1,j,i) ) * adv_mom_1 |
---|
3171 | diss_t(0) = - ABS(w_comp(k)) * rho_air(k) * ( w(k,j,i) - w(k-1,j,i) ) * adv_mom_1 |
---|
3172 | |
---|
3173 | DO k = nzb+1, nzb+1 |
---|
3174 | ! |
---|
3175 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
3176 | ibit26 = REAL( IBITS(advc_flags_m(k,j,i),26,1), KIND = wp ) |
---|
3177 | ibit25 = REAL( IBITS(advc_flags_m(k,j,i),25,1), KIND = wp ) |
---|
3178 | ibit24 = REAL( IBITS(advc_flags_m(k,j,i),24,1), KIND = wp ) |
---|
3179 | |
---|
3180 | k_ppp = k + 3 * ibit26 |
---|
3181 | k_pp = k + 2 * ( 1 - ibit24 ) |
---|
3182 | k_mm = k - 2 * ibit26 |
---|
3183 | |
---|
3184 | w_comp(k) = w(k+1,j,i) + w(k,j,i) |
---|
3185 | flux_t(k) = w_comp(k) * rho_air(k+1) * ( & |
---|
3186 | ( 37.0_wp * ibit26 * adv_mom_5 & |
---|
3187 | + 7.0_wp * ibit25 * adv_mom_3 & |
---|
3188 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
3189 | - ( 8.0_wp * ibit26 * adv_mom_5 & |
---|
3190 | + ibit25 * adv_mom_3 ) * ( w(k_pp,j,i) + w(k-1,j,i) ) & |
---|
3191 | + ( ibit26 * adv_mom_5 ) * ( w(k_ppp,j,i) + w(k_mm,j,i) ) & |
---|
3192 | ) |
---|
3193 | |
---|
3194 | diss_t(k) = - ABS( w_comp(k) ) * rho_air(k+1) * ( & |
---|
3195 | ( 10.0_wp * ibit26 * adv_mom_5 & |
---|
3196 | + 3.0_wp * ibit25 * adv_mom_3 & |
---|
3197 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
3198 | - ( 5.0_wp * ibit26 * adv_mom_5 & |
---|
3199 | + ibit25 * adv_mom_3 ) * ( w(k_pp,j,i) - w(k-1,j,i) ) & |
---|
3200 | + ( ibit26 * adv_mom_5 ) * ( w(k_ppp,j,i) - w(k_mm,j,i) ) & |
---|
3201 | ) |
---|
3202 | ENDDO |
---|
3203 | |
---|
3204 | DO k = nzb+2, nzt-2 |
---|
3205 | |
---|
3206 | ibit26 = REAL( IBITS(advc_flags_m(k,j,i),26,1), KIND = wp ) |
---|
3207 | ibit25 = REAL( IBITS(advc_flags_m(k,j,i),25,1), KIND = wp ) |
---|
3208 | ibit24 = REAL( IBITS(advc_flags_m(k,j,i),24,1), KIND = wp ) |
---|
3209 | |
---|
3210 | w_comp(k) = w(k+1,j,i) + w(k,j,i) |
---|
3211 | flux_t(k) = w_comp(k) * rho_air(k+1) * ( & |
---|
3212 | ( 37.0_wp * ibit26 * adv_mom_5 & |
---|
3213 | + 7.0_wp * ibit25 * adv_mom_3 & |
---|
3214 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
3215 | - ( 8.0_wp * ibit26 * adv_mom_5 & |
---|
3216 | + ibit25 * adv_mom_3 ) * ( w(k+2,j,i) + w(k-1,j,i) ) & |
---|
3217 | + ( ibit26 * adv_mom_5 ) * ( w(k+3,j,i) + w(k-2,j,i) ) & |
---|
3218 | ) |
---|
3219 | |
---|
3220 | diss_t(k) = - ABS( w_comp(k) ) * rho_air(k+1) * ( & |
---|
3221 | ( 10.0_wp * ibit26 * adv_mom_5 & |
---|
3222 | + 3.0_wp * ibit25 * adv_mom_3 & |
---|
3223 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
3224 | - ( 5.0_wp * ibit26 * adv_mom_5 & |
---|
3225 | + ibit25 * adv_mom_3 ) * ( w(k+2,j,i) - w(k-1,j,i) ) & |
---|
3226 | + ( ibit26 * adv_mom_5 ) * ( w(k+3,j,i) - w(k-2,j,i) ) & |
---|
3227 | ) |
---|
3228 | ENDDO |
---|
3229 | |
---|
3230 | DO k = nzt-1, nzt-1 |
---|
3231 | ! |
---|
3232 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
3233 | ibit26 = REAL( IBITS(advc_flags_m(k,j,i),26,1), KIND = wp ) |
---|
3234 | ibit25 = REAL( IBITS(advc_flags_m(k,j,i),25,1), KIND = wp ) |
---|
3235 | ibit24 = REAL( IBITS(advc_flags_m(k,j,i),24,1), KIND = wp ) |
---|
3236 | |
---|
3237 | k_ppp = k + 3 * ibit26 |
---|
3238 | k_pp = k + 2 * ( 1 - ibit24 ) |
---|
3239 | k_mm = k - 2 * ibit26 |
---|
3240 | |
---|
3241 | w_comp(k) = w(k+1,j,i) + w(k,j,i) |
---|
3242 | flux_t(k) = w_comp(k) * rho_air(k+1) * ( & |
---|
3243 | ( 37.0_wp * ibit26 * adv_mom_5 & |
---|
3244 | + 7.0_wp * ibit25 * adv_mom_3 & |
---|
3245 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
3246 | - ( 8.0_wp * ibit26 * adv_mom_5 & |
---|
3247 | + ibit25 * adv_mom_3 ) * ( w(k_pp,j,i) + w(k-1,j,i) ) & |
---|
3248 | + ( ibit26 * adv_mom_5 ) * ( w(k_ppp,j,i) + w(k_mm,j,i) ) & |
---|
3249 | ) |
---|
3250 | |
---|
3251 | diss_t(k) = - ABS( w_comp(k) ) * rho_air(k+1) * ( & |
---|
3252 | ( 10.0_wp * ibit26 * adv_mom_5 & |
---|
3253 | + 3.0_wp * ibit25 * adv_mom_3 & |
---|
3254 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
3255 | - ( 5.0_wp * ibit26 * adv_mom_5 & |
---|
3256 | + ibit25 * adv_mom_3 ) * ( w(k_pp,j,i) - w(k-1,j,i) ) & |
---|
3257 | + ( ibit26 * adv_mom_5 ) * ( w(k_ppp,j,i) - w(k_mm,j,i) ) & |
---|
3258 | ) |
---|
3259 | ENDDO |
---|
3260 | |
---|
3261 | ! |
---|
3262 | !-- Set resolved/turbulent flux at model top to zero (w-level). Hint: The flux at nzt is defined at |
---|
3263 | !-- the scalar grid point nzt+1. Therefore, the flux at nzt+1 is already outside of the model |
---|
3264 | !-- domain. |
---|
3265 | flux_t(nzt) = 0.0_wp |
---|
3266 | diss_t(nzt) = 0.0_wp |
---|
3267 | w_comp(nzt) = 0.0_wp |
---|
3268 | |
---|
3269 | flux_t(nzt+1) = 0.0_wp |
---|
3270 | diss_t(nzt+1) = 0.0_wp |
---|
3271 | w_comp(nzt+1) = 0.0_wp |
---|
3272 | |
---|
3273 | DO k = nzb+1, nzb_max_l |
---|
3274 | |
---|
3275 | flux_d = flux_t(k-1) |
---|
3276 | diss_d = diss_t(k-1) |
---|
3277 | |
---|
3278 | ibit20 = REAL( IBITS(advc_flags_m(k,j,i),20,1), KIND = wp ) |
---|
3279 | ibit19 = REAL( IBITS(advc_flags_m(k,j,i),19,1), KIND = wp ) |
---|
3280 | ibit18 = REAL( IBITS(advc_flags_m(k,j,i),18,1), KIND = wp ) |
---|
3281 | |
---|
3282 | ibit23 = REAL( IBITS(advc_flags_m(k,j,i),23,1), KIND = wp ) |
---|
3283 | ibit22 = REAL( IBITS(advc_flags_m(k,j,i),22,1), KIND = wp ) |
---|
3284 | ibit21 = REAL( IBITS(advc_flags_m(k,j,i),21,1), KIND = wp ) |
---|
3285 | |
---|
3286 | ibit26 = REAL( IBITS(advc_flags_m(k,j,i),26,1), KIND = wp ) |
---|
3287 | ibit25 = REAL( IBITS(advc_flags_m(k,j,i),25,1), KIND = wp ) |
---|
3288 | ibit24 = REAL( IBITS(advc_flags_m(k,j,i),24,1), KIND = wp ) |
---|
3289 | ! |
---|
3290 | !-- Calculate the divergence of the velocity field. A respective correction is needed to overcome |
---|
3291 | !-- numerical instabilities introduced by an insufficient reduction of divergences near |
---|
3292 | !-- topography. |
---|
3293 | div = ( ( ( u_comp(k) + gu ) * ( ibit18 + ibit19 + ibit20 ) & |
---|
3294 | - ( u(k+1,j,i) + u(k,j,i) ) & |
---|
3295 | * ( & |
---|
3296 | REAL( IBITS(advc_flags_m(k,j,i-1),18,1), KIND = wp ) & |
---|
3297 | + REAL( IBITS(advc_flags_m(k,j,i-1),19,1), KIND = wp ) & |
---|
3298 | + REAL( IBITS(advc_flags_m(k,j,i-1),20,1), KIND = wp ) & |
---|
3299 | ) & |
---|
3300 | ) * ddx & |
---|
3301 | + ( ( v_comp(k) + gv ) * ( ibit21 + ibit22 + ibit23 ) & |
---|
3302 | - ( v(k+1,j,i) + v(k,j,i) ) & |
---|
3303 | * ( & |
---|
3304 | REAL( IBITS(advc_flags_m(k,j-1,i),21,1), KIND = wp ) & |
---|
3305 | + REAL( IBITS(advc_flags_m(k,j-1,i),22,1), KIND = wp ) & |
---|
3306 | + REAL( IBITS(advc_flags_m(k,j-1,i),23,1), KIND = wp ) & |
---|
3307 | ) & |
---|
3308 | ) * ddy & |
---|
3309 | + ( w_comp(k) * rho_air(k+1) & |
---|
3310 | * ( ibit24 + ibit25 + ibit26 ) & |
---|
3311 | - ( w(k,j,i) + w(k-1,j,i) ) * rho_air(k) & |
---|
3312 | * ( & |
---|
3313 | REAL( IBITS(advc_flags_m(k-1,j,i),24,1), KIND = wp ) & |
---|
3314 | + REAL( IBITS(advc_flags_m(k-1,j,i),25,1), KIND = wp ) & |
---|
3315 | + REAL( IBITS(advc_flags_m(k-1,j,i),26,1), KIND = wp ) & |
---|
3316 | ) & |
---|
3317 | ) * drho_air_zw(k) * ddzu(k+1) & |
---|
3318 | ) * 0.5_wp |
---|
3319 | |
---|
3320 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
3321 | ( flux_r(k) + diss_r(k) & |
---|
3322 | - flux_l_w(k,j,tn) - diss_l_w(k,j,tn) ) * ddx & |
---|
3323 | + ( flux_n(k) + diss_n(k) & |
---|
3324 | - flux_s_w(k,tn) - diss_s_w(k,tn) ) * ddy & |
---|
3325 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
3326 | - ( flux_d + diss_d ) & |
---|
3327 | ) * drho_air_zw(k) * ddzu(k+1) & |
---|
3328 | ) + div * w(k,j,i) |
---|
3329 | |
---|
3330 | flux_l_w(k,j,tn) = flux_r(k) |
---|
3331 | diss_l_w(k,j,tn) = diss_r(k) |
---|
3332 | flux_s_w(k,tn) = flux_n(k) |
---|
3333 | diss_s_w(k,tn) = diss_n(k) |
---|
3334 | ! |
---|
3335 | !-- Statistical Evaluation of w'w'. |
---|
3336 | sums_ws2_ws_l(k,tn) = sums_ws2_ws_l(k,tn) + & |
---|
3337 | ( flux_t(k) & |
---|
3338 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
3339 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
3340 | + diss_t(k) & |
---|
3341 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
3342 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
3343 | ) * weight_substep(intermediate_timestep_count) |
---|
3344 | |
---|
3345 | ENDDO |
---|
3346 | |
---|
3347 | DO k = nzb_max_l+1, nzt-1 |
---|
3348 | |
---|
3349 | flux_d = flux_t(k-1) |
---|
3350 | diss_d = diss_t(k-1) |
---|
3351 | ! |
---|
3352 | !-- Calculate the divergence of the velocity field. A respective correction is needed to overcome |
---|
3353 | !-- numerical instabilities introduced by an insufficient reduction of divergences near |
---|
3354 | !-- topography. |
---|
3355 | div = ( ( u_comp(k) + gu - ( u(k+1,j,i) + u(k,j,i) ) ) * ddx & |
---|
3356 | + ( v_comp(k) + gv - ( v(k+1,j,i) + v(k,j,i) ) ) * ddy & |
---|
3357 | + ( w_comp(k) * rho_air(k+1) & |
---|
3358 | - ( w(k,j,i) + w(k-1,j,i) ) * rho_air(k) & |
---|
3359 | ) * drho_air_zw(k) * ddzu(k+1) & |
---|
3360 | ) * 0.5_wp |
---|
3361 | |
---|
3362 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
3363 | ( flux_r(k) + diss_r(k) & |
---|
3364 | - flux_l_w(k,j,tn) - diss_l_w(k,j,tn) ) * ddx & |
---|
3365 | + ( flux_n(k) + diss_n(k) & |
---|
3366 | - flux_s_w(k,tn) - diss_s_w(k,tn) ) * ddy & |
---|
3367 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
3368 | - ( flux_d + diss_d ) & |
---|
3369 | ) * drho_air_zw(k) * ddzu(k+1) & |
---|
3370 | ) + div * w(k,j,i) |
---|
3371 | |
---|
3372 | flux_l_w(k,j,tn) = flux_r(k) |
---|
3373 | diss_l_w(k,j,tn) = diss_r(k) |
---|
3374 | flux_s_w(k,tn) = flux_n(k) |
---|
3375 | diss_s_w(k,tn) = diss_n(k) |
---|
3376 | ! |
---|
3377 | !-- Statistical Evaluation of w'w'. |
---|
3378 | sums_ws2_ws_l(k,tn) = sums_ws2_ws_l(k,tn) + & |
---|
3379 | ( flux_t(k) & |
---|
3380 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
3381 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
3382 | + diss_t(k) & |
---|
3383 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
3384 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
3385 | ) * weight_substep(intermediate_timestep_count) |
---|
3386 | |
---|
3387 | ENDDO |
---|
3388 | |
---|
3389 | END SUBROUTINE advec_w_ws_ij |
---|
3390 | |
---|
3391 | |
---|
3392 | !--------------------------------------------------------------------------------------------------! |
---|
3393 | ! Description: |
---|
3394 | ! ------------ |
---|
3395 | !> Scalar advection - Call for all grid points |
---|
3396 | !--------------------------------------------------------------------------------------------------! |
---|
3397 | SUBROUTINE advec_s_ws( advc_flag, sk, sk_char, & |
---|
3398 | non_cyclic_l, non_cyclic_n, & |
---|
3399 | non_cyclic_r, non_cyclic_s ) |
---|
3400 | |
---|
3401 | |
---|
3402 | CHARACTER (LEN = *), INTENT(IN) :: sk_char !< string identifier, used for assign fluxes |
---|
3403 | !< to the correct dimension in the analysis array |
---|
3404 | |
---|
3405 | INTEGER(iwp) :: i !< grid index along x-direction |
---|
3406 | INTEGER(iwp) :: j !< grid index along y-direction |
---|
3407 | INTEGER(iwp) :: k !< grid index along z-direction |
---|
3408 | INTEGER(iwp) :: k_mm !< k-2 index in disretization, can be modified to avoid segmentation faults |
---|
3409 | INTEGER(iwp) :: k_pp !< k+2 index in disretization, can be modified to avoid segmentation faults |
---|
3410 | INTEGER(iwp) :: k_ppp !< k+3 index in disretization, can be modified to avoid segmentation faults |
---|
3411 | INTEGER(iwp) :: nzb_max_l !< index indicating upper bound for order degradation of horizontal advection terms |
---|
3412 | INTEGER(iwp) :: sk_num !< integer identifier, used for assign fluxes to the correct dimension in the analysis array |
---|
3413 | INTEGER(iwp) :: tn = 0 !< number of OpenMP thread (is always zero here) |
---|
3414 | |
---|
3415 | INTEGER(iwp), INTENT(IN), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: & |
---|
3416 | advc_flag !< flag array to control order of scalar advection |
---|
3417 | |
---|
3418 | LOGICAL :: non_cyclic_l !< flag that indicates non-cyclic boundary on the left |
---|
3419 | LOGICAL :: non_cyclic_n !< flag that indicates non-cyclic boundary on the north |
---|
3420 | LOGICAL :: non_cyclic_r !< flag that indicates non-cyclic boundary on the right |
---|
3421 | LOGICAL :: non_cyclic_s !< flag that indicates non-cyclic boundary on the south |
---|
3422 | |
---|
3423 | REAL(wp) :: diss_d !< artificial dissipation term at grid box bottom |
---|
3424 | REAL(wp) :: div !< velocity diverence on scalar grid |
---|
3425 | REAL(wp) :: flux_d !< 6th-order flux at grid box bottom |
---|
3426 | REAL(wp) :: ibit0 !< flag indicating 1st-order scheme along x-direction |
---|
3427 | REAL(wp) :: ibit1 !< flag indicating 3rd-order scheme along x-direction |
---|
3428 | REAL(wp) :: ibit2 !< flag indicating 5th-order scheme along x-direction |
---|
3429 | REAL(wp) :: ibit3 !< flag indicating 1st-order scheme along y-direction |
---|
3430 | REAL(wp) :: ibit4 !< flag indicating 3rd-order scheme along y-direction |
---|
3431 | REAL(wp) :: ibit5 !< flag indicating 5th-order scheme along y-direction |
---|
3432 | REAL(wp) :: ibit6 !< flag indicating 1st-order scheme along z-direction |
---|
3433 | REAL(wp) :: ibit7 !< flag indicating 3rd-order scheme along z-direction |
---|
3434 | REAL(wp) :: ibit8 !< flag indicating 5th-order scheme along z-direction |
---|
3435 | #ifdef _OPENACC |
---|
3436 | REAL(wp) :: ibit0_l !< flag indicating 1st-order scheme along x-direction |
---|
3437 | REAL(wp) :: ibit1_l !< flag indicating 3rd-order scheme along x-direction |
---|
3438 | REAL(wp) :: ibit2_l !< flag indicating 5th-order scheme along x-direction |
---|
3439 | REAL(wp) :: ibit3_s !< flag indicating 1st-order scheme along y-direction |
---|
3440 | REAL(wp) :: ibit4_s !< flag indicating 3rd-order scheme along y-direction |
---|
3441 | REAL(wp) :: ibit5_s !< flag indicating 5th-order scheme along y-direction |
---|
3442 | #endif |
---|
3443 | REAL(wp) :: u_comp !< advection velocity along x-direction |
---|
3444 | REAL(wp) :: v_comp !< advection velocity along y-direction |
---|
3445 | #ifdef _OPENACC |
---|
3446 | REAL(wp) :: u_comp_l !< advection velocity along x-direction |
---|
3447 | REAL(wp) :: v_comp_s !< advection velocity along y-direction |
---|
3448 | #endif |
---|
3449 | ! |
---|
3450 | !-- sk is an array from parameter list. It should not be a pointer, because in that case the |
---|
3451 | !-- compiler can not assume a stride 1 and cannot perform a strided one vector load. Adding the |
---|
3452 | !-- CONTIGUOUS keyword makes things even worse, because the compiler cannot assume strided one in |
---|
3453 | !-- the caller side. |
---|
3454 | |
---|
3455 | |
---|
3456 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_n !< discretized artificial dissipation at northward-side |
---|
3457 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_r !< discretized artificial dissipation at rightward-side |
---|
3458 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_t !< discretized artificial dissipation at top of the grid box |
---|
3459 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_n !< discretized 6th-order flux at northward-side of the grid box |
---|
3460 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_r !< discretized 6th-order flux at rightward-side of the grid box |
---|
3461 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_t !< discretized 6th-order flux at top of the grid box |
---|
3462 | |
---|
3463 | REAL(wp), DIMENSION(nzb+1:nzt) :: diss_l !< discretized artificial dissipation at leftward-side |
---|
3464 | REAL(wp), DIMENSION(nzb+1:nzt) :: diss_s !< discretized artificial dissipation at southward-side |
---|
3465 | REAL(wp), DIMENSION(nzb+1:nzt) :: flux_l !< discretized 6th-order flux at leftward-side |
---|
3466 | REAL(wp), DIMENSION(nzb+1:nzt) :: flux_s !< discretized 6th-order flux at southward-side |
---|
3467 | #ifndef _OPENACC |
---|
3468 | REAL(wp), DIMENSION(nzb+1:nzt) :: swap_diss_y_local !< discretized artificial dissipation at southward-side |
---|
3469 | REAL(wp), DIMENSION(nzb+1:nzt) :: swap_flux_y_local !< discretized 6th-order flux at northward-side |
---|
3470 | |
---|
3471 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: swap_diss_x_local !< discretized artificial dissipation at leftward-side |
---|
3472 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local !< discretized 6th-order flux at leftward-side |
---|
3473 | #endif |
---|
3474 | |
---|
3475 | REAL(wp), INTENT(IN),DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !< advected scalar |
---|
3476 | |
---|
3477 | CALL cpu_log( log_point_s(49), 'advec_s_ws', 'start' ) |
---|
3478 | |
---|
3479 | SELECT CASE ( sk_char ) |
---|
3480 | |
---|
3481 | CASE ( 'pt' ) |
---|
3482 | sk_num = 1 |
---|
3483 | CASE ( 'sa' ) |
---|
3484 | sk_num = 2 |
---|
3485 | CASE ( 'q' ) |
---|
3486 | sk_num = 3 |
---|
3487 | CASE ( 'qc' ) |
---|
3488 | sk_num = 4 |
---|
3489 | CASE ( 'qr' ) |
---|
3490 | sk_num = 5 |
---|
3491 | CASE ( 'nc' ) |
---|
3492 | sk_num = 6 |
---|
3493 | CASE ( 'nr' ) |
---|
3494 | sk_num = 7 |
---|
3495 | CASE ( 's' ) |
---|
3496 | sk_num = 8 |
---|
3497 | CASE ( 'aerosol_mass', 'aerosol_number', 'salsa_gas' ) |
---|
3498 | sk_num = 9 |
---|
3499 | CASE ( 'ni' ) |
---|
3500 | sk_num = 10 |
---|
3501 | CASE ( 'qi' ) |
---|
3502 | sk_num = 11 |
---|
3503 | CASE ( 'ng' ) |
---|
3504 | sk_num = 12 |
---|
3505 | CASE ( 'qg' ) |
---|
3506 | sk_num = 13 |
---|
3507 | CASE ( 'ns' ) |
---|
3508 | sk_num = 14 |
---|
3509 | CASE ( 'qs' ) |
---|
3510 | sk_num = 15 |
---|
3511 | CASE DEFAULT |
---|
3512 | sk_num = 0 |
---|
