source: palm/trunk/DOC/app/chapter_4.2.html @ 95

Last change on this file since 95 was 89, checked in by raasch, 18 years ago

further changes concerning user-defined profiles

  • Property svn:keywords set to Id
File size: 229.2 KB
Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head>
3<meta content="text/html; charset=ISO-8859-1" http-equiv="content-type"><title>PALM chapter 4.2</title></head>
4<body><h3 style="line-height: 100%;"><a name="Kapitel4.2"></a>4.2 <a href="#Laufparameter">Runtime
5parameters</a> and <a href="#Paketparameter">package
6parameters</a></h3>
7<h3 style="margin-bottom: 0cm; line-height: 100%;"><a name="Laufparameter"></a>Runtime parameters:</h3>
8<br><br><table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2"> <tbody>
9<tr>
10<td style="vertical-align: top;"><font size="4"><b>Parameter
11name</b></font></td> <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
12<td style="vertical-align: top;"> <p><b><font size="4">Default</font></b> <br> <b><font size="4">value</font></b></p> </td>
13<td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
14</tr> <tr> <td style="vertical-align: top;"><a name="averaging_interval"></a><span style="font-weight: bold;">averaging_interval</span><br>
15</td> <td style="vertical-align: top;">R<br> </td>
16<td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> </td>
17<td style="vertical-align: top;">Averaging interval for
18all&nbsp;output of temporally averaged data (in s).<br><br>This
19parameter defines the time interval length for temporally averaged data
20(vertical profiles, spectra, 2d cross-sections, 3d volume data). By
21default,&nbsp;data are not subject to temporal averaging. The
22interval
23length is limited by the parameter <a href="#dt_data_output_av">dt_data_output_av</a>.
24In any case, <span style="font-weight: bold;">averaging_interval</span>
25&lt;= <span style="font-weight: bold;">dt_data_output_av</span>
26must hold.<br><br>If
27an interval is defined, then by default the average is calculated from
28the data values of all timesteps lying within this interval. The number
29of time levels entering into the average can be reduced with the
30parameter <a href="#dt_averaging_input">dt_averaging_input</a>.<br><br>If
31an averaging interval can not be completed at the end of a run, it
32will be finished at the beginning of the next restart run. Thus for
33restart runs, averaging intervals do not
34necessarily begin at the beginning of the run.<br><br>Parameters
35<a href="#averaging_interval_pr">averaging_interval_pr</a>
36and <a href="#averaging_interval_sp">averaging_interval_sp</a>
37can be used to define different averaging intervals for vertical
38profile data and spectra, respectively.<br> </td> </tr>
39<tr> <td style="vertical-align: top;"> <p><a name="averaging_interval_pr"></a><b>averaging_interval_pr</b></p>
40</td> <td style="vertical-align: top;">R<br> </td>
41<td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="#averaging_interval">averaging_<br>
42interval</a><br>
43</span> </td> <td style="vertical-align: top;"><p>Averaging
44interval for output of vertical profiles&nbsp;to
45local
46file <font color="#000000"><font color="#000000"><a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>
47</font></font>and/or&nbsp; <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>
48(in s).&nbsp; </p> <p>If
49this parameter is given a non-zero value, temporally
50averaged vertical profile data are output. By default, profile data
51data are not subject to temporal averaging. The interval length is
52limited by the parameter <a href="#dt_dopr">dt_dopr</a>.
53In any case <b>averaging_interval_pr</b> &lt;= <b>dt_dopr
54</b>must
55hold.</p>If an interval is defined, then by default the average
56is calculated
57from the data values of all timesteps lying within this interval. The
58number of time levels entering into the average can be reduced with the
59parameter <a href="#dt_averaging_input_pr">dt_averaging_input_pr</a>.
60<p>If
61an averaging interval can not be completed at the end of a run, it will
62be finished at the beginning of the next restart run. Thus for restart
63runs, averaging intervals do not
64necessarily begin at the beginning of the run.</p> </td> </tr>
65<tr> <td style="vertical-align: top;"><a name="call_psolver_at_all_substeps"></a><span style="font-weight: bold;">call_psolver_at_all_<br>
66substeps</span></td> <td style="vertical-align: top;">L<br>
67</td> <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span><br> </td>
68<td style="vertical-align: top;">Switch
69to steer the call of the pressure solver.<br> <br>
70In order to speed-up performance, the Poisson equation for perturbation
71pressure (see <a href="#psolver">psolver</a>) can
72be called only at the last substep of multistep Runge-Kutta
73timestep schemes (see <a href="chapter_4.1.html#timestep_scheme">timestep_scheme</a>)
74by setting <span style="font-weight: bold;">call_psolver_at_all_substeps</span>
75= <span style="font-style: italic;">.F.</span>.
76In many cases, this sufficiently reduces the divergence of the velocity
77field. Nevertheless, small-scale ripples (2-delta-x) may occur. In this
78case and in case
79of non-cyclic lateral boundary conditions, <span style="font-weight: bold;">call_psolver_at_all_timesteps</span>
80= <span style="font-style: italic;">.T.</span>
81should be used.&nbsp;<span style="font-weight: bold;"></span></td>
82</tr> <tr> <td style="vertical-align: top;"><p><a name="fcl_factor"></a><b>cfl_factor</b></p>
83</td> <td style="vertical-align: top;">R<br> </td>
84<td style="vertical-align: top;"> <p><i>0.1,
850.8 or 0.9</i> <br> <i>(see right)</i></p>
86</td> <td style="vertical-align: top;"> <p lang="en-GB">Time step limiting factor.&nbsp; </p>
87<p><span lang="en-GB">In the model, the <span lang="en-GB">maximum
88allowed </span>time step according to CFL and
89diffusion-criterion
90dt_max is reduced by </span><a href="chapter_4.1.html#dt"><span lang="en-GB">dt</span></a> <span lang="en-GB">=
91dt_max * <b>cfl_factor</b>
92in order to avoid stability problems which may arise in the vicinity of
93the maximum allowed timestep. The condition <i>0.0</i>
94&lt; <b>cfl_factor</b>
95&lt; <i>1.0 </i>applies.<br> </span></p>
96<p><span lang="en-GB">The default value of
97cfl_factor depends on
98the </span><a href="chapter_4.1.html#timestep_scheme"><span lang="en-GB">timestep_scheme</span></a><span lang="en-GB"> used:<br> </span></p> <p><span lang="en-GB">For the third order Runge-Kutta scheme it
99is <b>cfl_factor</b> = </span><span style="font-style: italic;">0.9</span><span lang="en-GB">.<br> </span></p> <p><span lang="en-GB">In case of the leapfrog scheme a quite
100restrictive value of <span style="font-weight: bold;">cfl_factor</span>
101= <span style="font-style: italic;">0.1 </span></span><span lang="en-GB">is used because for larger values the velocity
102divergence
103significantly effects the accuracy of the model results.</span><a href="chapter_4.1.html#scalar_advec"><span lang="en-GB"></span></a><span lang="en-GB"> Possibly larger values may
104be used with the leapfrog scheme but these are to be determined by
105appropriate test runs.<span style="font-family: times new roman;"><br>
106</span></span></p> <span lang="en-GB"><span style="font-family: times new roman;"></span><font face="Times New Roman">The default value for the Euler
107scheme is <span style="font-weight: bold;">cfl_factor</span>
108= <span style="font-style: italic;">0.8</span> .</font></span></td>
109</tr><tr> <td style="vertical-align: top;"> <p><a name="create_disturbances"></a><b>create_disturbances</b></p>
110</td> <td style="vertical-align: top;">L<br> </td>
111<td style="vertical-align: top;"><span style="font-style: italic;">.T.</span><br> </td>
112<td style="vertical-align: top;"> <p>Switch to
113impose random perturbations to the horizontal
114velocity field.&nbsp; </p> <p>With <b>create_disturbances</b>
115= <i>.T.,</i> random
116perturbations can be imposed to the horizontal velocity field at
117certain times e.g. in order to trigger off the onset of convection,
118etc..<br> </p> <p>The temporal interval between
119these times can be steered with <a href="#dt_disturb">dt_disturb</a>,
120the vertical range of the perturbations with <a href="#disturbance_level_b">disturbance_level_b</a>
121and <a href="#disturbance_level_t">disturbance_level_t</a>,
122and the perturbation amplitude with <a href="#disturbance_amplitude">disturbance_amplitude</a>.
123In case of non-cyclic lateral boundary conditions (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
124and <a href="chapter_4.1.html#bc_ns">bc_ns</a>),
125the horizontal range of the perturbations is determined by <a href="chapter_4.1.html#inflow_disturbance_begin">inflow_disturbance_begin</a>
126and <a href="chapter_4.1.html#inflow_disturbance_end">inflow_disturbance_end</a>.
127A perturbation is added to each grid point with its individual value
128determined by multiplying the disturbance amplitude with a uniformly
129distributed random number.
130After this, the arrays of u and v are smoothed by applying a
131Shuman-filter twice and made divergence-free by applying the pressure
132solver.<br> </p> <p>The random number generator to
133be used can be chosen with <a href="chapter_4.1.html#random_generator">random_generator</a>.<br>
134</p> <p>As soon as the desired flow features have
135developed
136(e.g.&nbsp; convection has started), further imposing of
137perturbations
138is not necessary and can be omitted (this does not hold for non-cyclic
139lateral boundaries!). This can be steered by assigning
140an upper limit value for the perturbation energy (the perturbation
141energy is defined by the deviation of the velocity from the mean flow)
142using the parameter <a href="#disturbance_energy_limit">disturbance_energy_limit</a>.
143As soon as the perturbation energy has exceeded this energy limit, no
144more random perturbations are assigned<br>
145.&nbsp; <br>
146Timesteps where a random perturbation has been imposed are marked in
147the local file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>
148by the character "D" appended to the values of the maximum horizontal
149velocities. </p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="cross_normalized_x"></a><b>cross_normalized_x</b></p>
150</td> <td style="vertical-align: top;">C*10&nbsp;
151<br>&nbsp;&nbsp; (100)</td> <td style="vertical-align: top;"><i>100 * ' '</i></td>
152<td style="vertical-align: top;"> <p>Type of
153normalization applied to the x-coordinate of vertical
154profiles to be plotted with <span style="font-weight: bold;">profil</span>.</p>
155<p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
156= <span style="font-style: italic;">'profil'</span>.</p><p>If
157vertical profiles are plotted with the plot software <span style="font-weight: bold;">profil</span> (data on
158local file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>,
159parameters on local file <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PLOT1D_PAR">PLOT1D_PAR</a>)
160the x-values of the data points can be normalized with respect to
161certain quantities (e.g. the near-surface heat flux) in order to ensure
162a better comparability. This type of normalization then applies to all
163profiles of one coordinate system (panel). The normalization quantities
164are re-calculated for each output time of each individual profile. If
165temporally averaged profiles are output (see <a href="#averaging_interval_pr">averaging_interval_pr</a>),
166then the normalization quantities are also temporally averaged
167accordingly. If the value of a normalization quantity becomes zero,
168then normalization for the total respective coordinate system (panel)
169is switched off automatically (also for the y-axis).<br> </p>
170<p>By default, the normalization quantities are calculated as the
171horizontal mean of the total model domain and and these values are also
172used for the normalization of profiles from subdomains (see <a href="chapter_4.1.html#statistic_regions">statistic_regions</a>).
173Instead of this, they can be calculated from the data of a certain
174subdomain by using the parameter <a href="#normalizing_region">normalizing_region</a>
175(however, they are used again for all subdomains and even for the total
176domain).&nbsp; </p> <p>The user can choose between
177the following normalization
178quantities: <br> </p> <table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2"> <tbody> <tr> <td style="vertical-align: top;"><i>'wpt0'</i></td>
179<td style="vertical-align: top;">Normalization with
180respect
181to the total surface sensible heat
182flux (k=0 ).</td> </tr> <tr> <td style="vertical-align: middle;"><i>'ws2'</i></td>
183<td style="vertical-align: top;">Normalization with
184respect
185to w<sub>*</sub> <sup>2</sup>
186(square of the characteristic vertical wind speed of the CBL)</td>
187</tr> <tr> <td style="vertical-align: top;"><i>'tsw2'</i></td>
188<td style="vertical-align: top;">Normalization with
189respect
190to the square of the characteristic
191temperature of the CBL theta<sub>*</sub> (this is defined
192as ratio of
193the surface heat flux and w<sub>*</sub>).</td> </tr>
194<tr> <td style="vertical-align: middle;"><i>'ws3'</i></td>
195<td style="vertical-align: top;">Normalization with
196respect
197to w<sub>*</sub> <sup>3</sup>.</td> </tr>
198<tr> <td style="vertical-align: middle;"><i>'ws2tsw'</i></td>
199<td style="vertical-align: top;">Normalization with
200respect
201to w<sub>*</sub><sup>2</sup>theta<sub>*</sub>
202(for definition of theta<sub>*</sub> see <span style="font-style: italic;">'tsw2'</span>).</td>
203</tr> <tr> <td style="vertical-align: middle;"><i>'wstsw2'</i></td>
204<td style="vertical-align: top;">Normalization with
205respect
206to w<sub>*</sub><sup>2 </sup>theta<sub>*</sub>
207(for definition of theta<sub>*</sub> see <span style="font-style: italic;">'tsw2'</span>).</td>
208</tr> </tbody> </table> <p>For each
209coordinate system (panel) to be drawn (see <a href="#cross_profiles">cross_profiles</a>)
210an individual normalization quantity can be assigned. For example: if <span style="font-weight: bold;">cross_normalized_x</span> =
211<span style="font-style: italic;">'ws2'</span><i>,'ws3'</i>,
212then the
213x-values in the 1st coordinate system are normalized with respect to w<sub>*</sub><sup>2</sup>
214and in the 2nd system with respect to w<sub>*</sub><sup>3</sup>.
215Data
216of the further coordinate systems (if any are to be drawn) are not
217normalized.&nbsp; </p> <p>Using a normalization
218leaves all vertical profile data on
219local file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>
220unaffected, it only affects the visualization. Within <span style="font-weight: bold;">profil</span>, the
221normalization is steered
222by parameter <a href="http://www.muk.uni-hannover.de/institut/software/profil_beschreibung.html#NORMX">normx</a>
223which may be changed subsequently by the user in the parameter file
224(local file <a href="chapter_3.4.html#PLOT1D_PAR">PLOT1D_PAR</a>).<br>
225&nbsp;<br>
226The assigned normalization quantity is noted in the axes labels of the
227respective coordinate systems (see <a href="#cross_xtext">cross_xtext</a>).</p>
228</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="cross_normalized_y"></a><b>cross_normalized_y</b></p>
229</td> <td style="vertical-align: top;">C*10&nbsp;
230<br>&nbsp;&nbsp; (100)</td> <td style="vertical-align: top;"><i>100 * ' '</i></td>
231<td style="vertical-align: top;"> <p>Type of
232normalization applied to the y-coordinate of vertical
233profiles to be plotted with <span style="font-weight: bold;">profil</span>.&nbsp;</p>
234<p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
235= <span style="font-style: italic;">'profil'</span>.</p><p>If
236vertical profiles are plotted with the plot software <span style="font-weight: bold;">profil</span> (data on
237local file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>,
238parameter on local file <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PLOT1D_PAR">PLOT1D_PAR</a>)
239the y-values of the data points can be normalized with respect to
240certain quantities (at present only the normalization with respect to
241the boundary layer height is possible) in order to ensure a better
242comparability. </p> <p>The user can choose between the
243following normalization
244quantities: <br> </p> <table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2"> <tbody> <tr> <td style="vertical-align: top;"><i>'z_i'</i></td>
245<td style="vertical-align: top;">Normalization with
246respect
247to the boundary layer height
248(determined from the height where the heat flux achieves its minimum
249value).</td> </tr> </tbody> </table> <p>For
250further explanations see <a href="#cross_normalized_x">cross_normalized_x.</a></p>
251</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="cross_profiles"></a><b>cross_profiles</b></p>
252</td> <td style="vertical-align: top;">C*100&nbsp;
253<br>&nbsp;&nbsp; (100)</td> <td style="vertical-align: top;">see right<br> </td>
254<td style="vertical-align: top;"> <p>Determines
255which vertical profiles are to be presented in
256which coordinate system if the plot software <span style="font-weight: bold;">profil</span> is used.
257&nbsp; </p> <p>This parameter only applies for
258&nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
259= <span style="font-style: italic;">'profil'</span>.</p><p>The
260default assignment is:&nbsp; </p> <p><b>cross_profiles</b>
261=&nbsp; </p> <ul> <p><span style="font-family: monospace; font-style: italic;">'
262u v ',</span><br> <span style="font-family: monospace; font-style: italic;">' pt
263',&nbsp; </span><br style="font-family: monospace; font-style: italic;"> <span style="font-family: monospace; font-style: italic;">'
264w"pt" w*pt* w*pt*BC wpt wptBC ',&nbsp; </span><br style="font-family: monospace; font-style: italic;"> <span style="font-family: monospace; font-style: italic;">'
265w"u" w*u* wu w"v"w*v* wv ',&nbsp; </span><br style="font-family: monospace; font-style: italic;"> <span style="font-family: monospace; font-style: italic;">' km
266kh ',</span><br style="font-family: monospace; font-style: italic;"> <span style="font-family: monospace; font-style: italic;">' l '
267,</span><br>
26814 * <span style="font-family: monospace; font-style: italic;">'
269'</span></p> </ul> <p>If plot output of
270vertical profiles is produced (see <a href="#data_output_pr">data_output_pr</a>),
271the appropriate data are written to the local file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>.
