[3567] | 1 | #!/usr/bin/env python3 |
---|
| 2 | # -*- coding: utf-8 -*- |
---|
| 3 | #--------------------------------------------------------------------------------# |
---|
| 4 | # This file is part of the PALM model system. |
---|
| 5 | # |
---|
| 6 | # PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | # of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | # either version 3 of the License, or (at your option) any later version. |
---|
| 9 | # |
---|
| 10 | # PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | # A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | # |
---|
| 14 | # You should have received a copy of the GNU General Public License along with |
---|
| 15 | # PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | # |
---|
[4481] | 17 | # Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[3567] | 18 | #--------------------------------------------------------------------------------# |
---|
| 19 | # |
---|
| 20 | # Current revisions: |
---|
| 21 | # ----------------- |
---|
| 22 | # |
---|
| 23 | # |
---|
| 24 | # Former revisions: |
---|
| 25 | # ----------------- |
---|
| 26 | # $Id: palm_csd 4490 2020-04-10 05:32:45Z gronemeier $ |
---|
[4490] | 27 | # Bugfix: call of canopy generator was not made if tree heights were only |
---|
| 28 | # available via patch_height, but not in tree_height |
---|
| 29 | # |
---|
| 30 | # 4481 2020-03-31 18:55:54Z maronga |
---|
[4311] | 31 | # Bugfix: green roofs were assigned to all available roofs when switched on |
---|
| 32 | # |
---|
| 33 | # 4149 2019-08-08 14:02:18Z suehring |
---|
[4149] | 34 | # Bugfix, nbuilding_pars was 1 element to small |
---|
| 35 | # |
---|
| 36 | # 3955 2019-05-07 09:55:25Z maronga |
---|
[3955] | 37 | # Bugfix in preparaing of green roofs |
---|
| 38 | # Bugfix: remove LAI for bare soils |
---|
| 39 | # |
---|
| 40 | # 3859 2019-04-03 20:30:31Z maronga |
---|
[3859] | 41 | # Bugfix: wrong variable naming for 'y' |
---|
| 42 | # |
---|
| 43 | # 3773 2019-03-01 08:56:57Z maronga |
---|
[3773] | 44 | # Unspecificed changes |
---|
| 45 | # |
---|
| 46 | # 3726 2019-02-07 18:22:49Z maronga |
---|
[3726] | 47 | # Removed some more bugs |
---|
| 48 | # |
---|
| 49 | # 3688 2019-01-22 10:44:20Z maronga |
---|
[3688] | 50 | # Some unspecified bugfixes |
---|
| 51 | # |
---|
| 52 | # 3668 2019-01-14 12:49:24Z maronga |
---|
[3668] | 53 | # Various improvements and bugfixes |
---|
| 54 | # |
---|
| 55 | # 3629 2018-12-13 12:18:54Z maronga |
---|
[3629] | 56 | # Added canopy generator calls. Some improvements |
---|
| 57 | # |
---|
| 58 | # 3567 2018-11-27 13:59:21Z maronga |
---|
[3567] | 59 | # Initial revisions |
---|
| 60 | # |
---|
| 61 | # Description: |
---|
| 62 | # ------------ |
---|
| 63 | # Processing tool for creating PIDS conform static drivers from rastered NetCDF |
---|
| 64 | # input |
---|
| 65 | # |
---|
| 66 | # @Author Bjoern Maronga (maronga@muk.uni-hannover.de) |
---|
| 67 | # |
---|
| 68 | # @todo Make input files optional |
---|
| 69 | # @todo Allow for ASCII input of terrain height and building height |
---|
| 70 | # @todo Modularize reading config file |
---|
[3688] | 71 | # @todo Convert to object-oriented treatment (buidings, trees) |
---|
| 72 | # @todo Automatically shift child domains so that their origin lies intersects |
---|
| 73 | # a edge note of the parent grid |
---|
[3567] | 74 | #------------------------------------------------------------------------------# |
---|
| 75 | |
---|
| 76 | from palm_csd_files.palm_csd_netcdf_interface import * |
---|
| 77 | from palm_csd_files.palm_csd_tools import * |
---|
[3629] | 78 | from palm_csd_files.palm_csd_canopy_generator import * |
---|
[3567] | 79 | import numpy as np |
---|
| 80 | |
---|
| 81 | |
---|
| 82 | def read_config_file(): |
---|
| 83 | |
---|
| 84 | import configparser |
---|
| 85 | from math import floor |
---|
| 86 | import numpy as np |
---|
| 87 | import os |
---|
| 88 | import subprocess as sub |
---|
| 89 | import sys |
---|
| 90 | |
---|
| 91 | # Check if configuration files exists and quit otherwise |
---|
| 92 | input_config = ".csd.config" |
---|
| 93 | for i in range(1,len(sys.argv)): |
---|
| 94 | input_config = str(sys.argv[i]) |
---|
| 95 | |
---|
| 96 | config = configparser.RawConfigParser(allow_no_value=True) |
---|
| 97 | |
---|
| 98 | if ( os.path.isfile(input_config) == False ): |
---|
| 99 | print ("Error. No configuration file " + input_config + " found.") |
---|
| 100 | raise SystemExit |
---|
| 101 | |
---|
| 102 | config.read(input_config) |
---|
| 103 | |
---|
| 104 | |
---|
| 105 | # Definition of settings |
---|
[3668] | 106 | |
---|
[3567] | 107 | global settings_bridge_width |
---|
[3629] | 108 | global settings_lai_roof_intensive |
---|
| 109 | global settings_lai_roof_extensive |
---|
| 110 | global settings_season |
---|
| 111 | global settings_lai_low_default |
---|
| 112 | global settings_lai_high_default |
---|
| 113 | global settings_patch_height_default |
---|
| 114 | global settings_lai_alpha |
---|
| 115 | global settings_lai_beta |
---|
[3955] | 116 | global settings_veg_type_below_trees |
---|
[3567] | 117 | global ndomains |
---|
| 118 | |
---|
| 119 | # Definition of global configuration parameters |
---|
| 120 | global global_acronym |
---|
| 121 | global global_angle |
---|
| 122 | global global_author |
---|
| 123 | global global_campaign |
---|
| 124 | global global_comment |
---|
| 125 | global global_contact |
---|
| 126 | global global_data_content |
---|
| 127 | global global_dependencies |
---|
| 128 | global global_institution |
---|
| 129 | global global_keywords |
---|
| 130 | global global_location |
---|
| 131 | global global_palm_version |
---|
| 132 | global global_references |
---|
| 133 | global global_site |
---|
| 134 | global global_source |
---|
| 135 | |
---|
[3668] | 136 | global path_out |
---|
| 137 | global filename_out |
---|
| 138 | global version_out |
---|
[3567] | 139 | |
---|
[3668] | 140 | |
---|
[3567] | 141 | # Definition of domain parameters |
---|
| 142 | global domain_names |
---|
| 143 | global domain_px |
---|
| 144 | global domain_x0 |
---|
| 145 | global domain_y0 |
---|
| 146 | global domain_x1 |
---|
| 147 | global domain_y1 |
---|
| 148 | global domain_nx |
---|
| 149 | global domain_ny |
---|
| 150 | global domain_dz |
---|
| 151 | global domain_3d |
---|
[3629] | 152 | global domain_high_vegetation |
---|
[3567] | 153 | global domain_ip |
---|
| 154 | global domain_za |
---|
| 155 | global domain_parent |
---|
[3629] | 156 | global domain_green_roofs |
---|
| 157 | global domain_street_trees |
---|
| 158 | global domain_canopy_patches |
---|
[3567] | 159 | |
---|
| 160 | # Definition of input data parameters |
---|
| 161 | global input_names |
---|
| 162 | global input_px |
---|
| 163 | |
---|
| 164 | |
---|
| 165 | global input_file_x |
---|
| 166 | global input_file_y |
---|
| 167 | global input_file_x_UTM |
---|
| 168 | global input_file_y_UTM |
---|
| 169 | global input_file_lat |
---|
| 170 | global input_file_lon |
---|
| 171 | global input_file_zt |
---|
| 172 | global input_file_buildings_2d |
---|
| 173 | global input_file_bridges_2d |
---|
| 174 | global input_file_building_id |
---|
| 175 | global input_file_bridges_id |
---|
| 176 | global input_file_building_type |
---|
| 177 | global input_file_building_type |
---|
[3629] | 178 | global input_file_lai |
---|
[3567] | 179 | global input_file_vegetation_type |
---|
| 180 | global input_file_vegetation_height |
---|
| 181 | global input_file_pavement_type |
---|
| 182 | global input_file_water_type |
---|
| 183 | global input_file_street_type |
---|
| 184 | global input_file_street_crossings |
---|
| 185 | global input_file_soil_type |
---|
[3629] | 186 | global input_file_vegetation_on_roofs |
---|
| 187 | global input_file_tree_crown_diameter |
---|
| 188 | global input_file_tree_height |
---|
| 189 | global input_file_tree_trunk_diameter |
---|
| 190 | global input_file_tree_type |
---|
| 191 | global input_file_patch_height |
---|
[3567] | 192 | |
---|
| 193 | global zt_all |
---|
| 194 | global zt_min |
---|
| 195 | |
---|
| 196 | settings_bridge_width = 3.0 |
---|
[3955] | 197 | settings_lai_roof_intensive = 2.5 |
---|
| 198 | settings_lai_roof_extensive = 0.8 |
---|
[3629] | 199 | settings_season = "summer" |
---|
| 200 | settings_lai_high_default = 6.0 |
---|
| 201 | settings_lai_low_default = 1.0 |
---|
| 202 | settings_patch_height_default = 10.0 |
---|
| 203 | settings_lai_alpha = 5.0 |
---|
| 204 | settings_lai_beta = 3.0 |
---|
[3955] | 205 | settings_veg_type_below_trees = 3 |
---|
[3567] | 206 | ndomains = 0 |
---|
| 207 | |
---|
| 208 | global_acronym = "" |
---|
| 209 | global_angle = "" |
---|
| 210 | global_author = "" |
---|
| 211 | global_campaign = "" |
---|
| 212 | global_comment = "" |
---|
| 213 | global_contact = "" |
---|
| 214 | global_data_content = "" |
---|