3513 | |
---|
3514 | END SELECT |
---|
3515 | |
---|
3516 | !$ACC PARALLEL LOOP COLLAPSE(2) FIRSTPRIVATE(tn, sk_num) & |
---|
3517 | !$ACC PRIVATE(i, j, k, k_mm, k_pp, k_ppp) & |
---|
3518 | !$ACC PRIVATE(ibit0, ibit1, ibit2, ibit3, ibit4, ibit5) & |
---|
3519 | !$ACC PRIVATE(ibit0_l, ibit1_l, ibit2_l) & |
---|
3520 | !$ACC PRIVATE(ibit3_s, ibit4_s, ibit5_s) & |
---|
3521 | !$ACC PRIVATE(ibit6, ibit7, ibit8) & |
---|
3522 | !$ACC PRIVATE(nzb_max_l) & |
---|
3523 | !$ACC PRIVATE(diss_l, diss_r, flux_l, flux_r) & |
---|
3524 | !$ACC PRIVATE(diss_n, diss_s, flux_s, flux_n) & |
---|
3525 | !$ACC PRIVATE(flux_t, diss_t, flux_d, diss_d) & |
---|
3526 | !$ACC PRIVATE(div, u_comp, u_comp_l, v_comp, v_comp_s) & |
---|
3527 | !$ACC PRESENT(advc_flag) & |
---|
3528 | !$ACC PRESENT(sk, u, v, w, u_stokes_zu, v_stokes_zu) & |
---|
3529 | !$ACC PRESENT(drho_air, rho_air_zw, ddzw) & |
---|
3530 | !$ACC PRESENT(tend) & |
---|
3531 | !$ACC PRESENT(hom(:,1,1:3,0)) & |
---|
3532 | !$ACC PRESENT(weight_substep(intermediate_timestep_count)) & |
---|
3533 | !$ACC PRESENT(sums_wspts_ws_l, sums_wssas_ws_l) & |
---|
3534 | !$ACC PRESENT(sums_wsqs_ws_l, sums_wsqcs_ws_l) & |
---|
3535 | !$ACC PRESENT(sums_wsqrs_ws_l, sums_wsncs_ws_l) & |
---|
3536 | !$ACC PRESENT(sums_wsnrs_ws_l, sums_wsss_ws_l) & |
---|
3537 | !$ACC PRESENT(sums_wsnis_ws_l, sums_wsqis_ws_l) & |
---|
3538 | !$ACC PRESENT(sums_wsngs_ws_l, sums_wsqgs_ws_l) & |
---|
3539 | !$ACC PRESENT(sums_wsnss_ws_l, sums_wsqss_ws_l) & |
---|
3540 | !$ACC PRESENT(sums_salsa_ws_l) |
---|
3541 | DO i = nxl, nxr |
---|
3542 | DO j = nys, nyn |
---|
3543 | ! |
---|
3544 | !-- Used local modified copy of nzb_max (used to degrade order of discretization) at |
---|
3545 | !-- non-cyclic boundaries. Modify only at relevant points instead of the entire subdomain. |
---|
3546 | !-- This should lead to better load balance between boundary and non-boundary PEs. |
---|
3547 | IF( non_cyclic_l .AND. i <= nxl + 2 .OR. & |
---|
3548 | non_cyclic_r .AND. i >= nxr - 2 .OR. & |
---|
3549 | non_cyclic_s .AND. j <= nys + 2 .OR. & |
---|
3550 | non_cyclic_n .AND. j >= nyn - 2 ) THEN |
---|
3551 | nzb_max_l = nzt |
---|
3552 | ELSE |
---|
3553 | nzb_max_l = nzb_max |
---|
3554 | END IF |
---|
3555 | #ifndef _OPENACC |
---|
3556 | ! |
---|
3557 | !-- Compute leftside fluxes of the respective PE bounds. |
---|
3558 | IF ( i == nxl ) THEN |
---|
3559 | |
---|
3560 | DO k = nzb+1, nzb_max_l |
---|
3561 | |
---|
3562 | ibit2 = REAL( IBITS(advc_flag(k,j,i-1),2,1), KIND = wp ) |
---|
3563 | ibit1 = REAL( IBITS(advc_flag(k,j,i-1),1,1), KIND = wp ) |
---|
3564 | ibit0 = REAL( IBITS(advc_flag(k,j,i-1),0,1), KIND = wp ) |
---|
3565 | |
---|
3566 | u_comp = u(k,j,i) - u_gtrans + u_stokes_zu(k) |
---|
3567 | swap_flux_x_local(k,j) = u_comp * ( & |
---|
3568 | ( 37.0_wp * ibit2 * adv_sca_5 & |
---|
3569 | + 7.0_wp * ibit1 * adv_sca_3 & |
---|
3570 | + ibit0 * adv_sca_1 & |
---|
3571 | ) * & |
---|
3572 | ( sk(k,j,i) + sk(k,j,i-1) ) & |
---|
3573 | - ( 8.0_wp * ibit2 * adv_sca_5 & |
---|
3574 | + ibit1 * adv_sca_3 & |
---|
3575 | ) * & |
---|
3576 | ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
3577 | + ( ibit2 * adv_sca_5 & |
---|
3578 | ) * & |
---|
3579 | ( sk(k,j,i+2) + sk(k,j,i-3) ) & |
---|
3580 | ) |
---|
3581 | |
---|
3582 | swap_diss_x_local(k,j) = - ABS( u_comp ) * ( & |
---|
3583 | ( 10.0_wp * ibit2 * adv_sca_5 & |
---|
3584 | + 3.0_wp * ibit1 * adv_sca_3 & |
---|
3585 | + ibit0 * adv_sca_1 & |
---|
3586 | ) * & |
---|
3587 | ( sk(k,j,i) - sk(k,j,i-1) ) & |
---|
3588 | - ( 5.0_wp * ibit2 * adv_sca_5 & |
---|
3589 | + ibit1 * adv_sca_3 & |
---|
3590 | ) * & |
---|
3591 | ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
3592 | + ( ibit2 * adv_sca_5 & |
---|
3593 | ) * & |
---|
3594 | ( sk(k,j,i+2) - sk(k,j,i-3) ) & |
---|
3595 | ) |
---|
3596 | |
---|
3597 | ENDDO |
---|
3598 | |
---|
3599 | DO k = nzb_max_l+1, nzt |
---|
3600 | |
---|
3601 | u_comp = u(k,j,i) - u_gtrans + u_stokes_zu(k) |
---|
3602 | swap_flux_x_local(k,j) = u_comp * ( & |
---|
3603 | 37.0_wp * ( sk(k,j,i) + sk(k,j,i-1) ) & |
---|
3604 | - 8.0_wp * ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
3605 | + ( sk(k,j,i+2) + sk(k,j,i-3) ) & |
---|
3606 | ) * adv_sca_5 |
---|
3607 | |
---|
3608 | swap_diss_x_local(k,j) = - ABS( u_comp ) * ( & |
---|
3609 | 10.0_wp * ( sk(k,j,i) - sk(k,j,i-1) ) & |
---|
3610 | - 5.0_wp * ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
3611 | + ( sk(k,j,i+2) - sk(k,j,i-3) ) & |
---|
3612 | ) * adv_sca_5 |
---|
3613 | |
---|
3614 | ENDDO |
---|
3615 | |
---|
3616 | ENDIF |
---|
3617 | ! |
---|
3618 | !-- Compute southside fluxes of the respective PE bounds. |
---|
3619 | IF ( j == nys ) THEN |
---|
3620 | ! |
---|
3621 | !-- Up to the top of the highest topography. |
---|
3622 | DO k = nzb+1, nzb_max_l |
---|
3623 | |
---|
3624 | ibit5 = REAL( IBITS(advc_flag(k,j-1,i),5,1), KIND = wp ) |
---|
3625 | ibit4 = REAL( IBITS(advc_flag(k,j-1,i),4,1), KIND = wp ) |
---|
3626 | ibit3 = REAL( IBITS(advc_flag(k,j-1,i),3,1), KIND = wp ) |
---|
3627 | |
---|
3628 | v_comp = v(k,j,i) - v_gtrans + v_stokes_zu(k) |
---|
3629 | swap_flux_y_local(k) = v_comp * ( & |
---|
3630 | ( 37.0_wp * ibit5 * adv_sca_5 & |
---|
3631 | + 7.0_wp * ibit4 * adv_sca_3 & |
---|
3632 | + ibit3 * adv_sca_1 & |
---|
3633 | ) * & |
---|
3634 | ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
3635 | - ( 8.0_wp * ibit5 * adv_sca_5 & |
---|
3636 | + ibit4 * adv_sca_3 & |
---|
3637 | ) * & |
---|
3638 | ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
3639 | + ( ibit5 * adv_sca_5 & |
---|
3640 | ) * & |
---|
3641 | ( sk(k,j+2,i) + sk(k,j-3,i) ) & |
---|
3642 | ) |
---|
3643 | |
---|
3644 | swap_diss_y_local(k) = - ABS( v_comp ) * ( & |
---|
3645 | ( 10.0_wp * ibit5 * adv_sca_5 & |
---|
3646 | + 3.0_wp * ibit4 * adv_sca_3 & |
---|
3647 | + ibit3 * adv_sca_1 & |
---|
3648 | ) * & |
---|
3649 | ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
3650 | - ( 5.0_wp * ibit5 * adv_sca_5 & |
---|
3651 | + ibit4 * adv_sca_3 & |
---|
3652 | ) * & |
---|
3653 | ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
3654 | + ( ibit5 * adv_sca_5 & |
---|
3655 | ) * & |
---|
3656 | ( sk(k,j+2,i) - sk(k,j-3,i) ) & |
---|
3657 | ) |
---|
3658 | |
---|
3659 | ENDDO |
---|
3660 | ! |
---|
3661 | !-- Above to the top of the highest topography. No degradation necessary. |
---|
3662 | DO k = nzb_max_l+1, nzt |
---|
3663 | |
---|
3664 | v_comp = v(k,j,i) - v_gtrans + v_stokes_zu(k) |
---|
3665 | swap_flux_y_local(k) = v_comp * ( & |
---|
3666 | 37.0_wp * ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
3667 | - 8.0_wp * ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
3668 | + ( sk(k,j+2,i) + sk(k,j-3,i) ) & |
---|
3669 | ) * adv_sca_5 |
---|
3670 | swap_diss_y_local(k) = - ABS( v_comp ) * ( & |
---|
3671 | 10.0_wp * ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
3672 | - 5.0_wp * ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
3673 | + sk(k,j+2,i) - sk(k,j-3,i) & |
---|
3674 | ) * adv_sca_5 |
---|
3675 | |
---|
3676 | ENDDO |
---|
3677 | |
---|
3678 | ENDIF |
---|
3679 | #endif |
---|
3680 | ! |
---|
3681 | !-- Now compute the fluxes and tendency terms for the horizontal and vertical parts up to the |
---|
3682 | !-- top of the highest topography. |
---|
3683 | DO k = nzb+1, nzb_max_l |
---|
3684 | ! |
---|
3685 | !-- Note: It is faster to conduct all multiplications explicitly, e.g. * adv_sca_5 ... than |
---|
3686 | !-- to determine a factor and multiplicate the flux at the end. |
---|
3687 | ibit2 = REAL( IBITS(advc_flag(k,j,i),2,1), KIND = wp ) |
---|
3688 | ibit1 = REAL( IBITS(advc_flag(k,j,i),1,1), KIND = wp ) |
---|
3689 | ibit0 = REAL( IBITS(advc_flag(k,j,i),0,1), KIND = wp ) |
---|
3690 | |
---|
3691 | u_comp = u(k,j,i+1) - u_gtrans + u_stokes_zu(k) |
---|
3692 | flux_r(k) = u_comp * ( & |
---|
3693 | ( 37.0_wp * ibit2 * adv_sca_5 & |
---|
3694 | + 7.0_wp * ibit1 * adv_sca_3 & |
---|
3695 | + ibit0 * adv_sca_1 ) * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
3696 | - ( 8.0_wp * ibit2 * adv_sca_5 & |
---|
3697 | + ibit1 * adv_sca_3 ) * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
3698 | + ( ibit2 * adv_sca_5 ) * ( sk(k,j,i+3) + sk(k,j,i-2) ) & |
---|
3699 | ) |
---|
3700 | |
---|
3701 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
3702 | ( 10.0_wp * ibit2 * adv_sca_5 & |
---|
3703 | + 3.0_wp * ibit1 * adv_sca_3 & |
---|
3704 | + ibit0 * adv_sca_1 ) * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
3705 | - ( 5.0_wp * ibit2 * adv_sca_5 & |
---|
3706 | + ibit1 * adv_sca_3 ) * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
3707 | + ( ibit2 * adv_sca_5 ) * ( sk(k,j,i+3) - sk(k,j,i-2) ) & |
---|
3708 | ) |
---|
3709 | #ifdef _OPENACC |
---|
3710 | ! |
---|
3711 | !-- Recompute the left fluxes. |
---|
3712 | ibit2_l = REAL( IBITS(advc_flag(k,j,i-1),2,1), KIND = wp ) |
---|
3713 | ibit1_l = REAL( IBITS(advc_flag(k,j,i-1),1,1), KIND = wp ) |
---|
3714 | ibit0_l = REAL( IBITS(advc_flag(k,j,i-1),0,1), KIND = wp ) |
---|
3715 | |
---|
3716 | u_comp_l = u(k,j,i) - u_gtrans + u_stokes_zu(k) |
---|
3717 | flux_l(k) = u_comp_l * ( & |
---|
3718 | ( 37.0_wp * ibit2_l * adv_sca_5 & |
---|
3719 | + 7.0_wp * ibit1_l * adv_sca_3 & |
---|
3720 | + ibit0_l * adv_sca_1 & |
---|
3721 | ) * & |
---|
3722 | ( sk(k,j,i) + sk(k,j,i-1) ) & |
---|
3723 | - ( 8.0_wp * ibit2_l * adv_sca_5 & |
---|
3724 | + ibit1_l * adv_sca_3 & |
---|
3725 | ) * & |
---|
3726 | ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
3727 | + ( ibit2_l * adv_sca_5 & |
---|
3728 | ) * & |
---|
3729 | ( sk(k,j,i+2) + sk(k,j,i-3) ) & |
---|
3730 | ) |
---|
3731 | |
---|
3732 | diss_l(k) = - ABS( u_comp_l ) * ( & |
---|
3733 | ( 10.0_wp * ibit2_l * adv_sca_5 & |
---|
3734 | + 3.0_wp * ibit1_l * adv_sca_3 & |
---|
3735 | + ibit0_l * adv_sca_1 & |
---|
3736 | ) * & |
---|
3737 | ( sk(k,j,i) - sk(k,j,i-1) ) & |
---|
3738 | - ( 5.0_wp * ibit2_l * adv_sca_5 & |
---|
3739 | + ibit1_l * adv_sca_3 & |
---|
3740 | ) * & |
---|
3741 | ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
3742 | + ( ibit2_l * adv_sca_5 & |
---|
3743 | ) * & |
---|
3744 | ( sk(k,j,i+2) - sk(k,j,i-3) ) & |
---|
3745 | ) |
---|
3746 | #else |
---|
3747 | flux_l(k) = swap_flux_x_local(k,j) |
---|
3748 | diss_l(k) = swap_diss_x_local(k,j) |
---|
3749 | #endif |
---|
3750 | ibit5 = REAL( IBITS(advc_flag(k,j,i),5,1), KIND = wp ) |
---|
3751 | ibit4 = REAL( IBITS(advc_flag(k,j,i),4,1), KIND = wp ) |
---|
3752 | ibit3 = REAL( IBITS(advc_flag(k,j,i),3,1), KIND = wp ) |
---|
3753 | |
---|
3754 | v_comp = v(k,j+1,i) - v_gtrans + v_stokes_zu(k) |
---|
3755 | flux_n(k) = v_comp * ( & |
---|
3756 | ( 37.0_wp * ibit5 * adv_sca_5 & |
---|
3757 | + 7.0_wp * ibit4 * adv_sca_3 & |
---|
3758 | + ibit3 * adv_sca_1 ) * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
3759 | - ( 8.0_wp * ibit5 * adv_sca_5 & |
---|
3760 | + ibit4 * adv_sca_3 ) * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
3761 | + ( ibit5 * adv_sca_5 ) * ( sk(k,j+3,i) + sk(k,j-2,i) ) & |
---|
3762 | ) |
---|
3763 | |
---|
3764 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
3765 | ( 10.0_wp * ibit5 * adv_sca_5 & |
---|
3766 | + 3.0_wp * ibit4 * adv_sca_3 & |
---|
3767 | + ibit3 * adv_sca_1 ) * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
3768 | - ( 5.0_wp * ibit5 * adv_sca_5 & |
---|
3769 | + ibit4 * adv_sca_3 ) * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
3770 | + ( ibit5 * adv_sca_5 ) * ( sk(k,j+3,i) - sk(k,j-2,i) ) & |
---|
3771 | ) |
---|
3772 | #ifdef _OPENACC |
---|
3773 | ! |
---|
3774 | !-- Recompute the south fluxes. |
---|
3775 | ibit5_s = REAL( IBITS(advc_flag(k,j-1,i),5,1), KIND = wp ) |
---|
3776 | ibit4_s = REAL( IBITS(advc_flag(k,j-1,i),4,1), KIND = wp ) |
---|
3777 | ibit3_s = REAL( IBITS(advc_flag(k,j-1,i),3,1), KIND = wp ) |
---|
3778 | |
---|
3779 | v_comp_s = v(k,j,i) - v_gtrans + v_stokes_zu(k) |
---|
3780 | flux_s(k) = v_comp_s * ( & |
---|
3781 | ( 37.0_wp * ibit5_s * adv_sca_5 & |
---|
3782 | + 7.0_wp * ibit4_s * adv_sca_3 & |
---|
3783 | + ibit3_s * adv_sca_1 & |
---|
3784 | ) * & |
---|
3785 | ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
3786 | - ( 8.0_wp * ibit5_s * adv_sca_5 & |
---|
3787 | + ibit4_s * adv_sca_3 & |
---|
3788 | ) * & |
---|
3789 | ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
3790 | + ( ibit5_s * adv_sca_5 & |
---|
3791 | ) * & |
---|
3792 | ( sk(k,j+2,i) + sk(k,j-3,i) ) & |
---|
3793 | ) |
---|
3794 | |
---|
3795 | diss_s(k) = - ABS( v_comp_s ) * ( & |
---|
3796 | ( 10.0_wp * ibit5_s * adv_sca_5 & |
---|
3797 | + 3.0_wp * ibit4_s * adv_sca_3 & |
---|
3798 | + ibit3_s * adv_sca_1 & |
---|
3799 | ) * & |
---|
3800 | ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
3801 | - ( 5.0_wp * ibit5_s * adv_sca_5 & |
---|
3802 | + ibit4_s * adv_sca_3 & |
---|
3803 | ) * & |
---|
3804 | ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
3805 | + ( ibit5_s * adv_sca_5 & |
---|
3806 | ) * & |
---|
3807 | ( sk(k,j+2,i) - sk(k,j-3,i) ) & |
---|
3808 | ) |
---|
3809 | #else |
---|
3810 | flux_s(k) = swap_flux_y_local(k) |
---|
3811 | diss_s(k) = swap_diss_y_local(k) |
---|
3812 | #endif |
---|
3813 | ENDDO |
---|
3814 | ! |
---|
3815 | !-- Now compute the fluxes and tendency terms for the horizontal and vertical parts above the |
---|
3816 | !-- top of the highest topography. No degradation for the horizontal parts, but for the |
---|
3817 | !-- vertical it is still needed. |
---|
3818 | DO k = nzb_max_l+1, nzt |
---|
3819 | |
---|
3820 | u_comp = u(k,j,i+1) - u_gtrans + u_stokes_zu(k) |
---|
3821 | flux_r(k) = u_comp * ( & |
---|
3822 | 37.0_wp * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
3823 | - 8.0_wp * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
3824 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) * adv_sca_5 |
---|
3825 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
3826 | 10.0_wp * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
3827 | - 5.0_wp * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
3828 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) * adv_sca_5 |
---|
3829 | #ifdef _OPENACC |
---|
3830 | ! |
---|
3831 | !-- Recompute the left fluxes. |
---|
3832 | u_comp_l = u(k,j,i) - u_gtrans + u_stokes_zu(k) |
---|
3833 | flux_l(k) = u_comp_l * ( & |
---|
3834 | 37.0_wp * ( sk(k,j,i) + sk(k,j,i-1) ) & |
---|
3835 | - 8.0_wp * ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
3836 | + ( sk(k,j,i+2) + sk(k,j,i-3) ) ) * adv_sca_5 |
---|
3837 | |
---|
3838 | diss_l(k) = - ABS( u_comp_l ) * ( & |
---|
3839 | 10.0_wp * ( sk(k,j,i) - sk(k,j,i-1) ) & |
---|
3840 | - 5.0_wp * ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
3841 | + ( sk(k,j,i+2) - sk(k,j,i-3) ) ) * adv_sca_5 |
---|
3842 | #else |
---|
3843 | flux_l(k) = swap_flux_x_local(k,j) |
---|
3844 | diss_l(k) = swap_diss_x_local(k,j) |
---|
3845 | |
---|
3846 | #endif |
---|
3847 | |
---|
3848 | v_comp = v(k,j+1,i) - v_gtrans + v_stokes_zu(k) |
---|
3849 | flux_n(k) = v_comp * ( & |
---|
3850 | 37.0_wp * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
3851 | - 8.0_wp * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
3852 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) * adv_sca_5 |
---|
3853 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
3854 | 10.0_wp * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
3855 | - 5.0_wp * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
3856 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) * adv_sca_5 |
---|
3857 | #ifdef _OPENACC |
---|
3858 | ! |
---|
3859 | !-- Recompute the south fluxes. |
---|
3860 | v_comp_s = v(k,j,i) - v_gtrans + v_stokes_zu(k) |
---|
3861 | flux_s(k) = v_comp_s * ( & |
---|
3862 | 37.0_wp * ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
3863 | - 8.0_wp * ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
3864 | + ( sk(k,j+2,i) + sk(k,j-3,i) ) ) * adv_sca_5 |
---|
3865 | diss_s(k) = - ABS( v_comp_s ) * ( & |
---|
3866 | 10.0_wp * ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
3867 | - 5.0_wp * ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
3868 | + ( sk(k,j+2,i) - sk(k,j-3,i) ) ) * adv_sca_5 |
---|
3869 | #else |
---|
3870 | flux_s(k) = swap_flux_y_local(k) |
---|
3871 | diss_s(k) = swap_diss_y_local(k) |
---|
3872 | #endif |
---|
3873 | ENDDO |
---|
3874 | ! |
---|
3875 | !-- Now, compute vertical fluxes. Split loop into a part treating the lowest grid points with |
---|
3876 | !-- indirect indexing, a main loop without indirect indexing, and a loop for the uppermost |
---|
3877 | !-- grid points with indirect indexing. This allows better vectorization for the main loop. |
---|
3878 | !-- First, compute the flux at model surface, which need has to be calculated explicetely for |
---|
3879 | !-- the tendency at the first w-level. For topography wall this is done implicitely by |
---|
3880 | !-- advc_flag. |
---|
3881 | flux_t(nzb) = 0.0_wp |
---|
3882 | diss_t(nzb) = 0.0_wp |
---|
3883 | |
---|
3884 | DO k = nzb+1, nzb+1 |
---|
3885 | ibit8 = REAL( IBITS(advc_flag(k,j,i),8,1), KIND = wp ) |
---|
3886 | ibit7 = REAL( IBITS(advc_flag(k,j,i),7,1), KIND = wp ) |
---|
3887 | ibit6 = REAL( IBITS(advc_flag(k,j,i),6,1), KIND = wp ) |
---|
3888 | ! |
---|
3889 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
3890 | k_ppp = k + 3 * ibit8 |
---|
3891 | k_pp = k + 2 * ( 1 - ibit6 ) |
---|
3892 | k_mm = k - 2 * ibit8 |
---|
3893 | |
---|
3894 | |
---|
3895 | flux_t(k) = w(k,j,i) * rho_air_zw(k) * ( & |
---|
3896 | ( 37.0_wp * ibit8 * adv_sca_5 & |
---|
3897 | + 7.0_wp * ibit7 * adv_sca_3 & |
---|