272Simultaneously, the model produces a parameter file (local name <a href="chapter_3.4.html#PLOT1D_PAR">PLOT1D_PAR</a>)
273which describes the layout for a plot to be generated with the plot
274program <span style="font-weight: bold;">profil</span>.
275The parameter <b>cross_profiles</b>
276determines how many coordinate systems (panels) the plot contains and
277which profiles are supposed to be drawn into which panel. <b>cross_profiles</b>
278expects a character string (up to 100 characters long) for each
279coordinate system, which consists of the names of the profiles to be
280drawn into this system (all available profiles and their respective
281names are described at parameter <a href="#data_output_pr">data_output_pr</a>).
282The single names have to be separated by one blank (' ') and a blank
283must be spent also at the beginning and at the end of the
284string.&nbsp; </p> <p>Example:&nbsp; </p> <ul>
285<p><b>cross_profiles</b> = <span style="font-family: monospace; font-style: italic;">' u v ',
286' pt '</span></p> </ul> <p>In this case the
287plot consists of two coordinate systems
288(panels) with the first panel containing the profiles of the horizontal
289velocity components (<span style="font-style: italic;">'u'</span>
290and <span style="font-style: italic;">'v'</span>)
291of all output times (see <a href="#dt_dopr">dt_dopr</a>)
292and the second one containing the profiles of the potential temperature
293(<span style="font-style: italic;">'pt'</span>).<br>
294</p> <p>Whether the coordinate systems are actually drawn,
295depends on
296whether data of the appropriate profiles were output during the run
297(profiles to be output have to be selected with the parameter <a href="#data_output_pr">data_output_pr</a>).
298For example if <b>data_output_pr</b> = <span style="font-style: italic;">'u'</span>, <span style="font-style: italic;">'v'</span> was assigned,
299then
300the plot only consists of one panel, since no profiles of the potential
301temperature were output. On the other hand, if profiles were assigned
302to <b>data_output_pr </b>whose names do not appear in <b>cross_profiles</b>,
303then the respective profile data are output (<a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>)
304but they are not drawn in the plot. <br> </p>
305The arrangement of the panels in the plot can be controlled
306with the parameters <a href="#profile_columns">profile_columns</a>
307and <a href="#profile_rows">profile_rows</a>.
308Up to 100 panels systems are allowed in a plot (however, they may be
309distributed on several pages).</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="cross_xtext"></a><b>cross_xtext</b></p>
310</td> <td style="vertical-align: top;">C*40&nbsp;
311<br>&nbsp;&nbsp; (100)</td> <td style="vertical-align: top;">see right<br> </td>
312<td style="vertical-align: top;"> <p>x-axis labels
313of vertical profile coordinate systems to be
314plotted with <span style="font-weight: bold;">profil</span>.&nbsp;
315</p> <p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
316= <span style="font-style: italic;">'profil'</span>.</p><p>The
317default assignment is:&nbsp; </p> <p><b>cross_xtext</b>
318=&nbsp; </p> <ul> <p><span style="font-style: italic;">'wind speed in
319ms&gt;-&gt;1',&nbsp; </span><br style="font-style: italic;"> <span style="font-style: italic;">'pot. temperature in
320K',&nbsp; </span><br style="font-style: italic;">
321<span style="font-style: italic;">'heat flux in K
322ms&gt;-&gt;1',&nbsp; </span><br style="font-style: italic;"> <span style="font-style: italic;">'momentum flux in
323m&gt;2s&gt;2',&nbsp; </span><br style="font-style: italic;"> <span style="font-style: italic;">'eddy diffusivity in
324m&gt;2s&gt;-&gt;1',&nbsp; </span><br style="font-style: italic;"> <span style="font-style: italic;">'mixing length in m',</span>&nbsp;
325<br>14 * <span style="font-style: italic;">' '</span></p>
326</ul> <p>This parameter can be used to assign x-axis
327labels to vertical
328profiles to be plotted with the plot software <span style="font-weight: bold;">profil </span>(for output
329of vertical
330profile data see <a href="#data_output_pr">data_output_pr</a>).<br>
331The labels are assigned to those coordinate systems (panels) defined by
332<a href="#cross_profiles">cross_profiles</a>
333according to their respective order (compare the default values of <b>cross_xtext</b>
334and <b>cross_profiles</b>). </p> <p>Umlauts
335are possible (write &ldquo; in front of, similar to TeX), as
336well as super- and subscripts (use "&gt;" or "&lt;" in front of
337each
338character), special characters etc. (see UNIRAS manuals) when using the
339plot software <a href="http://www.muk.uni-hannover.de/institut/software/profil_beschreibung.html#chapter3.2.6">profil</a>.</p>
340</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="cycle_mg"></a><b>cycle_mg</b></p>
341</td> <td style="vertical-align: top;">C*1</td>
342<td style="vertical-align: top;"><i>'w'</i></td>
343<td style="vertical-align: top;"> <p>Type of cycle
344to be used with the multi-grid method.&nbsp; </p> <p>This
345parameter determines which type of cycle is applied in
346the multi-grid method used for solving the Poisson equation for
347perturbation pressure (see <a href="#psolver">psolver</a>).
348It defines in which way it is switched between the fine and coarse
349grids. So-called v- and w-cycles are realized (i.e. <b>cycle_mg</b>
350may be assigned the values <i>'v'</i> or <i>'w'</i>).
351The
352computational cost of w-cycles is much higher than that of v-cycles,
353however, w-cycles give a much better convergence. </p> </td>
354</tr> <tr> <td style="vertical-align: top;"><p><a name="data_output"></a><b>data_output</b></p>
355</td> <td style="vertical-align: top;">C * 10 (100)<br>
356</td> <td style="vertical-align: top;"><span style="font-style: italic;">100 * ' '</span><br>
357</td> <td style="vertical-align: top;">Quantities
358for which 2d cross section and/or 3d volume data are to be output.<br><br>PALM
359allows the output of instantaneous data as well as of temporally
360averaged data which is steered by the strings assigned to this
361parameter (see below).<br><br>By default, cross section
362data are output (depending on the selected cross sections(s), see
363below)&nbsp; to local files <a href="chapter_3.4.html#DATA_2D_XY_NETCDF">DATA_2D_XY_NETCDF</a>,
364<a href="chapter_3.4.html#DATA_2D_XZ_NETCDF">DATA_2D_XZ_NETCDF</a>
365and/or <a href="chapter_3.4.html#DATA_2D_YZ_NETCDF">DATA_2D_YZ_NETCDF</a>.
366Volume data are output to file <a href="chapter_3.4.html#DATA_3D_NETCDF">DATA_3D_NETCDF</a>.
367If the user has switched on the output of temporally averaged data,
368these are written seperately to local files <a href="chapter_3.4.html#DATA_2D_XY_AV_NETCDF">DATA_2D_XY_AV_NETCDF</a>,
369<a href="chapter_3.4.html#DATA_2D_XZ_AV_NETCDF">DATA_2D_XZ_AV_NETCDF</a>,
370<a href="chapter_4.3.html#DATA_2D_YZ_AV_NETCDF">DATA_2D_YZ_AV_NETCDF</a>,
371and <a href="chapter_3.4.html#DATA_3D_AV_NETCDF">DATA_3D_AV_NETCDF</a>,
372respectively.<br><br>The
373filenames already suggest that all files have NetCDF format.
374Informations about the file content (kind of quantities, array
375dimensions and grid coordinates) are part of the self describing NetCDF
376format and can be extracted from the NetCDF files using the command
377"ncdump -c &lt;filename&gt;". See chapter <a href="chapter_4.5.1.html">4.5.1</a> about processing
378the PALM NetCDF data.<br><br>The following quantities are
379available for output by default (quantity names ending with '*' are only allowed for the output of horizontal cross sections):<br><br><table style="text-align: left; width: 576px; height: 481px;" border="1" cellpadding="2" cellspacing="2"><tbody><tr><td style="width: 106px;"><span style="font-weight: bold;">quantity
380name</span></td><td style="width: 196px;"><span style="font-weight: bold;">meaning</span></td><td><span style="font-weight: bold;">unit</span></td><td><span style="font-weight: bold;">remarks</span></td></tr><tr><td style="width: 106px;"><span style="font-style: italic;">e</span></td><td style="width: 196px;">SGS TKE</td><td>m<sup>2</sup>/s<sup>2</sup></td><td></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">lwp*</span></td><td style="width: 196px; vertical-align: top;">liquid water path</td><td style="vertical-align: top;">m</td><td style="vertical-align: top;">only horizontal cross section
381is allowed,&nbsp;requires <a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
382= <span style="font-style: italic;">.TRUE.</span></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">p</span></td><td style="width: 196px; vertical-align: top;">perturpation
383pressure</td><td style="vertical-align: top;">N/m<sup>2</sup>,
384Pa</td><td style="vertical-align: top;"></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">pc</span></td><td style="width: 196px; vertical-align: top;">particle/droplet
385concentration</td><td style="vertical-align: top;">#/gridbox</td><td style="vertical-align: top;">requires that particle
386advection is switched on by <span style="font-weight: bold;">mrun</span>-option
387"-p particles"</td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">pr</span></td><td style="width: 196px; vertical-align: top;">mean
388particle/droplet radius </td><td style="vertical-align: top;">m</td><td style="vertical-align: top;">requires that particle
389advection is switched on by <span style="font-weight: bold;">mrun</span>-option
390"-p particles"</td></tr><tr><td style="vertical-align: top;"><span style="font-style: italic;">pra*</span></td><td style="vertical-align: top;">precipitation amount</td><td style="vertical-align: top;">mm</td><td style="vertical-align: top;">only horizontal cross section
391is allowed,&nbsp;requires&nbsp;<a href="chapter_4.1.html#precipitation">precipitation</a>
392= <span style="font-style: italic;">.TRUE., </span>time interval on which amount refers to is defined by <a href="#precipitation_amount_interval">precipitation_amount_interval</a></td></tr><tr><td style="vertical-align: top;"><span style="font-style: italic;">prr*</span></td><td style="vertical-align: top;">precipitation rate</td><td style="vertical-align: top;">mm/s</td><td style="vertical-align: top;">only horizontal cross section
393is allowed,&nbsp;requires&nbsp;<a href="chapter_4.1.html#precipitation">precipitation</a>
394= <span style="font-style: italic;">.TRUE.</span></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">pt</span></td><td style="width: 196px; vertical-align: top;">potential
395temperature<br></td><td style="vertical-align: top;">K</td><td style="vertical-align: top;"></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">q</span></td><td style="width: 196px; vertical-align: top;">specific humidity
396(or total water content, if cloud physics is switched on)</td><td style="vertical-align: top;">kg/kg</td><td style="vertical-align: top;">requires&nbsp;<a href="chapter_4.1.html#humidity">humidity</a> = <span style="font-style: italic;">.TRUE.</span></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">ql</span></td><td style="width: 196px; vertical-align: top;">liquid water
397content</td><td style="vertical-align: top;">kg/kg</td><td style="vertical-align: top;">requires <a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
398= <span style="font-style: italic;">.TRUE.</span>
399or <a href="chapter_4.1.html#cloud_droplets">cloud_droplets</a>
400= <span style="font-style: italic;">.TRUE.</span></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">ql_c</span></td><td style="width: 196px; vertical-align: top;">change in liquid
401water content due to condensation/evaporation during last timestep</td><td style="vertical-align: top;">kg/kg</td><td style="vertical-align: top;">requires <a href="chapter_4.1.html#cloud_droplets">cloud_droplets</a>
402= <span style="font-style: italic;">.TRUE.</span></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">ql_v</span></td><td style="width: 196px; vertical-align: top;">volume of liquid
403water</td><td style="vertical-align: top;">m<sup>3</sup>/gridbox</td><td style="vertical-align: top;">requires <a href="chapter_4.1.html#cloud_droplets">cloud_droplets</a>
404= <span style="font-style: italic;">.TRUE.</span></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">ql_vp</span></td><td style="width: 196px; vertical-align: top;">weighting factor</td><td style="vertical-align: top;"></td><td style="vertical-align: top;">requires <a href="chapter_4.1.html#cloud_droplets">cloud_droplets</a>
405= <span style="font-style: italic;">.TRUE.</span></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">qv</span></td><td style="width: 196px; vertical-align: top;">water vapor
406content (specific humidity)</td><td style="vertical-align: top;">kg/kg</td><td style="vertical-align: top;">requires <a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
407= <span style="font-style: italic;">.TRUE.</span></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">s</span></td><td style="width: 196px; vertical-align: top;">concentration of
408the scalar</td><td style="vertical-align: top;">1/m<sup>3</sup></td><td style="vertical-align: top;">requires&nbsp;<a href="chapter_4.1.html#passive_scalar">passive_scalar</a>
409= <span style="font-style: italic;">.TRUE.</span></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">t*</span></td><td style="width: 196px; vertical-align: top;">(near surface)
410characteristic temperature</td><td style="vertical-align: top;">K</td><td style="vertical-align: top;">only horizontal cross section
411is allowed</td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">u</span></td><td style="width: 196px; vertical-align: top;">u-component of
412the velocity</td><td style="vertical-align: top;">m/s</td><td style="vertical-align: top;"></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">u*</span></td><td style="width: 196px; vertical-align: top;">(near surface)
413friction velocity</td><td style="vertical-align: top;">m/s</td><td style="vertical-align: top;">only horizontal cross section
414is allowed</td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">v</span></td><td style="width: 196px; vertical-align: top;">v-component of
415the velocity</td><td style="vertical-align: top;">m/s</td><td style="vertical-align: top;"></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">vpt</span></td><td style="width: 196px; vertical-align: top;">virtual potential
416temperature</td><td style="vertical-align: top;">K</td><td style="vertical-align: top;">requires&nbsp;<a href="chapter_4.1.html#humidity">humidity</a> = <span style="font-style: italic;">.TRUE.</span></td></tr><tr><td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">w</span></td><td style="width: 196px; vertical-align: top;">w-component of
417the velocity</td><td style="vertical-align: top;">m/s</td><td style="vertical-align: top;"></td></tr><tr><td style="vertical-align: top;"><span style="font-style: italic;">z0*</span></td><td style="vertical-align: top;">roughness length</td><td style="vertical-align: top;">m</td><td></td></tr></tbody></table><br>Multiple
418quantities can be assigned, e.g. <span style="font-weight: bold;">data_output</span>
419= <span style="font-style: italic;">'e'</span>, <span style="font-style: italic;">'u'</span>, <span style="font-style: italic;">'w'</span>.<br><br>By
420assigning the pure strings from the above table, 3d volume data is
421output. Cross section data can be output by appending the string <span style="font-style: italic;">'_xy'</span>, <span style="font-style: italic;">'_xz'</span>, or <span style="font-style: italic;">'_yz'</span> to the
422respective quantities. Time averaged&nbsp;output is created by
423appending the string <span style="font-style: italic;">'_av'
424</span>(for
425cross section data, this string must be appended after the cross
426section string). Cross section data can also be (additionally) averaged
427along the direction normal to the respective section (see below).
428Assignments of quantities can be given in arbitrary
429order:<br><br>Example:<br><br><div style="margin-left: 40px;"><span style="font-weight: bold;">data_output</span> = <span style="font-style: italic;">'u'</span>, <span style="font-style: italic;">'pt_xz_av'</span>, <span style="font-style: italic;">'w_xy'</span>, <span style="font-style: italic;">'u_av'</span>.<br></div><br>This
430example will create the following output: instantaneous 3d volume data
431of u-velocity component (by default on file DATA_3D_NETCDF), temporally
432averaged 3d volume data of u-velocity component (by default on file
433DATA_3D_AV_NETCDF), instantaneous horizontal cross section data of
434w-velocity component (by default on file DATA_2D_XY_NETCDF), and
435temporally averaged vertical cross section data of potential
436temperature (by default on file DATA_2D_XZ_AV_NETCDF).<br><br>The
437user is allowed to extend the above list of quantities by defining his
438own output quantities (see the user-parameter <a href="chapter_4.3.html#data_output_user">data_output_user</a>).<br><br>The
439time interval of the output times is determined via <a href="#dt_data_output">dt_data_output</a>.
440This is valid for all types of output quantities by default. Individual
441time intervals for instantaneous &nbsp;(!) 3d and section data can
442be
443declared using <a href="#dt_do3d">dt_do3d</a>, <a href="#dt_do2d_xy">dt_do2d_xy</a>, <a href="#dt_do2d_xz">dt_do2d_xz</a>, and <a href="#dt_do2d_yz">dt_do2d_yz</a>.<br><br>Also,
444an individual time interval for output of temporally averaged data can
445be assigned using parameter <a href="#dt_data_output_av">dt_data_output_av</a>.
446This applies to both 3d volume and cross section data. The length of
447the averaging interval is controlled via parameter <a href="#averaging_interval">averaging_interval</a>.<br><br>The
448parameter <a href="#skip_time_data_output">skip_time_data_output</a>
449can be used to shift data output activities for a given time interval.