| 215 | global_dependencies = "" |
---|
| 216 | global_institution = "" |
---|
| 217 | global_keywords = "" |
---|
| 218 | global_location = "" |
---|
| 219 | global_palm_version = 6.0 |
---|
| 220 | global_references = "" |
---|
| 221 | global_site = "" |
---|
| 222 | global_source = "" |
---|
| 223 | |
---|
[3668] | 224 | path_out = "" |
---|
| 225 | version_out = 1 |
---|
| 226 | filename_out = "default" |
---|
| 227 | |
---|
[3567] | 228 | domain_names = [] |
---|
| 229 | domain_px = [] |
---|
| 230 | domain_x0 = [] |
---|
| 231 | domain_y0 = [] |
---|
| 232 | domain_x1 = [] |
---|
| 233 | domain_y1 = [] |
---|
| 234 | domain_nx = [] |
---|
| 235 | domain_ny = [] |
---|
| 236 | domain_dz = [] |
---|
| 237 | domain_3d = [] |
---|
[3629] | 238 | domain_high_vegetation = [] |
---|
[3567] | 239 | domain_ip = [] |
---|
| 240 | domain_za = [] |
---|
| 241 | domain_parent = [] |
---|
[3629] | 242 | domain_green_roofs = [] |
---|
| 243 | domain_street_trees = [] |
---|
| 244 | domain_canopy_patches = [] |
---|
[3567] | 245 | |
---|
| 246 | zt_min = 0.0 |
---|
| 247 | zt_all = [] |
---|
| 248 | |
---|
| 249 | input_names = [] |
---|
| 250 | input_px = [] |
---|
| 251 | |
---|
| 252 | input_file_x = [] |
---|
| 253 | input_file_y = [] |
---|
| 254 | input_file_x_UTM = [] |
---|
| 255 | input_file_y_UTM = [] |
---|
| 256 | input_file_lat = [] |
---|
| 257 | input_file_lon = [] |
---|
| 258 | |
---|
| 259 | input_file_zt = [] |
---|
| 260 | input_file_buildings_2d = [] |
---|
| 261 | input_file_bridges_2d = [] |
---|
| 262 | input_file_building_id = [] |
---|
| 263 | input_file_bridges_id = [] |
---|
| 264 | input_file_building_type = [] |
---|
[3629] | 265 | input_file_lai = [] |
---|
[3567] | 266 | input_file_vegetation_type = [] |
---|
| 267 | input_file_vegetation_height = [] |
---|
| 268 | input_file_pavement_type = [] |
---|
| 269 | input_file_water_type = [] |
---|
| 270 | input_file_street_type = [] |
---|
| 271 | input_file_street_crossings = [] |
---|
| 272 | input_file_soil_type = [] |
---|
[3629] | 273 | input_file_vegetation_on_roofs = [] |
---|
| 274 | input_file_tree_crown_diameter = [] |
---|
| 275 | input_file_tree_height = [] |
---|
| 276 | input_file_tree_trunk_diameter = [] |
---|
| 277 | input_file_tree_type = [] |
---|
| 278 | input_file_patch_height = [] |
---|
[3567] | 279 | |
---|
| 280 | # Load all user parameters from config file |
---|
| 281 | for i in range(0,len(config.sections())): |
---|
| 282 | |
---|
| 283 | read_tmp = config.sections()[i] |
---|
| 284 | |
---|
| 285 | if ( read_tmp == 'global' ): |
---|
| 286 | global_acronym = config.get(read_tmp, 'acronym') |
---|
| 287 | global_angle = float(config.get(read_tmp, 'rotation_angle')) |
---|
| 288 | global_author = config.get(read_tmp, 'author') |
---|
| 289 | global_campaign = config.get(read_tmp, 'campaign') |
---|
| 290 | global_comment = config.get(read_tmp, 'comment') |
---|
| 291 | global_contact = config.get(read_tmp, 'contact_person') |
---|
| 292 | global_data_content = config.get(read_tmp, 'data_content') |
---|
| 293 | global_dependencies = config.get(read_tmp, 'dependencies') |
---|
| 294 | global_institution = config.get(read_tmp, 'institution') |
---|
| 295 | global_keywords = config.get(read_tmp, 'keywords') |
---|
| 296 | global_location = config.get(read_tmp, 'location') |
---|
| 297 | global_palm_version = float(config.get(read_tmp, 'palm_version')) |
---|
| 298 | global_references = config.get(read_tmp, 'references') |
---|
| 299 | global_site = config.get(read_tmp, 'site') |
---|
| 300 | global_source = config.get(read_tmp, 'source') |
---|
| 301 | |
---|
[3668] | 302 | |
---|
[3567] | 303 | if ( read_tmp == 'settings' ): |
---|
[3629] | 304 | settings_lai_roof_intensive = config.get(read_tmp, 'lai_roof_intensive') |
---|
| 305 | settings_lai_roof_extensive = config.get(read_tmp, 'lai_roof_extensive') |
---|
| 306 | settings_bridge_width = float(config.get(read_tmp, 'bridge_width')) |
---|
| 307 | settings_season = config.get(read_tmp, 'season') |
---|
| 308 | settings_lai_high_default = float(config.get(read_tmp, 'lai_high_vegetation_default')) |
---|
| 309 | settings_lai_low_default = float(config.get(read_tmp, 'lai_low_vegetation_default')) |
---|
| 310 | settings_patch_height_default = float(config.get(read_tmp, 'patch_height_default')) |
---|
| 311 | settings_lai_alpha = float(config.get(read_tmp, 'lai_alpha')) |
---|
| 312 | settings_lai_beta = float(config.get(read_tmp, 'lai_beta')) |
---|
[3955] | 313 | settings_veg_type_below_trees = config.get(read_tmp, 'vegetation_type_below_trees') |
---|
[3629] | 314 | |
---|
[3668] | 315 | if ( read_tmp == 'output' ): |
---|
| 316 | path_out = config.get(read_tmp, 'path') |
---|
| 317 | filename_out = config.get(read_tmp, 'file_out') |
---|
| 318 | version_out = float(config.get(read_tmp, 'version')) |
---|
| 319 | |
---|
[3567] | 320 | if ( read_tmp.split("_")[0] == 'domain' ): |
---|
| 321 | ndomains = ndomains + 1 |
---|
| 322 | domain_names.append(read_tmp.split("_")[1]) |
---|
| 323 | domain_px.append(float(config.get(read_tmp, 'pixel_size'))) |
---|
| 324 | domain_nx.append(int(config.get(read_tmp, 'nx'))) |
---|
| 325 | domain_ny.append(int(config.get(read_tmp, 'ny'))) |
---|
| 326 | domain_dz.append(float(config.get(read_tmp, 'dz'))) |
---|
| 327 | domain_3d.append(config.getboolean(read_tmp, 'buildings_3d')) |
---|
[3629] | 328 | domain_high_vegetation.append(config.getboolean(read_tmp, 'allow_high_vegetation')) |
---|
| 329 | domain_canopy_patches.append(config.getboolean(read_tmp, 'generate_vegetation_patches')) |
---|
[3567] | 330 | domain_ip.append(config.getboolean(read_tmp, 'interpolate_terrain')) |
---|
| 331 | domain_za.append(config.getboolean(read_tmp, 'use_palm_z_axis')) |
---|
| 332 | if domain_ip[ndomains-1] and not domain_za[ndomains-1]: |
---|
| 333 | domain_za[ndomains-1] = True |
---|
| 334 | print("+++ Overwrite user setting for use_palm_z_axis") |
---|
| 335 | |
---|
| 336 | domain_parent.append(config.get(read_tmp, 'domain_parent')) |
---|
| 337 | |
---|
| 338 | domain_x0.append(int(floor(float(config.get(read_tmp, 'origin_x'))/float(config.get(read_tmp, 'pixel_size'))))) |
---|
| 339 | domain_y0.append(int(floor(float(config.get(read_tmp, 'origin_y'))/float(config.get(read_tmp, 'pixel_size'))))) |
---|
| 340 | domain_x1.append(int(floor(float(config.get(read_tmp, 'origin_x'))/float(config.get(read_tmp, 'pixel_size'))) + int(config.get(read_tmp, 'nx')))) |
---|
| 341 | domain_y1.append(int(floor(float(config.get(read_tmp, 'origin_y'))/float(config.get(read_tmp, 'pixel_size'))) + int(config.get(read_tmp, 'ny')))) |
---|
[3629] | 342 | domain_green_roofs.append(config.getboolean(read_tmp, 'vegetation_on_roofs')) |
---|
| 343 | domain_street_trees.append(config.getboolean(read_tmp, 'street_trees')) |
---|
| 344 | |
---|
[3567] | 345 | if ( read_tmp.split("_")[0] == 'input' ): |
---|
| 346 | input_names.append(read_tmp.split("_")[1]) |
---|
| 347 | input_px.append(float(config.get(read_tmp, 'pixel_size'))) |
---|
| 348 | input_file_x.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_x')) |
---|
| 349 | input_file_y.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_y')) |
---|
| 350 | input_file_lat.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_lat')) |
---|
| 351 | input_file_lon.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_lon')) |
---|
| 352 | input_file_x_UTM.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_x_UTM')) |
---|
| 353 | input_file_y_UTM.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_y_UTM')) |
---|
| 354 | input_file_zt.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_zt')) |
---|
| 355 | input_file_buildings_2d.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_buildings_2d')) |
---|
| 356 | input_file_bridges_2d.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_bridges_2d')) |
---|
| 357 | input_file_building_id.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_building_id')) |
---|
| 358 | input_file_bridges_id.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_bridges_id')) |
---|
[3629] | 359 | input_file_building_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_building_type')) |
---|
| 360 | input_file_lai.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_lai')) |
---|
[3567] | 361 | input_file_vegetation_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_vegetation_type')) |
---|
| 362 | input_file_vegetation_height.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_vegetation_height')) |
---|
| 363 | input_file_pavement_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_pavement_type')) |
---|
| 364 | input_file_water_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_water_type')) |
---|
| 365 | input_file_street_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_street_type')) |
---|
[3629] | 366 | input_file_street_crossings.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_street_crossings')) |