3898 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
3899 | - ( 8.0_wp * ibit8 * adv_sca_5 & |
---|
3900 | + ibit7 * adv_sca_3 ) * ( sk(k_pp,j,i) + sk(k-1,j,i) ) & |
---|
3901 | + ( ibit8 * adv_sca_5 ) * ( sk(k_ppp,j,i) + sk(k_mm,j,i) ) & |
---|
3902 | ) |
---|
3903 | |
---|
3904 | diss_t(k) = - ABS( w(k,j,i) ) * rho_air_zw(k) * ( & |
---|
3905 | ( 10.0_wp * ibit8 * adv_sca_5 & |
---|
3906 | + 3.0_wp * ibit7 * adv_sca_3 & |
---|
3907 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
3908 | - ( 5.0_wp * ibit8 * adv_sca_5 & |
---|
3909 | + ibit7 * adv_sca_3 ) * ( sk(k_pp,j,i) - sk(k-1,j,i) ) & |
---|
3910 | + ( ibit8 * adv_sca_5 ) * ( sk(k_ppp,j,i) - sk(k_mm,j,i) ) & |
---|
3911 | ) |
---|
3912 | ENDDO |
---|
3913 | |
---|
3914 | DO k = nzb+2, nzt-2 |
---|
3915 | ibit8 = REAL( IBITS(advc_flag(k,j,i),8,1), KIND = wp ) |
---|
3916 | ibit7 = REAL( IBITS(advc_flag(k,j,i),7,1), KIND = wp ) |
---|
3917 | ibit6 = REAL( IBITS(advc_flag(k,j,i),6,1), KIND = wp ) |
---|
3918 | |
---|
3919 | flux_t(k) = w(k,j,i) * rho_air_zw(k) * ( & |
---|
3920 | ( 37.0_wp * ibit8 * adv_sca_5 & |
---|
3921 | + 7.0_wp * ibit7 * adv_sca_3 & |
---|
3922 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
3923 | - ( 8.0_wp * ibit8 * adv_sca_5 & |
---|
3924 | + ibit7 * adv_sca_3 ) * ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
3925 | + ( ibit8 * adv_sca_5 ) * ( sk(k+3,j,i) + sk(k-2,j,i) ) & |
---|
3926 | ) |
---|
3927 | |
---|
3928 | diss_t(k) = - ABS( w(k,j,i) ) * rho_air_zw(k) * ( & |
---|
3929 | ( 10.0_wp * ibit8 * adv_sca_5 & |
---|
3930 | + 3.0_wp * ibit7 * adv_sca_3 & |
---|
3931 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
3932 | - ( 5.0_wp * ibit8 * adv_sca_5 & |
---|
3933 | + ibit7 * adv_sca_3 ) * ( sk(k+2,j,i) - sk(k-1,j,i) ) & |
---|
3934 | + ( ibit8 * adv_sca_5 ) * ( sk(k+3,j,i) - sk(k-2,j,i) ) & |
---|
3935 | ) |
---|
3936 | ENDDO |
---|
3937 | |
---|
3938 | DO k = nzt-1, nzt-symmetry_flag |
---|
3939 | ibit8 = REAL( IBITS(advc_flag(k,j,i),8,1), KIND = wp ) |
---|
3940 | ibit7 = REAL( IBITS(advc_flag(k,j,i),7,1), KIND = wp ) |
---|
3941 | ibit6 = REAL( IBITS(advc_flag(k,j,i),6,1), KIND = wp ) |
---|
3942 | ! |
---|
3943 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
3944 | k_ppp = k + 3 * ibit8 |
---|
3945 | k_pp = k + 2 * ( 1 - ibit6 ) |
---|
3946 | k_mm = k - 2 * ibit8 |
---|
3947 | |
---|
3948 | flux_t(k) = w(k,j,i) * rho_air_zw(k) * ( & |
---|
3949 | ( 37.0_wp * ibit8 * adv_sca_5 & |
---|
3950 | + 7.0_wp * ibit7 * adv_sca_3 & |
---|
3951 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
3952 | - ( 8.0_wp * ibit8 * adv_sca_5 & |
---|
3953 | + ibit7 * adv_sca_3 ) * ( sk(k_pp,j,i) + sk(k-1,j,i) ) & |
---|
3954 | + ( ibit8 * adv_sca_5 ) * ( sk(k_ppp,j,i)+ sk(k_mm,j,i) ) & |
---|
3955 | ) |
---|
3956 | |
---|
3957 | diss_t(k) = - ABS( w(k,j,i) ) * rho_air_zw(k) * ( & |
---|
3958 | ( 10.0_wp * ibit8 * adv_sca_5 & |
---|
3959 | + 3.0_wp * ibit7 * adv_sca_3 & |
---|
3960 | + ibit6 * adv_sca_1 ) * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
3961 | - ( 5.0_wp * ibit8 * adv_sca_5 & |
---|
3962 | + ibit7 * adv_sca_3 ) * ( sk(k_pp,j,i) - sk(k-1,j,i) ) & |
---|
3963 | + ( ibit8 * adv_sca_5 ) * ( sk(k_ppp,j,i) - sk(k_mm,j,i) ) & |
---|
3964 | ) |
---|
3965 | ENDDO |
---|
3966 | |
---|
3967 | ! |
---|
3968 | !-- Set resolved/turbulent flux at model top to zero (w-level). In case that a symmetric |
---|
3969 | !-- behavior between bottom and top shall be guaranteed (closed channel flow), the flux at nzt |
---|
3970 | !-- is also set to zero. |
---|
3971 | IF ( symmetry_flag == 1 ) THEN |
---|
3972 | flux_t(nzt) = 0.0_wp |
---|
3973 | diss_t(nzt) = 0.0_wp |
---|
3974 | ENDIF |
---|
3975 | flux_t(nzt+1) = 0.0_wp |
---|
3976 | diss_t(nzt+1) = 0.0_wp |
---|
3977 | |
---|
3978 | DO k = nzb+1, nzb_max_l |
---|
3979 | |
---|
3980 | flux_d = flux_t(k-1) |
---|
3981 | diss_d = diss_t(k-1) |
---|
3982 | |
---|
3983 | ibit2 = REAL( IBITS(advc_flag(k,j,i),2,1), KIND = wp ) |
---|
3984 | ibit1 = REAL( IBITS(advc_flag(k,j,i),1,1), KIND = wp ) |
---|
3985 | ibit0 = REAL( IBITS(advc_flag(k,j,i),0,1), KIND = wp ) |
---|
3986 | |
---|
3987 | ibit5 = REAL( IBITS(advc_flag(k,j,i),5,1), KIND = wp ) |
---|
3988 | ibit4 = REAL( IBITS(advc_flag(k,j,i),4,1), KIND = wp ) |
---|
3989 | ibit3 = REAL( IBITS(advc_flag(k,j,i),3,1), KIND = wp ) |
---|
3990 | |
---|
3991 | ibit8 = REAL( IBITS(advc_flag(k,j,i),8,1), KIND = wp ) |
---|
3992 | ibit7 = REAL( IBITS(advc_flag(k,j,i),7,1), KIND = wp ) |
---|
3993 | ibit6 = REAL( IBITS(advc_flag(k,j,i),6,1), KIND = wp ) |
---|
3994 | ! |
---|
3995 | !-- Calculate the divergence of the velocity field. A respective correction is needed to |
---|
3996 | !-- overcome numerical instabilities introduced by an insufficient reduction of divergences |
---|
3997 | !-- near topography. |
---|
3998 | div = ( u(k,j,i+1) * ( ibit0 + ibit1 + ibit2 ) & |
---|
3999 | - u(k,j,i) * ( & |
---|
4000 | REAL( IBITS(advc_flag(k,j,i-1),0,1), KIND = wp ) & |
---|
4001 | + REAL( IBITS(advc_flag(k,j,i-1),1,1), KIND = wp ) & |
---|
4002 | + REAL( IBITS(advc_flag(k,j,i-1),2,1), KIND = wp ) & |
---|
4003 | ) & |
---|
4004 | ) * ddx & |
---|
4005 | + ( v(k,j+1,i) * ( ibit3 + ibit4 + ibit5 ) & |
---|
4006 | - v(k,j,i) * ( & |
---|
4007 | REAL( IBITS(advc_flag(k,j-1,i),3,1), KIND = wp ) & |
---|
4008 | + REAL( IBITS(advc_flag(k,j-1,i),4,1), KIND = wp ) & |
---|
4009 | + REAL( IBITS(advc_flag(k,j-1,i),5,1), KIND = wp ) & |
---|
4010 | ) & |
---|
4011 | ) * ddy & |
---|
4012 | + ( w(k,j,i) * rho_air_zw(k) * & |
---|
4013 | ( ibit6 + ibit7 + ibit8 ) & |
---|
4014 | - w(k-1,j,i) * rho_air_zw(k-1) * & |
---|
4015 | ( & |
---|
4016 | REAL( IBITS(advc_flag(k-1,j,i),6,1), KIND = wp ) & |
---|
4017 | + REAL( IBITS(advc_flag(k-1,j,i),7,1), KIND = wp ) & |
---|
4018 | + REAL( IBITS(advc_flag(k-1,j,i),8,1), KIND = wp ) & |
---|
4019 | ) & |
---|
4020 | ) * drho_air(k) * ddzw(k) |
---|
4021 | |
---|
4022 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
4023 | ( flux_r(k) + diss_r(k) - & |
---|
4024 | flux_l(k) - diss_l(k) ) * ddx & |
---|
4025 | + ( flux_n(k) + diss_n(k) - & |
---|
4026 | flux_s(k) - diss_s(k) ) * ddy & |
---|
4027 | + ( flux_t(k) + diss_t(k) - & |
---|
4028 | flux_d - diss_d ) * drho_air(k) * ddzw(k) & |
---|
4029 | ) + sk(k,j,i) * div |
---|
4030 | |
---|
4031 | #ifndef _OPENACC |
---|
4032 | swap_flux_y_local(k) = flux_n(k) |
---|
4033 | swap_diss_y_local(k) = diss_n(k) |
---|
4034 | swap_flux_x_local(k,j) = flux_r(k) |
---|
4035 | swap_diss_x_local(k,j) = diss_r(k) |
---|
4036 | #endif |
---|
4037 | |
---|
4038 | ENDDO |
---|
4039 | |
---|
4040 | DO k = nzb_max_l+1, nzt |
---|
4041 | |
---|
4042 | flux_d = flux_t(k-1) |
---|
4043 | diss_d = diss_t(k-1) |
---|
4044 | ! |
---|
4045 | !-- Calculate the divergence of the velocity field. A respective correction is needed to |
---|
4046 | !-- overcome numerical instabilities introduced by an insufficient reduction of divergences |
---|
4047 | !-- near topography. |
---|
4048 | div = ( u(k,j,i+1) - u(k,j,i) ) * ddx & |
---|
4049 | + ( v(k,j+1,i) - v(k,j,i) ) * ddy & |
---|
4050 | + ( w(k,j,i) * rho_air_zw(k) & |
---|
4051 | - w(k-1,j,i) * rho_air_zw(k-1) & |
---|
4052 | ) * drho_air(k) * ddzw(k) |
---|
4053 | |
---|
4054 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
4055 | ( flux_r(k) + diss_r(k) - & |
---|
4056 | flux_l(k) - diss_l(k) ) * ddx & |
---|
4057 | + ( flux_n(k) + diss_n(k) - & |
---|
4058 | flux_s(k) - diss_s(k) ) * ddy & |
---|
4059 | + ( flux_t(k) + diss_t(k) - & |
---|
4060 | flux_d - diss_d ) * drho_air(k) * ddzw(k) & |
---|
4061 | ) + sk(k,j,i) * div |
---|
4062 | |
---|
4063 | #ifndef _OPENACC |
---|
4064 | swap_flux_y_local(k) = flux_n(k) |
---|
4065 | swap_diss_y_local(k) = diss_n(k) |
---|
4066 | swap_flux_x_local(k,j) = flux_r(k) |
---|
4067 | swap_diss_x_local(k,j) = diss_r(k) |
---|
4068 | #endif |
---|
4069 | ENDDO |
---|
4070 | |
---|
4071 | ! |
---|
4072 | !-- Evaluation of statistics. |
---|
4073 | DO k = nzb+1, nzt |
---|
4074 | SELECT CASE ( sk_num ) |
---|
4075 | |
---|
4076 | CASE ( 1 ) |
---|
4077 | !$ACC ATOMIC |
---|
4078 | sums_wspts_ws_l(k,tn) = sums_wspts_ws_l(k,tn) + & |
---|
4079 | ( flux_t(k) & |
---|
4080 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4081 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4082 | + diss_t(k) & |
---|
4083 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4084 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4085 | ) * weight_substep(intermediate_timestep_count) |
---|
4086 | CASE ( 2 ) |
---|
4087 | !$ACC ATOMIC |
---|
4088 | sums_wssas_ws_l(k,tn) = sums_wssas_ws_l(k,tn) + & |
---|
4089 | ( flux_t(k) & |
---|
4090 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4091 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4092 | + diss_t(k) & |
---|
4093 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4094 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4095 | ) * weight_substep(intermediate_timestep_count) |
---|
4096 | CASE ( 3 ) |
---|
4097 | !$ACC ATOMIC |
---|
4098 | sums_wsqs_ws_l(k,tn) = sums_wsqs_ws_l(k,tn) + & |
---|
4099 | ( flux_t(k) & |
---|
4100 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4101 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4102 | + diss_t(k) & |
---|
4103 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4104 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4105 | ) * weight_substep(intermediate_timestep_count) |
---|
4106 | CASE ( 4 ) |
---|
4107 | !$ACC ATOMIC |
---|
4108 | sums_wsqcs_ws_l(k,tn) = sums_wsqcs_ws_l(k,tn) + & |
---|
4109 | ( flux_t(k) & |
---|
4110 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4111 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4112 | + diss_t(k) & |
---|
4113 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4114 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4115 | ) * weight_substep(intermediate_timestep_count) |
---|
4116 | CASE ( 5 ) |
---|
4117 | !$ACC ATOMIC |
---|
4118 | sums_wsqrs_ws_l(k,tn) = sums_wsqrs_ws_l(k,tn) + & |
---|
4119 | ( flux_t(k) & |
---|
4120 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4121 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4122 | + diss_t(k) & |
---|
4123 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4124 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4125 | ) * weight_substep(intermediate_timestep_count) |
---|
4126 | CASE ( 6 ) |
---|
4127 | !$ACC ATOMIC |
---|
4128 | sums_wsncs_ws_l(k,tn) = sums_wsncs_ws_l(k,tn) + & |
---|
4129 | ( flux_t(k) & |
---|
4130 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4131 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4132 | + diss_t(k) & |
---|
4133 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4134 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4135 | ) * weight_substep(intermediate_timestep_count) |
---|
4136 | CASE ( 7 ) |
---|
4137 | !$ACC ATOMIC |
---|
4138 | sums_wsnrs_ws_l(k,tn) = sums_wsnrs_ws_l(k,tn) + & |
---|
4139 | ( flux_t(k) & |
---|
4140 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4141 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4142 | + diss_t(k) & |
---|
4143 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4144 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4145 | ) * weight_substep(intermediate_timestep_count) |
---|
4146 | CASE ( 8 ) |
---|
4147 | !$ACC ATOMIC |
---|
4148 | sums_wsss_ws_l(k,tn) = sums_wsss_ws_l(k,tn) + & |
---|
4149 | ( flux_t(k) & |
---|
4150 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4151 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4152 | + diss_t(k) & |
---|
4153 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4154 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4155 | ) * weight_substep(intermediate_timestep_count) |
---|
4156 | CASE ( 9 ) |
---|
4157 | !$ACC ATOMIC |
---|
4158 | sums_salsa_ws_l(k,tn) = sums_salsa_ws_l(k,tn) + & |
---|
4159 | ( flux_t(k) & |
---|
4160 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4161 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4162 | + diss_t(k) & |
---|
4163 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4164 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4165 | ) * weight_substep(intermediate_timestep_count) |
---|
4166 | CASE ( 10 ) |
---|
4167 | !$ACC ATOMIC |
---|
4168 | sums_wsnis_ws_l(k,tn) = sums_wsnis_ws_l(k,tn) + & |
---|
4169 | ( flux_t(k) & |
---|
4170 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4171 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4172 | + diss_t(k) & |
---|
4173 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4174 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4175 | ) * weight_substep(intermediate_timestep_count) |
---|
4176 | CASE ( 11 ) |
---|
4177 | !$ACC ATOMIC |
---|
4178 | sums_wsqis_ws_l(k,tn) = sums_wsqis_ws_l(k,tn) + & |
---|
4179 | ( flux_t(k) & |
---|
4180 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4181 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4182 | + diss_t(k) & |
---|
4183 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4184 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4185 | ) * weight_substep(intermediate_timestep_count) |
---|
4186 | CASE ( 12 ) |
---|
4187 | !$ACC ATOMIC |
---|
4188 | sums_wsngs_ws_l(k,tn) = sums_wsngs_ws_l(k,tn) + & |
---|
4189 | ( flux_t(k) & |
---|
4190 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4191 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4192 | + diss_t(k) & |
---|
4193 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4194 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4195 | ) * weight_substep(intermediate_timestep_count) |
---|
4196 | CASE ( 13 ) |
---|
4197 | !$ACC ATOMIC |
---|
4198 | sums_wsqgs_ws_l(k,tn) = sums_wsqgs_ws_l(k,tn) + & |
---|
4199 | ( flux_t(k) & |
---|
4200 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4201 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4202 | + diss_t(k) & |
---|
4203 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4204 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4205 | ) * weight_substep(intermediate_timestep_count) |
---|
4206 | |
---|
4207 | CASE ( 14 ) |
---|
4208 | !$ACC ATOMIC |
---|
4209 | sums_wsnss_ws_l(k,tn) = sums_wsnss_ws_l(k,tn) + & |
---|
4210 | ( flux_t(k) & |
---|
4211 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4212 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4213 | + diss_t(k) & |
---|
4214 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4215 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4216 | ) * weight_substep(intermediate_timestep_count) |
---|
4217 | CASE ( 15 ) |
---|
4218 | !$ACC ATOMIC |
---|
4219 | sums_wsqss_ws_l(k,tn) = sums_wsqss_ws_l(k,tn) + & |
---|
4220 | ( flux_t(k) & |
---|
4221 | / ( w(k,j,i) + SIGN( 1.0E-20_wp, w(k,j,i) ) ) & |
---|
4222 | * ( w(k,j,i) - hom(k,1,3,0) ) & |
---|
4223 | + diss_t(k) & |
---|
4224 | / ( ABS(w(k,j,i)) + 1.0E-20_wp ) & |
---|
4225 | * ABS(w(k,j,i) - hom(k,1,3,0) ) & |
---|
4226 | ) * weight_substep(intermediate_timestep_count) |
---|
4227 | |
---|
4228 | |
---|
4229 | END SELECT |
---|
4230 | |
---|
4231 | ENDDO |
---|
4232 | ENDDO |
---|
4233 | ENDDO |
---|
4234 | |
---|
4235 | CALL cpu_log( log_point_s(49), 'advec_s_ws', 'stop' ) |
---|
4236 | |
---|
4237 | END SUBROUTINE advec_s_ws |
---|
4238 | |
---|
4239 | |
---|
4240 | !--------------------------------------------------------------------------------------------------! |
---|
4241 | ! Description: |
---|
4242 | ! ------------ |
---|
4243 | !> Advection of u - Call for all grid points |
---|
4244 | !--------------------------------------------------------------------------------------------------! |
---|
4245 | SUBROUTINE advec_u_ws |
---|
4246 | |
---|
4247 | |
---|
4248 | INTEGER(iwp) :: i !< grid index along x-direction |
---|
4249 | INTEGER(iwp) :: j !< grid index along y-direction |
---|
4250 | INTEGER(iwp) :: k !< grid index along z-direction |
---|
4251 | INTEGER(iwp) :: k_mm !< k-2 index in disretization, can be modified to avoid segmentation faults |
---|
4252 | INTEGER(iwp) :: k_pp !< k+2 index in disretization, can be modified to avoid segmentation faults |
---|
4253 | INTEGER(iwp) :: k_ppp !< k+3 index in disretization, can be modified to avoid segmentation faults |
---|
4254 | INTEGER(iwp) :: nzb_max_l !< index indicating upper bound for order degradation of horizontal advection terms |
---|
4255 | INTEGER(iwp) :: tn = 0 !< number of OpenMP thread (is always zero here) |
---|
4256 | |
---|
4257 | REAL(wp) :: ibit0 !< flag indicating 1st-order scheme along x-direction |
---|
4258 | REAL(wp) :: ibit1 !< flag indicating 3rd-order scheme along x-direction |
---|
4259 | REAL(wp) :: ibit2 !< flag indicating 5th-order scheme along x-direction |
---|
4260 | #ifdef _OPENACC |
---|
4261 | REAL(wp) :: ibit0_l !< flag indicating 1st-order scheme along x-direction |
---|
4262 | REAL(wp) :: ibit1_l !< flag indicating 3rd-order scheme along x-direction |
---|
4263 | REAL(wp) :: ibit2_l !< flag indicating 5th-order scheme along x-direction |
---|
4264 | #endif |
---|
4265 | REAL(wp) :: ibit3 !< flag indicating 1st-order scheme along y-direction |
---|
4266 | REAL(wp) :: ibit4 !< flag indicating 3rd-order scheme along y-direction |
---|
4267 | REAL(wp) :: ibit5 !< flag indicating 5th-order scheme along y-direction |
---|
4268 | #ifdef _OPENACC |
---|
4269 | REAL(wp) :: ibit3_s !< flag indicating 1st-order scheme along y-direction |
---|
4270 | REAL(wp) :: ibit4_s !< flag indicating 3rd-order scheme along y-direction |
---|
4271 | REAL(wp) :: ibit5_s !< flag indicating 5th-order scheme along y-direction |
---|