450Individual intervals can be set using <a href="#skip_time_do3d">skip_time_do3d</a>,
451<a href="#skip_time_do2d_xy">skip_time_do2d_xy</a>, <a href="#skip_time_do2d_xz">skip_time_do2d_xz</a>, <a href="#skip_time_do2d_yz">skip_time_do2d_yz</a>, and <a href="#skip_time_data_output_av">skip_time_data_output_av</a>.<br><p>With
452the parameter <a href="chapter_4.2.html#nz_do3d">nz_do3d</a>&nbsp;
453the output can be limited in the vertical direction up to a certain
454grid point.<br> </p> Cross sections extend through the
455total model
456domain. In the two horizontal directions all grid points with 0
457&lt;= i
458&lt;= nx+1 and 0 &lt;= j
459&lt;= ny+1 are output so that in case of cyclic boundary conditions
460the
461complete total domain is represented. The location(s) of the cross
462sections can be defined with parameters <a href="#section_xy">section_xy</a>,
463<a href="#section_xz">section_xz</a>, and <a href="#section_yz">section_yz</a>. Assigning <span style="font-weight: bold;">section_..</span> = <span style="font-style: italic;">-1</span>
464causes&nbsp;the output data to be averaged along the direction
465normal to the respective section.<br><br><br><span style="font-weight: bold;">Output of user defined quantities:</span><br><br>Beside
466the standard quantities from the above list, the user can output any
467other quantities. These have to be defined and calculated within the
468user-defined code (see <a href="chapter_3.5.4.html">3.5.4</a>).
469They can be selected for output with the user-parameter <a href="chapter_4.3.html#data_output_user">data_output_user</a>
470for which the same rules apply as for <span style="font-weight: bold;">data_output</span>.
471Output of the user defined quantities (time interval, averaging,
472selection of cross sections, etc.) is controlled with the parameters
473listed above and data are written to the same file(s) as the standard
474quantities.<br><br><p style="font-weight: bold;">Output
475on parallel machines:</p><p>
476By default, with parallel runs, processors output only data
477of their respective subdomains into seperate local files (file names
478are
479constructed by appending the four digit processor ID, e.g.
480&lt;filename&gt;_0000, &lt;filename&gt;_0001, etc.).
481After PALM has
482finished, the contents of these individual
483files are sampled into one final file<span style="font-weight: bold;"></span>
484using the program <tt><font style="font-size: 11pt;" size="2">combine_plot_fields.x</font></tt>
485(to be started e.g. by a suitable OUTPUT command in the <span style="font-weight: bold;">mrun</span>
486configuration file).</p> <p>Alternatively, PALM is able to
487collect all grid points of a
488cross section on PE0 before output is done. In this case only
489one&nbsp;
490output file (DATA_2D_XY_NETCDF, etc.) is created and <tt><font style="font-size: 11pt;" size="2">combine_plot_fields.x</font></tt>
491does not have to be called. In case of very large numbers of horizontal
492gridpoints, sufficient
493memory is required on PE0.&nbsp; This method can be used by
494assigning <a href="chapter_4.2.html#data_output_2d_on_each_pe">data_output_2d_on_each_pe</a>
495= <i>.F.</i>.</p><p>3d volume data output is
496always handled seperately by each processor so that <span style="font-family: monospace;">combine_plot_fields.x</span>
497has to be called anyway after PALM has been finished.</p><p><br><span style="font-weight: bold;">Old formats:</span></p>
498<p>Beside
499the NetCDF format,&nbsp;2d cross section data and 3d volume data
500can
501also be output, for historical reasons, in a different (binary) format
502using parameter <a href="#data_output_format">data_output_format</a>.</p><p>By
503assigning <span style="font-weight: bold;">data_output_format
504</span>= <span style="font-style: italic;">'avs'</span>,
505the 3d volume data is output to the local file <a href="chapter_3.4.html#PLOT3D_DATA">PLOT3D_DATA</a>.
506Output is in FORTRAN binary format&nbsp;readable by
507the plot software <span style="font-weight: bold;">AVS</span>.&nbsp;
508The order of data on the file follows the order used in the assignment
509for <b>data_output</b> (e.g. <b>data_output</b>
510= <span style="font-style: italic;">'p'</span>, <span style="font-style: italic;">'v'</span>,...&nbsp;
511means that the file starts with the pressure data, followed by the
512v-component of the velocity, etc.). Both instantaneous and time
513averaged data are written on this file! Additional to this file, PALM
514creates
515a second binary file (local name <a href="chapter_3.4.html#PLOT3D_COOR">PLOT3D_COOR</a>)
516with coordinate information needed by <span style="font-weight: bold;">AVS</span>.
517As third and
518fourth file two ASCII files are created (AVS-FLD-format, local name <a href="chapter_3.4.html#PLOT3D_FLD">PLOT3D_FLD</a>
519and <a href="chapter_3.4.html#PLOT3D_FLD_COOR">PLOT3D_FLD_COOR</a>),
520which describe the contents of the data file and/or coordinate file
521and are used by AVS. However, AVS expects the content description in
522one file. This needs the local file PLOT3D_FLD_COOR to be appended to
523the file
524PLOT3D_FLD (by suitable OUTPUT command in the <span style="font-weight: bold;">mrun</span>
525configuration file: &ldquo;<span style="font-family: monospace;">cat
526PLOT3D_FLD_COOR &gt;&gt; PLOT3D_FLD</span>&rdquo;)
527after PALM has
528finished.&nbsp;To reduce the amount of data, output to this file
529can be done
530in
531compressed form (see <a href="chapter_4.2.html#do3d_compress">do3d_compress</a>).
532Further details about plotting 3d volume data with <span style="font-weight: bold;">AVS </span>can be found in
533<a href="chapter_4.5.5.html">chapter
5344.5.5</a>.</p>By assigning <span style="font-weight: bold;">data_output_format </span>=
535<span style="font-style: italic;">'iso2d'</span>,
536the cross section data is output to the local files <a href="chapter_3.4.html#PLOT2D_XY">PLOT2D_XY</a>, <a href="chapter_3.4.html#PLOT2D_XZ">PLOT2D_XZ</a>, and <a href="chapter_3.4.html#PLOT2D_YZ">PLOT2D_YZ</a>.
537Output is in FORTRAN binary format&nbsp;readable by
538the plot software&nbsp;<span style="font-weight: bold;">iso2d</span>.&nbsp;
539The order of data on the files follows the order used in the assignment
540for <b>data_output</b> (e.g. <b>data_output</b>
541= <span style="font-style: italic;">'p_xy'</span>, <span style="font-style: italic;">'v_xy_av'</span>,...&nbsp;
542means that the file containing the horizontal cross section data starts
543with the instantaneous pressure data, followed by the
544temporally averaged v-component of the velocity, etc.). Both
545instantaneous and time averaged data are written on this
546file!Additional to these binary files, PALM
547creates NAMELIST parameter files
548(local names <a href="chapter_3.4.html#PLOT2D_XY_GLOBAL">PLOT2D_XY_GLOBAL</a>,
549<a href="chapter_3.4.html#PLOT2D_XY_LOCAL">PLOT2D_XY_LOCAL</a>,
550<a href="chapter_3.4.html#PLOT2D_XZ_GLOBAL">PLOT2D_XZ_GLOBAL</a>,
551<a href="chapter_3.4.html#PLOT2D_XZ_LOCAL">PLOT2D_XZ_LOCAL</a>,
552<a href="chapter_3.4.html#PLOT2D_YZ_GLOBAL">PLOT2D_YZ_GLOBAL</a>,
553<a href="chapter_3.4.html#PLOT2D_YZ_LOCAL">PLOT2D_YZ_LOCAL</a>)
554which can be used as parameter input files for the plot software <a href="http://www.muk.uni-hannover.de/institut/software/iso2d_beschreibung.html">iso2d</a>.
555That needs local files with suffix _LOCAL to be appended to the
556respective files with suffix _GLOBAL (by
557suitable OUTPUT commands in the <span style="font-weight: bold;">mrun</span>
558configuration file, e.g.: &ldquo;<span style="font-family: monospace;">cat
559PLOT2D_XY_LOCAL &gt;&gt; PLOT2D_XY_GLOBAL</span>&rdquo;)
560after PALM has
561finished. Cross sections can be directly plotted with <span style="font-weight: bold;">iso2d</span> using the
562respective data and
563parameter file. The plot layout is steered via the parameter input
564file.
565The values of these <span style="font-weight: bold;">iso2d</span>
566parameters are determined by a set of mostly internal PALM parameters
567(exception: <a href="chapter_4.2.html#z_max_do2d">z_max_do2d</a>).
568All parameter values can be changed by editing the parameter input
569file.&nbsp;Further details about plotting 2d cross sections with <span style="font-weight: bold;">iso2d </span>can be found
570in <a href="chapter_4.5.4.html">chapter
5714.5.4</a>.<br><br><span style="font-weight: bold;">Important:</span><br>There
572is no guarantee that iso2d- and avs-output will be available in future
573PALM versions (later than 3.0). </td> </tr> <tr> <td style="vertical-align: top;"><a name="data_output_format"></a><span style="font-weight: bold;">data_output_format</span><br>
574</td> <td style="vertical-align: top;">C * 10 (10) </td>
575<td style="vertical-align: top;"><span style="font-style: italic;">'netcdf'</span> </td>
576<td style="vertical-align: top;">Format of output data.<br><br>By
577default, all data (profiles, time
578series, spectra, particle data, cross sections, volume data) are output
579in NetCDF format (see chapter <a href="chapter_4.5.1.html">4.5.1</a>).
580Exception: restart data (local files <a href="chapter_3.4.html#BININ">BININ</a>, <a href="chapter_3.4.html#BINOUT">BINOUT</a>, <a href="chapter_3.4.html#PARTICLE_RESTART_DATA_IN">PARTICLE_RESTART_DATA_IN</a>,
581<a href="chapter_3.4.html#PARTICLE_RESTART_DATA_OUT">PARTICLE_RESTART_DATA_OUT</a>)
582are always output in FORTRAN binary format.<br><br>The
583numerical precision of the NetCDF output is determined with parameter <a href="#chapter_4.1.html#netcdf_precision">netcdf_precision</a>.<br><br>The
584maximum file size for NetCDF files is 2 GByte by default. Use the
585parameter <a href="#netcdf_64bit">netcdf_64bit</a>
586if larger files have to be created.<br><br>For historical
587reasons, other data formats are still available. Beside 'netcdf', <span style="font-weight: bold;">data_output_format</span>
588may be assigned the following values:<br><br><table style="text-align: left; width: 594px; height: 104px;" border="1" cellpadding="2" cellspacing="2"><tbody><tr><td style="vertical-align: top;"><span style="font-style: italic;">'profil'</span></td><td>output
589of profiles,&nbsp;time series and spectra in ASCII format to be
590read by the graphic software <span style="font-weight: bold;">profil
591</span>(see chapters <a href="chapter_4.5.2.html">4.5.2</a>,
592<a href="#chapter_4.5.3.html">4.5.3</a>)</td></tr><tr><td style="vertical-align: top;"><span style="font-style: italic;">'iso2d'</span></td><td>output
593of 2d cross-sections in FORTRAN binary format to be read by the graphic
594software <span style="font-weight: bold;">iso2d</span>
595(see chapter <a href="chapter_4.5.4.html">4.5.4</a>)</td></tr><tr><td style="vertical-align: top;"><span style="font-style: italic;">'avs'</span></td><td>output
596of 3d volume data in FORTRAN binary format to be read by the graphic
597software <span style="font-weight: bold;">AVS</span>
598(see chapter <a href="chapter_4.5.5.html">4.5.5</a>)</td></tr></tbody></table><br>Multiple
599values can be assigned to <span style="font-weight: bold;">data_output_format</span>,
600i.e. if the user wants to have both the "old" data format suitable for <span style="font-weight: bold;">iso2d</span> as well as
601cross section data in NetCDF format, then <span style="font-weight: bold;">data_output_format</span> =
602<span style="font-style: italic;">'iso2d'</span>, <span style="font-style: italic;">'netcdf'</span> has to be
603assigned.<br><br><span style="font-weight: bold;">Warning:</span>
604There is no guarantee that the "old" formats will be available in
605future PALM versions (beyond 3.0)!<br> </td> </tr> <tr>
606<td style="vertical-align: top;"> <p><a name="data_output_pr"></a><b>data_output_pr</b></p>
607</td> <td style="vertical-align: top;">C *
60810&nbsp; <br>
609(100)</td> <td style="vertical-align: top;"><i>100
610* ' '</i></td> <td style="vertical-align: top;">
611<p>Quantities for which vertical profiles (horizontally averaged)
612are to be output.&nbsp; </p> <p>By default vertical
613profile data is output to the local file <a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>.
614The file's format is NetCDF.&nbsp; Further details about processing
615NetCDF data are given in chapter <a href="chapter_4.5.1.html">4.5.1</a>.</p><p>For
616historical reasons, data can also be output in ASCII-format on local
617file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>
618which is readable by the graphic software <span style="font-weight: bold;">profil</span>. See
619parameter <a href="#data_output_format">data_output_format</a>
620for defining the format in which data shall be output.<br> </p>
621<p>For horizontally averaged vertical
622profiles always <span style="font-weight: bold;">all</span>
623vertical
624grid points (0 &lt;= k &lt;= nz+1) are output to file. Vertical
625profile data refers to the total domain but profiles for subdomains can
626also be output (see <a href="chapter_4.1.html#statistic_regions">statistic_regions</a>).&nbsp;
627</p> <p>The temporal interval of the output times of
628profiles is
629assigned via the parameter <a href="chapter_4.2.html#dt_dopr">dt_dopr</a>.
630Within the file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>,
631the profiles are ordered with respect to their
632output times.</p><p>Profiles can also be temporally
633averaged (see <a href="chapter_4.2.html#averaging_interval_pr">averaging_interval_pr</a>).&nbsp;<br>
634</p> <p>The following list shows the values which can be
635assigned to <span style="font-weight: bold;">data_output_pr</span>.
636The profile data is either defined on
637u-v-levels (variables marked in <font color="#ff6600">red</font>)
638or
639on w-levels (<font color="#33ff33">green</font>).