---|
| 367 | input_file_patch_height.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_patch_height')) |
---|
[3668] | 368 | |
---|
| 369 | tmp = config.get(read_tmp, 'file_tree_crown_diameter') |
---|
| 370 | if tmp is not None: |
---|
| 371 | input_file_tree_crown_diameter.append(config.get(read_tmp, 'path') + "/" + tmp) |
---|
| 372 | else: |
---|
| 373 | input_file_tree_crown_diameter.append(None) |
---|
[3629] | 374 | input_file_tree_height.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_tree_height')) |
---|
| 375 | input_file_tree_trunk_diameter.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_tree_trunk_diameter')) |
---|
| 376 | input_file_tree_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_tree_type')) |
---|
| 377 | input_file_vegetation_on_roofs.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_vegetation_on_roofs')) |
---|
[3567] | 378 | #input_file_soil_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_soil_type')) |
---|
| 379 | return 0 |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | ############################################################ |
---|
| 383 | |
---|
| 384 | # Start of main program |
---|
| 385 | datatypes = { |
---|
| 386 | "x": "f4", |
---|
| 387 | "y": "f4", |
---|
| 388 | "z": "f4", |
---|
| 389 | "lat": "f4", |
---|
| 390 | "lon": "f4", |
---|
| 391 | "E_UTM": "f4", |
---|
| 392 | "N_UTM": "f4", |
---|
| 393 | "zt": "f4", |
---|
| 394 | "buildings_2d": "f4", |
---|
| 395 | "buildings_3d": "b", |
---|
| 396 | "bridges_2d": "f4", |
---|
| 397 | "building_id": "i", |
---|
| 398 | "bridges_id": "i", |
---|
| 399 | "building_type": "b", |
---|
| 400 | "nsurface_fraction": "i", |
---|
| 401 | "vegetation_type": "b", |
---|
| 402 | "vegetation_height": "f4", |
---|
| 403 | "pavement_type": "b", |
---|
| 404 | "water_type": "b", |
---|
| 405 | "street_type": "b", |
---|
| 406 | "street_crossings": "b", |
---|
| 407 | "soil_type": "b", |
---|
[3629] | 408 | "surface_fraction": "f4", |
---|
| 409 | "building_pars": "f4", |
---|
| 410 | "vegetation_pars": "f4", |
---|
| 411 | "tree_data": "f4", |
---|
| 412 | "tree_type": "b", |
---|
| 413 | "nbuilding_pars": "i", |
---|
| 414 | "nvegetation_pars": "i", |
---|
| 415 | "zlad": "f4" |
---|
[3567] | 416 | } |
---|
| 417 | |
---|
| 418 | fillvalues = { |
---|
| 419 | "lat": float(-9999.0), |
---|
| 420 | "lon": float(-9999.0), |
---|
| 421 | "E_UTM": float(-9999.0), |
---|
| 422 | "N_UTM": float(-9999.0), |
---|
| 423 | "zt": float(-9999.0), |
---|
| 424 | "buildings_2d": float(-9999.0), |
---|
| 425 | "buildings_3d": np.byte(-127), |
---|
| 426 | "bridges_2d": float(-9999.0), |
---|
| 427 | "building_id": int(-9999), |
---|
| 428 | "bridges_id": int(-9999), |
---|
| 429 | "building_type": np.byte(-127), |
---|
| 430 | "nsurface_fraction": int(-9999), |
---|
| 431 | "vegetation_type": np.byte(-127), |
---|
| 432 | "vegetation_height": float(-9999.0), |
---|
| 433 | "pavement_type": np.byte(-127), |
---|
| 434 | "water_type": np.byte(-127), |
---|
| 435 | "street_type": np.byte(-127), |
---|
| 436 | "street_crossings": np.byte(-127), |
---|
| 437 | "soil_type": np.byte(-127), |
---|
[3629] | 438 | "surface_fraction": float(-9999.0), |
---|
| 439 | "building_pars": float(-9999.0), |
---|
| 440 | "vegetation_pars": float(-9999.0), |
---|
| 441 | "tree_data": float(-9999.0), |
---|
| 442 | "tree_type": np.byte(-127) |
---|
[3567] | 443 | } |
---|
| 444 | |
---|
| 445 | defaultvalues = { |
---|
| 446 | "lat": float(-9999.0), |
---|
| 447 | "lon": float(-9999.0), |
---|
| 448 | "E_UTM": float(-9999.0), |
---|
| 449 | "N_UTM": float(-9999.0), |
---|
| 450 | "zt": float(0.0), |
---|
| 451 | "buildings_2d": float(0.0), |
---|
| 452 | "buildings_3d": 0, |
---|
| 453 | "bridges_2d": float(0.0), |
---|
| 454 | "building_id": int(0), |
---|
| 455 | "bridges_id": int(0), |
---|
| 456 | "building_type": 1, |
---|
| 457 | "nsurface_fraction": int(-9999), |
---|
| 458 | "vegetation_type": 3, |
---|
| 459 | "vegetation_height": float(-9999.0), |
---|
| 460 | "pavement_type": 1, |
---|
| 461 | "water_type": 1, |
---|
| 462 | "street_type": 1, |
---|
| 463 | "street_crossings": 0, |
---|
| 464 | "soil_type": 1, |
---|
[3629] | 465 | "surface_fraction": float(0.0), |
---|
| 466 | "buildings_pars": float(-9999.0), |
---|
| 467 | "tree_data": float(-9999.0), |
---|
| 468 | "tree_type": 0, |
---|
| 469 | "vegetation_pars": float(-9999.0) |
---|
[3567] | 470 | } |
---|
| 471 | |
---|
| 472 | # Read configuration file and set parameters accordingly |
---|
| 473 | read_config_file() |
---|
| 474 | |
---|
| 475 | |
---|
| 476 | filename = [] |
---|
| 477 | ii = [] |
---|
| 478 | ii_parent = [] |
---|
| 479 | # Define indices and filenames for all domains and create netCDF files |
---|
| 480 | for i in range(0,ndomains): |
---|
| 481 | |
---|
| 482 | # Calculate indices and input files |
---|
| 483 | ii.append(input_px.index(domain_px[i])) |
---|
[3668] | 484 | filename.append(path_out + "/" + filename_out + "_" + domain_names[i]) |
---|
[3567] | 485 | if domain_parent[i] is not None: |
---|
[3726] | 486 | ii_parent.append(input_px.index(domain_px[domain_names.index(domain_parent[i])])) |
---|
[3567] | 487 | else: |
---|
| 488 | ii_parent.append(None) |
---|
| 489 | |
---|
| 490 | |
---|
[3726] | 491 | x_UTM = nc_read_from_file_2d(input_file_x[ii[i]], "Band1", domain_x0[i], domain_x0[i]+1, domain_y0[i], domain_y0[i]+1) |
---|
| 492 | y_UTM = nc_read_from_file_2d(input_file_y[ii[i]], "Band1", domain_x0[i], domain_x0[i]+1, domain_y0[i], domain_y0[i]+1) |
---|
| 493 | lat = nc_read_from_file_2d(input_file_lat[ii[i]], "Band1", domain_x0[i], domain_x0[i]+1, domain_y0[i], domain_y0[i]+1) |
---|
| 494 | lon = nc_read_from_file_2d(input_file_lon[ii[i]], "Band1", domain_x0[i], domain_x0[i]+1, domain_y0[i], domain_y0[i]+1) |
---|
[3567] | 495 | |
---|
[3726] | 496 | # Calculate position of origin |
---|
| 497 | x_UTM_origin = float(x_UTM[0,0]) - 0.5 * (float(x_UTM[0,1]) - float(x_UTM[0,0])) |
---|
| 498 | y_UTM_origin = float(y_UTM[0,0]) - 0.5 * (float(y_UTM[1,0]) - float(y_UTM[0,0])) |
---|
| 499 | x_origin = float(lon[0,0]) - 0.5 * (float(lon[0,1]) - float(lon[0,0])) |
---|
| 500 | y_origin = float(lat[0,0]) - 0.5 * (float(lat[1,0]) - float(lat[0,0])) |
---|
| 501 | |
---|
[3567] | 502 | # Create NetCDF output file and set global attributes |
---|
| 503 | nc_create_file(filename[i]) |
---|
[3726] | 504 | nc_write_global_attributes(filename[i],x_UTM_origin,y_UTM_origin,y_origin,x_origin,"",global_acronym,global_angle,global_author,global_campaign,global_comment,global_contact,global_data_content,global_dependencies,global_institution,global_keywords,global_location,global_palm_version,global_references,global_site,global_source,version_out) |
---|
[3567] | 505 | |
---|
[3688] | 506 | del x_UTM, y_UTM, lat, lon |
---|
[3567] | 507 | |
---|
| 508 | # Process terrain height |
---|
| 509 | for i in range(0,ndomains): |
---|
| 510 | |
---|
| 511 | # Read and write terrain height (zt) |
---|
| 512 | zt = nc_read_from_file_2d(input_file_zt[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 513 | |
---|
| 514 | # Final step: add zt array to the global array |
---|
| 515 | zt_all.append(zt) |
---|
| 516 | del zt |
---|
| 517 | |
---|
| 518 | # Calculate the global (all domains) minimum of the terrain height. This value will be substracted for all |
---|
| 519 | # data sets |
---|
| 520 | zt_min = min(zt_all[0].flatten()) |
---|
| 521 | for i in range(0,ndomains): |
---|
| 522 | zt_min = min(zt_min,min(zt_all[i].flatten())) |
---|
| 523 | |
---|
| 524 | del zt_all[:] |
---|
| 525 | |
---|
[3726] | 526 | print( "Shift terrain heights by -" + str(zt_min)) |
---|
[3567] | 527 | for i in range(0,ndomains): |
---|
| 528 | |
---|
| 529 | # Read and write terrain height (zt) |
---|
| 530 | zt = nc_read_from_file_2d(input_file_zt[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 531 | x = nc_read_from_file_1d(input_file_x[ii[i]], "x", domain_x0[i], domain_x1[i]) |
---|
| 532 | y = nc_read_from_file_1d(input_file_y[ii[i]], "y", domain_y0[i], domain_y1[i]) |
---|
| 533 | |
---|
[3726] | 534 | |
---|
[3567] | 535 | zt = zt - zt_min |
---|
[3668] | 536 | |
---|
| 537 | nc_write_global_attribute(filename[i], 'origin_z', float(zt_min)) |
---|
[3567] | 538 | |
---|
| 539 | # If necessary, interpolate parent domain terrain height on child domain grid and blend the two |
---|
| 540 | if domain_ip[i]: |
---|
[3726] | 541 | parent_id = domain_names.index(domain_parent[i]) |
---|
| 542 | tmp_x0 = int( domain_x0[i] * domain_px[i] / domain_px[parent_id] ) - 1 |
---|
| 543 | tmp_y0 = int( domain_y0[i] * domain_px[i] / domain_px[parent_id] ) - 1 |
---|
| 544 | tmp_x1 = int( domain_x1[i] * domain_px[i] / domain_px[parent_id] ) + 1 |
---|
| 545 | tmp_y1 = int( domain_y1[i] * domain_px[i] / domain_px[parent_id] ) + 1 |
---|
| 546 | |
---|