4272 | #endif |
---|
4273 | REAL(wp) :: diss_d !< artificial dissipation term at grid box bottom |
---|
4274 | REAL(wp) :: div !< diverence on u-grid |
---|
4275 | REAL(wp) :: flux_d !< 6th-order flux at grid box bottom |
---|
4276 | REAL(wp) :: gu !< Galilei-transformation velocity along x |
---|
4277 | REAL(wp) :: gv !< Galilei-transformation velocity along y |
---|
4278 | REAL(wp) :: ibit6 !< flag indicating 1st-order scheme along z-direction |
---|
4279 | REAL(wp) :: ibit7 !< flag indicating 3rd-order scheme along z-direction |
---|
4280 | REAL(wp) :: ibit8 !< flag indicating 5th-order scheme along z-direction |
---|
4281 | REAL(wp) :: u_comp_l !< |
---|
4282 | REAL(wp) :: v_comp_s !< advection velocity along y |
---|
4283 | |
---|
4284 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_n !< discretized artificial dissipation at northward-side of the grid box |
---|
4285 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_r !< discretized artificial dissipation at rightward-side of the grid box |
---|
4286 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_t !< discretized artificial dissipation at top of the grid box |
---|
4287 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_n !< discretized 6th-order flux at northward-side of the grid box |
---|
4288 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_r !< discretized 6th-order flux at rightward-side of the grid box |
---|
4289 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_t !< discretized 6th-order flux at top of the grid box |
---|
4290 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_comp !< advection velocity along x |
---|
4291 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_comp !< advection velocity along y |
---|
4292 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_comp !< advection velocity along z |
---|
4293 | |
---|
4294 | CALL cpu_log( log_point_s(68), 'advec_u_ws', 'start' ) |
---|
4295 | |
---|
4296 | gu = 2.0_wp * u_gtrans |
---|
4297 | gv = 2.0_wp * v_gtrans |
---|
4298 | |
---|
4299 | !$ACC PARALLEL LOOP COLLAPSE(2) FIRSTPRIVATE(tn, gu, gv) & |
---|
4300 | !$ACC PRIVATE(i, j, k, k_mm, k_pp, k_ppp) & |
---|
4301 | !$ACC PRIVATE(ibit0, ibit1, ibit2, ibit3, ibit4, ibit5) & |
---|
4302 | !$ACC PRIVATE(ibit0_l, ibit1_l, ibit2_l) & |
---|
4303 | !$ACC PRIVATE(ibit3_s, ibit4_s, ibit5_s) & |
---|
4304 | !$ACC PRIVATE(nzb_max_l) & |
---|
4305 | !$ACC PRIVATE(ibit6, ibit7, ibit8) & |
---|
4306 | !$ACC PRIVATE(flux_r, diss_r) & |
---|
4307 | !$ACC PRIVATE(flux_n, diss_n) & |
---|
4308 | !$ACC PRIVATE(flux_t, diss_t, flux_d, diss_d) & |
---|
4309 | !$ACC PRIVATE(flux_l_u, diss_l_u, flux_s_u, diss_s_u) & |
---|
4310 | !$ACC PRIVATE(div, u_comp, u_comp_l, v_comp, v_comp_s, w_comp) & |
---|
4311 | !$ACC PRESENT(advc_flags_m) & |
---|
4312 | !$ACC PRESENT(u, v, w) & |
---|
4313 | !$ACC PRESENT(drho_air, rho_air_zw, ddzw) & |
---|
4314 | !$ACC PRESENT(tend) & |
---|
4315 | !$ACC PRESENT(hom(:,1,1:3,0)) & |
---|
4316 | !$ACC PRESENT(weight_substep(intermediate_timestep_count)) & |
---|
4317 | !$ACC PRESENT(sums_us2_ws_l, sums_wsus_ws_l) |
---|
4318 | DO i = nxlu, nxr |
---|
4319 | |
---|
4320 | DO j = nys, nyn |
---|
4321 | ! |
---|
4322 | !-- Used local modified copy of nzb_max (used to degrade order of discretization) at |
---|
4323 | !-- non-cyclic boundaries. Modify only at relevant points instead of the entire subdomain. |
---|
4324 | !-- This should lead to better load balance between boundary and non-boundary PEs. |
---|
4325 | IF( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i <= nxl + 2 .OR. & |
---|
4326 | ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i >= nxr - 2 .OR. & |
---|
4327 | ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j <= nys + 2 .OR. & |
---|
4328 | ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j >= nyn - 2 ) THEN |
---|
4329 | nzb_max_l = nzt |
---|
4330 | ELSE |
---|
4331 | nzb_max_l = nzb_max |
---|
4332 | END IF |
---|
4333 | #ifndef _OPENACC |
---|
4334 | ! |
---|
4335 | !-- Compute southside fluxes for the respective boundary of PE |
---|
4336 | IF ( j == nys ) THEN |
---|
4337 | |
---|
4338 | DO k = nzb+1, nzb_max_l |
---|
4339 | |
---|
4340 | ibit5 = REAL( IBITS(advc_flags_m(k,j-1,i),5,1), KIND = wp ) |
---|
4341 | ibit4 = REAL( IBITS(advc_flags_m(k,j-1,i),4,1), KIND = wp ) |
---|
4342 | ibit3 = REAL( IBITS(advc_flags_m(k,j-1,i),3,1), KIND = wp ) |
---|
4343 | |
---|
4344 | v_comp_s = v(k,j,i) + v(k,j,i-1) - gv |
---|
4345 | flux_s_u(k,tn) = v_comp_s * ( & |
---|
4346 | ( 37.0_wp * ibit5 * adv_mom_5 & |
---|
4347 | + 7.0_wp * ibit4 * adv_mom_3 & |
---|
4348 | + ibit3 * adv_mom_1 ) * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
4349 | - ( 8.0_wp * ibit5 * adv_mom_5 & |
---|
4350 | + ibit4 * adv_mom_3 ) * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
4351 | + ( ibit5 * adv_mom_5 ) * ( u(k,j+2,i) + u(k,j-3,i) ) & |
---|
4352 | ) |
---|
4353 | |
---|
4354 | diss_s_u(k,tn) = - ABS ( v_comp_s ) * ( & |
---|
4355 | ( 10.0_wp * ibit5 * adv_mom_5 & |
---|
4356 | + 3.0_wp * ibit4 * adv_mom_3 & |
---|
4357 | + ibit3 * adv_mom_1 ) * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
4358 | - ( 5.0_wp * ibit5 * adv_mom_5 & |
---|
4359 | + ibit4 * adv_mom_3 ) * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
4360 | + ( ibit5 * adv_mom_5 ) * ( u(k,j+2,i) - u(k,j-3,i) ) & |
---|
4361 | ) |
---|
4362 | |
---|
4363 | ENDDO |
---|
4364 | |
---|
4365 | DO k = nzb_max_l+1, nzt |
---|
4366 | |
---|
4367 | v_comp_s = v(k,j,i) + v(k,j,i-1) - gv |
---|
4368 | flux_s_u(k,tn) = v_comp_s * ( & |
---|
4369 | 37.0_wp * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
4370 | - 8.0_wp * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
4371 | + ( u(k,j+2,i) + u(k,j-3,i) ) ) * adv_mom_5 |
---|
4372 | diss_s_u(k,tn) = - ABS( v_comp_s ) * ( & |
---|
4373 | 10.0_wp * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
4374 | - 5.0_wp * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
4375 | + ( u(k,j+2,i) - u(k,j-3,i) ) ) * adv_mom_5 |
---|
4376 | |
---|
4377 | ENDDO |
---|
4378 | |
---|
4379 | ENDIF |
---|
4380 | ! |
---|
4381 | !-- Compute leftside fluxes for the respective boundary of PE |
---|
4382 | IF ( i == nxlu ) THEN |
---|
4383 | |
---|
4384 | DO k = nzb+1, nzb_max_l |
---|
4385 | |
---|
4386 | ibit2 = REAL( IBITS(advc_flags_m(k,j,i-1),2,1), KIND = wp ) |
---|
4387 | ibit1 = REAL( IBITS(advc_flags_m(k,j,i-1),1,1), KIND = wp ) |
---|
4388 | ibit0 = REAL( IBITS(advc_flags_m(k,j,i-1),0,1), KIND = wp ) |
---|
4389 | |
---|
4390 | u_comp_l = u(k,j,i) + u(k,j,i-1) - gu |
---|
4391 | flux_l_u(k,j,tn) = u_comp_l * ( & |
---|
4392 | ( 37.0_wp * ibit2 * adv_mom_5 & |
---|
4393 | + 7.0_wp * ibit1 * adv_mom_3 & |
---|
4394 | + ibit0 * adv_mom_1 ) * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
4395 | - ( 8.0_wp * ibit2 * adv_mom_5 & |
---|
4396 | + ibit1 * adv_mom_3 ) * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
4397 | + ( ibit2 * adv_mom_5 ) * ( u(k,j,i+2) + u(k,j,i-3) ) & |
---|
4398 | ) |
---|
4399 | |
---|
4400 | diss_l_u(k,j,tn) = - ABS( u_comp_l ) * ( & |
---|
4401 | ( 10.0_wp * ibit2 * adv_mom_5 & |
---|
4402 | + 3.0_wp * ibit1 * adv_mom_3 & |
---|
4403 | + ibit0 * adv_mom_1 ) * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
4404 | - ( 5.0_wp * ibit2 * adv_mom_5 & |
---|
4405 | + ibit1 * adv_mom_3 ) * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
4406 | + ( ibit2 * adv_mom_5 ) * ( u(k,j,i+2) - u(k,j,i-3) ) & |
---|
4407 | ) |
---|
4408 | |
---|
4409 | ENDDO |
---|
4410 | |
---|
4411 | DO k = nzb_max_l+1, nzt |
---|
4412 | |
---|
4413 | u_comp_l = u(k,j,i) + u(k,j,i-1) - gu |
---|
4414 | flux_l_u(k,j,tn) = u_comp_l * ( & |
---|
4415 | 37.0_wp * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
4416 | - 8.0_wp * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
4417 | + ( u(k,j,i+2) + u(k,j,i-3) ) ) * adv_mom_5 |
---|
4418 | diss_l_u(k,j,tn) = - ABS(u_comp_l) * ( & |
---|
4419 | 10.0_wp * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
4420 | - 5.0_wp * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
4421 | + ( u(k,j,i+2) - u(k,j,i-3) ) ) * adv_mom_5 |
---|
4422 | |
---|
4423 | ENDDO |
---|
4424 | |
---|
4425 | ENDIF |
---|
4426 | #endif |
---|
4427 | |
---|
4428 | ! |
---|
4429 | !-- Now compute the fluxes for the horizontal and parts. |
---|
4430 | DO k = nzb+1, nzb_max_l |
---|
4431 | |
---|
4432 | ibit2 = REAL( IBITS(advc_flags_m(k,j,i),2,1), KIND = wp ) |
---|
4433 | ibit1 = REAL( IBITS(advc_flags_m(k,j,i),1,1), KIND = wp ) |
---|
4434 | ibit0 = REAL( IBITS(advc_flags_m(k,j,i),0,1), KIND = wp ) |
---|
4435 | |
---|
4436 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
4437 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
4438 | ( 37.0_wp * ibit2 * adv_mom_5 & |
---|
4439 | + 7.0_wp * ibit1 * adv_mom_3 & |
---|
4440 | + ibit0 * adv_mom_1 ) * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
4441 | - ( 8.0_wp * ibit2 * adv_mom_5 & |
---|
4442 | + ibit1 * adv_mom_3 ) * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
4443 | + ( ibit2 * adv_mom_5 ) * ( u(k,j,i+3) + u(k,j,i-2) ) & |
---|
4444 | ) |
---|
4445 | |
---|
4446 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
4447 | ( 10.0_wp * ibit2 * adv_mom_5 & |
---|
4448 | + 3.0_wp * ibit1 * adv_mom_3 & |
---|
4449 | + ibit0 * adv_mom_1 ) * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
4450 | - ( 5.0_wp * ibit2 * adv_mom_5 & |
---|
4451 | + ibit1 * adv_mom_3 ) * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
4452 | + ( ibit2 * adv_mom_5 ) * ( u(k,j,i+3) - u(k,j,i-2) ) & |
---|
4453 | ) |
---|
4454 | |
---|
4455 | #ifdef _OPENACC |
---|
4456 | ! |
---|
4457 | !-- Recompute the left fluxes. |
---|
4458 | ibit2_l = REAL( IBITS(advc_flags_m(k,j,i-1),2,1), KIND = wp ) |
---|
4459 | ibit1_l = REAL( IBITS(advc_flags_m(k,j,i-1),1,1), KIND = wp ) |
---|
4460 | ibit0_l = REAL( IBITS(advc_flags_m(k,j,i-1),0,1), KIND = wp ) |
---|
4461 | |
---|
4462 | u_comp_l = u(k,j,i) + u(k,j,i-1) - gu |
---|
4463 | flux_l_u(k,j,tn) = u_comp_l * ( & |
---|
4464 | ( 37.0_wp * ibit2_l * adv_mom_5 & |
---|
4465 | + 7.0_wp * ibit1_l * adv_mom_3 & |
---|
4466 | + ibit0_l * adv_mom_1 ) * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
4467 | - ( 8.0_wp * ibit2_l * adv_mom_5 & |
---|
4468 | + ibit1_l * adv_mom_3 ) * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
4469 | + ( ibit2_l * adv_mom_5 ) * ( u(k,j,i+2) + u(k,j,i-3) ) & |
---|
4470 | ) |
---|
4471 | |
---|
4472 | diss_l_u(k,j,tn) = - ABS( u_comp_l ) * ( & |
---|
4473 | ( 10.0_wp * ibit2_l * adv_mom_5 & |
---|
4474 | + 3.0_wp * ibit1_l * adv_mom_3 & |
---|
4475 | + ibit0_l * adv_mom_1 ) * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
4476 | - ( 5.0_wp * ibit2_l * adv_mom_5 & |
---|
4477 | + ibit1_l * adv_mom_3 ) * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
4478 | + ( ibit2_l * adv_mom_5 ) * ( u(k,j,i+2) - u(k,j,i-3) ) & |
---|
4479 | ) |
---|
4480 | #endif |
---|
4481 | |
---|
4482 | |
---|
4483 | ibit5 = REAL( IBITS(advc_flags_m(k,j,i),5,1), KIND = wp ) |
---|
4484 | ibit4 = REAL( IBITS(advc_flags_m(k,j,i),4,1), KIND = wp ) |
---|
4485 | ibit3 = REAL( IBITS(advc_flags_m(k,j,i),3,1), KIND = wp ) |
---|
4486 | |
---|
4487 | v_comp(k) = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
4488 | flux_n(k) = v_comp(k) * ( & |
---|
4489 | ( 37.0_wp * ibit5 * adv_mom_5 & |
---|
4490 | + 7.0_wp * ibit4 * adv_mom_3 & |
---|
4491 | + ibit3 * adv_mom_1 ) * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
4492 | - ( 8.0_wp * ibit5 * adv_mom_5 & |
---|
4493 | + ibit4 * adv_mom_3 ) * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
4494 | + ( ibit5 * adv_mom_5 ) * ( u(k,j+3,i) + u(k,j-2,i) ) & |
---|
4495 | ) |
---|
4496 | |
---|
4497 | diss_n(k) = - ABS ( v_comp(k) ) * ( & |
---|
4498 | ( 10.0_wp * ibit5 * adv_mom_5 & |
---|
4499 | + 3.0_wp * ibit4 * adv_mom_3 & |
---|
4500 | + ibit3 * adv_mom_1 ) * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
4501 | - ( 5.0_wp * ibit5 * adv_mom_5 & |
---|
4502 | + ibit4 * adv_mom_3 ) * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
4503 | + ( ibit5 * adv_mom_5 ) * ( u(k,j+3,i) - u(k,j-2,i) ) & |
---|
4504 | ) |
---|
4505 | |
---|
4506 | #ifdef _OPENACC |
---|
4507 | ! |
---|
4508 | !-- Recompute the south fluxes. |
---|
4509 | ibit5_s = REAL( IBITS(advc_flags_m(k,j-1,i),5,1), KIND = wp ) |
---|
4510 | ibit4_s = REAL( IBITS(advc_flags_m(k,j-1,i),4,1), KIND = wp ) |
---|
4511 | ibit3_s = REAL( IBITS(advc_flags_m(k,j-1,i),3,1), KIND = wp ) |
---|
4512 | |
---|
4513 | v_comp_s = v(k,j,i) + v(k,j,i-1) - gv |
---|
4514 | flux_s_u(k,tn) = v_comp_s * ( & |
---|
4515 | ( 37.0_wp * ibit5_s * adv_mom_5 & |
---|
4516 | + 7.0_wp * ibit4_s * adv_mom_3 & |
---|
4517 | + ibit3_s * adv_mom_1 ) * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
4518 | - ( 8.0_wp * ibit5_s * adv_mom_5 & |
---|
4519 | + ibit4_s * adv_mom_3 ) * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
4520 | + ( ibit5_s * adv_mom_5 ) * ( u(k,j+2,i) + u(k,j-3,i) ) & |
---|
4521 | ) |
---|
4522 | |
---|
4523 | diss_s_u(k,tn) = - ABS ( v_comp_s ) * ( & |
---|
4524 | ( 10.0_wp * ibit5_s * adv_mom_5 & |
---|
4525 | + 3.0_wp * ibit4_s * adv_mom_3 & |
---|
4526 | + ibit3_s * adv_mom_1 ) * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
4527 | - ( 5.0_wp * ibit5_s * adv_mom_5 & |
---|
4528 | + ibit4_s * adv_mom_3 ) * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
4529 | + ( ibit5_s * adv_mom_5 ) * ( u(k,j+2,i) - u(k,j-3,i) ) & |
---|
4530 | ) |
---|
4531 | #endif |
---|
4532 | ENDDO |
---|
4533 | |
---|
4534 | DO k = nzb_max_l+1, nzt |
---|
4535 | |
---|
4536 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
4537 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
4538 | 37.0_wp * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
4539 | - 8.0_wp * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
4540 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) * adv_mom_5 |
---|
4541 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
4542 | 10.0_wp * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
4543 | - 5.0_wp * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
4544 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
4545 | #ifdef _OPENACC |
---|
4546 | ! |
---|
4547 | !-- Recompute the left fluxes. |
---|
4548 | u_comp_l = u(k,j,i) + u(k,j,i-1) - gu |
---|
4549 | flux_l_u(k,j,tn) = u_comp_l * ( & |
---|
4550 | 37.0_wp * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
4551 | - 8.0_wp * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
4552 | + ( u(k,j,i+2) + u(k,j,i-3) ) ) * adv_mom_5 |
---|
4553 | diss_l_u(k,j,tn) = - ABS(u_comp_l) * ( & |
---|
4554 | 10.0_wp * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
4555 | - 5.0_wp * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
4556 | + ( u(k,j,i+2) - u(k,j,i-3) ) ) * adv_mom_5 |
---|
4557 | |
---|
4558 | #endif |
---|
4559 | v_comp(k) = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
4560 | flux_n(k) = v_comp(k) * ( & |
---|
4561 | 37.0_wp * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
4562 | - 8.0_wp * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
4563 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
4564 | diss_n(k) = - ABS( v_comp(k) ) * ( & |
---|
4565 | 10.0_wp * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
4566 | - 5.0_wp * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
4567 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
4568 | #ifdef _OPENACC |
---|
4569 | ! |
---|
4570 | !-- Recompute the south fluxes. |
---|
4571 | v_comp_s = v(k,j,i) + v(k,j,i-1) - gv |
---|
4572 | flux_s_u(k,tn) = v_comp_s * ( & |
---|
4573 | 37.0_wp * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
4574 | - 8.0_wp * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
4575 | + ( u(k,j+2,i) + u(k,j-3,i) ) ) * adv_mom_5 |
---|
4576 | diss_s_u(k,tn) = - ABS( v_comp_s ) * ( & |
---|
4577 | 10.0_wp * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
4578 | - 5.0_wp * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
4579 | + ( u(k,j+2,i) - u(k,j-3,i) ) ) * adv_mom_5 |
---|
4580 | #endif |
---|
4581 | ENDDO |
---|
4582 | ! |
---|
4583 | !-- Now, compute vertical fluxes. Split loop into a part treating the lowest 2 grid points |
---|
4584 | !-- with indirect indexing, a main loop without indirect indexing, and a loop for the |
---|
4585 | !-- uppermost 2 grid points with indirect indexing. This allows better vectorization for the |
---|
4586 | !-- main loop. First, compute the flux at model surface, which need has to be calculated |
---|
4587 | !-- explicetely for the tendency at the first w-level. For topography wall this is done |
---|
4588 | !-- implicitely by advc_flags_m. |
---|
4589 | flux_t(nzb) = 0.0_wp |
---|
4590 | diss_t(nzb) = 0.0_wp |
---|
4591 | w_comp(nzb) = 0.0_wp |
---|
4592 | DO k = nzb+1, nzb+1 |
---|
4593 | ! |
---|
4594 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
4595 | ibit8 = REAL( IBITS(advc_flags_m(k,j,i),8,1), KIND = wp ) |
---|
4596 | ibit7 = REAL( IBITS(advc_flags_m(k,j,i),7,1), KIND = wp ) |
---|
4597 | ibit6 = REAL( IBITS(advc_flags_m(k,j,i),6,1), KIND = wp ) |
---|
4598 | |
---|
4599 | k_ppp = k + 3 * ibit8 |
---|
4600 | k_pp = k + 2 * ( 1 - ibit6 ) |
---|
4601 | k_mm = k - 2 * ibit8 |
---|
4602 | |
---|
4603 | w_comp(k) = w(k,j,i) + w(k,j,i-1) |
---|
4604 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
4605 | ( 37.0_wp * ibit8 * adv_mom_5 & |
---|
4606 | + 7.0_wp * ibit7 * adv_mom_3 & |
---|
4607 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
4608 | - ( 8.0_wp * ibit8 * adv_mom_5 & |
---|