640According to this,
641the
642z-coordinates of the individual profiles vary. Beyond that, with a
643Prandtl layer switched on (<a href="chapter_4.1.html#prandtl_layer">prandtl_layer</a>)
644the lowest output
645level is z = zu(1) instead of z = zw(0) for profiles <i>w''
646u'',w''v"</i>, <i>wu</i> and <i>wv</i>
647.&nbsp; <br> </p> <table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2"> <tbody> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>u</i></font></td>
648<td style="vertical-align: top;">u-component of the
649velocity (in m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>v</i></font></td>
650<td style="vertical-align: top;">v-component of the
651velocity (in m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w</i></font></td>
652<td style="vertical-align: top;">w-component of the
653velocity (in m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>pt</i></font></td>
654<td style="vertical-align: top;">Potential temperature (in
655K).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>vpt</i></font></td>
656<td style="vertical-align: top;">Virtual potential
657temperature (in K).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>lpt</i></font></td>
658<td style="vertical-align: top;">Potential liquid water
659temperature (in K).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>q</i></font></td>
660<td style="vertical-align: top;">Total water content
661(in kg/kg).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>qv</i></font></td>
662<td style="vertical-align: top;">Specific humidity (in
663kg/kg).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>ql</i></font></td>
664<td style="vertical-align: top;">Liquid water content
665(in kg/kg).</td> </tr> <tr> <td style="vertical-align: middle;"><font color="#ff6600">s</font></td>
666<td style="vertical-align: top;">Scalar concentration (in
667kg/m<sup>3</sup>).</td> </tr> <tr> <td style="vertical-align: middle;"><font color="#ff6600"><i>e</i></font></td>
668<td style="vertical-align: top;">Turbulent kinetic energy
669(TKE, subgrid-scale) (in m<sup>2</sup>/s<sup>2</sup>).</td>
670</tr> <tr> <td style="vertical-align: middle;"><font color="#ff6600"><i>e*</i></font></td>
671<td style="vertical-align: top;">Perturbation energy
672(resolved) (in m<sup>2</sup>/s<sup>2</sup>).</td>
673</tr> <tr> <td style="vertical-align: middle;"><font color="#ff6600"><i>km</i></font></td>
674<td style="vertical-align: top;">Eddy diffusivity for
675momentum (in m<sup>2</sup>/s).</td> </tr> <tr>
676<td style="vertical-align: middle;"><font color="#ff6600"><i>kh</i></font></td>
677<td style="vertical-align: top;">Eddy diffusivity for heat
678(in m<sup>2</sup>/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>l</i></font></td>
679<td style="vertical-align: top;">Mixing length (in m).</td>
680</tr> <tr> <td style="vertical-align: middle;"><font color="#33ff33"><i>w"u"</i></font></td>
681<td style="vertical-align: top;">u-component of the
682subgrid-scale vertical momentum flux (in m<sup>2</sup>/s<sup>2</sup>).</td>
683</tr> <tr> <td style="vertical-align: middle;"><font color="#33ff33"><i>w*u*</i></font></td>
684<td style="vertical-align: top;">u-component of the
685resolved vertical momentum flux (in m<sup>2</sup>/s<sup>2</sup>).</td>
686</tr> <tr> <td style="vertical-align: middle;"><font color="#33ff33"><i>wu</i></font></td>
687<td style="vertical-align: top;">u-component of the total
688vertical momentum flux (<i>w"u"</i> + <i>w*u*</i>)
689(in m<sup>2</sup>/s<sup>2</sup>).</td> </tr>
690<tr> <td style="vertical-align: middle;"><font color="#33ff33"><i>w"v"</i></font></td>
691<td style="vertical-align: top;">v-component of the
692subgrid-scale vertical momentum flux (in m<sup>2</sup>/s<sup>2</sup>).</td>
693</tr> <tr> <td style="vertical-align: middle;"><font color="#33ff33"><i>w*v*</i></font></td>
694<td style="vertical-align: top;">v-component of the
695resolved vertical momentum flux (in m<sup>2</sup>/s<sup>2</sup>).</td>
696</tr> <tr> <td style="vertical-align: middle;"><font color="#33ff33"><i>wv</i></font></td>
697<td style="vertical-align: top;">v-component of the total
698vertical momentum flux (<i>w"v"</i> + <i>w*v*</i>)
699(in m<sup>2</sup>/s<sup>2</sup>).</td> </tr>
700<tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w"pt"</i></font></td>
701<td style="vertical-align: top;">Subgrid-scale vertical
702sensible heat flux (in K m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w*pt*</i></font></td>
703<td style="vertical-align: top;">Resolved vertical
704sensible
705heat flux (in K m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>wpt</i></font></td>
706<td style="vertical-align: top;">Total vertical sensible
707heat flux (<i>w"pt"</i> + <i>w*pt*</i>)
708(in K
709m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w*pt*BC</i></font></td>
710<td style="vertical-align: top;">Subgrid-scale vertical
711sensible heat flux using the
712Bott-Chlond scheme (in K m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>wptBC</i></font></td>
713<td style="vertical-align: top;">Total vertical sensible
714heat flux using the Bott-Chlond scheme
715(<i>w"pt"</i>
716+ <i>w*pt*BC</i>) (in K m/s).</td> </tr> <tr>
717<td style="vertical-align: top;"><font color="#33ff33"><i>w"vpt"</i></font></td>
718<td style="vertical-align: top;">Subgrid-scale vertical
719buoyancy flux (in K m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w*pt*</i></font></td>
720<td style="vertical-align: top;">Resolved vertical
721buoyancy
722flux (in K m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>wvpt</i></font></td>
723<td style="vertical-align: top;">Total vertical buoyancy
724flux (w"vpt" + w*vpt*) (in K m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w"q"</i></font></td>
725<td style="vertical-align: top;">Subgrid-scale vertical
726water flux (in kg/kg m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w*q*</i></font></td>
727<td style="vertical-align: top;">Resolved vertical water
728flux (in kg/kg m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>wq</i></font></td>
729<td style="vertical-align: top;">Total vertical water flux
730(w"q" + w*q*) (in kg/kg m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w"qv"</i></font></td>
731<td style="vertical-align: top;">Subgrid-scale vertical
732latent heat flux (in kg/kg m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w*qv*</i></font></td>
733<td style="vertical-align: top;">Resolved vertical latent
734heat flux (in kg/kg m/s).</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>wqv</i></font></td>
735<td style="vertical-align: top;">Total vertical latent
736heat
737flux (w"qv" + w*qv*) (in kg/kg m/s).</td> </tr> <tr>
738<td style="vertical-align: middle;"><font color="#33ff33"><i>w"s"</i></font></td>
739<td style="vertical-align: top;">Subgrid-scale vertical
740scalar concentration flux (in kg/m<sup>3 </sup>m/s).</td>
741</tr> <tr> <td style="vertical-align: middle;"><font color="#33ff33"><i>w*s*</i></font></td>
742<td style="vertical-align: top;">Resolved vertical scalar
743concentration flux (in kg/m<sup>3</sup>)</td> </tr>
744<tr> <td style="vertical-align: middle;"><font color="#33ff33"><i>ws</i></font></td>
745<td style="vertical-align: top;">Total vertical scalar
746concentration flux (w"s" + w*s*) (in kg/m<sup>3 </sup>m/s).</td>
747</tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w*e*</i></font></td>
748<td style="vertical-align: top;">Vertical flux of
749perturbation energy (resolved)</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>u*2</i></font></td>
750<td style="vertical-align: top;">Variance of the
751u-velocity
752component (resolved)</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>v*2</i></font></td>
753<td style="vertical-align: top;">Variance of the
754v-velocity
755component (resolved)</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w*2</i></font></td>
756<td style="vertical-align: top;">Variance of the potential
757temperature (resolved)</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6600"><i>pt*2</i></font></td>
758<td style="vertical-align: top;">Variance of the potential
759temperature (resolved)</td> </tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w*3</i></font></td>
760<td style="vertical-align: top;">Third moment of the
761w-velocity component (resolved)</td> </tr> <tr> <td style="vertical-align: middle;"><font color="#33ff33"><i>Sw</i></font></td>
762<td style="vertical-align: top;">Skewness of the
763w-velocity
764component (resolved, S<sub>w</sub>
765= W<sup>3</sup>/(w<sup>2</sup>)<sup>1.5</sup>)</td>
766</tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w*2pt*</i></font></td>
767<td style="vertical-align: top;">Third moment (resolved)</td>
768</tr> <tr> <td style="vertical-align: top;"><font color="#33ff33"><i>w*pt*2</i></font></td>
769<td style="vertical-align: top;">Third moment (resolved)</td>
770</tr> <tr> <td style="vertical-align: top;"><font color="#ff6666"><i>w*u*u*/dz</i></font></td>
771<td style="vertical-align: top;">Energy production by
772shear
773(resolved)</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6666"><i>w*p*/dz</i></font></td>
774<td style="vertical-align: top;">Energy production by
775turbulent transport of pressure
776fluctuations (resolved)</td> </tr> <tr> <td style="vertical-align: top;"><font color="#ff6666"><i>w"e/dz</i></font></td>
777<td style="vertical-align: top;">Energy production by
778transport of resolved-scale TKE</td> </tr> </tbody>
779</table> <br>Beyond that, initial profiles (t=0) of some
780variables can be also be
781output (this output is only done once
782with the first plot output and not repeated with the profile output at
783later
784times). The names of these profiles result from the ones specified
785above leaded by a hash "#".&nbsp; Allowed values are:<br> <ul>
786<p><i>#u</i>, <i>#v</i>, <i>#pt</i>,
787<i>#km</i>, <i>#kh</i>, <i>#l</i></p>
788</ul> <p>These initial profiles have been either set by
789the user or
790have been calculated by a 1d-model prerun.</p>The
791user is allowed to extend the above list of quantities by defining his
792own output quantities (see the user-parameter <a href="chapter_4.3.html#data_output_pr_user">data_output_pr_user</a>).<br><br>In case
793of ASCII data output to local file PLOT1D_DATA,
794PALM additionally creates a NAMELIST parameter file (local name <a href="chapter_3.4.html#PLOT1D_PAR">PLOT1D_PAR</a>)
795which can be used as parameter input file for the plot software <a href="http://www.muk.uni-hannover.de/institut/software/profil_intro.html">profil</a>.
796Profiles can be directly plotted with <span style="font-weight: bold;">profil</span>
797using these two files. The
798plot layout is
799steered via the parameter input file. The values of these <span style="font-weight: bold;">profil</span>-parameters
800are determined by
801a set of PALM parameters (<a href="chapter_4.2.html#profile_columns">profile_columns</a>,
802<a href="chapter_4.2.html#profile_rows">profile_rows</a>,
803<a href="chapter_4.2.html#z_max_do1d">z_max_do1d</a>,
804<a href="chapter_4.2.html#cross_profiles">cross_profiles</a>,
805etc.) All parameter values can be changed by editing the parameter
806input
807file. <br><br>Further details about plotting vertical
808profiles with <span style="font-weight: bold;">profil </span>can
809be found in <a href="chapter_4.5.2.html">chapter
8104.5.2</a></td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="data_output_2d_on_each_pe"></a><b>data_output_2d_on</b>
811<br> <b>_each_pe</b></p> </td> <td style="vertical-align: top;">L<br> </td> <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span><br> </td>
812<td style="vertical-align: top;">Output 2d cross section
813data by one or
814all processors.&nbsp; <p>In runs with several processors, by
815default, each processor
816outputs cross section data of its subdomain&nbsp;into an individual
817file. After PALM
818has finished, the contents of these files have to be sampled into one
819file<span style="font-weight: bold;"></span> using
820the program <tt>combine_plot_fields.x</tt>.&nbsp; </p>
821<p>Alternatively, by assigning <b>data_output_2d_on_each_pe</b>
822= <i>.F.,</i>
823the respective data is gathered on PE0 and output is done directly
824into one file, so <tt>combine_plot_fields.x</tt> does not
825have to be
826called. However, in case of very large numbers of horizontal
827gridpoints, sufficient
828memory is required on PE0. </p> </td> </tr>
829<tr> <td style="vertical-align: top;"> <p><a name="disturbance_amplitude"></a><b>disturbance<br>
830_amplitude</b></p> </td> <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><i>0.25</i></td>
831<td style="vertical-align: top;"> <p>Maximum
832perturbation amplitude of the random perturbations
833imposed to the horizontal velocity field (in m/s).&nbsp; </p>
834<p>The parameter <a href="#create_disturbances">create_disturbances</a>
835describes how to impose random perturbations to the horizontal velocity
836field. Since the perturbation procedure includes two filter operations,
837the amplitude assigned by <b>disturbance_amplitude</b> is
838only an
839approximate value of the real magnitude of the perturbation.</p> </td>
840</tr> <tr> <td style="vertical-align: top;"><p><a name="disturbance_energy_limit"></a><b>disturbance_energy</b>
841<br> <b>_limit</b></p> </td> <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><i>0.01</i></td>
842<td style="vertical-align: top;"> <p lang="en-GB">Upper
843limit value of the perturbation energy of
844the velocity field used as a criterion for imposing random
845perturbations (in m<sup>2</sup>/s<sup>2</sup>).&nbsp;
846</p> <p><span lang="en-GB"><font face="Thorndale, serif">The parameter </font></span><a href="#create_disturbances"><span lang="en-GB"><font face="Thorndale, serif">create_disturbances</font></span></a><font face="Thorndale, serif"><span lang="en-GB">
847describes how to impose
848random perturbations to the horizontal velocity field. The perturbation
849energy is defined as the volume average (over the total model domain)
850of the squares of the deviations of the velocity components from the
851mean flow (horizontal average). If the perturbation energy exceeds the
852assigned value, random perturbations to the fields of horizontal
853velocities are imposed no more. The value of this parameter usually
854must be determined by trial and error (it depends e.g. on the total
855number of grid points).</span> </font> </p> </td>
856</tr> <tr> <td style="vertical-align: top;"><p><a name="disturbance_level_b"></a><b>disturbance_level_b</b></p>
857</td> <td style="vertical-align: top;">R</td>
858<td style="vertical-align: top;"><i>zu(3)</i></td>
859<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale, serif"><font size="3">Lower
860limit of the vertical range for which random perturbations are to be
861imposed on the horizontal wind field (</font></font>in <font face="Thorndale, serif"><font size="3">m).&nbsp;
862</font></font> </p> <p><span lang="en-GB"><font face="Thorndale, serif">This
863parameter must hold the condition zu<i>(3)</i> &lt;= <b>disturbance_level_b</b>
864&lt;= <i>zu(</i></font></span><i><a href="chapter_4.1.html#nz"><span lang="en-GB"><font face="Thorndale, serif">nz-1</font></span></a><span lang="en-GB"><font face="Thorndale, serif">)</font></span></i><span lang="en-GB"><font face="Thorndale, serif">.
865Additionally, <b>disturbance_level_b</b>
866&lt;= </font></span><a href="#disturbance_level_t"><span lang="en-GB"><font face="Thorndale, serif">disturbance_level_t</font></span></a>
867<span lang="en-GB"><font face="Thorndale, serif">must
868also hold. <br> </font></span></p> <p><span lang="en-GB"><font face="Thorndale, serif">The
869parameter </font></span><a href="#create_disturbances"><span lang="en-GB"><font face="Thorndale, serif">create_disturbances</font></span></a><font face="Thorndale, serif"><span lang="en-GB">
870describes how to impose
871random perturbations to the horizontal velocity field</span></font><font face="Thorndale, serif"><span lang="en-GB">.</span>
872</font> </p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="disturbance_level_t"></a><b>disturbance_level_t</b></p>
873</td> <td style="vertical-align: top;">R</td>
874<td style="vertical-align: top;"><i>zu(nz/3)</i></td>
875<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale, serif"><font size="3">Upper
876limit of the vertical range for which random perturbations are to be
877imposed on the horizontal wind field (</font></font>in <font face="Thorndale, serif"><font size="3">m).&nbsp;
878</font></font> </p> <p><span lang="en-GB"><font face="Thorndale, serif">This
879parameter must hold the condition <b>disturbance_level_t</b>
880&lt;= zu<i>(</i></font></span><i><a href="chapter_4.1.html#nz"><span lang="en-GB"><font face="Thorndale, serif">nz-1</font></span></a><span lang="en-GB"><font face="Thorndale, serif">)</font></span></i><span lang="en-GB"><font face="Thorndale, serif">.
881Additionally, </font></span><a href="#disturbance_level_b"><span lang="en-GB"><font face="Thorndale, serif">disturbance_level_b</font></span></a>
882<span lang="en-GB"><font face="Thorndale, serif">&lt;=
883<b>disturbance_level_t</b>
884must also hold.<br> </font></span></p> <p><span lang="en-GB"><font face="Thorndale, serif">The
885parameter </font></span><a href="#create_disturbances"><span lang="en-GB"><font face="Thorndale, serif">create_disturbances</font></span></a><font face="Thorndale, serif"><span lang="en-GB">
886describes how to impose
887random perturbations to the horizontal velocity field</span></font><font face="Thorndale, serif"><span lang="en-GB">.</span>
888</font> </p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="do2d_at_begin"></a><b>do2d_at_begin</b></p>
889</td> <td style="vertical-align: top;">L<br> </td>
890<td style="vertical-align: top;">.F.<br> </td>
891<td style="vertical-align: top;"> <p>Output of 2d
892cross section data at the beginning of a run.&nbsp; </p> <p>The
893temporal intervals of output times of 2d cross section data (see <a href="chapter_4.2.html#data_output">data_output</a>)
894are usually determined with parameters <a href="chapter_4.2.html#dt_do2d_xy">dt_do2d_xy</a>, <a href="chapter_4.2.html#dt_do2d_xz">dt_do2d_xz</a>
895and <a href="chapter_4.2.html#dt_do2d_yz">dt_do2d_yz</a>.
896By assigning <b>do2d_at_begin</b> = <i>.T.</i>
897an additional output
898will be made at the
899beginning of a run (thus at the time t = 0 or at the respective
900starting times of restart runs).</p> </td> </tr> <tr>
901<td style="vertical-align: top;"> <p><a name="do3d_at_begin"></a><b>do3d_at_begin</b></p>
902</td> <td style="vertical-align: top;">L<br> </td>
903<td style="vertical-align: top;">.F.<br> </td>
904<td style="vertical-align: top;">Output of 3d volume data
905at the beginning
906of a run.<br><br>The temporal intervals of output times of
9073d volume data (see <a href="chapter_4.2.html#data_output">data_output</a>)
908is usually determined with parameter <a href="chapter_4.2.html#dt_do3d">dt_do3d</a>.
909By assigning <b>do3d_at_begin</b> = <i>.T.</i>
910an additional output
911will be made at the
912beginning of a run (thus at the time t = 0 or at the respective
913starting times of restart runs).</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="do3d_compress"></a><b>do3d_compress</b></p>
914</td> <td style="vertical-align: top;">L<br> </td>
915<td style="vertical-align: top;">.F.<br> </td>
916<td style="vertical-align: top;"> <p>Output of data
917for 3d plots in compressed form.&nbsp; </p> <p>This
918parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
919= <span style="font-style: italic;">'avs'</span>.</p><p>Output
920of 3d volume data may need huge amounts of disc storage
921(up to several Terabytes ore more). Data compression can serve to
922reduce this requirement. PALM is able to output 3d data in compressed
923form using 32-bit integers, if <span style="font-weight: bold;">do3d_compress</span>
924= <span style="font-style: italic;">.T.</span> is
925assigned. This
926yields a loss of accuracy, but the file size is clearly reduced. The
927parameter <a href="chapter_4.2.html#do3d_precision">do3d_precision</a>
928can be used to separately define the number of significant digits for
929each quantity.<br> </p> <p>So far compressed data
930output is only possible for Cray-T3E
931machines. Additional information for
932handling compressed data is given in <a href="chapter_4.5.6.html">chapter
9334.5.6</a>.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="do3d_precision"></a><b>do3d_precision</b></p>
934</td> <td style="vertical-align: top;">C *
9357&nbsp; <br>
936&nbsp; (100)</td> <td style="vertical-align: top;">see
937right<br> </td> <td style="vertical-align: top;">
938<p>Significant digits in case of compressed data
939output.&nbsp; </p> <p>This parameter only applies for
940&nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
941= <span style="font-style: italic;">'avs'</span>.</p><p>In
942case that data compression is used for output of 3d data
943(see <a href="chapter_4.2.html#do3d_compress">do3d_compress</a>),
944this parameter determines the number of significant digits
945which are to be output.<br> </p> <p>Fewer digits
946clearly reduce the amount
947of data. Assignments have to be given separately for each individual
948quantity via a character string of the form <span style="font-style: italic;">'&lt;quantity
949name&gt;&lt;number of
950significant digits&gt;'</span>, e.g. <span style="font-style: italic;">'pt2'</span>.