[3567] | 547 | tmp_x = nc_read_from_file_1d(input_file_x[ii_parent[i]], "x", tmp_x0, tmp_x1) |
---|
| 548 | tmp_y = nc_read_from_file_1d(input_file_y[ii_parent[i]], "y", tmp_y0, tmp_y1) |
---|
| 549 | |
---|
| 550 | zt_parent = nc_read_from_file_2d(input_file_zt[ii_parent[i]], 'Band1', tmp_x0, tmp_x1, tmp_y0, tmp_y1) |
---|
| 551 | |
---|
| 552 | zt_parent = zt_parent - zt_min |
---|
| 553 | |
---|
| 554 | # Interpolate array and bring to PALM grid of child domain |
---|
| 555 | zt_ip = interpolate_2d(zt_parent,tmp_x,tmp_y,x,y) |
---|
[3726] | 556 | zt_ip = bring_to_palm_grid(zt_ip,x,y,domain_dz[parent_id]) |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | # Shift the child terrain height according to the parent mean terrain height |
---|
[3773] | 560 | print("shifting: -" + str(np.mean(zt)) + " +" + str(np.mean(zt_ip))) |
---|
| 561 | #zt = zt - np.min(zt) + np.min(zt_ip) |
---|
[3726] | 562 | zt = zt - np.mean(zt) + np.mean(zt_ip) |
---|
[3567] | 563 | |
---|
| 564 | |
---|
| 565 | # Blend over the parent and child terrain height within a radius of 50 px |
---|
| 566 | zt = blend_array_2d(zt,zt_ip,50) |
---|
[3773] | 567 | # zt = zt_ip |
---|
[3567] | 568 | |
---|
| 569 | # Final step: add zt array to the global array |
---|
[3726] | 570 | |
---|
[3567] | 571 | zt_all.append(zt) |
---|
| 572 | del zt |
---|
| 573 | |
---|
| 574 | |
---|
| 575 | # Read and shift x and y coordinates, shift terrain height according to its minimum value and write all data |
---|
| 576 | # to file |
---|
| 577 | for i in range(0,ndomains): |
---|
| 578 | # Read horizontal grid variables from zt file and write them to output file |
---|
| 579 | x = nc_read_from_file_1d(input_file_x[ii[i]], "x", domain_x0[i], domain_x1[i]) |
---|
| 580 | y = nc_read_from_file_1d(input_file_y[ii[i]], "y", domain_y0[i], domain_y1[i]) |
---|
| 581 | x = x - min(x.flatten()) + domain_px[i]/2.0 |
---|
| 582 | y = y - min(y.flatten()) + domain_px[i]/2.0 |
---|
| 583 | nc_write_dimension(filename[i], 'x', x, datatypes["x"]) |
---|
| 584 | nc_write_dimension(filename[i], 'y', y, datatypes["y"]) |
---|
| 585 | nc_write_attribute(filename[i], 'x', 'long_name', 'x') |
---|
| 586 | nc_write_attribute(filename[i], 'x', 'standard_name','projection_x_coordinate') |
---|
| 587 | nc_write_attribute(filename[i], 'x', 'units', 'm') |
---|
[3859] | 588 | nc_write_attribute(filename[i], 'y', 'long_name', 'y') |
---|
[3567] | 589 | nc_write_attribute(filename[i], 'y', 'standard_name', 'projection_y_coordinate') |
---|
| 590 | nc_write_attribute(filename[i], 'y', 'units', 'm') |
---|
| 591 | |
---|
| 592 | lat = nc_read_from_file_2d(input_file_lat[ii[i]], "Band1", domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 593 | lon = nc_read_from_file_2d(input_file_lon[ii[i]], "Band1", domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 594 | |
---|
| 595 | nc_write_to_file_2d(filename[i], 'lat', lat, datatypes["lat"],'y','x',fillvalues["lat"]) |
---|
| 596 | nc_write_to_file_2d(filename[i], 'lon', lon, datatypes["lon"],'y','x',fillvalues["lon"]) |
---|
| 597 | |
---|
| 598 | nc_write_attribute(filename[i], 'lat', 'long_name', 'latitude') |
---|
| 599 | nc_write_attribute(filename[i], 'lat', 'standard_name','latitude') |
---|
| 600 | nc_write_attribute(filename[i], 'lat', 'units', 'degrees_north') |
---|
| 601 | |
---|
| 602 | nc_write_attribute(filename[i], 'lon', 'long_name', 'longitude') |
---|
| 603 | nc_write_attribute(filename[i], 'lon', 'standard_name','longitude') |
---|
| 604 | nc_write_attribute(filename[i], 'lon', 'units', 'degrees_east') |
---|
| 605 | |
---|
| 606 | x_UTM = nc_read_from_file_2d(input_file_x_UTM[ii[i]], "Band1", domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 607 | y_UTM = nc_read_from_file_2d(input_file_y_UTM[ii[i]], "Band1", domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
[3726] | 608 | |
---|
[3567] | 609 | |
---|
| 610 | nc_write_to_file_2d(filename[i], 'E_UTM', x_UTM, datatypes["E_UTM"],'y','x',fillvalues["E_UTM"]) |
---|
| 611 | nc_write_to_file_2d(filename[i], 'N_UTM', y_UTM, datatypes["N_UTM"],'y','x',fillvalues["N_UTM"]) |
---|
| 612 | |
---|
| 613 | nc_write_attribute(filename[i], 'E_UTM', 'long_name', 'easting') |
---|
| 614 | nc_write_attribute(filename[i], 'E_UTM', 'standard_name','projection_x_coorindate') |
---|
| 615 | nc_write_attribute(filename[i], 'E_UTM', 'units', 'm') |
---|
| 616 | |
---|
| 617 | nc_write_attribute(filename[i], 'N_UTM', 'long_name', 'northing') |
---|
| 618 | nc_write_attribute(filename[i], 'N_UTM', 'standard_name','projection_y_coorindate') |
---|
| 619 | nc_write_attribute(filename[i], 'N_UTM', 'units', 'm') |
---|
| 620 | |
---|
| 621 | nc_write_crs(filename[i]) |
---|
| 622 | |
---|
| 623 | |
---|
| 624 | |
---|
| 625 | # If necessary, bring terrain height to PALM's vertical grid. This is either forced by the user or implicitly |
---|
| 626 | # by using interpolation for a child domain |
---|
| 627 | if domain_za[i]: |
---|
| 628 | zt_all[i] = bring_to_palm_grid(zt_all[i],x,y,domain_dz[i]) |
---|
| 629 | |
---|
| 630 | nc_write_to_file_2d(filename[i], 'zt', zt_all[i], datatypes["zt"],'y','x',fillvalues["zt"]) |
---|
| 631 | nc_write_attribute(filename[i], 'zt', 'long_name', 'orography') |
---|
| 632 | nc_write_attribute(filename[i], 'zt', 'units', 'm') |
---|
| 633 | nc_write_attribute(filename[i], 'zt', 'res_orig', domain_px[i]) |
---|
| 634 | nc_write_attribute(filename[i], 'zt', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 635 | nc_write_attribute(filename[i], 'zt', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 636 | |
---|
| 637 | del zt_all |
---|
| 638 | |
---|
| 639 | |
---|
| 640 | # Process building height, id, and type |
---|
| 641 | for i in range(0,ndomains): |
---|
| 642 | buildings_2d = nc_read_from_file_2d(input_file_buildings_2d[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
[3688] | 643 | |
---|
[3567] | 644 | building_id = nc_read_from_file_2d(input_file_building_id[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 645 | |
---|
| 646 | building_type = nc_read_from_file_2d(input_file_building_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
[3668] | 647 | building_type[building_type >= 254] = fillvalues["building_type"] |
---|
[3567] | 648 | building_type = np.where(building_type < 1,defaultvalues["building_type"],building_type) |
---|
| 649 | |
---|
| 650 | check = check_arrays_2(buildings_2d,building_id,fillvalues["buildings_2d"],fillvalues["building_id"]) |
---|
| 651 | if not check: |
---|
| 652 | buildings_2d = np.where(building_id != fillvalues["building_id"],buildings_2d,fillvalues["buildings_2d"]) |
---|
| 653 | building_id = np.where(buildings_2d == fillvalues["buildings_2d"],fillvalues["building_id"],building_id) |
---|
| 654 | print("Data check #1 " + str(check_arrays_2(buildings_2d,building_id,fillvalues["buildings_2d"],fillvalues["building_id"]))) |
---|
| 655 | |
---|
| 656 | check = check_arrays_2(buildings_2d,building_type,fillvalues["buildings_2d"],fillvalues["building_type"]) |
---|
| 657 | if not check: |
---|
| 658 | building_type = np.where(buildings_2d == fillvalues["buildings_2d"],fillvalues["building_type"],building_type) |
---|
| 659 | building_type = np.where((building_type == fillvalues["building_type"]) & (buildings_2d != fillvalues["buildings_2d"]),defaultvalues["building_type"],building_type) |
---|
| 660 | print("Data check #2 " + str(check_arrays_2(buildings_2d,building_type,fillvalues["buildings_2d"],fillvalues["building_type"]))) |
---|
| 661 | |
---|
[3688] | 662 | |
---|
[3567] | 663 | nc_write_to_file_2d(filename[i], 'buildings_2d', buildings_2d, datatypes["buildings_2d"],'y','x',fillvalues["buildings_2d"]) |
---|
| 664 | nc_write_attribute(filename[i], 'buildings_2d', 'long_name', 'buildings') |
---|
| 665 | nc_write_attribute(filename[i], 'buildings_2d', 'units', 'm') |
---|
| 666 | nc_write_attribute(filename[i], 'buildings_2d', 'res_orig', domain_px[i]) |
---|
| 667 | nc_write_attribute(filename[i], 'buildings_2d', 'lod', 1) |
---|
| 668 | nc_write_attribute(filename[i], 'buildings_2d', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 669 | nc_write_attribute(filename[i], 'buildings_2d', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 670 | |
---|
| 671 | nc_write_to_file_2d(filename[i], 'building_id', building_id, datatypes["building_id"],'y','x',fillvalues["building_id"]) |
---|
| 672 | nc_write_attribute(filename[i], 'building_id', 'long_name', 'building id') |
---|
| 673 | nc_write_attribute(filename[i], 'building_id', 'units', '') |
---|
[3668] | 674 | nc_write_attribute(filename[i], 'building_id', 'res _orig', domain_px[i]) |
---|
[3567] | 675 | nc_write_attribute(filename[i], 'building_id', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 676 | nc_write_attribute(filename[i], 'building_id', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 677 | |
---|