4609 | + ibit7 * adv_mom_3 ) * ( u(k_pp,j,i) + u(k-1,j,i) ) & |
---|
4610 | + ( ibit8 * adv_mom_5 ) * ( u(k_ppp,j,i) + u(k_mm,j,i) ) & |
---|
4611 | ) |
---|
4612 | |
---|
4613 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
4614 | ( 10.0_wp * ibit8 * adv_mom_5 & |
---|
4615 | + 3.0_wp * ibit7 * adv_mom_3 & |
---|
4616 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
4617 | - ( 5.0_wp * ibit8 * adv_mom_5 & |
---|
4618 | + ibit7 * adv_mom_3 ) * ( u(k_pp,j,i) - u(k-1,j,i) ) & |
---|
4619 | + ( ibit8 * adv_mom_5 ) * ( u(k_ppp,j,i) - u(k_mm,j,i) ) & |
---|
4620 | ) |
---|
4621 | ENDDO |
---|
4622 | |
---|
4623 | DO k = nzb+2, nzt-2 |
---|
4624 | |
---|
4625 | ibit8 = REAL( IBITS(advc_flags_m(k,j,i),8,1), KIND = wp ) |
---|
4626 | ibit7 = REAL( IBITS(advc_flags_m(k,j,i),7,1), KIND = wp ) |
---|
4627 | ibit6 = REAL( IBITS(advc_flags_m(k,j,i),6,1), KIND = wp ) |
---|
4628 | |
---|
4629 | w_comp(k) = w(k,j,i) + w(k,j,i-1) |
---|
4630 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
4631 | ( 37.0_wp * ibit8 * adv_mom_5 & |
---|
4632 | + 7.0_wp * ibit7 * adv_mom_3 & |
---|
4633 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
4634 | - ( 8.0_wp * ibit8 * adv_mom_5 & |
---|
4635 | + ibit7 * adv_mom_3 ) * ( u(k+2,j,i) + u(k-1,j,i) ) & |
---|
4636 | + ( ibit8 * adv_mom_5 ) * ( u(k+3,j,i) + u(k-2,j,i) ) & |
---|
4637 | ) |
---|
4638 | |
---|
4639 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
4640 | ( 10.0_wp * ibit8 * adv_mom_5 & |
---|
4641 | + 3.0_wp * ibit7 * adv_mom_3 & |
---|
4642 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
4643 | - ( 5.0_wp * ibit8 * adv_mom_5 & |
---|
4644 | + ibit7 * adv_mom_3 ) * ( u(k+2,j,i) - u(k-1,j,i) ) & |
---|
4645 | + ( ibit8 * adv_mom_5 ) * ( u(k+3,j,i) - u(k-2,j,i) ) & |
---|
4646 | ) |
---|
4647 | ENDDO |
---|
4648 | |
---|
4649 | DO k = nzt-1, nzt-symmetry_flag |
---|
4650 | ! |
---|
4651 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
4652 | ibit8 = REAL( IBITS(advc_flags_m(k,j,i),8,1), KIND = wp ) |
---|
4653 | ibit7 = REAL( IBITS(advc_flags_m(k,j,i),7,1), KIND = wp ) |
---|
4654 | ibit6 = REAL( IBITS(advc_flags_m(k,j,i),6,1), KIND = wp ) |
---|
4655 | |
---|
4656 | k_ppp = k + 3 * ibit8 |
---|
4657 | k_pp = k + 2 * ( 1 - ibit6 ) |
---|
4658 | k_mm = k - 2 * ibit8 |
---|
4659 | |
---|
4660 | w_comp(k) = w(k,j,i) + w(k,j,i-1) |
---|
4661 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
4662 | ( 37.0_wp * ibit8 * adv_mom_5 & |
---|
4663 | + 7.0_wp * ibit7 * adv_mom_3 & |
---|
4664 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
4665 | - ( 8.0_wp * ibit8 * adv_mom_5 & |
---|
4666 | + ibit7 * adv_mom_3 ) * ( u(k_pp,j,i) + u(k-1,j,i) ) & |
---|
4667 | + ( ibit8 * adv_mom_5 ) * ( u(k_ppp,j,i) + u(k_mm,j,i) ) & |
---|
4668 | ) |
---|
4669 | |
---|
4670 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
4671 | ( 10.0_wp * ibit8 * adv_mom_5 & |
---|
4672 | + 3.0_wp * ibit7 * adv_mom_3 & |
---|
4673 | + ibit6 * adv_mom_1 ) * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
4674 | - ( 5.0_wp * ibit8 * adv_mom_5 & |
---|
4675 | + ibit7 * adv_mom_3 ) * ( u(k_pp,j,i) - u(k-1,j,i) ) & |
---|
4676 | + ( ibit8 * adv_mom_5 ) * ( u(k_ppp,j,i) - u(k_mm,j,i) ) & |
---|
4677 | ) |
---|
4678 | ENDDO |
---|
4679 | ! |
---|
4680 | !-- Set resolved/turbulent flux at model top to zero (w-level). In case that a symmetric |
---|
4681 | !-- behavior between bottom and top shell be guaranteed (closed channel flow), the flux at nzt |
---|
4682 | !-- is also set to zero. |
---|
4683 | IF ( symmetry_flag == 1 ) THEN |
---|
4684 | flux_t(nzt) = 0.0_wp |
---|
4685 | diss_t(nzt) = 0.0_wp |
---|
4686 | w_comp(nzt) = 0.0_wp |
---|
4687 | ENDIF |
---|
4688 | flux_t(nzt+1) = 0.0_wp |
---|
4689 | diss_t(nzt+1) = 0.0_wp |
---|
4690 | w_comp(nzt+1) = 0.0_wp |
---|
4691 | |
---|
4692 | DO k = nzb+1, nzb_max_l |
---|
4693 | |
---|
4694 | flux_d = flux_t(k-1) |
---|
4695 | diss_d = diss_t(k-1) |
---|
4696 | |
---|
4697 | ibit2 = REAL( IBITS(advc_flags_m(k,j,i),2,1), KIND = wp ) |
---|
4698 | ibit1 = REAL( IBITS(advc_flags_m(k,j,i),1,1), KIND = wp ) |
---|
4699 | ibit0 = REAL( IBITS(advc_flags_m(k,j,i),0,1), KIND = wp ) |
---|
4700 | |
---|
4701 | ibit5 = REAL( IBITS(advc_flags_m(k,j,i),5,1), KIND = wp ) |
---|
4702 | ibit4 = REAL( IBITS(advc_flags_m(k,j,i),4,1), KIND = wp ) |
---|
4703 | ibit3 = REAL( IBITS(advc_flags_m(k,j,i),3,1), KIND = wp ) |
---|
4704 | |
---|
4705 | ibit8 = REAL( IBITS(advc_flags_m(k,j,i),8,1), KIND = wp ) |
---|
4706 | ibit7 = REAL( IBITS(advc_flags_m(k,j,i),7,1), KIND = wp ) |
---|
4707 | ibit6 = REAL( IBITS(advc_flags_m(k,j,i),6,1), KIND = wp ) |
---|
4708 | ! |
---|
4709 | !-- Calculate the divergence of the velocity field. A respective correction is needed to |
---|
4710 | !-- overcome numerical instabilities introduced by an insufficient reduction of divergences |
---|
4711 | !-- near topography. |
---|
4712 | div = ( ( u_comp(k) * ( ibit0 + ibit1 + ibit2 ) & |
---|
4713 | - ( u(k,j,i) + u(k,j,i-1) ) & |
---|
4714 | * ( & |
---|
4715 | REAL( IBITS(advc_flags_m(k,j,i-1),0,1), KIND = wp ) & |
---|
4716 | + REAL( IBITS(advc_flags_m(k,j,i-1),1,1), KIND = wp ) & |
---|
4717 | + REAL( IBITS(advc_flags_m(k,j,i-1),2,1), KIND = wp ) & |
---|
4718 | ) & |
---|
4719 | ) * ddx & |
---|
4720 | + ( ( v_comp(k) + gv ) * ( ibit3 + ibit4 + ibit5 ) & |
---|
4721 | - ( v(k,j,i) + v(k,j,i-1 ) ) & |
---|
4722 | * ( & |
---|
4723 | REAL( IBITS(advc_flags_m(k,j-1,i),3,1), KIND = wp ) & |
---|
4724 | + REAL( IBITS(advc_flags_m(k,j-1,i),4,1), KIND = wp ) & |
---|
4725 | + REAL( IBITS(advc_flags_m(k,j-1,i),5,1), KIND = wp ) & |
---|
4726 | ) & |
---|
4727 | ) * ddy & |
---|
4728 | + ( w_comp(k) * rho_air_zw(k) * ( ibit6 + ibit7 + ibit8 ) & |
---|
4729 | - w_comp(k-1) * rho_air_zw(k-1) & |
---|
4730 | * ( & |
---|
4731 | REAL( IBITS(advc_flags_m(k-1,j,i),6,1), KIND = wp ) & |
---|
4732 | + REAL( IBITS(advc_flags_m(k-1,j,i),7,1), KIND = wp ) & |
---|
4733 | + REAL( IBITS(advc_flags_m(k-1,j,i),8,1), KIND = wp ) & |
---|
4734 | ) & |
---|
4735 | ) * drho_air(k) * ddzw(k) & |
---|
4736 | ) * 0.5_wp |
---|
4737 | |
---|
4738 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
4739 | ( flux_r(k) + diss_r(k) & |
---|
4740 | - flux_l_u(k,j,tn) - diss_l_u(k,j,tn) ) * ddx & |
---|
4741 | + ( flux_n(k) + diss_n(k) & |
---|
4742 | - flux_s_u(k,tn) - diss_s_u(k,tn) ) * ddy & |
---|
4743 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
4744 | - ( flux_d + diss_d ) ) * drho_air(k) * ddzw(k) & |
---|
4745 | ) + div * u(k,j,i) |
---|
4746 | #ifndef _OPENACC |
---|
4747 | ! |
---|
4748 | !-- Swap fluxes. Note, in the OPENACC case these are computed again. |
---|
4749 | flux_l_u(k,j,tn) = flux_r(k) |
---|
4750 | diss_l_u(k,j,tn) = diss_r(k) |
---|
4751 | flux_s_u(k,tn) = flux_n(k) |
---|
4752 | diss_s_u(k,tn) = diss_n(k) |
---|
4753 | #endif |
---|
4754 | ! |
---|
4755 | !-- Statistical Evaluation of u'u'. The factor has to be applied for right evaluation when |
---|
4756 | !-- gallilei_trans = .T. . |
---|
4757 | sums_us2_ws_l(k,tn) = sums_us2_ws_l(k,tn) + & |
---|
4758 | ( flux_r(k) & |
---|
4759 | * ( u_comp(k) - 2.0_wp * hom(k,1,1,0) ) & |
---|
4760 | / ( u_comp(k) - gu + SIGN( 1.0E-20_wp, u_comp(k) - gu ) ) & |
---|
4761 | + diss_r(k) & |
---|
4762 | * ABS( u_comp(k) - 2.0_wp * hom(k,1,1,0) ) & |
---|
4763 | / ( ABS( u_comp(k) - gu ) + 1.0E-20_wp ) & |
---|
4764 | ) * weight_substep(intermediate_timestep_count) |
---|
4765 | ! |
---|
4766 | !-- Statistical Evaluation of w'u'. |
---|
4767 | sums_wsus_ws_l(k,tn) = sums_wsus_ws_l(k,tn) + & |
---|
4768 | ( flux_t(k) & |
---|
4769 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
4770 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
4771 | + diss_t(k) & |
---|
4772 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
4773 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
4774 | ) * weight_substep(intermediate_timestep_count) |
---|
4775 | ENDDO |
---|
4776 | |
---|
4777 | DO k = nzb_max_l+1, nzt |
---|
4778 | |
---|
4779 | flux_d = flux_t(k-1) |
---|
4780 | diss_d = diss_t(k-1) |
---|
4781 | ! |
---|
4782 | !-- Calculate the divergence of the velocity field. A respective correction is needed to |
---|
4783 | !-- overcome numerical instabilities introduced by an insufficient reduction of divergences |
---|
4784 | !-- near topography. |
---|
4785 | div = ( ( u_comp(k) - ( u(k,j,i) + u(k,j,i-1) ) ) * ddx & |
---|
4786 | + ( v_comp(k) + gv - ( v(k,j,i) + v(k,j,i-1) ) ) * ddy & |
---|
4787 | + ( w_comp(k) * rho_air_zw(k) & |
---|
4788 | - w_comp(k-1) * rho_air_zw(k-1) & |
---|
4789 | ) * drho_air(k) * ddzw(k) & |
---|
4790 | ) * 0.5_wp |
---|
4791 | |
---|
4792 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
4793 | ( flux_r(k) + diss_r(k) & |
---|
4794 | - flux_l_u(k,j,tn) - diss_l_u(k,j,tn) ) * ddx & |
---|
4795 | + ( flux_n(k) + diss_n(k) & |
---|
4796 | - flux_s_u(k,tn) - diss_s_u(k,tn) ) * ddy & |
---|
4797 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
4798 | - ( flux_d + diss_d ) ) * drho_air(k) * ddzw(k) & |
---|
4799 | ) + div * u(k,j,i) |
---|
4800 | #ifndef _OPENACC |
---|
4801 | flux_l_u(k,j,tn) = flux_r(k) |
---|
4802 | diss_l_u(k,j,tn) = diss_r(k) |
---|
4803 | flux_s_u(k,tn) = flux_n(k) |
---|
4804 | diss_s_u(k,tn) = diss_n(k) |
---|
4805 | #endif |
---|
4806 | ! |
---|
4807 | !-- Statistical Evaluation of u'u'. The factor has to be applied for right evaluation when |
---|
4808 | !-- gallilei_trans = .T. . |
---|
4809 | sums_us2_ws_l(k,tn) = sums_us2_ws_l(k,tn) + & |
---|
4810 | ( flux_r(k) & |
---|
4811 | * ( u_comp(k) - 2.0_wp * hom(k,1,1,0) ) & |
---|
4812 | / ( u_comp(k) - gu + SIGN( 1.0E-20_wp, u_comp(k) - gu ) ) & |
---|
4813 | + diss_r(k) & |
---|
4814 | * ABS( u_comp(k) - 2.0_wp * hom(k,1,1,0) ) & |
---|
4815 | / ( ABS( u_comp(k) - gu ) + 1.0E-20_wp ) & |
---|
4816 | ) * weight_substep(intermediate_timestep_count) |
---|
4817 | ! |
---|
4818 | !-- Statistical Evaluation of w'u'. |
---|
4819 | sums_wsus_ws_l(k,tn) = sums_wsus_ws_l(k,tn) + & |
---|
4820 | ( flux_t(k) & |
---|
4821 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
4822 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
4823 | + diss_t(k) & |
---|
4824 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
4825 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
4826 | ) * weight_substep(intermediate_timestep_count) |
---|
4827 | ENDDO |
---|
4828 | ENDDO |
---|
4829 | ENDDO |
---|
4830 | |
---|
4831 | CALL cpu_log( log_point_s(68), 'advec_u_ws', 'stop' ) |
---|
4832 | |
---|
4833 | END SUBROUTINE advec_u_ws |
---|
4834 | |
---|
4835 | |
---|
4836 | !--------------------------------------------------------------------------------------------------! |
---|
4837 | ! Description: |
---|
4838 | ! ------------ |
---|
4839 | !> Advection of v - Call for all grid points |
---|
4840 | !--------------------------------------------------------------------------------------------------! |
---|
4841 | SUBROUTINE advec_v_ws |
---|
4842 | |
---|
4843 | |
---|
4844 | INTEGER(iwp) :: i !< grid index along x-direction |
---|
4845 | INTEGER(iwp) :: j !< grid index along y-direction |
---|
4846 | INTEGER(iwp) :: k !< grid index along z-direction |
---|
4847 | INTEGER(iwp) :: k_mm !< k-2 index in disretization, can be modified to avoid segmentation faults |
---|
4848 | INTEGER(iwp) :: k_pp !< k+2 index in disretization, can be modified to avoid segmentation faults |
---|
4849 | INTEGER(iwp) :: k_ppp !< k+3 index in disretization, can be modified to avoid segmentation faults |
---|
4850 | INTEGER(iwp) :: nzb_max_l !< index indicating upper bound for order degradation of horizontal advection terms |
---|
4851 | INTEGER(iwp) :: tn = 0 !< number of OpenMP thread |
---|
4852 | |
---|
4853 | REAL(wp) :: diss_d !< artificial dissipation term at grid box bottom |
---|
4854 | REAL(wp) :: div !< diverence on v-grid |
---|
4855 | REAL(wp) :: flux_d !< artificial 6th-order flux at grid box bottom |
---|
4856 | REAL(wp) :: gu !< Galilei-transformation velocity along x |
---|
4857 | REAL(wp) :: gv !< Galilei-transformation velocity along y |
---|
4858 | REAL(wp) :: ibit9 !< flag indicating 1st-order scheme along x-direction |
---|
4859 | REAL(wp) :: ibit10 !< flag indicating 3rd-order scheme along x-direction |
---|
4860 | REAL(wp) :: ibit11 !< flag indicating 5th-order scheme along x-direction |
---|
4861 | #ifdef _OPENACC |
---|
4862 | REAL(wp) :: ibit9_l !< flag indicating 1st-order scheme along x-direction |
---|
4863 | REAL(wp) :: ibit10_l !< flag indicating 3rd-order scheme along x-direction |
---|
4864 | REAL(wp) :: ibit11_l !< flag indicating 5th-order scheme along x-direction |
---|
4865 | #endif |
---|
4866 | REAL(wp) :: ibit12 !< flag indicating 1st-order scheme along y-direction |
---|
4867 | REAL(wp) :: ibit13 !< flag indicating 3rd-order scheme along y-direction |
---|
4868 | REAL(wp) :: ibit14 !< flag indicating 5th-order scheme along y-direction |
---|
4869 | #ifdef _OPENACC |
---|
4870 | REAL(wp) :: ibit12_s !< flag indicating 1st-order scheme along y-direction |
---|
4871 | REAL(wp) :: ibit13_s !< flag indicating 3rd-order scheme along y-direction |
---|
4872 | REAL(wp) :: ibit14_s !< flag indicating 5th-order scheme along y-direction |
---|
4873 | #endif |
---|
4874 | REAL(wp) :: ibit15 !< flag indicating 1st-order scheme along z-direction |
---|
4875 | REAL(wp) :: ibit16 !< flag indicating 3rd-order scheme along z-direction |
---|
4876 | REAL(wp) :: ibit17 !< flag indicating 5th-order scheme along z-direction |
---|
4877 | #ifdef _OPENACC |
---|
4878 | REAL(wp) :: u_comp_l !< advection velocity along x at leftward side |
---|
4879 | REAL(wp) :: v_comp_s !< advection velocity along y at southward side |
---|
4880 | #endif |
---|
4881 | |
---|
4882 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_n !< discretized artificial dissipation at northward-side of the grid box |
---|
4883 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_r !< discretized artificial dissipation at rightward-side of the grid box |
---|
4884 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_t !< discretized artificial dissipation at top of the grid box |
---|
4885 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_n !< discretized 6th-order flux at northward-side of the grid box |
---|
4886 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_r !< discretized 6th-order flux at rightward-side of the grid box |
---|
4887 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_t !< discretized 6th-order flux at top of the grid box |
---|
4888 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_comp !< advection velocity along x |
---|
4889 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_comp !< advection velocity along y |
---|
4890 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_comp !< advection velocity along z |
---|
4891 | |
---|
4892 | CALL cpu_log( log_point_s(69), 'advec_v_ws', 'start' ) |
---|
4893 | |
---|
4894 | gu = 2.0_wp * u_gtrans |
---|
4895 | gv = 2.0_wp * v_gtrans |
---|
4896 | |
---|
4897 | !$ACC PARALLEL LOOP COLLAPSE(2) FIRSTPRIVATE(tn, gu, gv) & |
---|
4898 | !$ACC PRIVATE(i, j, k, k_mm, k_pp, k_ppp) & |
---|
4899 | !$ACC PRIVATE(ibit9, ibit10, ibit11, ibit12, ibit13, ibit14) & |
---|
4900 | !$ACC PRIVATE(ibit15, ibit16, ibit17) & |
---|
4901 | !$ACC PRIVATE(ibit9_l, ibit10_l, ibit11_l) & |
---|
4902 | !$ACC PRIVATE(ibit12_s, ibit13_s, ibit14_s) & |
---|
4903 | !$ACC PRIVATE(nzb_max_l) & |
---|
4904 | !$ACC PRIVATE(flux_r, diss_r) & |
---|
4905 | !$ACC PRIVATE(flux_n, diss_n) & |
---|
4906 | !$ACC PRIVATE(flux_t, diss_t, flux_d, diss_d) & |
---|
4907 | !$ACC PRIVATE(flux_l_v, diss_l_v, flux_s_v, diss_s_v) & |
---|
4908 | !$ACC PRIVATE(div, u_comp, u_comp_l, v_comp, v_comp_s, w_comp) & |
---|
4909 | !$ACC PRESENT(advc_flags_m) & |
---|
4910 | !$ACC PRESENT(u, v, w) & |
---|
4911 | !$ACC PRESENT(drho_air, rho_air_zw, ddzw) & |
---|
4912 | !$ACC PRESENT(tend) & |
---|
4913 | !$ACC PRESENT(hom(:,1,1:3,0)) & |
---|
4914 | !$ACC PRESENT(weight_substep(intermediate_timestep_count)) & |
---|
4915 | !$ACC PRESENT(sums_vs2_ws_l, sums_wsvs_ws_l) |
---|
4916 | DO i = nxl, nxr |
---|
4917 | DO j = nysv, nyn |
---|
4918 | ! |
---|
4919 | !-- Used local modified copy of nzb_max (used to degrade order of discretization) at |
---|
4920 | !-- non-cyclic boundaries. Modify only at relevant points instead of the entire subdomain. |
---|
4921 | !-- This should lead to better load balance between boundary and non-boundary PEs. |
---|
4922 | IF( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i <= nxl + 2 .OR. & |
---|
4923 | ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i >= nxr - 2 .OR. & |
---|
4924 | ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j <= nys + 2 .OR. & |
---|
4925 | ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j >= nyn - 2 ) THEN |
---|
4926 | nzb_max_l = nzt |
---|
4927 | ELSE |
---|
4928 | nzb_max_l = nzb_max |
---|
4929 | END IF |
---|
4930 | |
---|
4931 | #ifndef _OPENACC |
---|
4932 | IF ( i == nxl ) THEN |
---|
4933 | DO k = nzb+1, nzb_max_l |
---|
4934 | |
---|
4935 | ibit11 = REAL( IBITS(advc_flags_m(k,j,i-1),11,1), KIND = wp ) |
---|
4936 | ibit10 = REAL( IBITS(advc_flags_m(k,j,i-1),10,1), KIND = wp ) |
---|
4937 | ibit9 = REAL( IBITS(advc_flags_m(k,j,i-1),9,1), KIND = wp ) |
---|
4938 | |
---|
4939 | u_comp(k) = u(k,j-1,i) + u(k,j,i) - gu |
---|
4940 | flux_l_v(k,j,tn) = u_comp(k) * ( & |
---|
4941 | ( 37.0_wp * ibit11 * adv_mom_5 & |
---|
4942 | + 7.0_wp * ibit10 * adv_mom_3 & |
---|
4943 | + ibit9 * adv_mom_1 ) * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