951Only those quantities listed in <a href="chapter_4.2.html#data_output">data_output</a>
952are admitted. Up to 9 significant digits are allowed (but large values
953are not very reasonable
954because they do not effect a significant compression).<br> </p>
955<p>The default assignment is <span style="font-weight: bold;">do3d_precision</span>
956= <span style="font-style: italic;">'u2'</span>, <span style="font-style: italic;">'v2'</span>, <span style="font-style: italic;">'w2'</span>, <span style="font-style: italic;">'p5'</span>, <span style="font-style: italic;">'pt2'</span>.</p> </td>
957</tr><tr> <td style="vertical-align: top;"> <p><a name="dt_laufparameter"></a><b>dt</b></p>
958</td> <td style="vertical-align: top;">R</td>
959<td style="vertical-align: top;"><i>variable</i></td>
960<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale, serif"><font size="3">Time
961step to be used by the 3d-model (</font></font>in <font face="Thorndale, serif"><font size="3">s).&nbsp;
962</font></font> </p> <p><span lang="en-GB"><font face="Thorndale, serif">This parameter</font></span>
963<font face="Thorndale, serif"><span lang="en-GB">is
964described in
965detail with the initialization parameters (see</span></font><span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale, serif">dt</font></span></a><font face="Thorndale, serif"><span lang="en-GB">).
966Additionally, it may be
967used as a run parameter and then applies to all restart runs (until it
968is changed again). A switch from a constant time step to a variable
969time step can be achieved with <b>dt</b> = <i>-1.0</i>.</span>
970</font> </p> </td> </tr> <tr> <td style="vertical-align: top;"><a name="dt_averaging_input"></a><span style="font-weight: bold;">dt_averaging_input</span><br>
971</td> <td style="vertical-align: top;">R<br> </td>
972<td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> </td>
973<td style="vertical-align: top;">Temporal interval
974of&nbsp;data which are subject to temporal averaging (in s).<br><br>By
975default, data from each timestep within the interval defined by <a href="chapter_4.2.html#averaging_interval">averaging_interval</a>
976are used for calculating the temporal average. By choosing <span style="font-weight: bold;">dt_averaging_input</span>
977&gt; <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale, serif">dt</font></span></a><font face="Thorndale, serif"><span lang="en-GB"></span></font><span lang="en-GB"></span><span style="font-style: italic;"></span>,
978the number of time levels entering the average can be minimized. This
979reduces the CPU-time of a run but may worsen the quality of the
980average's statistics.<br><br><font face="Thorndale, serif"><span lang="en-GB">With
981variable time step (see <span style="font-weight: bold;">dt</span>),
982the number of time levels entering the average can vary from one
983averaging interval to the next (for a more detailed explanation see </span></font><font><a href="#averaging_interval"><span lang="en-GB"><font face="Thorndale, serif">averaging_interval</font></span></a>)</font><font face="Thorndale, serif"><span lang="en-GB">. It
984is approximately given by the quotient of <span style="font-weight: bold;">averaging_interval</span> /
985MAX(<span style="font-weight: bold;"> dt_averaging_input</span>,
986<span style="font-weight: bold;">dt</span>) (which
987gives a more or less exact value if a fixed timestep is used and if
988this is an integral divisor of <span style="font-weight: bold;">dt_averaging_input</span>).</span></font>&nbsp;
989<br><br><span style="font-weight: bold;">Example:</span><br>With
990an averaging interval of 100.0 s and <span style="font-weight: bold;">dt_averaging_input</span> =
991<span style="font-style: italic;">10.0</span>,
992the time levels entering the average have a (minimum) distance of 10.0
993s (their distance may of course be larger if the current timestep is
994larger than 10.0 s), so the average is calculated from the data of
995(maximum) 10 time levels.<br><br><font face="Thorndale, serif"><span lang="en-GB">It
996is allowed
997to change <b>dt_averaging_input</b> during a job chain. If
998the last averaging
999interval of the run previous to the change could not be completed (i.e.
1000has to be finished in the current run), the individual profiles and/or
1001spectra entering the averaging are not uniformly distributed over the
1002averaging interval.<br><br></span></font>Parameter&nbsp;<a href="#dt_averaging_input_pr">dt_averaging_input_pr</a>&nbsp;can
1003be used to define&nbsp;a different temporal interval&nbsp;for
1004vertical profile data and spectra.<br> </td> </tr>
1005<tr> <td style="vertical-align: top;"> <p><a name="dt_averaging_input_pr"></a><b>dt_averaging_input_pr</b></p>
1006</td> <td style="vertical-align: top;">R</td>
1007<td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="#dt_averaging_input">dt_<br>averaging_<br>input</a></span></td>
1008<td style="vertical-align: top;"> <p lang="en-GB">Temporal
1009interval of&nbsp;data which are subject to temporal averaging of <font face="Thorndale, serif"><font size="3">vertical
1010profiles and/or spectra&nbsp;(</font></font>in <font face="Thorndale, serif"><font size="3">s).&nbsp;
1011</font></font> </p> <p>By default, data from
1012each timestep within the interval defined by<font face="Thorndale, serif"><span lang="en-GB"> </span></font><a href="#averaging_interval_pr"><span lang="en-GB"><font face="Thorndale, serif">averaging_interval_pr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><span lang="en-GB"><font face="Thorndale, serif">and </font></span><a href="#averaging_interval_sp"><span lang="en-GB"><font face="Thorndale, serif">averaging_interval_sp</font></span></a><span lang="en-GB"><font face="Thorndale, serif"> </font></span>are
1013used for calculating the temporal average.&nbsp;By choosing <span style="font-weight: bold;">dt_averaging_input_pr</span>
1014&gt; <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale, serif">dt</font></span></a><font face="Thorndale, serif"><span lang="en-GB"></span></font><span lang="en-GB"></span><span style="font-style: italic;"></span>,
1015the number of time levels entering the average can be minimized. This
1016reduces the CPU-time of a run but may worsen the quality of the
1017average's statistics. <span lang="en-GB"><font face="Thorndale, serif"><span style="font-weight: bold;"></span><span style="font-weight: bold;"></span></font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"></span></a><font face="Thorndale, serif"><span lang="en-GB"></span></font><span lang="en-GB"></span><br> </p><p>For
1018more explanations see parameter <a href="#dt_averaging_input">dt_averaging_input</a>.<a href="chapter_4.1.html#dt"><span lang="en-GB"></span></a><font face="Thorndale, serif"><span lang="en-GB"></span></font></p></td>
1019</tr> <tr> <td style="vertical-align: top;"><a name="dt_data_output"></a><span style="font-weight: bold;">dt_data_output</span><br>
1020</td> <td style="vertical-align: top;">R<br> </td>
1021<td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span><br>
1022</td> <td style="vertical-align: top;"><p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal interval</font>
1023at which&nbsp;data (3d volume data (instantaneous or time
1024averaged),
1025cross sections (instantaneous or time averaged), vertical profiles,
1026spectra) shall be output (</font>in <font face="Thorndale">s).&nbsp;</font></p>
1027<span lang="en-GB"><font face="Thorndale">If
1028data output&nbsp;is switched on (see </font></span><a href="chapter_4.2.html#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a><span lang="en-GB"><font face="Thorndale">, <a href="#data_output_pr">data_output_pr</a>, <a href="#data_output_sp">data_output_sp</a>, and </font></span><a href="chapter_4.2.html#section_xy"><span lang="en-GB"><font face="Thorndale">section_xy</font></span></a><span lang="en-GB"><font face="Thorndale">), this
1029parameter can be used to
1030assign the temporal interval at which these data shall be
1031output. </font></span><span lang="en-GB"><font face="Thorndale">Output can be skipped at the beginning of a
1032simulation using parameter <a href="#skip_time_data_output">skip_time_data_output</a>,
1033which has zero value by default. </font></span><span lang="en-GB"><font face="Thorndale">Reference
1034time is the beginning of the simulation, i.e. output
1035takes place at times t = <b>skip_time_data_output +
1036dt_data_output</b>, <span style="font-weight: bold;">skip_time_data_output</span>
1037+ 2*<b>dt_data_output</b>, <span style="font-weight: bold;">skip_time_data_output</span>
1038+ 3*<b>dt_data_output</b>,
1039etc. Since output is only done at the discrete time levels given by
1040the&nbsp;timestep used, the actual output times can slightly
1041deviate
1042from these theoretical values</font></span><a href="chapter_4.2.html#dt_dopr_zeitpunkte"><span lang="en-GB"></span></a><span lang="en-GB"><font face="Thorndale">.<br><br>Individual temporal
1043intervals for the different output quantities can be assigned using
1044parameters <a href="#dt_do3d">dt_do3d</a>, <a href="#dt_do2d_xy">dt_do2d_xy</a>, <a href="dt_do2d_xz">dt_do2d_xz</a>, <a href="#dt_do2d_yz">dt_do2d_yz</a>, <a href="#dt_dopr">dt_dopr</a>, <a href="#dt_dosp">dt_dosp</a>,
1045and <a href="#dt_data_output_av">dt_data_output_av</a>.</font></span>
1046</td> </tr> <tr> <td style="vertical-align: top;"><a name="dt_data_output_av"></a><span style="font-weight: bold;">dt_data_output_av</span><br>
1047</td> <td style="vertical-align: top;">R<br> </td>
1048<td style="vertical-align: top;"><i>value of
1049&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>output</a></i>
1050</td> <td style="vertical-align: top;"><p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal interval</font>
1051at which time averaged 3d volume data and/or 2d cross section data
1052shall be output (</font>in <font face="Thorndale">s).&nbsp;</font></p><span lang="en-GB"><font face="Thorndale">If data
1053output of time averaged 2d and 3d data is switched on (see </font></span><a href="chapter_4.2.html#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a>&nbsp;<span lang="en-GB"><font face="Thorndale">and </font></span><a href="chapter_4.2.html#section_xy"><span lang="en-GB"><font face="Thorndale">section_xy</font></span></a><span lang="en-GB"><font face="Thorndale">), this
1054parameter can be used to
1055assign the temporal interval at which they shall be
1056output. </font></span><span lang="en-GB"><font face="Thorndale">Output can be skipped at the beginning of a
1057simulation using parameter <a href="#skip_time_data_output_av">skip_time_data_output_av</a>,
1058which has zero value by default. </font></span><span lang="en-GB"><font face="Thorndale">Reference
1059time is the beginning of the simulation, i.e. output
1060takes place at times t = <b>skip_time_data_output_av +
1061dt_data_output_av</b>, <span style="font-weight: bold;">skip_time_data_output_av</span>
1062+ 2*<b>dt_data_output_av</b>, <span style="font-weight: bold;">skip_time_data_output_av</span>
1063+ 3*<b>dt_data_output_av</b>,
1064etc. Since output is only done at the discrete time levels given by
1065the&nbsp;timestep used, the actual output times can slightly
1066deviate from
1067these theoretical values</font></span><a href="chapter_4.2.html#dt_dopr_zeitpunkte"><span lang="en-GB"></span></a><span lang="en-GB"><font face="Thorndale">.<br><br></font></span>The
1068length of the averaging interval is controlled via parameter <a href="chapter_4.2.html#averaging_interval">averaging_interval</a>.</td>
1069</tr><tr> <td style="vertical-align: top;"> <p><a name="dt_disturb"></a><b>dt_disturb</b></p>
1070</td> <td style="vertical-align: top;">R</td>
1071<td style="vertical-align: top;"><i>9999999.9</i></td>
1072<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
1073interval</font> at which random
1074perturbations are to be imposed on the horizontal velocity field
1075(</font>in <font face="Thorndale">s).&nbsp; </font>
1076</p> <p><span lang="en-GB"><font face="Thorndale, serif">The parameter </font></span><a href="#create_disturbances"><span lang="en-GB"><font face="Thorndale, serif">create_disturbances</font></span></a><font face="Thorndale, serif"><span lang="en-GB">
1077describes how to impose
1078random perturbations to the horizontal velocity field</span></font><font face="Thorndale, serif"><span lang="en-GB">.</span>
1079</font> </p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="dt_dopr"></a><b>dt_dopr</b></p>
1080</td> <td style="vertical-align: top;">R</td>
1081<td style="vertical-align: top;"><i>value of
1082&nbsp;<a href="#dt_data_output">dt_data_<br>output</a></i></td>
1083<td style="vertical-align: top;"> <p><span lang="en-GB"><font face="Thorndale">Temporal
1084interval at
1085which data&nbsp;of vertical profiles shall be output (to local
1086file <a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>
1087or/and </font></span><a href="chapter_3.4.html#PLOT1D_DATA"><span lang="en-GB"><font face="Thorndale">PLOT1D_DATA</font></span></a><span lang="en-GB"><font face="Thorndale">) (</font></span>in
1088<span lang="en-GB"><font face="Thorndale">s).&nbsp;
1089</font></span> </p> <p><span lang="en-GB"><font face="Thorndale">If output of
1090horizontally averaged vertical profiles is switched on (see </font></span><a href="chapter_4.2.html#data_output_pr"><span lang="en-GB"><font face="Thorndale">data_output_pr</font></span></a><span lang="en-GB"><font face="Thorndale">), </font></span><span lang="en-GB"><font face="Thorndale">this
1091parameter can be used to
1092assign the temporal interval at which profile data shall be output.</font></span><span lang="en-GB"><font face="Thorndale"> </font></span><span lang="en-GB"><font face="Thorndale">Output can
1093be skipped at the beginning of a simulation using parameter <a href="#skip_time_dopr">skip_time_dopr</a>, which has
1094zero value by default. </font></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">Reference
1095time is the beginning
1096of the simulation, thus t = 0,&nbsp;</font></span><span lang="en-GB"><font face="Thorndale">i.e. output
1097takes place at times t = <b>skip_time_dopr + dt_dopr</b>, <span style="font-weight: bold;">skip_time_dopr</span> + 2*<b>dt_dopr</b>,
1098<span style="font-weight: bold;">skip_time_dopr</span>
1099+ 3*<b>dt_dopr</b>,
1100etc.</font></span><span lang="en-GB"><font face="Thorndale"> Since
1101profiles can not be calculated for times lying within a time step
1102interval, the output times can deviate from these theoretical values.
1103If a time step ranges from t = 1799.8 to t = 1800.2, then in the
1104example above the output would take place at t = 1800.2. In general,
1105the output always lie between t = 1800.0 and t = 1800.0 + </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale">dt</font></span></a><span lang="en-GB"><font face="Thorndale">. If the
1106model uses a variable time step, these
1107deviations from the theoretical output times will of course be
1108different for each output time.<br> </font></span></p>
1109<p><span lang="en-GB"><font face="Thorndale">In
1110order to
1111guarantee an output of profile data at the end of a simulation (see </font></span><font><a href="chapter_4.1.html#end_time"><span lang="en-GB"><font face="Thorndale">end_time</font></span></a></font><span lang="en-GB"><font face="Thorndale">) in any way</font></span><span lang="en-GB"><font face="Thorndale">,&nbsp;
1112<span style="font-weight: bold;">end_time</span>
1113should be equal or a little bit
1114larger than the respective theoretical output time. For example, if <b>dt_dopr</b>
1115= <i>900.0</i><span style="font-style: italic;">
1116</span>and 3600.0
1117seconds are to be simulated, then <b>end_time</b>
1118&gt;= 3600.0 should be chosen.</font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"></span></a><span lang="en-GB"><font face="Thorndale"><span style="font-weight: bold;"></span>&nbsp; </font></span>
1119</p> <p><span lang="en-GB"><font face="Thorndale">A selection of
1120profiles to be output can be done via parameter </font></span><a href="chapter_4.2.html#data_output_pr"><span lang="en-GB"><font face="Thorndale">data_output_pr</font></span></a><span lang="en-GB"><font face="Thorndale">.&nbsp;</font></span>
1121</p> </td> </tr> <tr> <td style="vertical-align: top;"><a name="dt_dopr_listing"></a><span style="font-weight: bold;">dt_dopr_listing</span><br>
1122</td> <td style="vertical-align: top;">R<br> </td>
1123<td style="vertical-align: top;"><i>9999999.9</i></td>
1124<td style="vertical-align: top;"> <p><span lang="en-GB"><font face="Thorndale, serif">Temporal
1125interval</font> at which data <font face="Thorndale">of
1126vertical
1127profiles shall be output (output for printouts, local file </font></span><a href="chapter_3.4.html#LIST_PROFIL"><span lang="en-GB"><font face="Thorndale">LIST_PROFIL</font></span></a><span lang="en-GB"><font face="Thorndale">) (</font></span>in
1128<span lang="en-GB"><font face="Thorndale">s).&nbsp;</font></span>
1129</p> <p>T<span lang="en-GB"></span><a href="chapter_4.2.html#pr1d"><span lang="en-GB"></span></a><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">his
1130parameter can be used to
1131assign the temporal interval at which profile data shall be output.</font></span><span lang="en-GB"><font face="Thorndale"> Reference
1132time is the beginning
1133of the simulation, thus t = 0. For example if <b>dt_dopr_listing</b>
1134= 1800.0,
1135then output takes place at t = 1800.0, 3600.0, 5400.0, etc. Since
1136profiles can not be calculated for times lying within a time step
1137interval, the output times can deviate from these theoretical values.