| 678 | nc_write_to_file_2d(filename[i], 'building_type', building_type, datatypes["building_type"],'y','x',fillvalues["building_type"]) |
---|
| 679 | nc_write_attribute(filename[i], 'building_type', 'long_name', 'building type') |
---|
| 680 | nc_write_attribute(filename[i], 'building_type', 'units', '') |
---|
| 681 | nc_write_attribute(filename[i], 'building_type', 'res_orig', domain_px[i]) |
---|
| 682 | nc_write_attribute(filename[i], 'building_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 683 | nc_write_attribute(filename[i], 'building_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 684 | |
---|
| 685 | del buildings_2d |
---|
| 686 | del building_id |
---|
| 687 | del building_type |
---|
| 688 | |
---|
| 689 | # Create 3d buildings if necessary. In that course, read bridge objects and add them to building layer |
---|
| 690 | for i in range(0,ndomains): |
---|
| 691 | |
---|
| 692 | if domain_3d[i]: |
---|
| 693 | x = nc_read_from_file_2d_all(filename[i], 'x') |
---|
| 694 | y = nc_read_from_file_2d_all(filename[i], 'y') |
---|
| 695 | buildings_2d = nc_read_from_file_2d_all(filename[i], 'buildings_2d') |
---|
| 696 | building_id = nc_read_from_file_2d_all(filename[i], 'building_id') |
---|
| 697 | |
---|
| 698 | bridges_2d = nc_read_from_file_2d(input_file_bridges_2d[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 699 | bridges_id = nc_read_from_file_2d(input_file_bridges_id[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 700 | |
---|
| 701 | bridges_2d = np.where(bridges_2d == 0.0,fillvalues["bridges_2d"],bridges_2d) |
---|
| 702 | building_id = np.where(bridges_2d == fillvalues["bridges_2d"],building_id,bridges_id) |
---|
| 703 | |
---|
| 704 | if np.any(buildings_2d != fillvalues["buildings_2d"]): |
---|
| 705 | buildings_3d, z = make_3d_from_2d(buildings_2d,x,y,domain_dz[i]) |
---|
| 706 | if np.any(bridges_2d != fillvalues["bridges_2d"]): |
---|
| 707 | buildings_3d = make_3d_from_bridges_2d(buildings_3d,bridges_2d,x,y,domain_dz[i],settings_bridge_width,fillvalues["bridges_2d"]) |
---|
| 708 | else: |
---|
| 709 | print("Skipping creation of 3D bridges (no bridges in domain)") |
---|
| 710 | |
---|
| 711 | |
---|
| 712 | nc_write_dimension(filename[i], 'z', z, datatypes["z"]) |
---|
| 713 | nc_write_attribute(filename[i], 'z', 'long_name', 'z') |
---|
| 714 | nc_write_attribute(filename[i], 'z', 'units', 'm') |
---|
[3726] | 715 | |
---|
| 716 | nc_overwrite_to_file_2d(filename[i], 'building_id', building_id) |
---|
[3567] | 717 | |
---|
| 718 | nc_write_to_file_3d(filename[i], 'buildings_3d', buildings_3d, datatypes["buildings_3d"],'z','y','x',fillvalues["buildings_3d"]) |
---|
| 719 | nc_write_attribute(filename[i], 'buildings_3d', 'long_name', 'buildings 3d') |
---|
| 720 | nc_write_attribute(filename[i], 'buildings_3d', 'units', '') |
---|
| 721 | nc_write_attribute(filename[i], 'buildings_3d', 'res_orig', domain_px[i]) |
---|
| 722 | nc_write_attribute(filename[i], 'buildings_3d', 'lod', 2) |
---|
| 723 | |
---|
| 724 | del buildings_3d |
---|
| 725 | |
---|
| 726 | else: |
---|
| 727 | print("Skipping creation of 3D buildings (no buildings in domain)") |
---|
| 728 | |
---|
| 729 | |
---|
[3629] | 730 | del bridges_2d, bridges_id, building_id, buildings_2d |
---|
[3567] | 731 | |
---|
| 732 | |
---|
| 733 | |
---|
| 734 | # Read vegetation type, water_type, pavement_type, soil_type and make fields consistent |
---|
| 735 | for i in range(0,ndomains): |
---|
| 736 | |
---|
| 737 | building_type = nc_read_from_file_2d_all(filename[i], 'building_type') |
---|
[3773] | 738 | |
---|
[3567] | 739 | vegetation_type = nc_read_from_file_2d(input_file_vegetation_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 740 | vegetation_type[vegetation_type == 255] = fillvalues["vegetation_type"] |
---|
| 741 | vegetation_type = np.where((vegetation_type < 1) & (vegetation_type != fillvalues["vegetation_type"]),defaultvalues["vegetation_type"],vegetation_type) |
---|
| 742 | |
---|
| 743 | pavement_type = nc_read_from_file_2d(input_file_pavement_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 744 | pavement_type[pavement_type == 255] = fillvalues["pavement_type"] |
---|
| 745 | pavement_type = np.where((pavement_type < 1) & (pavement_type != fillvalues["pavement_type"]),defaultvalues["pavement_type"],pavement_type) |
---|
| 746 | |
---|
| 747 | water_type = nc_read_from_file_2d(input_file_water_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 748 | water_type[water_type == 255] = fillvalues["water_type"] |
---|
| 749 | water_type = np.where((water_type < 1) & (water_type != fillvalues["water_type"]),defaultvalues["water_type"],water_type) |
---|
| 750 | |
---|
| 751 | # to do: replace by real soil input data |
---|
| 752 | soil_type = nc_read_from_file_2d(input_file_vegetation_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 753 | soil_type[soil_type == 255] = fillvalues["soil_type"] |
---|
| 754 | soil_type = np.where((soil_type < 1) & (soil_type != fillvalues["soil_type"]),defaultvalues["soil_type"],soil_type) |
---|
| 755 | |
---|
| 756 | # Make arrays consistent |
---|
| 757 | # #1 Set vegetation type to missing for pixel where a pavement type is set |
---|
| 758 | vegetation_type = np.where((vegetation_type != fillvalues["vegetation_type"]) & (pavement_type != fillvalues["pavement_type"]),fillvalues["vegetation_type"],vegetation_type) |
---|
| 759 | |
---|
| 760 | # #2 Set vegetation type to missing for pixel where a building type is set |
---|
| 761 | vegetation_type = np.where((vegetation_type != fillvalues["vegetation_type"]) & (building_type != fillvalues["building_type"]) ,fillvalues["vegetation_type"],vegetation_type) |
---|
| 762 | |
---|
| 763 | # #3 Set vegetation type to missing for pixel where a building type is set |
---|
| 764 | vegetation_type = np.where((vegetation_type != fillvalues["vegetation_type"]) & (water_type != fillvalues["water_type"]),fillvalues["vegetation_type"],vegetation_type) |
---|
| 765 | |
---|
| 766 | # #4 Remove pavement for pixels with buildings |
---|
| 767 | pavement_type = np.where((pavement_type != fillvalues["pavement_type"]) & (building_type != fillvalues["building_type"]),fillvalues["pavement_type"],pavement_type) |
---|
| 768 | |
---|
[3773] | 769 | # #5 Remove pavement for pixels with water. |
---|
| 770 | pavement_type = np.where((pavement_type != fillvalues["pavement_type"]) & (water_type != fillvalues["water_type"]),fillvalues["pavement_type"],pavement_type) |
---|
| 771 | |
---|
[3567] | 772 | # #6 Remove water for pixels with buildings |
---|
| 773 | water_type = np.where((water_type != fillvalues["water_type"]) & (building_type != fillvalues["building_type"]),fillvalues["water_type"],water_type) |
---|
[3773] | 774 | |
---|
[3668] | 775 | # Correct vegetation_type when a vegetation height is available and is indicative of low vegeetation |
---|
| 776 | vegetation_height = nc_read_from_file_2d(input_file_vegetation_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 777 | |
---|
| 778 | vegetation_type = np.where((vegetation_height != fillvalues["vegetation_height"]) & (vegetation_height == 0.0) & ((vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18)), 3, vegetation_type) |
---|
| 779 | vegetation_height = np.where((vegetation_height != fillvalues["vegetation_height"]) & (vegetation_height == 0.0) & ((vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18)), fillvalues["vegetation_height"],vegetation_height) |
---|
[3567] | 780 | |
---|
| 781 | # Check for consistency and fill empty fields with default vegetation type |
---|
| 782 | consistency_array, test = check_consistency_4(vegetation_type,building_type,pavement_type,water_type,fillvalues["vegetation_type"],fillvalues["building_type"],fillvalues["pavement_type"],fillvalues["water_type"]) |
---|
| 783 | |
---|
| 784 | if test: |
---|
| 785 | vegetation_type = np.where(consistency_array == 0,defaultvalues["vegetation_type"],vegetation_type) |
---|
| 786 | consistency_array, test = check_consistency_4(vegetation_type,building_type,pavement_type,water_type,fillvalues["vegetation_type"],fillvalues["building_type"],fillvalues["pavement_type"],fillvalues["water_type"]) |
---|
[3668] | 787 | |
---|
| 788 | # #7 to be removed: set default soil type everywhere |
---|
| 789 | soil_type = np.where((vegetation_type != fillvalues["vegetation_type"]) | (pavement_type != fillvalues["pavement_type"]),defaultvalues["soil_type"],fillvalues["soil_type"]) |
---|
| 790 | |
---|
[3567] | 791 | |
---|
[3668] | 792 | # Check for consistency and fill empty fields with default vegetation type |
---|
| 793 | consistency_array, test = check_consistency_3(vegetation_type,pavement_type,soil_type,fillvalues["vegetation_type"],fillvalues["pavement_type"],fillvalues["soil_type"]) |
---|
| 794 | |
---|
[3567] | 795 | # Create surface_fraction array |
---|
| 796 | x = nc_read_from_file_2d_all(filename[i], 'x') |
---|
| 797 | y = nc_read_from_file_2d_all(filename[i], 'y') |