4944 | - ( 8.0_wp * ibit11 * adv_mom_5 & |
---|
4945 | + ibit10 * adv_mom_3 ) * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
4946 | + ( ibit11 * adv_mom_5 ) * ( v(k,j,i+2) + v(k,j,i-3) ) & |
---|
4947 | ) |
---|
4948 | |
---|
4949 | diss_l_v(k,j,tn) = - ABS( u_comp(k) ) * ( & |
---|
4950 | ( 10.0_wp * ibit11 * adv_mom_5 & |
---|
4951 | + 3.0_wp * ibit10 * adv_mom_3 & |
---|
4952 | + ibit9 * adv_mom_1 ) * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
4953 | - ( 5.0_wp * ibit11 * adv_mom_5 & |
---|
4954 | + ibit10 * adv_mom_3 ) * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
4955 | + ( ibit11 * adv_mom_5 ) * ( v(k,j,i+2) - v(k,j,i-3) ) & |
---|
4956 | ) |
---|
4957 | |
---|
4958 | ENDDO |
---|
4959 | |
---|
4960 | DO k = nzb_max_l+1, nzt |
---|
4961 | |
---|
4962 | u_comp(k) = u(k,j-1,i) + u(k,j,i) - gu |
---|
4963 | flux_l_v(k,j,tn) = u_comp(k) * ( & |
---|
4964 | 37.0_wp * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
4965 | - 8.0_wp * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
4966 | + ( v(k,j,i+2) + v(k,j,i-3) ) ) * adv_mom_5 |
---|
4967 | diss_l_v(k,j,tn) = - ABS( u_comp(k) ) * ( & |
---|
4968 | 10.0_wp * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
4969 | - 5.0_wp * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
4970 | + ( v(k,j,i+2) - v(k,j,i-3) ) ) * adv_mom_5 |
---|
4971 | |
---|
4972 | ENDDO |
---|
4973 | ENDIF |
---|
4974 | |
---|
4975 | IF ( j == nysv ) THEN |
---|
4976 | DO k = nzb+1, nzb_max_l |
---|
4977 | |
---|
4978 | ibit14 = REAL( IBITS(advc_flags_m(k,j-1,i),14,1), KIND = wp ) |
---|
4979 | ibit13 = REAL( IBITS(advc_flags_m(k,j-1,i),13,1), KIND = wp ) |
---|
4980 | ibit12 = REAL( IBITS(advc_flags_m(k,j-1,i),12,1), KIND = wp ) |
---|
4981 | |
---|
4982 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
4983 | flux_s_v(k,tn) = v_comp(k) * ( & |
---|
4984 | ( 37.0_wp * ibit14 * adv_mom_5 & |
---|
4985 | + 7.0_wp * ibit13 * adv_mom_3 & |
---|
4986 | + ibit12 * adv_mom_1 ) * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
4987 | - ( 8.0_wp * ibit14 * adv_mom_5 & |
---|
4988 | + ibit13 * adv_mom_3 ) * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
4989 | + ( ibit14 * adv_mom_5 ) * ( v(k,j+2,i) + v(k,j-3,i) ) & |
---|
4990 | ) |
---|
4991 | |
---|
4992 | diss_s_v(k,tn) = - ABS( v_comp(k) ) * ( & |
---|
4993 | ( 10.0_wp * ibit14 * adv_mom_5 & |
---|
4994 | + 3.0_wp * ibit13 * adv_mom_3 & |
---|
4995 | + ibit12 * adv_mom_1 ) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
4996 | - ( 5.0_wp * ibit14 * adv_mom_5 & |
---|
4997 | + ibit13 * adv_mom_3 ) * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
4998 | + ( ibit14 * adv_mom_5 ) * ( v(k,j+2,i) - v(k,j-3,i) ) & |
---|
4999 | ) |
---|
5000 | |
---|
5001 | ENDDO |
---|
5002 | |
---|
5003 | DO k = nzb_max_l+1, nzt |
---|
5004 | |
---|
5005 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
5006 | flux_s_v(k,tn) = v_comp(k) * ( & |
---|
5007 | 37.0_wp * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
5008 | - 8.0_wp * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
5009 | + ( v(k,j+2,i) + v(k,j-3,i) ) ) * adv_mom_5 |
---|
5010 | diss_s_v(k,tn) = - ABS( v_comp(k) ) * ( & |
---|
5011 | 10.0_wp * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
5012 | - 5.0_wp * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
5013 | + ( v(k,j+2,i) - v(k,j-3,i) ) ) * adv_mom_5 |
---|
5014 | |
---|
5015 | ENDDO |
---|
5016 | ENDIF |
---|
5017 | #endif |
---|
5018 | |
---|
5019 | DO k = nzb+1, nzb_max_l |
---|
5020 | |
---|
5021 | ibit11 = REAL( IBITS(advc_flags_m(k,j,i),11,1), KIND = wp ) |
---|
5022 | ibit10 = REAL( IBITS(advc_flags_m(k,j,i),10,1), KIND = wp ) |
---|
5023 | ibit9 = REAL( IBITS(advc_flags_m(k,j,i),9,1), KIND = wp ) |
---|
5024 | |
---|
5025 | u_comp(k) = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
5026 | flux_r(k) = u_comp(k) * ( & |
---|
5027 | ( 37.0_wp * ibit11 * adv_mom_5 & |
---|
5028 | + 7.0_wp * ibit10 * adv_mom_3 & |
---|
5029 | + ibit9 * adv_mom_1 ) * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
5030 | - ( 8.0_wp * ibit11 * adv_mom_5 & |
---|
5031 | + ibit10 * adv_mom_3 ) * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
5032 | + ( ibit11 * adv_mom_5 ) * ( v(k,j,i+3) + v(k,j,i-2) ) & |
---|
5033 | ) |
---|
5034 | |
---|
5035 | diss_r(k) = - ABS( u_comp(k) ) * ( & |
---|
5036 | ( 10.0_wp * ibit11 * adv_mom_5 & |
---|
5037 | + 3.0_wp * ibit10 * adv_mom_3 & |
---|
5038 | + ibit9 * adv_mom_1 ) * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
5039 | - ( 5.0_wp * ibit11 * adv_mom_5 & |
---|
5040 | + ibit10 * adv_mom_3 ) * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
5041 | + ( ibit11 * adv_mom_5 ) * ( v(k,j,i+3) - v(k,j,i-2) ) & |
---|
5042 | ) |
---|
5043 | |
---|
5044 | #ifdef _OPENACC |
---|
5045 | ! |
---|
5046 | !-- Recompute the left fluxes. |
---|
5047 | ibit11_l = REAL( IBITS(advc_flags_m(k,j,i-1),11,1), KIND = wp ) |
---|
5048 | ibit10_l = REAL( IBITS(advc_flags_m(k,j,i-1),10,1), KIND = wp ) |
---|
5049 | ibit9_l = REAL( IBITS(advc_flags_m(k,j,i-1),9,1), KIND = wp ) |
---|
5050 | |
---|
5051 | u_comp_l = u(k,j-1,i) + u(k,j,i) - gu |
---|
5052 | flux_l_v(k,j,tn) = u_comp_l * ( & |
---|
5053 | ( 37.0_wp * ibit11_l * adv_mom_5 & |
---|
5054 | + 7.0_wp * ibit10_l * adv_mom_3 & |
---|
5055 | + ibit9_l * adv_mom_1 ) * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
5056 | - ( 8.0_wp * ibit11_l * adv_mom_5 & |
---|
5057 | + ibit10_l * adv_mom_3 ) * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
5058 | + ( ibit11_l * adv_mom_5 ) * ( v(k,j,i+2) + v(k,j,i-3) ) & |
---|
5059 | ) |
---|
5060 | |
---|
5061 | diss_l_v(k,j,tn) = - ABS( u_comp_l ) * ( & |
---|
5062 | ( 10.0_wp * ibit11_l * adv_mom_5 & |
---|
5063 | + 3.0_wp * ibit10_l * adv_mom_3 & |
---|
5064 | + ibit9_l * adv_mom_1 ) * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
5065 | - ( 5.0_wp * ibit11_l * adv_mom_5 & |
---|
5066 | + ibit10_l * adv_mom_3 ) * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
5067 | + ( ibit11_l * adv_mom_5 ) * ( v(k,j,i+2) - v(k,j,i-3) ) & |
---|
5068 | ) |
---|
5069 | #endif |
---|
5070 | |
---|
5071 | ibit14 = REAL( IBITS(advc_flags_m(k,j,i),14,1), KIND = wp ) |
---|
5072 | ibit13 = REAL( IBITS(advc_flags_m(k,j,i),13,1), KIND = wp ) |
---|
5073 | ibit12 = REAL( IBITS(advc_flags_m(k,j,i),12,1), KIND = wp ) |
---|
5074 | |
---|
5075 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
5076 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
5077 | ( 37.0_wp * ibit14 * adv_mom_5 & |
---|
5078 | + 7.0_wp * ibit13 * adv_mom_3 & |
---|
5079 | + ibit12 * adv_mom_1 ) * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
5080 | - ( 8.0_wp * ibit14 * adv_mom_5 & |
---|
5081 | + ibit13 * adv_mom_3 ) * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
5082 | + ( ibit14 * adv_mom_5 ) * ( v(k,j+3,i) + v(k,j-2,i) ) & |
---|
5083 | ) |
---|
5084 | |
---|
5085 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
5086 | ( 10.0_wp * ibit14 * adv_mom_5 & |
---|
5087 | + 3.0_wp * ibit13 * adv_mom_3 & |
---|
5088 | + ibit12 * adv_mom_1 ) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
5089 | - ( 5.0_wp * ibit14 * adv_mom_5 & |
---|
5090 | + ibit13 * adv_mom_3 ) * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
5091 | + ( ibit14 * adv_mom_5 ) * ( v(k,j+3,i) - v(k,j-2,i) ) & |
---|
5092 | ) |
---|
5093 | |
---|
5094 | #ifdef _OPENACC |
---|
5095 | ! |
---|
5096 | !-- Recompute the south fluxes. |
---|
5097 | ibit14_s = REAL( IBITS(advc_flags_m(k,j-1,i),14,1), KIND = wp ) |
---|
5098 | ibit13_s = REAL( IBITS(advc_flags_m(k,j-1,i),13,1), KIND = wp ) |
---|
5099 | ibit12_s = REAL( IBITS(advc_flags_m(k,j-1,i),12,1), KIND = wp ) |
---|
5100 | |
---|
5101 | v_comp_s = v(k,j,i) + v(k,j-1,i) - gv |
---|
5102 | flux_s_v(k,tn) = v_comp_s * ( & |
---|
5103 | ( 37.0_wp * ibit14_s * adv_mom_5 & |
---|
5104 | + 7.0_wp * ibit13_s * adv_mom_3 & |
---|
5105 | + ibit12_s * adv_mom_1 ) * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
5106 | - ( 8.0_wp * ibit14_s * adv_mom_5 & |
---|
5107 | + ibit13_s * adv_mom_3 ) * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
5108 | + ( ibit14_s * adv_mom_5 ) * ( v(k,j+2,i) + v(k,j-3,i) ) & |
---|
5109 | ) |
---|
5110 | |
---|
5111 | diss_s_v(k,tn) = - ABS( v_comp_s ) * ( & |
---|
5112 | ( 10.0_wp * ibit14_s * adv_mom_5 & |
---|
5113 | + 3.0_wp * ibit13_s * adv_mom_3 & |
---|
5114 | + ibit12_s * adv_mom_1 ) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
5115 | - ( 5.0_wp * ibit14_s * adv_mom_5 & |
---|
5116 | + ibit13_s * adv_mom_3 ) * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
5117 | + ( ibit14_s * adv_mom_5 ) * ( v(k,j+2,i) - v(k,j-3,i) ) & |
---|
5118 | ) |
---|
5119 | #endif |
---|
5120 | ENDDO |
---|
5121 | |
---|
5122 | DO k = nzb_max_l+1, nzt |
---|
5123 | |
---|
5124 | u_comp(k) = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
5125 | flux_r(k) = u_comp(k) * ( & |
---|
5126 | 37.0_wp * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
5127 | - 8.0_wp * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
5128 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) * adv_mom_5 |
---|
5129 | |
---|
5130 | diss_r(k) = - ABS( u_comp(k) ) * ( & |
---|
5131 | 10.0_wp * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
5132 | - 5.0_wp * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
5133 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
5134 | |
---|
5135 | #ifdef _OPENACC |
---|
5136 | ! |
---|
5137 | !-- Recompute the left fluxes. |
---|
5138 | u_comp_l = u(k,j-1,i) + u(k,j,i) - gu |
---|
5139 | flux_l_v(k,j,tn) = u_comp_l * ( & |
---|
5140 | 37.0_wp * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
5141 | - 8.0_wp * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
5142 | + ( v(k,j,i+2) + v(k,j,i-3) ) ) * adv_mom_5 |
---|
5143 | diss_l_v(k,j,tn) = - ABS( u_comp_l ) * ( & |
---|
5144 | 10.0_wp * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
5145 | - 5.0_wp * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
5146 | + ( v(k,j,i+2) - v(k,j,i-3) ) ) * adv_mom_5 |
---|
5147 | #endif |
---|
5148 | |
---|
5149 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
5150 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
5151 | 37.0_wp * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
5152 | - 8.0_wp * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
5153 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
5154 | |
---|
5155 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
5156 | 10.0_wp * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
5157 | - 5.0_wp * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
5158 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) * adv_mom_5 |
---|
5159 | |
---|
5160 | #ifdef _OPENACC |
---|
5161 | ! |
---|
5162 | !-- Recompute the south fluxes. |
---|
5163 | v_comp_s = v(k,j,i) + v(k,j-1,i) - gv |
---|
5164 | flux_s_v(k,tn) = v_comp_s * ( & |
---|
5165 | 37.0_wp * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
5166 | - 8.0_wp * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
5167 | + ( v(k,j+2,i) + v(k,j-3,i) ) ) * adv_mom_5 |
---|
5168 | diss_s_v(k,tn) = - ABS( v_comp_s ) * ( & |
---|
5169 | 10.0_wp * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
5170 | - 5.0_wp * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
5171 | + ( v(k,j+2,i) - v(k,j-3,i) ) ) * adv_mom_5 |
---|
5172 | #endif |
---|
5173 | ENDDO |
---|
5174 | ! |
---|
5175 | !-- Now, compute vertical fluxes. Split loop into a part treating the lowest 2 grid points |
---|
5176 | !-- with indirect indexing, a main loop without indirect indexing, and a loop for the |
---|
5177 | !-- uppermost 2 grid points with indirect indexing. This allows better vectorization for the |
---|
5178 | !-- main loop. |
---|
5179 | !-- First, compute the flux at model surface, which has to be calculated explicetely for the |
---|
5180 | !-- tendency at the first w-level. For topography wall this is done implicitely by |
---|
5181 | !-- advc_flags_m. |
---|
5182 | flux_t(nzb) = 0.0_wp |
---|
5183 | diss_t(nzb) = 0.0_wp |
---|
5184 | w_comp(nzb) = 0.0_wp |
---|
5185 | DO k = nzb+1, nzb+1 |
---|
5186 | ! |
---|
5187 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
5188 | ibit17 = REAL( IBITS(advc_flags_m(k,j,i),17,1), KIND = wp ) |
---|
5189 | ibit16 = REAL( IBITS(advc_flags_m(k,j,i),16,1), KIND = wp ) |
---|
5190 | ibit15 = REAL( IBITS(advc_flags_m(k,j,i),15,1), KIND = wp ) |
---|
5191 | |
---|
5192 | k_ppp = k + 3 * ibit17 |
---|
5193 | k_pp = k + 2 * ( 1 - ibit15 ) |
---|
5194 | k_mm = k - 2 * ibit17 |
---|
5195 | |
---|
5196 | w_comp(k) = w(k,j-1,i) + w(k,j,i) |
---|
5197 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
5198 | ( 37.0_wp * ibit17 * adv_mom_5 & |
---|
5199 | + 7.0_wp * ibit16 * adv_mom_3 & |
---|
5200 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
5201 | - ( 8.0_wp * ibit17 * adv_mom_5 & |
---|
5202 | + ibit16 * adv_mom_3 ) * ( v(k_pp,j,i) + v(k-1,j,i) ) & |
---|
5203 | + ( ibit17 * adv_mom_5 ) * ( v(k_ppp,j,i) + v(k_mm,j,i) ) & |
---|
5204 | ) |
---|
5205 | |
---|
5206 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
5207 | ( 10.0_wp * ibit17 * adv_mom_5 & |
---|
5208 | + 3.0_wp * ibit16 * adv_mom_3 & |
---|
5209 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
5210 | - ( 5.0_wp * ibit17 * adv_mom_5 & |
---|
5211 | + ibit16 * adv_mom_3 ) * ( v(k_pp,j,i) - v(k-1,j,i) ) & |
---|
5212 | + ( ibit17 * adv_mom_5 ) * ( v(k_ppp,j,i) - v(k_mm,j,i) ) & |
---|
5213 | ) |
---|
5214 | ENDDO |
---|
5215 | |
---|
5216 | DO k = nzb+2, nzt-2 |
---|
5217 | ibit17 = REAL( IBITS(advc_flags_m(k,j,i),17,1), KIND = wp ) |
---|
5218 | ibit16 = REAL( IBITS(advc_flags_m(k,j,i),16,1), KIND = wp ) |
---|
5219 | ibit15 = REAL( IBITS(advc_flags_m(k,j,i),15,1), KIND = wp ) |
---|
5220 | |
---|
5221 | w_comp(k) = w(k,j-1,i) + w(k,j,i) |
---|
5222 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
5223 | ( 37.0_wp * ibit17 * adv_mom_5 & |
---|
5224 | + 7.0_wp * ibit16 * adv_mom_3 & |
---|
5225 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
5226 | - ( 8.0_wp * ibit17 * adv_mom_5 & |
---|
5227 | + ibit16 * adv_mom_3 ) * ( v(k+2,j,i) + v(k-1,j,i) ) & |
---|
5228 | + ( ibit17 * adv_mom_5 ) * ( v(k+3,j,i) + v(k-2,j,i) ) & |
---|
5229 | ) |
---|
5230 | |
---|
5231 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
5232 | ( 10.0_wp * ibit17 * adv_mom_5 & |
---|
5233 | + 3.0_wp * ibit16 * adv_mom_3 & |
---|
5234 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
5235 | - ( 5.0_wp * ibit17 * adv_mom_5 & |
---|
5236 | + ibit16 * adv_mom_3 ) * ( v(k+2,j,i) - v(k-1,j,i) ) & |
---|
5237 | + ( ibit17 * adv_mom_5 ) * ( v(k+3,j,i) - v(k-2,j,i) ) & |
---|
5238 | ) |
---|
5239 | ENDDO |
---|
5240 | |
---|
5241 | DO k = nzt-1, nzt-symmetry_flag |
---|
5242 | ! |
---|
5243 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
5244 | ibit17 = REAL( IBITS(advc_flags_m(k,j,i),17,1), KIND = wp ) |
---|
5245 | ibit16 = REAL( IBITS(advc_flags_m(k,j,i),16,1), KIND = wp ) |
---|
5246 | ibit15 = REAL( IBITS(advc_flags_m(k,j,i),15,1), KIND = wp ) |
---|
5247 | |
---|
5248 | k_ppp = k + 3 * ibit17 |
---|
5249 | k_pp = k + 2 * ( 1 - ibit15 ) |
---|
5250 | k_mm = k - 2 * ibit17 |
---|
5251 | |
---|
5252 | w_comp(k) = w(k,j-1,i) + w(k,j,i) |
---|
5253 | flux_t(k) = w_comp(k) * rho_air_zw(k) * ( & |
---|
5254 | ( 37.0_wp * ibit17 * adv_mom_5 & |
---|
5255 | + 7.0_wp * ibit16 * adv_mom_3 & |
---|
5256 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
5257 | - ( 8.0_wp * ibit17 * adv_mom_5 & |
---|
5258 | + ibit16 * adv_mom_3 ) * ( v(k_pp,j,i) + v(k-1,j,i) ) & |
---|
5259 | + ( ibit17 * adv_mom_5 ) * ( v(k_ppp,j,i) + v(k_mm,j,i) ) & |
---|
5260 | ) |
---|
5261 | |
---|
5262 | diss_t(k) = - ABS( w_comp(k) ) * rho_air_zw(k) * ( & |
---|
5263 | ( 10.0_wp * ibit17 * adv_mom_5 & |
---|
5264 | + 3.0_wp * ibit16 * adv_mom_3 & |
---|
5265 | + ibit15 * adv_mom_1 ) * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
5266 | - ( 5.0_wp * ibit17 * adv_mom_5 & |
---|
5267 | + ibit16 * adv_mom_3 ) * ( v(k_pp,j,i) - v(k-1,j,i) ) & |
---|
5268 | + ( ibit17 * adv_mom_5 ) * ( v(k_ppp,j,i) - v(k_mm,j,i) ) & |
---|
5269 | ) |
---|
5270 | ENDDO |
---|
5271 | |
---|
5272 | ! |
---|
5273 | !-- Set resolved/turbulent flux at model top to zero (w-level). In case that a symmetric |
---|
5274 | !-- behavior between bottom and top shall be guaranteed (closed channel flow), the flux at nzt |
---|
5275 | !-- is also set to zero. |
---|
5276 | IF ( symmetry_flag == 1 ) THEN |
---|
5277 | flux_t(nzt) = 0.0_wp |
---|
5278 | diss_t(nzt) = 0.0_wp |
---|
5279 | w_comp(nzt) = 0.0_wp |
---|
5280 | ENDIF |
---|
5281 | flux_t(nzt+1) = 0.0_wp |
---|
5282 | diss_t(nzt+1) = 0.0_wp |
---|
5283 | w_comp(nzt+1) = 0.0_wp |
---|
5284 | |
---|
5285 | DO k = nzb+1, nzb_max_l |
---|
5286 | |
---|
5287 | flux_d = flux_t(k-1) |
---|
5288 | diss_d = diss_t(k-1) |
---|
5289 | |
---|
5290 | ibit11 = REAL( IBITS(advc_flags_m(k,j,i),11,1), KIND = wp ) |
---|
5291 | ibit10 = REAL( IBITS(advc_flags_m(k,j,i),10,1), KIND = wp ) |
---|
5292 | ibit9 = REAL( IBITS(advc_flags_m(k,j,i),9,1), KIND = wp ) |
---|
5293 | |
---|
5294 | ibit14 = REAL( IBITS(advc_flags_m(k,j,i),14,1), KIND = wp ) |
---|
5295 | ibit13 = REAL( IBITS(advc_flags_m(k,j,i),13,1), KIND = wp ) |
---|
5296 | ibit12 = REAL( IBITS(advc_flags_m(k,j,i),12,1), KIND = wp ) |
---|
5297 | |
---|
5298 | ibit17 = REAL( IBITS(advc_flags_m(k,j,i),17,1), KIND = wp ) |
---|
5299 | ibit16 = REAL( IBITS(advc_flags_m(k,j,i),16,1), KIND = wp ) |
---|
5300 | ibit15 = REAL( IBITS(advc_flags_m(k,j,i),15,1), KIND = wp ) |
---|
5301 | ! |
---|