1138If a time step ranges from t = 1799.8 to t = 1800.2, then in the
1139example above the output would take place at t = 1800.2. In general,
1140the output always lie between t = 1800.0 and t = 1800.0 + </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale">dt</font></span></a> <span lang="en-GB"><font face="Thorndale">(numbers
1141are related to
1142the
1143example above). If the model uses a variable time step, these
1144deviations from the theoretical output times will of course be
1145different for each output time.<br> </font></span></p>
1146<p><span lang="en-GB"><font face="Thorndale">In
1147order to
1148guarantee an output of profile data at the end of a simulation (see </font></span><font><a href="chapter_4.1.html#end_time"><span lang="en-GB"><font face="Thorndale">end_time</font></span></a></font><span lang="en-GB"><font face="Thorndale">) in any way</font></span><span lang="en-GB"><font face="Thorndale">,&nbsp;
1149<span style="font-weight: bold;">end_time</span>
1150should be a little bit
1151larger than the respective theoretical output time. For example, if <b>dt_dopr_listing</b>
1152= <i>900.0</i><span style="font-style: italic;">
1153</span>and 3600.0
1154seconds are to be simulated, then it should be at least&nbsp; <b>end_time</b>
1155&gt; 3600.0 + </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale">dt</font></span></a><span lang="en-GB"><font face="Thorndale">. If
1156variable time steps are used
1157(which is the default), <span style="font-weight: bold;">dt</span>
1158should be properly estimated.&nbsp; </font></span> </p>
1159<p><span lang="en-GB"><font face="Thorndale">Data
1160and output
1161format of the file </font></span><a href="chapter_3.4.html#LIST_PROFIL"><span lang="en-GB"><font face="Thorndale">LIST_PROFIL</font></span></a>
1162<span lang="en-GB"><font face="Thorndale">is
1163internally fixed. In this file
1164the profiles of the most important model variables are arranged in
1165adjacent columns.</font></span> </p> </td> </tr>
1166<tr> <td style="vertical-align: top;"> <p><a name="dt_dots"></a><b>dt_dots</b></p>
1167</td> <td style="vertical-align: top;">R</td>
1168<td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td>
1169<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
1170interval</font> at which&nbsp;time series data shall be
1171output (</font>in <font face="Thorndale">s).&nbsp;</font>
1172</p> <p>The default interval for the output of timeseries
1173is calculated as shown below (this tries to minimize the number of
1174calls of <span style="font-family: Courier New,Courier,monospace;">flow_statistics</span>)</p><p style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1175IF ( <a href="#averaging_interval_pr">averaging_interval_pr</a>
1176== 0.0 )&nbsp; THEN<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1177<span style="font-weight: bold;">dt_dots</span> =
1178MIN( <a href="#dt_run_control">dt_run_control</a>, <a href="#dt_dopr">dt_dopr</a> )<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1179ELSE<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1180<span style="font-weight: bold;">dt_dots</span> =
1181MIN( dt_run_control, <a href="#dt_averaging_input_pr">dt_averaging_input_pr</a>
1182)<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1183ENDIF</p><p>This parameter can be used to
1184assign the temporal interval at which data points shall be output. <span lang="en-GB"><font face="Thorndale">Reference
1185time is the beginning of
1186&nbsp;the simulation, i.e. output takes place at times t = <b>dt_dots</b>,
11872*<b>dt_dots</b>, 3*<b>dt_dots</b>, etc. The
1188actual output times can
1189deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).&nbsp;
1190Is <b>dt_dots</b> &lt; </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale">dt</font></span></a><span lang="en-GB"><font face="Thorndale">, then data
1191of the time series are
1192written after each time step (if this is requested it should be <b>dt_dots</b>
1193= <i>0</i>).</font></span></p><p><span lang="en-GB"><font face="Thorndale">The default
1194value of <span style="font-weight: bold;">dt_dots</span>
1195is calculated as follows:</font></span></p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1196IF ( <a href="#averaging_interval_pr">averaging_interval_pr</a>
1197== 0.0 )&nbsp; THEN<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1198<span style="font-weight: bold;">dt_dots</span> =
1199MIN( <a href="#dt_run_control">dt_run_control</a>, <a href="#dt_dopr">dt_dopr</a> )<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1200ELSE<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1201<span style="font-weight: bold;">dt_dots</span> =
1202MIN( <span style="font-weight: bold;">dt_run_control</span>,
1203<a href="#dt_averaging_input_pr">dt_averaging_input_pr</a>
1204)<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1205ENDIF<br><br>(which minimizes the number of calls of
1206routine flow_statistics).<br><p>By default time series data
1207is output to the local file <a href="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</a>.
1208Because of the default settings of <span style="font-weight: bold;">dt_dots</span>,
1209it will&nbsp;generally be created for each model run. The file's
1210format is NetCDF.&nbsp; Further details about processing NetCDF
1211data are given in chapter <a href="chapter_4.5.1.html">4.5.1</a>.</p>The
1212file contains the following timeseries quantities (the first column
1213gives the name of the quantities as used in the NetCDF file):<br><table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2"> <tbody> <tr> <td style="font-style: italic; vertical-align: middle;">E<br>
1214</td> <td style="vertical-align: top;">Total
1215kinetic energy of
1216the flow (in m<sup>2</sup>/s<sup>2</sup>)
1217(normalized with respect to the total number of grid points).</td>
1218</tr> <tr> <td style="font-style: italic; vertical-align: middle;">E*<br>
1219</td> <td style="vertical-align: top;">Perturbation
1220kinetic
1221energy of the flow (in m<sup>2</sup>/s<sup>2</sup>)<sup>
1222</sup>(normalized
1223with respect to the total number of grid
1224points)</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">dt<br>
1225</td> <td style="vertical-align: top;">Time step
1226size (in s).</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">u<sub>*</sub></td>
1227<td style="vertical-align: top;">Friction velocity (in
1228m/s)
1229(horizontal average).</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">w<sub>*</sub></td>
1230<td style="vertical-align: top;">Vertical velocity scale
1231of
1232the CBL (in m/s) (horizontal average)</td> </tr> <tr>
1233<td style="vertical-align: top; font-style: italic;">th<sub>*</sub></td>
1234<td style="vertical-align: top;">Temperature
1235scale (Prandtl layer), defined as <i>w"pt"0
1236/&nbsp;</i><i>u<sub>*</sub></i>
1237(horizontal
1238average) (in K).</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">umax<br>
1239</td> <td style="vertical-align: top;">Maximum
1240u-component of the
1241velocity (in m/s).</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">vmax<br>
1242</td> <td style="vertical-align: top;">Maximum
1243v-component of the
1244velocity (in m/s).</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">wmax<br>
1245</td> <td style="vertical-align: top;">Maximum
1246w-component of the
1247velocity (in m/s).</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">div_old<br>
1248</td> <td style="vertical-align: top;">Divergence
1249of the velocity
1250field before the pressure
1251solver has been called (normalized with respect to the total number of
1252grid points) (in 1/s).</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">div_new</td>
1253<td style="vertical-align: top;">Divergence of the
1254velocity
1255field after the pressure
1256solver has been called (normalized with respect to the total number of
1257grid points) (in 1/s).</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">z_i_wpt</td>
1258<td style="vertical-align: top;">Height of the convective
1259boundary layer (horizontal average)
1260determined by the height of the minimum sensible heat flux (in m).</td>
1261</tr> <tr> <td style="vertical-align: top; font-style: italic;">z_i_pt</td>
1262<td style="vertical-align: top;">Height of the convective
1263boundary layer (horizontal average)
1264determined by the temperature profile (in m).</td> </tr> <tr>
1265<td style="vertical-align: top; font-style: italic;">w"pt"0</td>
1266<td style="vertical-align: top;">Subgrid-scale sensible
1267heat flux near the surface (horizontal
1268average)
1269between z = 0 and z = z<sub>p</sub> = zu(1) (there it
1270corresponds to
1271the total heat flux) (in K m/s).</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">w"pt"</td>
1272<td style="vertical-align: top;">Subgrid-scale heat flux
1273(horizontal average) for z = zw(1) (in K
1274m/s).</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">wpt</td>
1275<td style="vertical-align: top;">Total heat flux
1276(horizontal average) for z = zw(1) (in K m/s).</td> </tr> <tr>
1277<td style="vertical-align: top; font-style: italic;">pt(0)</td>
1278<td style="vertical-align: top;">Potential temperature at
1279the surface (horizontal average) (in K).</td> </tr> <tr>
1280<td style="vertical-align: top; font-style: italic;">pt(zp)</td>
1281<td style="vertical-align: top;">Potential temperature for
1282z = zu(1) (horizontal average) (in K).</td> </tr> <tr>
1283<td style="vertical-align: top; font-style: italic;">splptx</td>
1284<td style="vertical-align: top;">Percentage of grid points
1285using upstream scheme along x with
1286upstream-spline advection switched on.</td> </tr> <tr>
1287<td style="vertical-align: top; font-style: italic;">splpty</td>
1288<td style="vertical-align: top;">Percentage of grid points
1289using upstream scheme along y with
1290upstream-spline
1291advection switched on.</td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">splptz</td>
1292<td style="vertical-align: top;">Percentage of grid points
1293using upstream scheme along z with
1294upstream-spline
1295advection switched on.<br> </td> </tr> <tr> <td style="vertical-align: top; font-style: italic;">L</td>
1296<td style="vertical-align: top;">Monin-Obukhov length.</td>
1297</tr> </tbody> </table><br>Additionally, the
1298user can add his own timeseries quantities to the file, by using the
1299user-interface subroutines<span style="font-family: Courier New,Courier,monospace;"> <a href="chapter_3.5.1.html#user_init">user_init</a> </span>and<span style="font-family: Courier New,Courier,monospace;"> <a href="chapter_3.5.1.html#user_statistics">user_statistics</a></span>.
1300These routines contain (as comment lines) a simple example how to do
1301this.<br><br>Time series data refers to the total
1302domain, but time series for subdomains can also be output (see <a href="chapter_4.1.html#statistic_regions">statistic_regions</a>).
1303However, the following time series always present the values of the
1304total model domain (even with output for subdomains): <i>umax</i>,
1305<i>vmax</i>, <i>wmax</i>, <i>div_old</i>,
1306<i>div_new</i>.</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="dt_do2d_xy"></a><b>dt_do2d_xy</b></p>
1307</td> <td style="vertical-align: top;">R</td>
1308<td style="vertical-align: top;"><i>value of
1309&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>output</a></i></td>
1310<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
1311interval</font> at which&nbsp;horizontal cross section data
1312shall be output (</font>in <font face="Thorndale">s).&nbsp;
1313</font> </p> <p><span lang="en-GB"><font face="Thorndale">If output of
1314horizontal cross sections is switched on (see </font></span><a href="#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a>
1315<span lang="en-GB"><font face="Thorndale">and
1316</font></span><a href="#section_xy"><span lang="en-GB"><font face="Thorndale">section_xy</font></span></a><span lang="en-GB"><font face="Thorndale">), this
1317parameter can be used to
1318assign the temporal interval at which cross section data shall be
1319output. </font></span><span lang="en-GB"><font face="Thorndale">Output can be skipped at the beginning of a
1320simulation using parameter <a href="#skip_time_do2d_xy">skip_time_do2d_xy</a>,
1321which has zero value by default. </font></span><span lang="en-GB"><font face="Thorndale">Reference
1322time is the beginning of the simulation, i.e. output
1323takes place at times t = <b>skip_time_do2d_xy + dt_do2d_xy</b>,
1324<span style="font-weight: bold;">skip_time_do2d_xy</span>
1325+ 2*<b>dt_do2d_xy</b>, <span style="font-weight: bold;">skip_time_do2d_xy</span>
1326+ 3*<b>dt_do2d_xy</b>,
1327etc. The actual output times can deviate from these theoretical values
1328(see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).<br>
1329</font></span></p> <p><span lang="en-GB"><font face="Thorndale">Parameter </font></span><a href="#do2d_at_begin"><span lang="en-GB"><font face="Thorndale">do2d_at_begin</font></span></a>
1330has to be used if an additional output is wanted at the start of a run <span lang="en-GB"><font face="Thorndale">(thus at
1331the time t = 0 or at the
1332respective starting times of restart runs).</font></span> </p>
1333</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="dt_do2d_xz"></a><b>dt_do2d_xz</b></p>
1334</td> <td style="vertical-align: top;">R</td>
1335<td style="vertical-align: top;"><i>value of
1336&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>output</a></i></td>
1337<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
1338interval</font> at which&nbsp;vertical cross sections data
1339(xz) shall be output (</font>in <font face="Thorndale">s).&nbsp;
1340</font> </p> <p><span lang="en-GB"><font face="Thorndale">If output of
1341horizontal cross sections is switched on (see </font></span><a href="#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a>
1342<span lang="en-GB"><font face="Thorndale">and
1343</font></span><a href="#section_xz"><span lang="en-GB"><font face="Thorndale">section_xz</font></span></a><span lang="en-GB"><font face="Thorndale">),
1344this parameter can be used to assign the temporal interval at which
1345cross section data shall be output. </font></span><span lang="en-GB"><font face="Thorndale">Output can
1346be skipped at the beginning of a simulation using parameter <a href="#skip_time_do2d_xz">skip_time_do2d_xz</a>, which
1347has zero value by default. </font></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">Reference time is the beginning of
1348the simulation, i.e. output takes place at times t = <b>skip_time_do2d_xz
1349+ dt_do2d_xz</b>,
1350<span style="font-weight: bold;">skip_time_do2d_xz</span>
1351+ 2*<b>dt_do2d_xz</b>, <span style="font-weight: bold;">skip_time_do2d_xz</span>
1352+ 3*<b>dt_do2d_xz</b>, etc. The actual output times
1353can deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).<br>
1354</font></span></p> <p><span lang="en-GB"><font face="Thorndale">Parameter </font></span><a href="#do2d_at_begin"><span lang="en-GB"><font face="Thorndale">do2d_at_begin</font></span></a>
1355has to be used if an additional output is wanted at the start of a run <span lang="en-GB"><font face="Thorndale">(thus at
1356the time t = 0 or at the
1357respective starting times of restart runs).</font></span> </p>
1358</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="dt_do2d_yz"></a><b>dt_do2d_yz</b></p>
1359</td> <td style="vertical-align: top;">R</td>
1360<td style="vertical-align: top;"><i>value of
1361&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>output</a></i></td>
1362<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
1363interval</font> at which&nbsp;vertical cross section data
1364(yz) shall be output (</font>in s<font face="Thorndale">).&nbsp;
1365</font> </p> <p><span lang="en-GB"><font face="Thorndale">If output of
1366horizontal cross sections is switched on (see </font></span><a href="#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a>
1367<span lang="en-GB"><font face="Thorndale">and
1368</font></span><a href="#section_yz"><span lang="en-GB"><font face="Thorndale">section_yz</font></span></a><span lang="en-GB"><font face="Thorndale">),
1369this parameter can be used to assign the temporal interval at which
1370cross section data shall be output. </font></span><span lang="en-GB"><font face="Thorndale">Output can
1371be skipped at the beginning of a simulation using parameter <a href="#skip_time_do2d_yz">skip_time_do2d_yz</a>, which
1372has zero value by default. </font></span><span lang="en-GB"></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">Reference
1373time is the beginning of
1374the simulation, i.e. output takes place at times t = <b>skip_time_do2d_yz
1375+ dt_do2d_yz</b>,
1376<span style="font-weight: bold;">skip_time_do2d_yz</span>
1377+ 2*<b>dt_do2d_yz</b>, <span style="font-weight: bold;">skip_time_do2d_yz
1378</span>+ 3*<b>dt_do2d_yz</b>, etc. The actual output
1379times
1380can deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).<br>
1381</font></span></p> <p><span lang="en-GB"><font face="Thorndale">Parameter </font></span><a href="#do2d_at_begin"><span lang="en-GB"><font face="Thorndale">do2d_at_begin</font></span></a>
1382has to be used if an additional output is wanted at the start of a run <span lang="en-GB"><font face="Thorndale">(thus at
1383the time t = 0 or at the
1384respective starting times of restart runs).</font></span> </p>
1385</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="dt_do3d"></a><b>dt_do3d</b></p>
1386</td> <td style="vertical-align: top;">R</td>
1387<td style="vertical-align: top;"><i>value of
1388&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>output</a></i></td>
1389<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
1390interval</font> at which 3d volume data shall be output (</font>in
1391<font face="Thorndale">s).&nbsp; </font> </p>
1392<p><span lang="en-GB"><font face="Thorndale">If
1393output of
13943d-volume data is switched on (see </font></span><font><a href="#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a>)<span style="font-family: thorndale;">, this parameter can be used
1395to assign
1396th</span></font><span lang="en-GB"><font face="Thorndale">e temporal
1397interval at which 3d-data shall be output. </font></span><span lang="en-GB"><font face="Thorndale">Output can
1398be skipped at the beginning of a simulation using parameter <a href="#skip_time_do3d">skip_time_do3d</a>, which has
1399zero value by default. </font></span><span lang="en-GB"></span><span lang="en-GB"></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">Reference
1400time is the
1401beginning of the simulation, i.e. output takes place at times t = <b>skip_time_do3d
1402+ dt_do3d</b>,
1403<span style="font-weight: bold;">skip_time_do3d</span>
1404+ 2*<b>dt_do3d</b>, <span style="font-weight: bold;">skip_time_do3d</span>
1405+ 3*<b>dt_do3d</b>, etc. The actual output times can
1406deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">). <br>
1407</font></span></p> <p><span lang="en-GB"><font face="Thorndale">Parameter </font></span><a href="#do3d_at_begin"><span lang="en-GB"><font face="Thorndale">do3d_at_begin</font></span></a>
1408has to be used if an additional output is wanted at the start of a run <span lang="en-GB"><font face="Thorndale">(thus at
1409the time t = 0 or at the
1410respective starting times of restart runs).</font></span> </p>
1411</td> </tr> <tr><td style="vertical-align: top;"><a name="dt_max"></a><span style="font-weight: bold;">dt_max</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">20.0</span></td><td>Maximum
1412allowed value of the timestep (in s).<br><br>By default,
1413the maximum timestep is restricted to be 20 s. This might be o.k. for
1414simulations of any kind of atmospheric turbulence but may have to be
1415changed for other situations.</td></tr><tr> <td style="vertical-align: top;"> <p><a name="dt_restart"></a><b>dt_restart</b></p>
1416</td> <td style="vertical-align: top;">R</td>
1417<td style="vertical-align: top;"><i>9999999.9</i></td>
1418<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
1419interval</font> at which a new
1420restart run is to be carried out (</font>in <font face="Thorndale">s). </font> </p> <p><span lang="en-GB"><font face="Thorndale">For a
1421description
1422how to assign restart times manually see run time parameter </font></span><a href="#restart_time"><span lang="en-GB"><font face="Thorndale">restart_time</font></span></a><span lang="en-GB"><font face="Thorndale">. <span style="font-weight: bold;">dt_restart</span>
1423does not show any effect, if <span style="font-weight: bold;">restart_time</span>
1424has not been set.</font></span> </p> </td> </tr>
1425<tr> <td style="vertical-align: top;"> <p><a name="dt_run_control"></a><b>dt_run_control</b></p>
1426</td> <td style="vertical-align: top;">R</td>
1427<td style="vertical-align: top;"><i>60.0</i></td>
1428<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
1429interval</font> at which run control
1430output is to be made (</font>in <font face="Thorndale">s).&nbsp;
1431</font> </p> <p><span lang="en-GB"><font face="Thorndale">Run control
1432information is output to the local ASCII-file </font></span><a href="chapter_3.4.html#RUN_CONTROL"><span lang="en-GB"><font face="Thorndale">RUN_CONTROL</font></span></a><span lang="en-GB"><font face="Thorndale">. At each
1433output time, one line
1434with information about the size of the time step, maximum speeds, total
1435kinetic energy etc. is written to this file. Reference time is the
1436beginning of the simulation, i.e. output takes place at times t = <b>dt_run_control</b>,
14372*<b>dt_run_control</b>, 3*<b>dt_run_control</b>,
1438etc., and always at
1439the beginning of a model run (thus at the time t = 0 or at the
1440respective starting times of restart runs). The actual output times can
1441deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).<br>
1442</font></span></p> <p><span lang="en-GB"><font face="Thorndale">Run control
1443information is output after each time step can be achieved via <b>dt_run_control</b>
1444= <i>0.0</i>.</font></span> </p> </td>
1445</tr> <tr> <td style="vertical-align: top;"><p><a name="end_time"></a><b>end_time</b></p>
1446</td> <td style="vertical-align: top;">R</td>
1447<td style="vertical-align: top;"><i>0.0</i></td>
1448<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale">Simulation time of the 3D
1449model (</font>in <font face="Thorndale">s).&nbsp;
1450</font> </p> <p><span lang="en-GB"><font face="Thorndale">The simulation time
1451is starting from the beginning of the initialization run (t = 0), not
1452starting from the beginning of the respective restart run.</font></span>
1453</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="force_print_header"></a><b>force_print_header</b></p>
1454</td> <td style="vertical-align: top;">L</td>
1455<td style="vertical-align: top;"><i>.F.</i></td>
1456<td style="vertical-align: top;"> <p>Steering of
1457header output to the local file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.&nbsp;
1458</p> <p>By default, informations about the model
1459parameters in use are
1460output to the beginning of file RUN_CONTROL for initial runs only
1461(these informations are identical to that which are output to the local
1462file <a href="chapter_3.4.html#HEADER">HEADER</a>).