---|
| 798 | nsurface_fraction = np.arange(0,3) |
---|
| 799 | surface_fraction = np.ones((len(nsurface_fraction),len(y),len(x))) |
---|
| 800 | |
---|
| 801 | surface_fraction[0,:,:] = np.where(vegetation_type != fillvalues["vegetation_type"], 1.0, 0.0) |
---|
| 802 | surface_fraction[1,:,:] = np.where(pavement_type != fillvalues["pavement_type"], 1.0, 0.0) |
---|
| 803 | surface_fraction[2,:,:] = np.where(water_type != fillvalues["water_type"], 1.0, 0.0) |
---|
| 804 | |
---|
| 805 | nc_write_dimension(filename[i], 'nsurface_fraction', nsurface_fraction, datatypes["nsurface_fraction"]) |
---|
| 806 | nc_write_to_file_3d(filename[i], 'surface_fraction', surface_fraction, datatypes["surface_fraction"],'nsurface_fraction','y','x',fillvalues["surface_fraction"]) |
---|
| 807 | nc_write_attribute(filename[i], 'surface_fraction', 'long_name', 'surface fraction') |
---|
| 808 | nc_write_attribute(filename[i], 'surface_fraction', 'units', '') |
---|
| 809 | nc_write_attribute(filename[i], 'surface_fraction', 'res_orig', domain_px[i]) |
---|
| 810 | del surface_fraction |
---|
| 811 | |
---|
| 812 | nc_write_to_file_2d(filename[i], 'vegetation_type', vegetation_type, datatypes["vegetation_type"],'y','x',fillvalues["vegetation_type"]) |
---|
| 813 | nc_write_attribute(filename[i], 'vegetation_type', 'long_name', 'vegetation type') |
---|
| 814 | nc_write_attribute(filename[i], 'vegetation_type', 'units', '') |
---|
| 815 | nc_write_attribute(filename[i], 'vegetation_type', 'res_orig', domain_px[i]) |
---|
| 816 | nc_write_attribute(filename[i], 'vegetation_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 817 | nc_write_attribute(filename[i], 'vegetation_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 818 | del vegetation_type |
---|
| 819 | |
---|
| 820 | nc_write_to_file_2d(filename[i], 'pavement_type', pavement_type, datatypes["pavement_type"],'y','x',fillvalues["pavement_type"]) |
---|
| 821 | nc_write_attribute(filename[i], 'pavement_type', 'long_name', 'pavement type') |
---|
| 822 | nc_write_attribute(filename[i], 'pavement_type', 'units', '') |
---|
| 823 | nc_write_attribute(filename[i], 'pavement_type', 'res_orig', domain_px[i]) |
---|
| 824 | nc_write_attribute(filename[i], 'pavement_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 825 | nc_write_attribute(filename[i], 'pavement_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 826 | del pavement_type |
---|
| 827 | |
---|
| 828 | nc_write_to_file_2d(filename[i], 'water_type', water_type, datatypes["water_type"],'y','x',fillvalues["water_type"]) |
---|
| 829 | nc_write_attribute(filename[i], 'water_type', 'long_name', 'water type') |
---|
| 830 | nc_write_attribute(filename[i], 'water_type', 'units', '') |
---|
| 831 | nc_write_attribute(filename[i], 'water_type', 'res_orig', domain_px[i]) |
---|
| 832 | nc_write_attribute(filename[i], 'water_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 833 | nc_write_attribute(filename[i], 'water_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 834 | del water_type |
---|
| 835 | |
---|
| 836 | nc_write_to_file_2d(filename[i], 'soil_type', soil_type, datatypes["soil_type"],'y','x',fillvalues["soil_type"]) |
---|
| 837 | nc_write_attribute(filename[i], 'soil_type', 'long_name', 'soil type') |
---|
| 838 | nc_write_attribute(filename[i], 'soil_type', 'units', '') |
---|
| 839 | nc_write_attribute(filename[i], 'soil_type', 'res_orig', domain_px[i]) |
---|
| 840 | nc_write_attribute(filename[i], 'soil_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 841 | nc_write_attribute(filename[i], 'soil_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 842 | del soil_type |
---|
| 843 | |
---|
[3629] | 844 | del x |
---|
| 845 | del y |
---|
[3567] | 846 | |
---|
| 847 | # pixels with bridges get building_type = 7 = bridge. This does not change the _type setting for the under-bridge |
---|
[3668] | 848 | # area NOTE: when bridges are present the consistency check will fail at the moment |
---|
[3567] | 849 | if domain_3d[i]: |
---|
| 850 | if np.any(building_type != fillvalues["building_type"]): |
---|
| 851 | |
---|
| 852 | bridges_2d = nc_read_from_file_2d(input_file_bridges_2d[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 853 | bridges_2d = np.where(bridges_2d == 0.0,fillvalues["bridges_2d"],bridges_2d) |
---|
| 854 | building_type = np.where(bridges_2d != fillvalues["bridges_2d"],7,building_type) |
---|
| 855 | nc_overwrite_to_file_2d(filename[i], 'building_type', building_type) |
---|
| 856 | |
---|
| 857 | del building_type |
---|
| 858 | del bridges_2d |
---|
| 859 | |
---|
[3629] | 860 | # Read/write street type and street crossings |
---|
[3567] | 861 | for i in range(0,ndomains): |
---|
| 862 | |
---|
| 863 | street_type = nc_read_from_file_2d(input_file_street_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 864 | street_type[street_type == 255] = fillvalues["street_type"] |
---|
| 865 | street_type = np.where((street_type < 1) & (street_type != fillvalues["street_type"]),defaultvalues["street_type"],street_type) |
---|
[3773] | 866 | |
---|
| 867 | pavement_type = nc_read_from_file_2d_all(filename[i], 'pavement_type') |
---|
| 868 | street_type = np.where((pavement_type == fillvalues["pavement_type"]),fillvalues["street_type"],street_type) |
---|
| 869 | |
---|
[3567] | 870 | nc_write_to_file_2d(filename[i], 'street_type', street_type, datatypes["street_type"],'y','x',fillvalues["street_type"]) |
---|
| 871 | nc_write_attribute(filename[i], 'street_type', 'long_name', 'street type') |
---|
| 872 | nc_write_attribute(filename[i], 'street_type', 'units', '') |
---|
| 873 | nc_write_attribute(filename[i], 'street_type', 'res_orig', domain_px[i]) |
---|
| 874 | nc_write_attribute(filename[i], 'street_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 875 | nc_write_attribute(filename[i], 'street_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 876 | del street_type |
---|
| 877 | |
---|
| 878 | street_crossings = nc_read_from_file_2d(input_file_street_crossings[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 879 | street_crossings[street_crossings == 255] = fillvalues["street_crossings"] |
---|
| 880 | street_crossings = np.where((street_crossings < 1) & (street_crossings != fillvalues["street_crossings"]),defaultvalues["street_crossings"],street_crossings) |
---|
| 881 | |
---|
[3726] | 882 | nc_write_to_file_2d(filename[i], 'street_crossing', street_crossings, datatypes["street_crossings"],'y','x',fillvalues["street_crossings"]) |
---|
| 883 | nc_write_attribute(filename[i], 'street_crossing', 'long_name', 'street crossings') |
---|
| 884 | nc_write_attribute(filename[i], 'street_crossing', 'units', '') |
---|
| 885 | nc_write_attribute(filename[i], 'street_crossing', 'res_orig', domain_px[i]) |
---|
| 886 | nc_write_attribute(filename[i], 'street_crossing', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 887 | nc_write_attribute(filename[i], 'street_crossing', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
[3567] | 888 | del street_crossings |
---|
[3629] | 889 | |
---|
| 890 | |
---|
| 891 | # Read/write vegetation on roofs |
---|
| 892 | for i in range(0,ndomains): |
---|
| 893 | if domain_green_roofs[i]: |
---|
| 894 | green_roofs = nc_read_from_file_2d(input_file_vegetation_on_roofs[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 895 | buildings_2d = nc_read_from_file_2d_all(filename[i], 'buildings_2d') |
---|
| 896 | |
---|
| 897 | |
---|
| 898 | x = nc_read_from_file_2d_all(filename[i], 'x') |
---|
| 899 | y = nc_read_from_file_2d_all(filename[i], 'y') |
---|
[4149] | 900 | nbuilding_pars = np.arange(0,47) |
---|
[3629] | 901 | building_pars = np.ones((len(nbuilding_pars),len(y),len(x))) |
---|
| 902 | building_pars[:,:,:] = fillvalues["building_pars"] |
---|
| 903 | |
---|
| 904 | # assign green fraction on roofs |
---|
[3955] | 905 | building_pars[3,:,:] = np.where( ( buildings_2d != fillvalues["buildings_2d"] ) & ( green_roofs != fillvalues["building_pars"] ) & ( green_roofs != 0.0 ),1,fillvalues["building_pars"] ) |
---|
[3629] | 906 | |
---|
| 907 | # assign leaf area index for vegetation on roofs |
---|
[4311] | 908 | building_pars[4,:,:] = np.where( ( building_pars[3,:,:] != fillvalues["building_pars"] ) & ( green_roofs >= 0.5 ),settings_lai_roof_intensive,fillvalues["building_pars"]) |
---|
| 909 | building_pars[4,:,:] = np.where( ( building_pars[3,:,:] != fillvalues["building_pars"] ) & ( green_roofs < 0.5 ),settings_lai_roof_extensive,building_pars[4,:,:]) |
---|
[3629] | 910 | |
---|
| 911 | |
---|
| 912 | nc_write_dimension(filename[i], 'nbuilding_pars', nbuilding_pars, datatypes["nbuilding_pars"]) |
---|
| 913 | nc_write_to_file_3d(filename[i], 'building_pars', building_pars, datatypes["building_pars"],'nbuilding_pars','y','x',fillvalues["building_pars"]) |
---|
| 914 | nc_write_attribute(filename[i], 'building_pars', 'long_name', 'building_pars') |