5302 | !-- Calculate the divergence of the velocity field. A respective correction is needed to |
---|
5303 | !-- overcome numerical instabilities caused by an insufficient reduction of divergences |
---|
5304 | !-- near topography. |
---|
5305 | div = ( ( ( u_comp(k) + gu ) & |
---|
5306 | * ( ibit9 + ibit10 + ibit11 ) & |
---|
5307 | - ( u(k,j-1,i) + u(k,j,i) ) & |
---|
5308 | * ( & |
---|
5309 | REAL( IBITS(advc_flags_m(k,j,i-1),9,1), KIND = wp ) & |
---|
5310 | + REAL( IBITS(advc_flags_m(k,j,i-1),10,1), KIND = wp ) & |
---|
5311 | + REAL( IBITS(advc_flags_m(k,j,i-1),11,1), KIND = wp ) & |
---|
5312 | ) & |
---|
5313 | ) * ddx & |
---|
5314 | + ( v_comp(k) & |
---|
5315 | * ( ibit12 + ibit13 + ibit14 ) & |
---|
5316 | - ( v(k,j,i) + v(k,j-1,i) ) & |
---|
5317 | * ( & |
---|
5318 | REAL( IBITS(advc_flags_m(k,j-1,i),12,1), KIND = wp ) & |
---|
5319 | + REAL( IBITS(advc_flags_m(k,j-1,i),13,1), KIND = wp ) & |
---|
5320 | + REAL( IBITS(advc_flags_m(k,j-1,i),14,1), KIND = wp ) & |
---|
5321 | ) & |
---|
5322 | ) * ddy & |
---|
5323 | + ( w_comp(k) * rho_air_zw(k) & |
---|
5324 | * ( ibit15 + ibit16 + ibit17 ) & |
---|
5325 | - ( w(k-1,j-1,i) + w(k-1,j,i) ) * rho_air_zw(k-1) & |
---|
5326 | * ( & |
---|
5327 | REAL( IBITS(advc_flags_m(k-1,j,i),15,1), KIND = wp ) & |
---|
5328 | + REAL( IBITS(advc_flags_m(k-1,j,i),16,1), KIND = wp ) & |
---|
5329 | + REAL( IBITS(advc_flags_m(k-1,j,i),17,1), KIND = wp ) & |
---|
5330 | ) & |
---|
5331 | ) * drho_air(k) * ddzw(k) & |
---|
5332 | ) * 0.5_wp |
---|
5333 | |
---|
5334 | |
---|
5335 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
5336 | ( ( flux_r(k) + diss_r(k) ) & |
---|
5337 | - ( flux_l_v(k,j,tn) + diss_l_v(k,j,tn) ) ) * ddx & |
---|
5338 | + ( ( flux_n(k) + diss_n(k) ) & |
---|
5339 | - ( flux_s_v(k,tn) + diss_s_v(k,tn) ) ) * ddy & |
---|
5340 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
5341 | - ( flux_d + diss_d ) ) * drho_air(k) * ddzw(k) & |
---|
5342 | ) + v(k,j,i) * div |
---|
5343 | |
---|
5344 | #ifndef _OPENACC |
---|
5345 | ! |
---|
5346 | !-- Swap fluxes. Note, in the OPENACC case these are computed again. |
---|
5347 | flux_l_v(k,j,tn) = flux_r(k) |
---|
5348 | diss_l_v(k,j,tn) = diss_r(k) |
---|
5349 | flux_s_v(k,tn) = flux_n(k) |
---|
5350 | diss_s_v(k,tn) = diss_n(k) |
---|
5351 | #endif |
---|
5352 | |
---|
5353 | ! |
---|
5354 | !-- Statistical Evaluation of v'v'. The factor has to be applied for right evaluation when |
---|
5355 | !-- gallilei_trans = .T. . |
---|
5356 | !$ACC ATOMIC |
---|
5357 | sums_vs2_ws_l(k,tn) = sums_vs2_ws_l(k,tn) + & |
---|
5358 | ( flux_n(k) & |
---|
5359 | * ( v_comp(k) - 2.0_wp * hom(k,1,2,0) ) & |
---|
5360 | / ( v_comp(k) - gv + SIGN( 1.0E-20_wp, v_comp(k) - gv ) ) & |
---|
5361 | + diss_n(k) & |
---|
5362 | * ABS( v_comp(k) - 2.0_wp * hom(k,1,2,0) ) & |
---|
5363 | / ( ABS( v_comp(k) - gv ) + 1.0E-20_wp ) & |
---|
5364 | ) * weight_substep(intermediate_timestep_count) |
---|
5365 | ! |
---|
5366 | !-- Statistical Evaluation of w'u'. |
---|
5367 | !$ACC ATOMIC |
---|
5368 | sums_wsvs_ws_l(k,tn) = sums_wsvs_ws_l(k,tn) + & |
---|
5369 | ( flux_t(k) & |
---|
5370 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
5371 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
5372 | + diss_t(k) & |
---|
5373 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
5374 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
5375 | ) * weight_substep(intermediate_timestep_count) |
---|
5376 | |
---|
5377 | ENDDO |
---|
5378 | |
---|
5379 | DO k = nzb_max_l+1, nzt |
---|
5380 | |
---|
5381 | flux_d = flux_t(k-1) |
---|
5382 | diss_d = diss_t(k-1) |
---|
5383 | ! |
---|
5384 | !-- Calculate the divergence of the velocity field. A respective correction is needed to |
---|
5385 | !-- overcome numerical instabilities caused by an insufficient reduction of divergences |
---|
5386 | !-- near topography. |
---|
5387 | div = ( ( u_comp(k) + gu - ( u(k,j-1,i) + u(k,j,i) ) ) * ddx & |
---|
5388 | + ( v_comp(k) - ( v(k,j,i) + v(k,j-1,i) ) ) * ddy & |
---|
5389 | + ( w_comp(k) * rho_air_zw(k) - & |
---|
5390 | ( w(k-1,j-1,i) + w(k-1,j,i) ) * rho_air_zw(k-1) & |
---|
5391 | ) * drho_air(k) * ddzw(k) & |
---|
5392 | ) * 0.5_wp |
---|
5393 | |
---|
5394 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
5395 | ( ( flux_r(k) + diss_r(k) ) & |
---|
5396 | - ( flux_l_v(k,j,tn) + diss_l_v(k,j,tn) ) ) * ddx & |
---|
5397 | + ( ( flux_n(k) + diss_n(k) ) & |
---|
5398 | - ( flux_s_v(k,tn) + diss_s_v(k,tn) ) ) * ddy & |
---|
5399 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
5400 | - ( flux_d + diss_d ) ) * drho_air(k) * ddzw(k) & |
---|
5401 | ) + v(k,j,i) * div |
---|
5402 | |
---|
5403 | #ifndef _OPENACC |
---|
5404 | ! |
---|
5405 | !-- Swap fluxes. Note, in the OPENACC case these are computed again. |
---|
5406 | flux_l_v(k,j,tn) = flux_r(k) |
---|
5407 | diss_l_v(k,j,tn) = diss_r(k) |
---|
5408 | flux_s_v(k,tn) = flux_n(k) |
---|
5409 | diss_s_v(k,tn) = diss_n(k) |
---|
5410 | #endif |
---|
5411 | |
---|
5412 | ! |
---|
5413 | !-- Statistical Evaluation of v'v'. The factor has to be applied for right evaluation when |
---|
5414 | !-- gallilei_trans = .T. . |
---|
5415 | !$ACC ATOMIC |
---|
5416 | sums_vs2_ws_l(k,tn) = sums_vs2_ws_l(k,tn) + & |
---|
5417 | ( flux_n(k) & |
---|
5418 | * ( v_comp(k) - 2.0_wp * hom(k,1,2,0) ) & |
---|
5419 | / ( v_comp(k) - gv + SIGN( 1.0E-20_wp, v_comp(k) - gv ) ) & |
---|
5420 | + diss_n(k) & |
---|
5421 | * ABS( v_comp(k) - 2.0_wp * hom(k,1,2,0) ) & |
---|
5422 | / ( ABS( v_comp(k) - gv ) + 1.0E-20_wp ) & |
---|
5423 | ) * weight_substep(intermediate_timestep_count) |
---|
5424 | ! |
---|
5425 | !-- Statistical Evaluation of w'u'. |
---|
5426 | !$ACC ATOMIC |
---|
5427 | sums_wsvs_ws_l(k,tn) = sums_wsvs_ws_l(k,tn) + & |
---|
5428 | ( flux_t(k) & |
---|
5429 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
5430 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
5431 | + diss_t(k) & |
---|
5432 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
5433 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
5434 | ) * weight_substep(intermediate_timestep_count) |
---|
5435 | |
---|
5436 | ENDDO |
---|
5437 | |
---|
5438 | ENDDO |
---|
5439 | ENDDO |
---|
5440 | |
---|
5441 | CALL cpu_log( log_point_s(69), 'advec_v_ws', 'stop' ) |
---|
5442 | |
---|
5443 | END SUBROUTINE advec_v_ws |
---|
5444 | |
---|
5445 | |
---|
5446 | !--------------------------------------------------------------------------------------------------! |
---|
5447 | ! Description: |
---|
5448 | ! ------------ |
---|
5449 | !> Advection of w - Call for all grid points |
---|
5450 | !--------------------------------------------------------------------------------------------------! |
---|
5451 | SUBROUTINE advec_w_ws |
---|
5452 | |
---|
5453 | |
---|
5454 | INTEGER(iwp) :: i !< grid index along x-direction |
---|
5455 | INTEGER(iwp) :: j !< grid index along y-direction |
---|
5456 | INTEGER(iwp) :: k !< grid index along z-direction |
---|
5457 | INTEGER(iwp) :: k_mm !< k-2 index in disretization, can be modified to avoid segmentation faults |
---|
5458 | INTEGER(iwp) :: k_pp !< k+2 index in disretization, can be modified to avoid segmentation faults |
---|
5459 | INTEGER(iwp) :: k_ppp !< k+3 index in disretization, can be modified to avoid segmentation faults |
---|
5460 | INTEGER(iwp) :: nzb_max_l !< index indicating upper bound for order degradation of horizontal advection terms |
---|
5461 | INTEGER(iwp) :: tn = 0 !< number of OpenMP thread |
---|
5462 | |
---|
5463 | REAL(wp) :: diss_d !< artificial dissipation term at grid box bottom |
---|
5464 | REAL(wp) :: div !< divergence on w-grid |
---|
5465 | REAL(wp) :: flux_d !< 6th-order flux at grid box bottom |
---|
5466 | REAL(wp) :: gu !< Galilei-transformation velocity along x |
---|
5467 | REAL(wp) :: gv !< Galilei-transformation velocity along y |
---|
5468 | REAL(wp) :: ibit18 !< flag indicating 1st-order scheme along x-direction |
---|
5469 | REAL(wp) :: ibit19 !< flag indicating 3rd-order scheme along x-direction |
---|
5470 | REAL(wp) :: ibit20 !< flag indicating 5th-order scheme along x-direction |
---|
5471 | #ifdef _OPENACC |
---|
5472 | REAL(wp) :: ibit18_l !< flag indicating 1st-order scheme along x-direction |
---|
5473 | REAL(wp) :: ibit19_l !< flag indicating 3rd-order scheme along x-direction |
---|
5474 | REAL(wp) :: ibit20_l !< flag indicating 5th-order scheme along x-direction |
---|
5475 | #endif |
---|
5476 | REAL(wp) :: ibit21 !< flag indicating 1st-order scheme along y-direction |
---|
5477 | REAL(wp) :: ibit22 !< flag indicating 3rd-order scheme along y-direction |
---|
5478 | REAL(wp) :: ibit23 !< flag indicating 5th-order scheme along y-direction |
---|
5479 | #ifdef _OPENACC |
---|
5480 | REAL(wp) :: ibit21_s !< flag indicating 1st-order scheme along y-direction |
---|
5481 | REAL(wp) :: ibit22_s !< flag indicating 3rd-order scheme along y-direction |
---|
5482 | REAL(wp) :: ibit23_s !< flag indicating 5th-order scheme along y-direction |
---|
5483 | #endif |
---|
5484 | REAL(wp) :: ibit24 !< flag indicating 1st-order scheme along z-direction |
---|
5485 | REAL(wp) :: ibit25 !< flag indicating 3rd-order scheme along z-direction |
---|
5486 | REAL(wp) :: ibit26 !< flag indicating 5th-order scheme along z-direction |
---|
5487 | #ifdef _OPENACC |
---|
5488 | REAL(wp) :: u_comp_l !< advection velocity along x |
---|
5489 | REAL(wp) :: v_comp_s !< advection velocity along y |
---|
5490 | #endif |
---|
5491 | |
---|
5492 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_n !< discretized artificial dissipation at northward-side of the grid box |
---|
5493 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_r !< discretized artificial dissipation at rightward-side of the grid box |
---|
5494 | REAL(wp), DIMENSION(nzb:nzt+1) :: diss_t !< discretized artificial dissipation at top of the grid box |
---|
5495 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_n !< discretized 6th-order flux at northward-side of the grid box |
---|
5496 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_r !< discretized 6th-order flux at rightward-side of the grid box |
---|
5497 | REAL(wp), DIMENSION(nzb:nzt+1) :: flux_t !< discretized 6th-order flux at top of the grid box |
---|
5498 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_comp !< advection velocity along x |
---|
5499 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_comp !< advection velocity along y |
---|
5500 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_comp !< advection velocity along z |
---|
5501 | |
---|
5502 | |
---|
5503 | CALL cpu_log( log_point_s(87), 'advec_w_ws', 'start' ) |
---|
5504 | |
---|
5505 | gu = 2.0_wp * u_gtrans |
---|
5506 | gv = 2.0_wp * v_gtrans |
---|
5507 | |
---|
5508 | !$ACC PARALLEL LOOP COLLAPSE(2) FIRSTPRIVATE(tn, gu, gv) & |
---|
5509 | !$ACC PRIVATE(i, j, k, k_mm, k_pp, k_ppp) & |
---|
5510 | !$ACC PRIVATE(ibit18, ibit19, ibit20, ibit21, ibit22, ibit23) & |
---|
5511 | !$ACC PRIVATE(ibit24, ibit25, ibit26) & |
---|
5512 | !$ACC PRIVATE(ibit18_l, ibit19_l, ibit20_l) & |
---|
5513 | !$ACC PRIVATE(ibit21_s, ibit22_s, ibit23_s) & |
---|
5514 | !$ACC PRIVATE(nzb_max_l) & |
---|
5515 | !$ACC PRIVATE(flux_r, diss_r) & |
---|
5516 | !$ACC PRIVATE(flux_n, diss_n) & |
---|
5517 | !$ACC PRIVATE(flux_t, diss_t, flux_d, diss_d) & |
---|
5518 | !$ACC PRIVATE(flux_l_w, diss_l_w, flux_s_w, diss_s_w) & |
---|
5519 | !$ACC PRIVATE(div, u_comp, u_comp_l, v_comp, v_comp_s, w_comp) & |
---|
5520 | !$ACC PRESENT(advc_flags_m) & |
---|
5521 | !$ACC PRESENT(u, v, w) & |
---|
5522 | !$ACC PRESENT(drho_air, rho_air_zw, ddzw) & |
---|
5523 | !$ACC PRESENT(tend) & |
---|
5524 | !$ACC PRESENT(hom(:,1,1:3,0)) & |
---|
5525 | !$ACC PRESENT(weight_substep(intermediate_timestep_count)) & |
---|
5526 | !$ACC PRESENT(sums_ws2_ws_l) |
---|
5527 | DO i = nxl, nxr |
---|
5528 | DO j = nys, nyn |
---|
5529 | ! |
---|
5530 | !-- Used local modified copy of nzb_max (used to degrade order of discretization) at |
---|
5531 | !-- non-cyclic boundaries. Modify only at relevant points instead of the entire subdomain. |
---|
5532 | !-- This should lead to better load balance between boundary and non-boundary PEs. |
---|
5533 | IF( ( bc_dirichlet_l .OR. bc_radiation_l ) .AND. i <= nxl + 2 .OR. & |
---|
5534 | ( bc_dirichlet_r .OR. bc_radiation_r ) .AND. i >= nxr - 2 .OR. & |
---|
5535 | ( bc_dirichlet_s .OR. bc_radiation_s ) .AND. j <= nys + 2 .OR. & |
---|
5536 | ( bc_dirichlet_n .OR. bc_radiation_n ) .AND. j >= nyn - 2 ) THEN |
---|
5537 | nzb_max_l = nzt - 1 |
---|
5538 | ELSE |
---|
5539 | nzb_max_l = nzb_max |
---|
5540 | END IF |
---|
5541 | |
---|
5542 | #ifndef _OPENACC |
---|
5543 | IF ( i == nxl ) THEN |
---|
5544 | DO k = nzb+1, nzb_max_l |
---|
5545 | ibit20 = REAL( IBITS(advc_flags_m(k,j,i-1),20,1), KIND = wp ) |
---|
5546 | ibit19 = REAL( IBITS(advc_flags_m(k,j,i-1),19,1), KIND = wp ) |
---|
5547 | ibit18 = REAL( IBITS(advc_flags_m(k,j,i-1),18,1), KIND = wp ) |
---|
5548 | |
---|
5549 | u_comp(k) = u(k+1,j,i) + u(k,j,i) - gu |
---|
5550 | flux_l_w(k,j,tn) = u_comp(k) * ( & |
---|
5551 | ( 37.0_wp * ibit20 * adv_mom_5 & |
---|
5552 | + 7.0_wp * ibit19 * adv_mom_3 & |
---|
5553 | + ibit18 * adv_mom_1 ) * ( w(k,j,i) + w(k,j,i-1) ) & |
---|
5554 | - ( 8.0_wp * ibit20 * adv_mom_5 & |
---|
5555 | + ibit19 * adv_mom_3 ) * ( w(k,j,i+1) + w(k,j,i-2) ) & |
---|
5556 | + ( ibit20 * adv_mom_5 ) * ( w(k,j,i+2) + w(k,j,i-3) ) & |
---|
5557 | ) |
---|
5558 | |
---|
5559 | diss_l_w(k,j,tn) = - ABS( u_comp(k) ) * ( & |
---|
5560 | ( 10.0_wp * ibit20 * adv_mom_5 & |
---|
5561 | + 3.0_wp * ibit19 * adv_mom_3 & |
---|
5562 | + ibit18 * adv_mom_1 ) * ( w(k,j,i) - w(k,j,i-1) ) & |
---|
5563 | - ( 5.0_wp * ibit20 * adv_mom_5 & |
---|
5564 | + ibit19 * adv_mom_3 ) * ( w(k,j,i+1) - w(k,j,i-2) ) & |
---|
5565 | + ( ibit20 * adv_mom_5 ) * ( w(k,j,i+2) - w(k,j,i-3) ) & |
---|
5566 | ) |
---|
5567 | |
---|
5568 | ENDDO |
---|
5569 | |
---|
5570 | DO k = nzb_max_l+1, nzt-1 |
---|
5571 | |
---|
5572 | u_comp(k) = u(k+1,j,i) + u(k,j,i) - gu |
---|
5573 | flux_l_w(k,j,tn) = u_comp(k) * ( & |
---|
5574 | 37.0_wp * ( w(k,j,i) + w(k,j,i-1) ) & |
---|
5575 | - 8.0_wp * ( w(k,j,i+1) + w(k,j,i-2) ) & |
---|
5576 | + ( w(k,j,i+2) + w(k,j,i-3) ) ) * adv_mom_5 |
---|
5577 | diss_l_w(k,j,tn) = - ABS( u_comp(k) ) * ( & |
---|
5578 | 10.0_wp * ( w(k,j,i) - w(k,j,i-1) ) & |
---|
5579 | - 5.0_wp * ( w(k,j,i+1) - w(k,j,i-2) ) & |
---|
5580 | + ( w(k,j,i+2) - w(k,j,i-3) ) ) * adv_mom_5 |
---|
5581 | |
---|
5582 | ENDDO |
---|
5583 | |
---|
5584 | ENDIF |
---|
5585 | |
---|
5586 | IF ( j == nys ) THEN |
---|
5587 | DO k = nzb+1, nzb_max_l |
---|
5588 | |
---|
5589 | ibit23 = REAL( IBITS(advc_flags_m(k,j-1,i),23,1), KIND = wp ) |
---|
5590 | ibit22 = REAL( IBITS(advc_flags_m(k,j-1,i),22,1), KIND = wp ) |
---|
5591 | ibit21 = REAL( IBITS(advc_flags_m(k,j-1,i),21,1), KIND = wp ) |
---|
5592 | |
---|
5593 | v_comp(k) = v(k+1,j,i) + v(k,j,i) - gv |
---|
5594 | flux_s_w(k,tn) = v_comp(k) * ( & |
---|
5595 | ( 37.0_wp * ibit23 * adv_mom_5 & |
---|
5596 | + 7.0_wp * ibit22 * adv_mom_3 & |
---|
5597 | + ibit21 * adv_mom_1 ) * ( w(k,j,i) + w(k,j-1,i) ) & |
---|
5598 | - ( 8.0_wp * ibit23 * adv_mom_5 & |
---|
5599 | + ibit22 * adv_mom_3 ) * ( w(k,j+1,i) + w(k,j-2,i) ) & |
---|
5600 | + ( ibit23 * adv_mom_5 ) * ( w(k,j+2,i) + w(k,j-3,i) ) & |
---|
5601 | ) |
---|
5602 | |
---|
5603 | diss_s_w(k,tn) = - ABS( v_comp(k) ) * ( & |
---|
5604 | ( 10.0_wp * ibit23 * adv_mom_5 & |
---|
5605 | + 3.0_wp * ibit22 * adv_mom_3 & |
---|
5606 | + ibit21 * adv_mom_1 ) * ( w(k,j,i) - w(k,j-1,i) ) & |
---|
5607 | - ( 5.0_wp * ibit23 * adv_mom_5 & |
---|
5608 | + ibit22 * adv_mom_3 ) * ( w(k,j+1,i) - w(k,j-2,i) ) & |
---|
5609 | + ( ibit23 * adv_mom_5 ) * ( w(k,j+2,i) - w(k,j-3,i) ) & |
---|
5610 | ) |
---|
5611 | |
---|
5612 | ENDDO |
---|
5613 | |
---|
5614 | DO k = nzb_max_l+1, nzt-1 |
---|
5615 | |
---|
5616 | v_comp(k) = v(k+1,j,i) + v(k,j,i) - gv |
---|
5617 | flux_s_w(k,tn) = v_comp(k) * ( & |
---|
5618 | 37.0_wp * ( w(k,j,i) + w(k,j-1,i) ) & |
---|
5619 | - 8.0_wp * ( w(k,j+1,i) +w(k,j-2,i) ) & |
---|
5620 | + ( w(k,j+2,i) + w(k,j-3,i) ) ) * adv_mom_5 |
---|
5621 | diss_s_w(k,tn) = - ABS( v_comp(k) ) * ( & |
---|
5622 | 10.0_wp * ( w(k,j,i) - w(k,j-1,i) ) & |
---|
5623 | - 5.0_wp * ( w(k,j+1,i) - w(k,j-2,i) ) & |
---|
5624 | + ( w(k,j+2,i) - w(k,j-3,i) ) ) * adv_mom_5 |
---|
5625 | |
---|
5626 | ENDDO |
---|
5627 | ENDIF |
---|
5628 | #endif |
---|
5629 | DO k = nzb+1, nzb_max_l |
---|
5630 | |
---|
5631 | ibit20 = REAL( IBITS(advc_flags_m(k,j,i),20,1), KIND = wp ) |
---|
5632 | ibit19 = REAL( IBITS(advc_flags_m(k,j,i),19,1), KIND = wp ) |
---|
5633 | ibit18 = REAL( IBITS(advc_flags_m(k,j,i),18,1), KIND = wp ) |
---|
5634 | |
---|
5635 | u_comp(k) = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
5636 | flux_r(k) = u_comp(k) * ( & |
---|
5637 | ( 37.0_wp * ibit20 * adv_mom_5 & |
---|
5638 | + 7.0_wp * ibit19 * adv_mom_3 & |
---|
5639 | + ibit18 * adv_mom_1 ) * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
5640 | - ( 8.0_wp * ibit20 * adv_mom_5 & |
---|
5641 | + ibit19 * adv_mom_3 ) * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
5642 | + ( ibit20 * adv_mom_5 ) * ( w(k,j,i+3) + w(k,j,i-2) ) & |
---|
5643 | ) |
---|
5644 | |
---|
5645 | diss_r(k) = - ABS( u_comp(k) ) * ( & |
---|
5646 | ( 10.0_wp * ibit20 * adv_mom_5 & |
---|
5647 | + 3.0_wp * ibit19 * adv_mom_3 & |
---|
5648 | + ibit18 * adv_mom_1 ) * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
5649 | - ( 5.0_wp * ibit20 * adv_mom_5 & |
---|
5650 | + ibit19 * adv_mom_3 ) * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