1463With <b>force_print_header</b> = <i>.T.</i>,
1464these informations are
1465also output to <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>
1466at restart runs.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="mg_cycles"></a><b>mg_cycles</b></p>
1467</td> <td style="vertical-align: top;">I</td>
1468<td style="vertical-align: top;"><i>-1</i></td>
1469<td style="vertical-align: top;"> <p>Number of
1470cycles to be used with the multi-grid scheme.<br> <br>
1471This parameter determines the number of cycles to be carried out in the
1472multi-grid method used for solving the Poisson equation for
1473perturbation pressure (see <a href="#psolver">psolver</a>).
1474The type of the cycles can be set with <a href="#cycle_mg">cycle_mg</a>.<br>
1475</p> <br>By default (<b>mg_cyles</b> = <i>-
14761</i>), the
1477number of cycles
1478depends on the requested accuracy of the scheme (see <a href="#residual_limit">residual_limit</a>)
1479and may vary from time step to time step. In this case, the CPU time
1480for a run will be difficult to estimate, since it heavily depends on
1481the total number of the cycles to be carried out.<br> <br>
1482By assigning <b>mg_cycles</b> a value (&gt;=<span style="font-style: italic;">1</span>), the number of
1483cycles can be
1484fixed so that the CPU time can be clearly estimated. <br> <br>
1485<b>Note:</b> When using a fixed number of cycles, the user
1486must
1487examine the local file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>
1488regularly to check whether the divergence of the velocity field is
1489sufficiently reduced by the pressure solver. It should be reduced at
1490least by two orders of magnitude. For cyclic boundary conditions along
1491both horizontal directions (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
1492and <a href="chapter_4.1.html#bc_ns">bc_ns</a>) <span style="font-weight: bold;">mg_cycles</span> = <span style="font-style: italic;">2</span> is typically a
1493good choice, for
1494non-cyclic lateral boundary conditions <span style="font-weight: bold;">mg_cycles</span>
1495= <span style="font-style: italic;">4</span> may be
1496sufficient.</td> </tr> <tr> <td style="vertical-align: top;"><a name="mg_switch_to_pe0_level"></a><b>mg_switch_to_pe0_<br>
1497level</b></td> <td style="vertical-align: top;">I</td>
1498<td style="vertical-align: top;"><br> </td> <td style="vertical-align: top;">Grid
1499level at which data shall be gathered on PE0.<br> <br>
1500In case of a run using several PEs and the multigrid method for solving
1501the Poisson equation for perturbation pressure (see <a href="#psolver">psolver</a>),
1502the value of this parameter defines on which grid level the data are
1503gathered on PE0 in order to allow for a further coarsening of the grid.
1504The finest grid defines the largest grid level. By default, the
1505gathering level is determined automatically and displayed in file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
1506It is only possible to gather data from a level larger than the one
1507determined automatically. A test run may be neccessary to determine
1508this level.</td> </tr> <tr> <td style="vertical-align: top;"><a name="netcdf_64bit"></a><span style="font-weight: bold;">netcdf_64bit</span><br>
1509</td> <td style="vertical-align: top;">L<br> </td>
1510<td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br> </td>
1511<td style="vertical-align: top;">NetCDF files will have 64
1512bit offset format.<br><br>By
1513default, the maximum file size of the NetCDF files opened by PALM is 2
1514GByte. Using netcdf_64bit = .TRUE. allows file sizes larger than 2
1515GByte.<br><br>The 64 bit offset format can be separately
1516switched off for those NetCDF files containing 3d volume date (<span style="font-family: Courier New,Courier,monospace;">DATA_3D_NETCDF</span>,
1517<span style="font-family: Courier New,Courier,monospace;">DATA_3D_AV_NETCDF</span>)
1518using <a href="#netcdf_64bit_3d">netcdf_64bit_3d</a>.<br><br><span style="font-weight: bold;">Warning:</span><br>Some
1519(PD or commercial) software may not support the 64 bit offset format.<br>
1520</td> </tr><tr><td style="vertical-align: top;"><a name="netcdf_64bit_3d"></a><span style="font-weight: bold;">netcdf_64bit_3d</span></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;">.T.</td><td style="vertical-align: top;">NetCDF files containing 3d
1521volume data will have 64 bit offset format.<br><br>This
1522switch&nbsp;only comes into effect if <a href="#netcdf_64bit">netcdf_64bit</a>
1523= .TRUE.. It allows to switch off separately the 64 bit offset format
1524for those NetCDF files containing 3d volume data (<span style="font-family: Courier New,Courier,monospace;">DATA_3D_NETCDF</span>,
1525<span style="font-family: Courier New,Courier,monospace;">DATA_3D_AV_NETCDF</span>).</td></tr><tr>
1526<td style="vertical-align: top;"> <p><a name="ngsrb"></a><b>ngsrb</b></p> </td>
1527<td style="vertical-align: top;">I</td> <td style="vertical-align: top;"><i>2</i></td>
1528<td style="vertical-align: top;">Grid
1529level at which data shall be gathered on PE0.<br> <br>
1530In case of a run using several PEs and the multigrid method for solving
1531the Poisson equation for perturbation pressure (see <a href="#psolver">psolver</a>),
1532the value of this parameter defines on which grid level the data are
1533gathered on PE0 in order to allow for a further coarsening of the grid.
1534The finest grid defines the largest grid level. By default, the
1535gathering level is determined automatically and displayed in file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
1536It is only possible to gather data from a level larger than the one
1537determined automatically. A test run may be neccessary to determine
1538this level.</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="normalizing_region"></a><b>normalizing_region</b></p>
1539</td> <td style="vertical-align: top;">I</td>
1540<td style="vertical-align: top;"><span style="font-style: italic;">0</span><br> </td>
1541<td style="vertical-align: top;"> <p>Determines the
1542subdomain from which the normalization
1543quantities are calculated.&nbsp; </p> <p>If output
1544data of the horizontally averaged vertical profiles
1545(see <a href="#data_output_pr">data_output_pr</a>)
1546is to be normalized (see <a href="#cross_normalized_x">cross_normalized_x</a>,
1547<a href="#cross_normalized_y">cross_normalized_y</a>),
1548the respective normalization quantities are by default calculated from
1549the averaged data of the total model domain (<b>normalizing_region</b>
1550= <i>0</i>) and are thus representative for the total
1551domain. Instead
1552of that, normalization quantities can also be calculated for a
1553subdomain. The wanted subdomain can be given with the parameter <span style="font-weight: bold;">normalizing_region</span>,
1554where <i>1</i>
1555&lt;= <b>normalizing_region</b> &lt;= <i>9 </i>must
1556hold. These
1557quantities are then used for normalizing of all profiles (even for that
1558of the total domain).</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="nsor"></a><b>nsor</b></p>
1559</td> <td style="vertical-align: top;">I</td>
1560<td style="vertical-align: top;"><i>20</i></td>
1561<td style="vertical-align: top;"> <p>Number of
1562iterations to be used with the SOR-scheme.&nbsp; </p> <p>This
1563parameter is only effective if the SOR-scheme is selected
1564as pressure solver (<a href="#psolver">psolver</a>
1565= <span style="font-style: italic;">'sor'</span>).
1566The number of
1567iterations necessary for a sufficient convergence of the scheme depends
1568on the grid point numbers and is to be determined by appropriate test
1569runs (the default value will not at all be sufficient for larger grid
1570point numbers). The number of iterations used for the first call of the
1571SOR-scheme (t = 0) is determined via the parameter <a href="chapter_4.1.html#nsor_ini">nsor_ini</a>.</p>
1572</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="nz_do3d"></a><b>nz_do3d</b></p>
1573</td> <td style="vertical-align: top;">I</td>
1574<td style="vertical-align: top;"><i>nz+1</i></td>
1575<td style="vertical-align: top;"> Limits the output of 3d
1576volume data along the vertical direction (grid point index k).<br><br>By
1577default, data for all grid points along z are output. The parameter <span style="font-weight: bold;">nz_do3d</span>
1578can be used to limit the output up to a certain vertical grid point
1579(e.g. in order to reduce the amount of output data). It affects all
1580output of volume data ("normal" output to file, see <a href="#data_output">data_output</a>, as well as output
1581for <span style="font-weight: bold;">dvrp</span>-software,
1582see <a href="#mode_dvrp">mode_dvrp</a>).</td>
1583</tr> <tr> <td style="vertical-align: top;"><p><a name="omega_sor"></a><b>omega_sor</b></p>
1584</td> <td style="vertical-align: top;">R</td>
1585<td style="vertical-align: top;"><i>1.8</i></td>
1586<td style="vertical-align: top;"> <p>Convergence
1587factor to be used with the the SOR-scheme.&nbsp; </p> <p>If
1588the SOR-scheme is selected (<a href="#psolver">psolver</a>
1589= <span style="font-style: italic;">'sor'</span>),
1590this parameter
1591determines the value of the convergence factor, where <i>1.0</i>
1592&lt;= <b>omega_sor</b> &lt; <i>2.0 </i>.
1593The optimum value of <b>omega_sor</b>
1594depends on the number of grid points along the different directions in
1595space. For non-equidistant grids it can only be determined by
1596appropriate test runs.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="prandtl_number"></a><b>prandtl_number</b></p>
1597</td> <td style="vertical-align: top;">R</td>
1598<td style="vertical-align: top;"><i>1.0</i></td>
1599<td style="vertical-align: top;"> <p>Ratio of the
1600eddy diffusivities for momentum and heat (K<sub>m</sub>/K<sub>h</sub>).&nbsp;
1601</p> <p>For runs with constant eddy diffusivity (see <a href="chapter_4.1.html#km_constant">km_constant</a>),
1602this parameter can be used to assign the Prandtl number (ratio K<sub>m</sub>
1603/ K<sub>h</sub>).</p> </td> </tr> <tr><td style="vertical-align: top;"><a name="precipitation_amount_interval"></a><span style="font-weight: bold;">precipitation_amount_</span><br style="font-weight: bold;"><span style="font-weight: bold;">interval</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><i>value of
1604&nbsp;<a href="chapter_4.2.html#dt_do2d_xy">dt_do2d_<br>xy</a></i></td><td style="vertical-align: top;"><p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
1605interval</font> for which the precipitation amount (in mm) shall be calculated and output (</font>in <font face="Thorndale">s).&nbsp;
1606</font> </p> <p><span lang="en-GB"></span><a href="chapter_4.2.html#data_output"><span lang="en-GB"></span></a><span lang="en-GB"></span><a href="chapter_4.2.html#section_xy"><span lang="en-GB"></span></a><span lang="en-GB"><font face="Thorndale">This
1607parameter requires <a href="chapter_4.1.html#precipitation">precipitation</a> = <span style="font-style: italic;">.TRUE.</span>.&nbsp;</font></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale"><span style="font-weight: bold;"></span><span style="font-weight: bold;"></span>The interval must be smaller or equal than the output interval for 2d horizontal cross sections given by </font></span><a href="chapter_4.2.html#dt_do2d_xy"><span lang="en-GB"><font face="Thorndale">dt_do2d_xy</font></span></a><span lang="en-GB"><font face="Thorndale">). The output of the precipitation amount also requires setting of <a href="chapter_4.2.html#data_output">data_output</a> =<span style="font-style: italic;"> 'pra*'</span>.<br>
1608</font></span></p> <span lang="en-GB"></span></td></tr><tr>
1609<td style="vertical-align: top;"> <p><a name="profile_columns"></a><b>profile_columns</b></p>
1610</td> <td style="vertical-align: top;">I</td>
1611<td style="vertical-align: top;"><i>3</i></td>
1612<td style="vertical-align: top;"> <p>Number of
1613coordinate systems to be plotted<span style="font-weight: bold;"></span>
1614in one row by <span style="font-weight: bold;">profil</span>.&nbsp;
1615</p> <p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
1616= <span style="font-style: italic;">'profil'</span>.</p><p>It
1617determines the layout of plots of
1618horizontally averaged profiles (<a href="#data_output_pr">data_output_pr</a>)
1619when plotted with the plot software <span style="font-weight: bold;">profil</span>.
1620Generally, the number and sequence of coordinate systems (panels) to be
1621plotted on one page are
1622determined by <a href="#cross_profiles">cross_profiles</a>.
1623<b>profile_columns</b>
1624determines how many panels are to be
1625arranged next to each other in one row (number of columns). The
1626respective number of rows on a page is assigned by <a href="#profile_rows">profile_rows</a>.
1627According to their order given by <a href="#data_output_pr">data_output_pr</a>,
1628the panels are arranged beginning in the top row from left to right and
1629then continued in the following row. If the number of panels cranz
1630&gt; <b>profile_columns</b> * <b>profile_rows</b>,
1631the remaining
1632panels are drawn on an additional page. If cranz &lt; <b>profile_columns</b>,
1633then <b>profile_columns</b> = cranz is automatically set.
1634If
1635row&nbsp; contains any panel, then the value of <b>profile_rows</b>
1636is reduced automatically.</p> </td> </tr> <tr>
1637<td style="vertical-align: top;"> <p><a name="profile_rows"></a><b>profile_rows</b></p>
1638</td> <td style="vertical-align: top;">I</td>
1639<td style="vertical-align: top;"><i>2</i></td>
1640<td style="vertical-align: top;"> <p>Number of rows
1641of coordinate systems to be plotted on one page
1642by <span style="font-weight: bold;">profil</span>.&nbsp;
1643</p> <p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
1644= <span style="font-style: italic;">'profil'</span>.</p><p>It
1645determines the layout of plots of horizontally averaged
1646profiles. See <a href="#profile_columns">profile_columns</a>.</p>
1647</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="psolver"></a><b>psolver</b></p>
1648</td> <td style="vertical-align: top;">C * 10</td>
1649<td style="vertical-align: top;"><i>'poisfft'</i></td>
1650<td style="vertical-align: top;"> <p>Scheme to be
1651used to solve the Poisson equation for the
1652perturbation pressure.&nbsp; </p> <br>
1653The user can choose between the following schemes:<br> <table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2"> <tbody> <tr> <td style="vertical-align: top;"><i>poisfft</i></td>
1654<td style="vertical-align: top;">Direct method using FFT
1655along x and y, solution of a
1656tridiagonal matrix along z, and backward
1657FFT (see Siano, institute reports, volume 54). The FFT routines to be
1658used can be determined via the initialization parameter <a href="chapter_4.1.html#fft_method">fft_method</a>.<br>
1659This solver is specially optimized for 1d domain decompositions.