---|
| 915 | nc_write_attribute(filename[i], 'building_pars', 'units', '') |
---|
| 916 | nc_write_attribute(filename[i], 'building_pars', 'res_orig', domain_px[i]) |
---|
| 917 | nc_write_attribute(filename[i], 'building_pars', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 918 | nc_write_attribute(filename[i], 'building_pars', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 919 | |
---|
| 920 | del building_pars, buildings_2d, x, y |
---|
| 921 | |
---|
| 922 | |
---|
| 923 | # Read tree data and create LAD and BAD arrays using the canopy generator |
---|
| 924 | for i in range(0,ndomains): |
---|
[3668] | 925 | lai = nc_read_from_file_2d(input_file_lai[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 926 | |
---|
| 927 | vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type') |
---|
| 928 | |
---|
| 929 | lai = np.where(vegetation_type == fillvalues["vegetation_type"],fillvalues["vegetation_pars"],lai) |
---|
| 930 | |
---|
[3629] | 931 | |
---|
[3668] | 932 | x = nc_read_from_file_2d_all(filename[i], 'x') |
---|
| 933 | y = nc_read_from_file_2d_all(filename[i], 'y') |
---|
| 934 | nvegetation_pars = np.arange(0,12) |
---|
| 935 | vegetation_pars = np.ones((len(nvegetation_pars),len(y),len(x))) |
---|
| 936 | vegetation_pars[:,:,:] = fillvalues["vegetation_pars"] |
---|
[3629] | 937 | |
---|
[3668] | 938 | vegetation_pars[1,:,:] = lai |
---|
[3629] | 939 | |
---|
[3668] | 940 | |
---|
| 941 | # Write out first version of LAI. Will later be overwritten. |
---|
| 942 | nc_write_dimension(filename[i], 'nvegetation_pars', nvegetation_pars, datatypes["nvegetation_pars"]) |
---|
| 943 | nc_write_to_file_3d(filename[i], 'vegetation_pars', vegetation_pars, datatypes["vegetation_pars"],'nvegetation_pars','y','x',fillvalues["vegetation_pars"]) |
---|
| 944 | nc_write_attribute(filename[i], 'vegetation_pars', 'long_name', 'vegetation_pars') |
---|
| 945 | nc_write_attribute(filename[i], 'vegetation_pars', 'units', '') |
---|
| 946 | nc_write_attribute(filename[i], 'vegetation_pars', 'res_orig', domain_px[i]) |
---|
| 947 | nc_write_attribute(filename[i], 'vegetation_pars', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 948 | nc_write_attribute(filename[i], 'vegetation_pars', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 949 | |
---|
| 950 | del lai, vegetation_pars, vegetation_type |
---|
| 951 | |
---|
| 952 | # Read tree data and create LAD and BAD arrays using the canopy generator |
---|
| 953 | for i in range(0,ndomains): |
---|
| 954 | if domain_street_trees[i]: |
---|
| 955 | |
---|
| 956 | vegetation_pars = nc_read_from_file_2d_all(filename[i], 'vegetation_pars') |
---|
| 957 | |
---|
| 958 | lai = np.copy(vegetation_pars[1,:,:]) |
---|
| 959 | |
---|
[3629] | 960 | x = nc_read_from_file_2d_all(filename[i], 'x') |
---|
| 961 | y = nc_read_from_file_2d_all(filename[i], 'y') |
---|
| 962 | |
---|
[3668] | 963 | # Save lai data as default for low and high vegetation |
---|
| 964 | lai_low = lai |
---|
| 965 | lai_high = lai |
---|
| 966 | |
---|
| 967 | # Read all tree parameters from file |
---|
| 968 | tree_height = nc_read_from_file_2d(input_file_tree_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
[3629] | 969 | |
---|
[3668] | 970 | if (input_file_tree_crown_diameter[ii[i]] is not None): |
---|
| 971 | tree_crown_diameter = nc_read_from_file_2d(input_file_tree_crown_diameter[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 972 | tree_crown_diameter = np.where( (tree_crown_diameter == 0.0) | (tree_crown_diameter == -1.0) ,fillvalues["tree_data"],tree_crown_diameter) |
---|
| 973 | else: |
---|
| 974 | tree_crown_diameter = np.ones((len(y),len(x))) |
---|
| 975 | tree_crown_diameter[:,:] = fillvalues["tree_data"] |
---|
[3629] | 976 | |
---|
[3668] | 977 | |
---|
[3629] | 978 | tree_trunk_diameter = nc_read_from_file_2d(input_file_tree_trunk_diameter[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 979 | tree_type = nc_read_from_file_2d(input_file_tree_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 980 | patch_height = nc_read_from_file_2d(input_file_patch_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 981 | |
---|
| 982 | # Remove missing values from the data. Reasonable values will be set by the tree generator |
---|
| 983 | tree_height = np.where( (tree_height == 0.0) | (tree_height == -1.0) ,fillvalues["tree_data"],tree_height) |
---|
| 984 | tree_trunk_diameter = np.where( (tree_trunk_diameter == 0.0) | (tree_trunk_diameter == -1.0) ,fillvalues["tree_data"],tree_trunk_diameter) |
---|
| 985 | tree_type = np.where( (tree_type == 0.0) | (tree_type == -1.0) ,fillvalues["tree_data"],tree_type) |
---|
| 986 | patch_height = np.where( patch_height == -1.0 ,fillvalues["tree_data"],patch_height) |
---|
| 987 | |
---|
| 988 | # Convert trunk diameter from cm to m |
---|
| 989 | tree_trunk_diameter = np.where(tree_trunk_diameter != fillvalues["tree_data"], tree_trunk_diameter * 0.01,tree_trunk_diameter) |
---|
| 990 | |
---|
| 991 | |
---|
| 992 | # Temporarily change missing value for tree_type |
---|
| 993 | tree_type = np.where( (tree_type == fillvalues["tree_type"]),fillvalues["tree_data"],tree_type) |
---|
| 994 | |
---|
| 995 | # Compare patch height array with vegetation type and correct accordingly |
---|
| 996 | vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type') |
---|
| 997 | |
---|
| 998 | |
---|
| 999 | # For zero-height patches, set vegetation_type to short grass and remove these pixels from the patch height array |
---|
| 1000 | vegetation_type = np.where( (patch_height == 0.0) & ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ),3,vegetation_type) |
---|
[3668] | 1001 | patch_type = np.where( (patch_height == 0.0) & ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ),fillvalues["tree_data"],patch_height) |
---|
| 1002 | |
---|
[3629] | 1003 | |
---|
| 1004 | max_tree_height = max(tree_height.flatten()) |
---|
| 1005 | max_patch_height = max(patch_height.flatten()) |
---|
| 1006 | |
---|
[4490] | 1007 | # Call canopy generator for single trees only if there is any tree height available in the domain. |
---|
| 1008 | # This does not guarantee that there are street trees that can be processed. This is checked in the |
---|
| 1009 | # canopy generator. |
---|
| 1010 | if ( (max_tree_height != fillvalues["tree_data"]) | (max_patch_height != fillvalues["tree_data"]) ): |
---|
[3668] | 1011 | |
---|
[3629] | 1012 | lad, bad, tree_ids, zlad = generate_single_tree_lad(x,y,domain_dz[i],max_tree_height,max_patch_height,tree_type,tree_height,tree_crown_diameter,tree_trunk_diameter,lai,settings_season,fillvalues["tree_data"]) |
---|
| 1013 | |
---|
| 1014 | |
---|
| 1015 | # Remove LAD volumes that are inside buildings |
---|
| 1016 | buildings_2d = nc_read_from_file_2d_all(filename[i], 'buildings_2d') |
---|
| 1017 | for k in range(0,len(zlad)-1): |
---|
| 1018 | |
---|
| 1019 | lad[k,:,:] = np.where(buildings_2d == fillvalues["buildings_2d"],lad[k,:,:],fillvalues["tree_data"]) |
---|
| 1020 | bad[k,:,:] = np.where(buildings_2d == fillvalues["buildings_2d"],bad[k,:,:],fillvalues["tree_data"]) |
---|
| 1021 | tree_ids[k,:,:] = np.where(buildings_2d == fillvalues["buildings_2d"],tree_ids[k,:,:],fillvalues["tree_data"]) |
---|
[3668] | 1022 | |
---|
| 1023 | del buildings_2d |
---|
[3629] | 1024 | |
---|
| 1025 | nc_write_dimension(filename[i], 'zlad', zlad, datatypes["tree_data"]) |
---|
| 1026 | nc_write_to_file_3d(filename[i], 'lad', lad, datatypes["tree_data"],'zlad','y','x',fillvalues["tree_data"]) |
---|
| 1027 | nc_write_attribute(filename[i], 'lad', 'long_name', 'leaf area density') |
---|
| 1028 | nc_write_attribute(filename[i], 'lad', 'units', '') |
---|
| 1029 | nc_write_attribute(filename[i], 'lad', 'res_orig', domain_px[i]) |
---|
| 1030 | nc_write_attribute(filename[i], 'lad', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 1031 | nc_write_attribute(filename[i], 'lad', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 1032 | |
---|
| 1033 | nc_write_to_file_3d(filename[i], 'bad', bad, datatypes["tree_data"],'zlad','y','x',fillvalues["tree_data"]) |
---|
| 1034 | nc_write_attribute(filename[i], 'bad', 'long_name', 'basal area density') |
---|
| 1035 | nc_write_attribute(filename[i], 'bad', 'units', '') |
---|
| 1036 | nc_write_attribute(filename[i], 'bad', 'res_orig', domain_px[i]) |
---|
| 1037 | nc_write_attribute(filename[i], 'bad', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 1038 | nc_write_attribute(filename[i], 'bad', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 1039 | |
---|
| 1040 | nc_write_to_file_3d(filename[i], 'tree_id', tree_ids, datatypes["tree_data"],'zlad','y','x',fillvalues["tree_data"]) |
---|
| 1041 | nc_write_attribute(filename[i], 'tree_id', 'long_name', 'tree id') |
---|
| 1042 | nc_write_attribute(filename[i], 'tree_id', 'units', '') |
---|