5651 | + ( ibit20 * adv_mom_5 ) * ( w(k,j,i+3) - w(k,j,i-2) ) & |
---|
5652 | ) |
---|
5653 | |
---|
5654 | #ifdef _OPENACC |
---|
5655 | ! |
---|
5656 | !-- Recompute the left fluxes. |
---|
5657 | ibit20_l = REAL( IBITS(advc_flags_m(k,j,i-1),20,1), KIND = wp ) |
---|
5658 | ibit19_l = REAL( IBITS(advc_flags_m(k,j,i-1),19,1), KIND = wp ) |
---|
5659 | ibit18_l = REAL( IBITS(advc_flags_m(k,j,i-1),18,1), KIND = wp ) |
---|
5660 | |
---|
5661 | u_comp_l = u(k+1,j,i) + u(k,j,i) - gu |
---|
5662 | flux_l_w(k,j,tn) = u_comp_l * ( & |
---|
5663 | ( 37.0_wp * ibit20_l * adv_mom_5 & |
---|
5664 | + 7.0_wp * ibit19_l * adv_mom_3 & |
---|
5665 | + ibit18_l * adv_mom_1 ) * ( w(k,j,i) + w(k,j,i-1) )& |
---|
5666 | - ( 8.0_wp * ibit20_l * adv_mom_5 & |
---|
5667 | + ibit19_l * adv_mom_3 ) * ( w(k,j,i+1) + w(k,j,i-2) )& |
---|
5668 | + ( ibit20_l * adv_mom_5 ) * ( w(k,j,i+2) + w(k,j,i-3) )& |
---|
5669 | ) |
---|
5670 | |
---|
5671 | diss_l_w(k,j,tn) = - ABS( u_comp_l ) * ( & |
---|
5672 | ( 10.0_wp * ibit20_l * adv_mom_5 & |
---|
5673 | + 3.0_wp * ibit19_l * adv_mom_3 & |
---|
5674 | + ibit18_l * adv_mom_1 ) * ( w(k,j,i) - w(k,j,i-1) )& |
---|
5675 | - ( 5.0_wp * ibit20_l * adv_mom_5 & |
---|
5676 | + ibit19_l * adv_mom_3 ) * ( w(k,j,i+1) - w(k,j,i-2) )& |
---|
5677 | + ( ibit20_l * adv_mom_5 ) * ( w(k,j,i+2) - w(k,j,i-3) )& |
---|
5678 | ) |
---|
5679 | #endif |
---|
5680 | |
---|
5681 | |
---|
5682 | ibit23 = REAL( IBITS(advc_flags_m(k,j,i),23,1), KIND = wp ) |
---|
5683 | ibit22 = REAL( IBITS(advc_flags_m(k,j,i),22,1), KIND = wp ) |
---|
5684 | ibit21 = REAL( IBITS(advc_flags_m(k,j,i),21,1), KIND = wp ) |
---|
5685 | |
---|
5686 | v_comp(k) = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
5687 | flux_n(k) = v_comp(k) * ( & |
---|
5688 | ( 37.0_wp * ibit23 * adv_mom_5 & |
---|
5689 | + 7.0_wp * ibit22 * adv_mom_3 & |
---|
5690 | + ibit21 * adv_mom_1 ) * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
5691 | - ( 8.0_wp * ibit23 * adv_mom_5 & |
---|
5692 | + ibit22 * adv_mom_3 ) * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
5693 | + ( ibit23 * adv_mom_5 ) * ( w(k,j+3,i) + w(k,j-2,i) ) & |
---|
5694 | ) |
---|
5695 | |
---|
5696 | diss_n(k) = - ABS( v_comp(k) ) * ( & |
---|
5697 | ( 10.0_wp * ibit23 * adv_mom_5 & |
---|
5698 | + 3.0_wp * ibit22 * adv_mom_3 & |
---|
5699 | + ibit21 * adv_mom_1 ) * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
5700 | - ( 5.0_wp * ibit23 * adv_mom_5 & |
---|
5701 | + ibit22 * adv_mom_3 ) * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
5702 | + ( ibit23 * adv_mom_5 ) * ( w(k,j+3,i) - w(k,j-2,i) ) & |
---|
5703 | ) |
---|
5704 | |
---|
5705 | #ifdef _OPENACC |
---|
5706 | ! |
---|
5707 | !-- Recompute the south fluxes. |
---|
5708 | ibit23_s = REAL( IBITS(advc_flags_m(k,j-1,i),23,1), KIND = wp ) |
---|
5709 | ibit22_s = REAL( IBITS(advc_flags_m(k,j-1,i),22,1), KIND = wp ) |
---|
5710 | ibit21_s = REAL( IBITS(advc_flags_m(k,j-1,i),21,1), KIND = wp ) |
---|
5711 | |
---|
5712 | v_comp_s = v(k+1,j,i) + v(k,j,i) - gv |
---|
5713 | flux_s_w(k,tn) = v_comp_s * ( & |
---|
5714 | ( 37.0_wp * ibit23_s * adv_mom_5 & |
---|
5715 | + 7.0_wp * ibit22_s * adv_mom_3 & |
---|
5716 | + ibit21_s * adv_mom_1 ) * ( w(k,j,i) + w(k,j-1,i) ) & |
---|
5717 | - ( 8.0_wp * ibit23_s * adv_mom_5 & |
---|
5718 | + ibit22_s * adv_mom_3 ) * ( w(k,j+1,i) + w(k,j-2,i) ) & |
---|
5719 | + ( ibit23_s * adv_mom_5 ) * ( w(k,j+2,i) + w(k,j-3,i) ) & |
---|
5720 | ) |
---|
5721 | |
---|
5722 | diss_s_w(k,tn) = - ABS( v_comp_s ) * ( & |
---|
5723 | ( 10.0_wp * ibit23_s * adv_mom_5 & |
---|
5724 | + 3.0_wp * ibit22_s * adv_mom_3 & |
---|
5725 | + ibit21_s * adv_mom_1 ) * ( w(k,j,i) - w(k,j-1,i) ) & |
---|
5726 | - ( 5.0_wp * ibit23_s * adv_mom_5 & |
---|
5727 | + ibit22_s * adv_mom_3 ) * ( w(k,j+1,i) - w(k,j-2,i) ) & |
---|
5728 | + ( ibit23_s * adv_mom_5 ) * ( w(k,j+2,i) - w(k,j-3,i) ) & |
---|
5729 | ) |
---|
5730 | #endif |
---|
5731 | ENDDO |
---|
5732 | |
---|
5733 | DO k = nzb_max_l+1, nzt-1 |
---|
5734 | |
---|
5735 | u_comp(k) = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
5736 | flux_r(k) = u_comp(k) * ( & |
---|
5737 | 37.0_wp * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
5738 | - 8.0_wp * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
5739 | + ( w(k,j,i+3) + w(k,j,i-2) ) ) * adv_mom_5 |
---|
5740 | |
---|
5741 | diss_r(k) = - ABS( u_comp(k) ) * ( & |
---|
5742 | 10.0_wp * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
5743 | - 5.0_wp * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
5744 | + ( w(k,j,i+3) - w(k,j,i-2) ) ) * adv_mom_5 |
---|
5745 | |
---|
5746 | #ifdef _OPENACC |
---|
5747 | ! |
---|
5748 | !-- Recompute the left fluxes. |
---|
5749 | u_comp_l = u(k+1,j,i) + u(k,j,i) - gu |
---|
5750 | flux_l_w(k,j,tn) = u_comp_l * ( & |
---|
5751 | 37.0_wp * ( w(k,j,i) + w(k,j,i-1) ) & |
---|
5752 | - 8.0_wp * ( w(k,j,i+1) + w(k,j,i-2) ) & |
---|
5753 | + ( w(k,j,i+2) + w(k,j,i-3) ) ) * adv_mom_5 |
---|
5754 | diss_l_w(k,j,tn) = - ABS( u_comp_l ) * ( & |
---|
5755 | 10.0_wp * ( w(k,j,i) - w(k,j,i-1) ) & |
---|
5756 | - 5.0_wp * ( w(k,j,i+1) - w(k,j,i-2) ) & |
---|
5757 | + ( w(k,j,i+2) - w(k,j,i-3) ) ) * adv_mom_5 |
---|
5758 | #endif |
---|
5759 | |
---|
5760 | v_comp(k) = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
5761 | flux_n(k) = v_comp(k) * ( & |
---|
5762 | 37.0_wp * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
5763 | - 8.0_wp * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
5764 | + ( w(k,j+3,i) + w(k,j-2,i) ) ) * adv_mom_5 |
---|
5765 | |
---|
5766 | diss_n(k) = - ABS( v_comp(k) ) * ( & |
---|
5767 | 10.0_wp * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
5768 | - 5.0_wp * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
5769 | + ( w(k,j+3,i) - w(k,j-2,i) ) ) * adv_mom_5 |
---|
5770 | |
---|
5771 | #ifdef _OPENACC |
---|
5772 | ! |
---|
5773 | !-- Recompute the south fluxes. |
---|
5774 | v_comp_s = v(k+1,j,i) + v(k,j,i) - gv |
---|
5775 | flux_s_w(k,tn) = v_comp_s * ( & |
---|
5776 | 37.0_wp * ( w(k,j,i) + w(k,j-1,i) ) & |
---|
5777 | - 8.0_wp * ( w(k,j+1,i) + w(k,j-2,i) ) & |
---|
5778 | + ( w(k,j+2,i) + w(k,j-3,i) ) ) * adv_mom_5 |
---|
5779 | diss_s_w(k,tn) = - ABS( v_comp_s ) * ( & |
---|
5780 | 10.0_wp * ( w(k,j,i) - w(k,j-1,i) ) & |
---|
5781 | - 5.0_wp * ( w(k,j+1,i) - w(k,j-2,i) ) & |
---|
5782 | + ( w(k,j+2,i) - w(k,j-3,i) ) ) * adv_mom_5 |
---|
5783 | #endif |
---|
5784 | ENDDO |
---|
5785 | ! |
---|
5786 | !-- Now, compute vertical fluxes. Split loop into a part treating the lowest grid points with |
---|
5787 | !-- indirect indexing, a main loop without indirect indexing, and a loop for the uppermost |
---|
5788 | !-- grid points with indirect indexing. This allows better vectorization for the main loop. |
---|
5789 | !-- First, compute the flux at model surface, which need has to be calculated explicitly for |
---|
5790 | !-- the tendency at the first w-level. For topography wall this is done implicitely by |
---|
5791 | !-- advc_flags_m. |
---|
5792 | k = nzb + 1 |
---|
5793 | w_comp(k) = w(k,j,i) + w(k-1,j,i) |
---|
5794 | flux_t(0) = w_comp(k) * rho_air(k) * ( w(k,j,i) + w(k-1,j,i) ) * adv_mom_1 |
---|
5795 | diss_t(0) = - ABS(w_comp(k)) * rho_air(k) * ( w(k,j,i) - w(k-1,j,i) ) * adv_mom_1 |
---|
5796 | |
---|
5797 | DO k = nzb+1, nzb+1 |
---|
5798 | ! |
---|
5799 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
5800 | ibit26 = REAL( IBITS(advc_flags_m(k,j,i),26,1), KIND = wp ) |
---|
5801 | ibit25 = REAL( IBITS(advc_flags_m(k,j,i),25,1), KIND = wp ) |
---|
5802 | ibit24 = REAL( IBITS(advc_flags_m(k,j,i),24,1), KIND = wp ) |
---|
5803 | |
---|
5804 | k_ppp = k + 3 * ibit26 |
---|
5805 | k_pp = k + 2 * ( 1 - ibit24 ) |
---|
5806 | k_mm = k - 2 * ibit26 |
---|
5807 | |
---|
5808 | w_comp(k) = w(k+1,j,i) + w(k,j,i) |
---|
5809 | flux_t(k) = w_comp(k) * rho_air(k+1) * ( & |
---|
5810 | ( 37.0_wp * ibit26 * adv_mom_5 & |
---|
5811 | + 7.0_wp * ibit25 * adv_mom_3 & |
---|
5812 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
5813 | - ( 8.0_wp * ibit26 * adv_mom_5 & |
---|
5814 | + ibit25 * adv_mom_3 ) * ( w(k_pp,j,i) + w(k-1,j,i) ) & |
---|
5815 | + ( ibit26 * adv_mom_5 ) * ( w(k_ppp,j,i) + w(k_mm,j,i) ) & |
---|
5816 | ) |
---|
5817 | |
---|
5818 | diss_t(k) = - ABS( w_comp(k) ) * rho_air(k+1) * ( & |
---|
5819 | ( 10.0_wp * ibit26 * adv_mom_5 & |
---|
5820 | + 3.0_wp * ibit25 * adv_mom_3 & |
---|
5821 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
5822 | - ( 5.0_wp * ibit26 * adv_mom_5 & |
---|
5823 | + ibit25 * adv_mom_3 ) * ( w(k_pp,j,i) - w(k-1,j,i) ) & |
---|
5824 | + ( ibit26 * adv_mom_5 ) * ( w(k_ppp,j,i) - w(k_mm,j,i) ) & |
---|
5825 | ) |
---|
5826 | ENDDO |
---|
5827 | |
---|
5828 | DO k = nzb+2, nzt-2 |
---|
5829 | |
---|
5830 | ibit26 = REAL( IBITS(advc_flags_m(k,j,i),26,1), KIND = wp ) |
---|
5831 | ibit25 = REAL( IBITS(advc_flags_m(k,j,i),25,1), KIND = wp ) |
---|
5832 | ibit24 = REAL( IBITS(advc_flags_m(k,j,i),24,1), KIND = wp ) |
---|
5833 | |
---|
5834 | w_comp(k) = w(k+1,j,i) + w(k,j,i) |
---|
5835 | flux_t(k) = w_comp(k) * rho_air(k+1) * ( & |
---|
5836 | ( 37.0_wp * ibit26 * adv_mom_5 & |
---|
5837 | + 7.0_wp * ibit25 * adv_mom_3 & |
---|
5838 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
5839 | - ( 8.0_wp * ibit26 * adv_mom_5 & |
---|
5840 | + ibit25 * adv_mom_3 ) * ( w(k+2,j,i) + w(k-1,j,i) ) & |
---|
5841 | + ( ibit26 * adv_mom_5 ) * ( w(k+3,j,i) + w(k-2,j,i) ) & |
---|
5842 | ) |
---|
5843 | |
---|
5844 | diss_t(k) = - ABS( w_comp(k) ) * rho_air(k+1) * ( & |
---|
5845 | ( 10.0_wp * ibit26 * adv_mom_5 & |
---|
5846 | + 3.0_wp * ibit25 * adv_mom_3 & |
---|
5847 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
5848 | - ( 5.0_wp * ibit26 * adv_mom_5 & |
---|
5849 | + ibit25 * adv_mom_3 ) * ( w(k+2,j,i) - w(k-1,j,i) ) & |
---|
5850 | + ( ibit26 * adv_mom_5 ) * ( w(k+3,j,i) - w(k-2,j,i) ) & |
---|
5851 | ) |
---|
5852 | ENDDO |
---|
5853 | |
---|
5854 | DO k = nzt-1, nzt-1 |
---|
5855 | ! |
---|
5856 | !-- k index has to be modified near bottom and top, else array subscripts will be exceeded. |
---|
5857 | ibit26 = REAL( IBITS(advc_flags_m(k,j,i),26,1), KIND = wp ) |
---|
5858 | ibit25 = REAL( IBITS(advc_flags_m(k,j,i),25,1), KIND = wp ) |
---|
5859 | ibit24 = REAL( IBITS(advc_flags_m(k,j,i),24,1), KIND = wp ) |
---|
5860 | |
---|
5861 | k_ppp = k + 3 * ibit26 |
---|
5862 | k_pp = k + 2 * ( 1 - ibit24 ) |
---|
5863 | k_mm = k - 2 * ibit26 |
---|
5864 | |
---|
5865 | w_comp(k) = w(k+1,j,i) + w(k,j,i) |
---|
5866 | flux_t(k) = w_comp(k) * rho_air(k+1) * ( & |
---|
5867 | ( 37.0_wp * ibit26 * adv_mom_5 & |
---|
5868 | + 7.0_wp * ibit25 * adv_mom_3 & |
---|
5869 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
5870 | - ( 8.0_wp * ibit26 * adv_mom_5 & |
---|
5871 | + ibit25 * adv_mom_3 ) * ( w(k_pp,j,i) + w(k-1,j,i) ) & |
---|
5872 | + ( ibit26 * adv_mom_5 ) * ( w(k_ppp,j,i) + w(k_mm,j,i) ) & |
---|
5873 | ) |
---|
5874 | |
---|
5875 | diss_t(k) = - ABS( w_comp(k) ) * rho_air(k+1) * ( & |
---|
5876 | ( 10.0_wp * ibit26 * adv_mom_5 & |
---|
5877 | + 3.0_wp * ibit25 * adv_mom_3 & |
---|
5878 | + ibit24 * adv_mom_1 ) * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
5879 | - ( 5.0_wp * ibit26 * adv_mom_5 & |
---|
5880 | + ibit25 * adv_mom_3 ) * ( w(k_pp,j,i) - w(k-1,j,i) ) & |
---|
5881 | + ( ibit26 * adv_mom_5 ) * ( w(k_ppp,j,i) - w(k_mm,j,i) ) & |
---|
5882 | ) |
---|
5883 | ENDDO |
---|
5884 | |
---|
5885 | ! |
---|
5886 | !-- Set resolved/turbulent flux at model top to zero (w-level). Hint: The flux at nzt is |
---|
5887 | !-- defined at the scalar grid point nzt+1. Therefore, the flux at nzt+1 is already outside of |
---|
5888 | !-- the model domain |
---|
5889 | flux_t(nzt) = 0.0_wp |
---|
5890 | diss_t(nzt) = 0.0_wp |
---|
5891 | w_comp(nzt) = 0.0_wp |
---|
5892 | |
---|
5893 | flux_t(nzt+1) = 0.0_wp |
---|
5894 | diss_t(nzt+1) = 0.0_wp |
---|
5895 | w_comp(nzt+1) = 0.0_wp |
---|
5896 | |
---|
5897 | DO k = nzb+1, nzb_max_l |
---|
5898 | |
---|
5899 | flux_d = flux_t(k-1) |
---|
5900 | diss_d = diss_t(k-1) |
---|
5901 | |
---|
5902 | ibit20 = REAL( IBITS(advc_flags_m(k,j,i),20,1), KIND = wp ) |
---|
5903 | ibit19 = REAL( IBITS(advc_flags_m(k,j,i),19,1), KIND = wp ) |
---|
5904 | ibit18 = REAL( IBITS(advc_flags_m(k,j,i),18,1), KIND = wp ) |
---|
5905 | |
---|
5906 | ibit23 = REAL( IBITS(advc_flags_m(k,j,i),23,1), KIND = wp ) |
---|
5907 | ibit22 = REAL( IBITS(advc_flags_m(k,j,i),22,1), KIND = wp ) |
---|
5908 | ibit21 = REAL( IBITS(advc_flags_m(k,j,i),21,1), KIND = wp ) |
---|
5909 | |
---|
5910 | ibit26 = REAL( IBITS(advc_flags_m(k,j,i),26,1), KIND = wp ) |
---|
5911 | ibit25 = REAL( IBITS(advc_flags_m(k,j,i),25,1), KIND = wp ) |
---|
5912 | ibit24 = REAL( IBITS(advc_flags_m(k,j,i),24,1), KIND = wp ) |
---|
5913 | ! |
---|
5914 | !-- Calculate the divergence of the velocity field. A respective correction is needed to |
---|
5915 | !-- overcome numerical instabilities introduced by an insufficient reduction of divergences |
---|
5916 | !-- near topography. |
---|
5917 | div = ( ( ( u_comp(k) + gu ) * ( ibit18 + ibit19 + ibit20 ) & |
---|
5918 | - ( u(k+1,j,i) + u(k,j,i) ) & |
---|
5919 | * ( & |
---|
5920 | REAL( IBITS(advc_flags_m(k,j,i-1),18,1), KIND = wp ) & |
---|
5921 | + REAL( IBITS(advc_flags_m(k,j,i-1),19,1), KIND = wp ) & |
---|
5922 | + REAL( IBITS(advc_flags_m(k,j,i-1),20,1), KIND = wp ) & |
---|
5923 | ) & |
---|
5924 | ) * ddx & |
---|
5925 | + ( ( v_comp(k) + gv ) * ( ibit21 + ibit22 + ibit23 ) & |
---|
5926 | - ( v(k+1,j,i) + v(k,j,i) ) & |
---|
5927 | * ( & |
---|
5928 | REAL( IBITS(advc_flags_m(k,j-1,i),21,1), KIND = wp ) & |
---|
5929 | + REAL( IBITS(advc_flags_m(k,j-1,i),22,1), KIND = wp ) & |
---|
5930 | + REAL( IBITS(advc_flags_m(k,j-1,i),23,1), KIND = wp ) & |
---|
5931 | ) & |
---|
5932 | ) * ddy & |
---|
5933 | + ( w_comp(k) * rho_air(k+1) & |
---|
5934 | * ( ibit24 + ibit25 + ibit26 ) & |
---|
5935 | - ( w(k,j,i) + w(k-1,j,i) ) * rho_air(k) & |
---|
5936 | * ( & |
---|
5937 | REAL( IBITS(advc_flags_m(k-1,j,i),24,1), KIND = wp ) & |
---|
5938 | + REAL( IBITS(advc_flags_m(k-1,j,i),25,1), KIND = wp ) & |
---|
5939 | + REAL( IBITS(advc_flags_m(k-1,j,i),26,1), KIND = wp ) & |
---|
5940 | ) & |
---|
5941 | ) * drho_air_zw(k) * ddzu(k+1) & |
---|
5942 | ) * 0.5_wp |
---|
5943 | |
---|
5944 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
5945 | ( flux_r(k) + diss_r(k) & |
---|
5946 | - flux_l_w(k,j,tn) - diss_l_w(k,j,tn) ) * ddx & |
---|
5947 | + ( flux_n(k) + diss_n(k) & |
---|
5948 | - flux_s_w(k,tn) - diss_s_w(k,tn) ) * ddy & |
---|
5949 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
5950 | - ( flux_d + diss_d ) ) * drho_air_zw(k) * ddzu(k+1) & |
---|
5951 | ) + div * w(k,j,i) |
---|
5952 | #ifndef _OPENACC |
---|
5953 | flux_l_w(k,j,tn) = flux_r(k) |
---|
5954 | diss_l_w(k,j,tn) = diss_r(k) |
---|
5955 | flux_s_w(k,tn) = flux_n(k) |
---|
5956 | diss_s_w(k,tn) = diss_n(k) |
---|
5957 | #endif |
---|
5958 | ! |
---|
5959 | !-- Statistical Evaluation of w'w'. |
---|
5960 | sums_ws2_ws_l(k,tn) = sums_ws2_ws_l(k,tn) + & |
---|
5961 | ( flux_t(k) & |
---|
5962 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
5963 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
5964 | + diss_t(k) & |
---|
5965 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
5966 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
5967 | ) * weight_substep(intermediate_timestep_count) |
---|
5968 | |
---|
5969 | ENDDO |
---|
5970 | |
---|
5971 | DO k = nzb_max_l+1, nzt-1 |
---|
5972 | |
---|
5973 | flux_d = flux_t(k-1) |
---|
5974 | diss_d = diss_t(k-1) |
---|
5975 | ! |
---|
5976 | !-- Calculate the divergence of the velocity field. A respective correction is needed to |
---|
5977 | !-- overcome numerical instabilities introduced by an insufficient reduction of divergences |
---|
5978 | !-- near topography. |
---|
5979 | div = ( ( u_comp(k) + gu - ( u(k+1,j,i) + u(k,j,i) ) ) * ddx & |
---|
5980 | + ( v_comp(k) + gv - ( v(k+1,j,i) + v(k,j,i) ) ) * ddy & |
---|
5981 | + ( w_comp(k) * rho_air(k+1) & |
---|
5982 | - ( w(k,j,i) + w(k-1,j,i) ) * rho_air(k) & |
---|
5983 | ) * drho_air_zw(k) * ddzu(k+1) & |
---|
5984 | ) * 0.5_wp |
---|
5985 | |
---|
5986 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
5987 | ( flux_r(k) + diss_r(k) & |
---|
5988 | - flux_l_w(k,j,tn) - diss_l_w(k,j,tn) ) * ddx & |
---|
5989 | + ( flux_n(k) + diss_n(k) & |
---|
5990 | - flux_s_w(k,tn) - diss_s_w(k,tn) ) * ddy & |
---|
5991 | + ( ( flux_t(k) + diss_t(k) ) & |
---|
5992 | - ( flux_d + diss_d ) ) * drho_air_zw(k) * ddzu(k+1) & |
---|
5993 | ) + div * w(k,j,i) |
---|
5994 | #ifndef _OPENACC |
---|
5995 | flux_l_w(k,j,tn) = flux_r(k) |
---|
5996 | diss_l_w(k,j,tn) = diss_r(k) |
---|
5997 | flux_s_w(k,tn) = flux_n(k) |
---|
5998 | diss_s_w(k,tn) = diss_n(k) |
---|
5999 | #endif |
---|
6000 | ! |
---|
6001 | !-- Statistical Evaluation of w'w'. |
---|
6002 | sums_ws2_ws_l(k,tn) = sums_ws2_ws_l(k,tn) + & |
---|
6003 | ( flux_t(k) & |
---|
6004 | * ( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
6005 | / ( w_comp(k) + SIGN( 1.0E-20_wp, w_comp(k) ) ) & |
---|
6006 | + diss_t(k) & |
---|
6007 | * ABS( w_comp(k) - 2.0_wp * hom(k,1,3,0) ) & |
---|
6008 | / ( ABS( w_comp(k) ) + 1.0E-20_wp ) & |
---|
6009 | ) * weight_substep(intermediate_timestep_count) |
---|
6010 | |
---|
6011 | ENDDO |
---|
6012 | |
---|
6013 | ENDDO |
---|
6014 | ENDDO |
---|
6015 | |
---|
6016 | CALL cpu_log( log_point_s(87), 'advec_w_ws', 'stop' ) |
---|
6017 | |
---|
6018 | END SUBROUTINE advec_w_ws |
---|
6019 | |
---|
6020 | END MODULE advec_ws |
---|