| 1043 | nc_write_attribute(filename[i], 'tree_id', 'res_orig', domain_px[i]) |
---|
| 1044 | nc_write_attribute(filename[i], 'tree_id', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
| 1045 | nc_write_attribute(filename[i], 'tree_id', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
| 1046 | |
---|
[3668] | 1047 | del lai, lad, bad, tree_ids, zlad |
---|
[3629] | 1048 | |
---|
[3668] | 1049 | del vegetation_pars, tree_height, tree_crown_diameter, tree_trunk_diameter, tree_type, patch_height, x, y |
---|
[3629] | 1050 | |
---|
| 1051 | |
---|
| 1052 | # Create vegetation patches for locations with high vegetation type |
---|
| 1053 | for i in range(0,ndomains): |
---|
| 1054 | if domain_canopy_patches[i]: |
---|
| 1055 | |
---|
| 1056 | # Load vegetation_type and lad array (at level z = 0) for re-processing |
---|
| 1057 | vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type') |
---|
| 1058 | lad = nc_read_from_file_3d_all(filename[i], 'lad') |
---|
[3668] | 1059 | zlad = nc_read_from_file_1d_all(filename[i], 'zlad') |
---|
[3629] | 1060 | patch_height = nc_read_from_file_2d(input_file_patch_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
| 1061 | vegetation_pars = nc_read_from_file_3d_all(filename[i], 'vegetation_pars') |
---|
| 1062 | lai = vegetation_pars[1,:,:] |
---|
[3726] | 1063 | |
---|
[3629] | 1064 | |
---|
[3726] | 1065 | # Determine all pixels that do not already have an LAD but which are high vegetation to a dummy value of 1.0 and remove all other pixels |
---|
[3668] | 1066 | lai_high = np.where( (lad[0,:,:] == fillvalues["tree_data"]) & ( ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ) & ( (patch_height == fillvalues["tree_data"]) | (patch_height >= domain_dz[i])) ),1.0,fillvalues["tree_data"]) |
---|
[3629] | 1067 | |
---|
[3726] | 1068 | # Now, assign either the default LAI for high vegetation or keep 1.0 from the lai_high array. |
---|
| 1069 | lai_high = np.where( (lai_high != fillvalues["tree_data"]) & (lai == fillvalues["tree_data"]), settings_lai_high_default, lai_high) |
---|
[3668] | 1070 | |
---|
[3726] | 1071 | # If lai values are available in the lai array, write them on the lai_high array |
---|
| 1072 | lai_high = np.where( (lai_high != fillvalues["tree_data"]) & (lai != fillvalues["tree_data"]), lai, lai_high) |
---|
| 1073 | |
---|
[3668] | 1074 | # Define a patch height wherever it is missing, but where a high vegetation LAI was set |
---|
[3629] | 1075 | patch_height = np.where ( (lai_high != fillvalues["tree_data"]) & (patch_height == fillvalues["tree_data"]), settings_patch_height_default, patch_height) |
---|
| 1076 | |
---|
| 1077 | # Remove pixels where street trees were already set |
---|
| 1078 | patch_height = np.where ( (lad[0,:,:] != fillvalues["tree_data"]), fillvalues["tree_data"], patch_height) |
---|
| 1079 | |
---|
[3668] | 1080 | # Remove patch heights that have no lai_high value |
---|
| 1081 | patch_height = np.where ( (lai_high == fillvalues["tree_data"]), fillvalues["tree_data"], patch_height) |
---|
| 1082 | |
---|
[3629] | 1083 | # For missing LAI values, set either the high vegetation default or the low vegetation default |
---|
[3668] | 1084 | lai_high = np.where( (patch_height > 2.0) & (patch_height != fillvalues["tree_data"]) & (lai_high == fillvalues["tree_data"]),settings_lai_high_default,lai_high) |
---|
| 1085 | lai_high = np.where( (patch_height <= 2.0) & (patch_height != fillvalues["tree_data"]) & (lai_high == fillvalues["tree_data"]),settings_lai_low_default,lai_high) |
---|
| 1086 | |
---|
[3629] | 1087 | if ( max(patch_height.flatten()) >= (2.0 * domain_dz[i]) ): |
---|
[3726] | 1088 | print(" start calculating LAD (this might take some time)") |
---|
| 1089 | |
---|
| 1090 | |
---|
[3668] | 1091 | lad_patch, patch_nz, status = process_patch(domain_dz[i],patch_height,max(zlad),lai_high,settings_lai_alpha,settings_lai_beta) |
---|
[3629] | 1092 | |
---|
| 1093 | lad[0:patch_nz+1,:,:] = np.where( (lad[0:patch_nz+1,:,:] == fillvalues["tree_data"]),lad_patch[0:patch_nz+1,:,:], lad[0:patch_nz+1,:,:] ) |
---|
| 1094 | |
---|
| 1095 | # Remove high vegetation wherever it is replaced by a leaf area density. This should effectively remove all high vegetation pixels |
---|
[3955] | 1096 | vegetation_type = np.where((lad[0,:,:] != fillvalues["tree_data"]) & (vegetation_type != fillvalues["vegetation_type"]),settings_veg_type_below_trees,vegetation_type) |
---|
[3668] | 1097 | |
---|
[3629] | 1098 | # If desired, remove all high vegetation. TODO: check if this is still necessary |
---|
[3688] | 1099 | if not domain_high_vegetation[i]: |
---|
[3629] | 1100 | vegetation_type = np.where((vegetation_type != fillvalues["vegetation_type"]) & ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ),3,vegetation_type) |
---|
| 1101 | |
---|
| 1102 | |
---|
[3668] | 1103 | # Set default low LAI for pixels with an LAD (short grass below trees) |
---|
| 1104 | lai_low = np.where( (lad[0,:,:] == fillvalues["tree_data"]), lai, settings_lai_low_default) |
---|
[3629] | 1105 | |
---|
[3668] | 1106 | # Fill low vegetation pixels without LAI set or with LAI = 0 with default value |
---|
| 1107 | lai_low = np.where( ( (lai_low == fillvalues["tree_data"]) | (lai_low == 0.0) ) & (vegetation_type != fillvalues["vegetation_type"] ), settings_lai_low_default, lai_low) |
---|
[3629] | 1108 | |
---|
[3668] | 1109 | # Remove lai for pixels that have no vegetation_type |
---|
[3955] | 1110 | lai_low = np.where( ( (vegetation_type != fillvalues["vegetation_type"]) & (vegetation_type != 1) ), lai_low, fillvalues["tree_data"]) |
---|
[3668] | 1111 | |
---|
[3629] | 1112 | # Overwrite lai in vegetation_parameters |
---|
[3668] | 1113 | vegetation_pars[1,:,:] = np.copy(lai_low) |
---|
[3629] | 1114 | nc_overwrite_to_file_3d(filename[i], 'vegetation_pars', vegetation_pars) |
---|
| 1115 | |
---|
| 1116 | # Overwrite lad array |
---|
| 1117 | nc_overwrite_to_file_3d(filename[i], 'lad', lad) |
---|
[3668] | 1118 | |
---|
| 1119 | nc_overwrite_to_file_2d(filename[i], 'vegetation_type', vegetation_type) |
---|
| 1120 | |
---|
[3629] | 1121 | |
---|
[3668] | 1122 | del vegetation_type, lad, lai, patch_height, vegetation_pars, zlad |
---|
| 1123 | |
---|
[3955] | 1124 | |
---|
| 1125 | # Final adjustment of vegetation parameters: remove LAI where a bare soil was set |
---|
| 1126 | for i in range(0,ndomains): |
---|
| 1127 | |
---|
| 1128 | vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type') |
---|
| 1129 | vegetation_pars = nc_read_from_file_3d_all(filename[i], 'vegetation_pars') |
---|
| 1130 | lai = vegetation_pars[1,:,:] |
---|
| 1131 | |
---|
| 1132 | |
---|
| 1133 | # Remove lai for pixels that have no vegetation_type |
---|
| 1134 | lai = np.where( ( (vegetation_type != fillvalues["vegetation_type"]) & (vegetation_type != 1) ), lai, fillvalues["tree_data"]) |
---|
| 1135 | |
---|
| 1136 | # Overwrite lai in vegetation_parameters |
---|
| 1137 | vegetation_pars[1,:,:] = np.copy(lai) |
---|
| 1138 | nc_overwrite_to_file_3d(filename[i], 'vegetation_pars', vegetation_pars) |
---|
| 1139 | |
---|
| 1140 | del vegetation_type, lai, vegetation_pars |
---|
| 1141 | |
---|
| 1142 | |
---|
[3668] | 1143 | # Final consistency check |
---|
| 1144 | for i in range(0,ndomains): |
---|
| 1145 | vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type') |
---|
| 1146 | pavement_type = nc_read_from_file_2d_all(filename[i], 'pavement_type') |
---|
| 1147 | building_type = nc_read_from_file_2d_all(filename[i], 'building_type') |
---|
| 1148 | water_type = nc_read_from_file_2d_all(filename[i], 'water_type') |
---|
| 1149 | soil_type = nc_read_from_file_2d_all(filename[i], 'soil_type') |
---|
| 1150 | |
---|
| 1151 | # Check for consistency and fill empty fields with default vegetation type |
---|
| 1152 | consistency_array, test = check_consistency_4(vegetation_type,building_type,pavement_type,water_type,fillvalues["vegetation_type"],fillvalues["building_type"],fillvalues["pavement_type"],fillvalues["water_type"]) |
---|
| 1153 | |
---|
| 1154 | # Check for consistency and fill empty fields with default vegetation type |
---|
| 1155 | consistency_array, test = check_consistency_3(vegetation_type,pavement_type,soil_type,fillvalues["vegetation_type"],fillvalues["pavement_type"],fillvalues["soil_type"]) |
---|
| 1156 | |
---|
| 1157 | surface_fraction = nc_read_from_file_3d_all(filename[i], 'surface_fraction') |
---|
| 1158 | surface_fraction[0,:,:] = np.where(vegetation_type != fillvalues["vegetation_type"], 1.0, 0.0) |
---|
| 1159 | surface_fraction[1,:,:] = np.where(pavement_type != fillvalues["pavement_type"], 1.0, 0.0) |
---|
| 1160 | surface_fraction[2,:,:] = np.where(water_type != fillvalues["water_type"], 1.0, 0.0) |
---|
| 1161 | nc_overwrite_to_file_3d(filename[i], 'surface_fraction', surface_fraction) |
---|
| 1162 | |
---|
| 1163 | del vegetation_type, pavement_type, building_type, water_type, soil_type |
---|