1660Vectorization is optimized for domain decompositions along x only.</td>
1661</tr> <tr> <td style="vertical-align: top;"><p><i>poisfft_</i>
1662<br> <i>hybrid</i></p>
1663</td> <td style="vertical-align: top;">Direct
1664method using FFT
1665along x and y, solution of a
1666tridiagonal matrix along z, and backward
1667FFT (see Siano, institute reports, volume 54). The FFT routines to be
1668used can be determined via the initialization parameter <a href="chapter_4.1.html#fft_method">fft_method</a>.<br>
1669This solver is specially optimized for 1d domain decompositions.
1670Vectorization is optimized for domain decompositions along x only.</td>
1671</tr> <tr> <td style="vertical-align: top;"><i>multigrid</i></td>
1672<td style="vertical-align: top;"> <p>Multi-grid
1673scheme (see Uhlenbrock, diploma thesis). v-
1674and
1675w-cycles (see <a href="#cycle_mg">cycle_mg</a>)
1676are implemented. The convergence of the iterative scheme can be
1677steered by the number of v-/w-cycles to be carried out for each call of
1678the scheme (<a href="#mg_cycles">mg_cycles</a>)
1679and by the number of Gauss-Seidel iterations (see <a href="#ngsrb">ngsrb</a>)
1680to be carried out on each grid level. Instead the requested accuracy
1681can be given via <a href="#residual_limit">residual_limit</a>.
1682<span style="font-weight: bold;">This is the default!</span>
1683The
1684smaller this limit is, the more cycles have to be carried out in this
1685case and the number of cycles may vary from timestep to timestep.</p>
1686<br>If <a href="#mg_cycles">mg_cycles</a>
1687is set to its optimal value, the computing time of the
1688multi-grid scheme amounts approximately to that of the direct solver <span style="font-style: italic;">poisfft</span>, as long as
1689the number of
1690grid points in the three directions
1691of space corresponds to a power-of-two (2<sup>n</sup>)
1692where <i>n</i> &gt;= 5 must hold. With large <i>n,
1693</i>the
1694multi-grid scheme can even be faster than the direct solver (although
1695its accuracy is several orders of magnitude worse, but this does not
1696affect the accuracy of the simulation). Nevertheless, the user should
1697always carry out some test runs in order to find out the optimum value
1698for <a href="#mg_cycles">mg_cycles</a>,
1699because the CPU time of a run very critically depends on this
1700parameter. <p>This scheme requires that the number of grid
1701points of
1702the
1703subdomains (or of the total domain, if only one PE is uesd) along each
1704of the directions can at least be devided once by 2 without rest.</p>
1705With parallel runs, starting from a certain grid level the
1706data of the subdomains are possibly gathered on PE0 in order to allow
1707for a further coarsening of the grid. The grid level for gathering can
1708be manually set by <a href="#mg_switch_to_pe0_level">mg_switch_to_pe0_level</a>.<br>
1709<p>Using this procedure requires the subdomains to be of
1710identical size (see <a href="chapter_4.1.html#grid_matching">grid_matching</a>).</p>
1711</td> </tr> <tr> <td style="vertical-align: top;"><i>sor</i></td>
1712<td style="vertical-align: top;">Successive over
1713relaxation
1714method (SOR). The convergence of
1715this
1716iterative scheme is steered with the parameters <a href="#omega_sor">omega_sor</a>,
1717<a href="chapter_4.1.html#nsor_ini">nsor_ini</a>
1718and <a href="chapter_4.1.html#nsor">nsor</a>.&nbsp;
1719<br>Compared to the direct method and the multi-grid method, this
1720scheme
1721needs substantially
1722more computing time. It should only be used for test runs, e.g. if
1723errors in the other pressure solver methods are assumed.</td> </tr>
1724</tbody> </table> <br>In order to speed-up
1725performance, the Poisson equation is by default
1726only solved at the last substep of a multistep Runge-Kutta scheme (see <a href="#call_psolver_at_all_substeps">call_psolver
1727at_all_substeps</a> and <a href="chapter_4.1.html#timestep_scheme">timestep_scheme</a>).&nbsp;
1728</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="rayleigh_damping_factor"></a><b>rayleigh_damping</b>
1729<br> <b>_factor</b></p> </td> <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><i>0.0 or</i><br>
1730<i>0.01</i></td> <td style="vertical-align: top;">
1731<p>Factor for Rayleigh damping.&nbsp; </p> <p>A
1732so-called Rayleigh damping is applied to all prognostic
1733variables if a non-zero value is assigned to <b>rayleigh_damping_factor</b>.&nbsp;
1734If switched on, variables are forced towards the value of their
1735respective basic states (e.g. the geostrophic wind). The intensity of
1736damping is controlled by the value the <b>rayleigh_damping_factor</b>
1737is assigned to.
1738The damping starts weakly at a height defined by <a href="#rayleigh_damping_height">rayleigh_damping_height</a>
1739and rises according to a sin<sup>2</sup>-function to its
1740maximum value
1741at
1742the top boundary. </p> <p>This method
1743effectively damps gravity waves, caused by boundary layer convection,
1744which may spread out vertically in the inversion layer and which are
1745reflected&nbsp; at the top
1746boundary. This particularly happens with the upstream-spline scheme
1747switched on (see <a href="chapter_4.1.html#momentum_advec">momentum_advec</a>
1748or <a href="chapter_4.1.html#scalar_advec">scalar_advec</a>).
1749Therefore, with this scheme the Rayleigh damping is switched on (<b>rayleigh_damping_factor</b>
1750= <i>0.01</i>) by default. Otherwise it remains switched
1751off.&nbsp; </p> <p>The Rayleigh damping factor must
1752hold the condition <i>0.0</i>
1753&lt;= <b>rayleigh_damping_factor</b>
1754&lt;= <i>1.0</i>. Large values (close to <span style="font-style: italic;">1.0</span>) can cause
1755numerical instabilities.</p> </td> </tr> <tr>
1756<td style="vertical-align: top;"> <p><a name="rayleigh_damping_height"></a><b>rayleigh_damping</b>
1757<br> <b>_height</b></p> </td> <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"> <p><i>2/3 *</i>
1758<br><span style="font-style: italic;">zu</span><i style="font-style: italic;">(nz)</i></p>
1759</td> <td style="vertical-align: top;"> <p>Height
1760where the Rayleigh damping starts (in m).&nbsp; </p> <p>With
1761Rayleigh damping switched on (see <a href="#rayleigh_damping_factor">rayleigh_damping_factor</a>),
1762this parameter determines the range where damping is applied. By
1763default, Rayleigh damping will be applied in the upper third of the
1764model
1765domain.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="residual_limit"></a><b>residual_limit</b></p>
1766</td> <td style="vertical-align: top;">R</td>
1767<td style="vertical-align: top;"><i>1.0E-6</i></td>
1768<td style="vertical-align: top;"> <p>Largest
1769residual permitted for the multi-grid scheme (in s<sup>-2</sup>m<sup>-3</sup>).&nbsp;
1770</p> <p>This is a parameter to steer the accuracy of the
1771multi-grid
1772scheme (see <a href="#psolver">psolver</a>).
1773The assigned cycle (v- or w-cycle, see <a href="#mg_cycles">mg_cycles</a>)
1774is passed through until the residual falls below the limit given by <span style="font-weight: bold;">residual_limit</span>. If
1775this
1776is not the case after 1000 cycles, the PALM aborts with a corresponding
1777error message.</p> <p>The reciprocal value of this
1778parameter can be interpreted as
1779a factor by the divergence of the provisional
1780velocity field is approximately reduced after the multi-grid scheme has
1781been applied (thus the default value causes a reduction of the
1782divergence by approx. 6 orders of magnitude).&nbsp; </p> </td>
1783</tr> <tr> <td style="vertical-align: top;"><p><a name="restart_time"></a><b>restart_time</b></p>
1784</td> <td style="vertical-align: top;">R</td>
1785<td style="vertical-align: top;"><i>9999999.9</i></td>
1786<td style="vertical-align: top;"> <p>Simulated time
1787after which a restart run is to be carried out
1788(in s). </p> <p>The simulated time refers to the
1789beginning of the
1790initial run (t = 0), not to the beginning of the respective
1791restart run. Restart runs can additionally be forced to be carried out
1792in regular intervals using the run time parameter <a href="#dt_restart">dt_restart</a>. </p> <p><span style="font-weight: bold;">Note:</span><br>
1793A successful operation of this parameter requires additional
1794modifications in the <span style="font-weight: bold;">mrun</span>-call
1795for the respective run (see <a href="chapter_3.3.html">chapter
17963.3</a>).<br> </p> <p>The choice of <b>restart_time</b>
1797or <b>dt_restart</b> does
1798not override the automatic start of restart runs in case that the job
1799runs out of CPU time. <br> </p> </td> </tr>
1800<tr> <td style="vertical-align: top;"> <p><a name="section_xy"></a><b>section_xy</b></p>
1801</td> <td style="vertical-align: top;">I(100)<br>
1802</td> <td style="vertical-align: top;"><span style="font-style: italic;">no section</span><br>
1803</td> <td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale">Position
1804of&nbsp;cross section(s) for&nbsp;output of 2d horizontal cross
1805sections (grid point index k).&nbsp; </font> </p> <p><span lang="en-GB"><font face="Thorndale">If output
1806of
1807horizontal cross sections is selected (see </font></span><a href="chapter_4.2.html#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a><span lang="en-GB"><font face="Thorndale">), this
1808parameter can be used to
1809define the position(s) of the cross section(s). Up to 100 positions of
1810cross sections can be selected by assigning <b>section_xy</b>
1811the
1812corresponding vertical grid point index/indices k of the requested
1813cross section(s). The exact location (height level) of the cross
1814section depends on the variable for which the output is made: zu(k) for
1815scalars and horizontal velocities, zw(k) for the vertical velocity.
1816Information about the exact location of the cross section is contained
1817in the NetCDF output file (if the default NetCDF output is switched on;
1818see <a href="#data_output_format">data_output_format</a>).</font></span></p><p><span lang="en-GB"><font face="Thorndale">Assigning <span style="font-weight: bold;">section_xy</span> = <span style="font-style: italic;">-1</span>
1819creates the output of horizontal cross sections averaged along z. In
1820the
1821NetCDF output file these (averaged) cross sections are given the
1822z-coordinate <span style="font-style: italic;">-1.0</span>.</font></span></p><p><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">Assignments to <b>section_xy</b>
1823does not effect the output of horizontal cross sections of variable u<sub>*</sub>
1824and theta<sub>*</sub> and the liquid water path lwp*. For
1825these quantities always only one cross
1826section (for z=zu(1)) is output.</font></span></p><span lang="en-GB"><font face="Thorndale">In case of <span style="font-weight: bold;">data_output_format</span> =
1827<span style="font-style: italic;">'iso2d'</span> and
1828if several cross sections are selected (e.g. <b>section_xy</b>
1829= <i>1</i>, <i>10</i>, <i>15</i>),
1830then the respective data are
1831successively written to file. The output order follows the order given
1832by <b>section_xy</b>.&nbsp;</font></span></td>
1833</tr> <tr> <td style="vertical-align: top;"><p><a name="section_xz"></a><b>section_xz</b></p>
1834</td> <td style="vertical-align: top;">I(100)<br>
1835</td> <td style="vertical-align: top;"><span style="font-style: italic;">no section</span></td>
1836<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale">Position of&nbsp;cross section(s)
1837for&nbsp;output of 2d (xz) vertical cross sections (grid point
1838index j).&nbsp; </font> </p> <span lang="en-GB"><font face="Thorndale">If output of
1839vertical xz cross sections is selected (see </font></span><a href="chapter_4.2.html#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a><span lang="en-GB"><font face="Thorndale">), this
1840parameter can be used to
1841define the position(s) of the cross section(s). Up to 100 positions of
1842cross sections can be selected by assigning <b>section_xz</b>
1843the
1844corresponding horizontal grid point index/indices j of the requested
1845cross section(s). The exact position (in y-direction) of the cross
1846section is given by j*</font></span><a href="chapter_4.1.html#dy"><span lang="en-GB"><font face="Thorndale">dy</font></span></a> <span lang="en-GB"><font face="Thorndale">or (j-0.5)*</font></span><a href="chapter_4.1.html#dy"><span lang="en-GB"><font face="Thorndale">dy</font></span></a><span lang="en-GB"><font face="Thorndale">, depending
1847on which grid the output quantity is defined. However, in
1848the&nbsp;NetCDF output file </font></span><span lang="en-GB"><font face="Thorndale">(if the
1849default NetCDF output is switched on; see <a href="chapter_4.2.html#data_output_format">data_output_format</a>)
1850no distinction is made between the quantities and j*<span style="font-weight: bold;">dy</span> is used for all
1851positions.<br><br>Assigning <span style="font-weight: bold;">section_xz</span> = <span style="font-style: italic;">-1</span>
1852creates the output of vertical cross sections averaged along y. In the
1853NetCDF output file these (averaged) cross sections are given the
1854y-coordinate <span style="font-style: italic;">-1.0</span>.<br></font></span><span lang="en-GB"><font face="Thorndale"><br></font></span><span lang="en-GB"><font face="Thorndale">In case of <span style="font-weight: bold;">data_output_format</span> =
1855<span style="font-style: italic;">'iso2d'</span> and
1856</font></span><span lang="en-GB"><font face="Thorndale">if several cross sections are
1857selected (e.g. <b>section_xz</b> = <i>0</i>, <i>12</i>,
1858<i>27</i>),
1859then the respective data are successively written to file. The output
1860order follows the order given by <b>section_xz</b>.</font></span></td>
1861</tr> <tr> <td style="vertical-align: top;"><p><a name="section_yz"></a><b>section_yz</b></p>
1862</td> <td style="vertical-align: top;">I(100)<br>
1863</td> <td style="vertical-align: top;"><span style="font-style: italic;">no section</span></td>
1864<td style="vertical-align: top;"> <p lang="en-GB"><font face="Thorndale">Position of&nbsp;cross section(s)
1865for&nbsp;output of 2d (yz) vertical cross sections (grid point
1866index i).&nbsp; </font> </p> <span lang="en-GB"><font face="Thorndale">If output of
1867vertical yz cross sections is selected (see </font></span><a href="chapter_4.2.html#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a><span lang="en-GB"><font face="Thorndale">),
1868this parameter can be used to define the position(s) of the cross
1869section(s). Up to 100 positions of cross sections can be selected by
1870assigning <b>section_yz</b> the corresponding horizontal
1871grid point
1872index/indices i of the requested cross section(s). The exact position
1873(in x-direction) of the cross section is given by i*</font></span><a href="chapter_4.1.html#dx"><span lang="en-GB"><font face="Thorndale">dx</font></span></a> <span lang="en-GB"><font face="Thorndale">or (i-0.5)*</font></span><a href="chapter_4.1.html#dx"><span lang="en-GB"><font face="Thorndale">dx</font></span></a><span lang="en-GB"><font face="Thorndale">, depending
1874on which grid the output quantity is defined.&nbsp;</font></span><span lang="en-GB"><font face="Thorndale">However, in
1875the&nbsp;NetCDF output file </font></span><span lang="en-GB"><font face="Thorndale">(if the
1876default NetCDF output is switched on; see <a href="chapter_4.2.html#data_output_format">data_output_format</a>)
1877no distinction is made between the quantities and i*<span style="font-weight: bold;">dx</span> is used for all
1878positions.<br><br></font></span><span lang="en-GB"><font face="Thorndale">Assigning <span style="font-weight: bold;">section_yz</span> = <span style="font-style: italic;">-1</span>
1879creates the output of vertical cross sections averaged along x. In the
1880NetCDF output file these (averaged) cross sections are given the
1881x-coordinate <span style="font-style: italic;">-1.0</span>.</font></span><br><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale"> <br></font></span><span lang="en-GB"><font face="Thorndale">In case of <span style="font-weight: bold;">data_output_format</span> =
1882<span style="font-style: italic;">'iso2d'</span> and
1883</font></span><span lang="en-GB"><font face="Thorndale">if several cross sections are
1884selected (e.g. <b>section_yz</b> = <span style="font-style: italic;">3</span>, <span style="font-style: italic;">27</span>, 19), then the
1885respective data are successively written to file. The output order
1886follows the order given by <b>section_yz</b>.</font></span></td>
1887</tr> <tr> <td style="vertical-align: top;"><a name="skip_time_data_output"></a><span style="font-weight: bold;">skip_time_data_output</span><br>
1888</td> <td style="vertical-align: top;">R<br> </td>
1889<td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> </td>
1890<td style="vertical-align: top;">No data output before
1891this interval has passed (in s).<br><br>This
1892parameter causes that data output activities are starting not before
1893this interval
1894(counting from the beginning of the simulation, t=0) has passed. By
1895default, this
1896applies for output of instantaneous 3d volume data, cross section data,
1897spectra and vertical profile data as well as for temporally averaged 2d
1898and 3d data. Individual intervals can be assigned using parameters <a href="#skip_time_do3d">skip_time_do3d</a>, <a href="#skip_time_do2d_xy">skip_time_do2d_xy</a>, <a href="#skip_time_do2d_xz">skip_time_do2d_xz</a>, <a href="#skip_time_do2d_yz">skip_time_do2d_yz</a>, <a href="#skip_time_dosp">skip_time_dosp</a>,&nbsp;<a href="#skip_time_dopr">skip_time_dopr</a>, and <a href="#skip_time_data_output_av">skip_time_data_output_av</a>.<br><br><span style="font-weight: bold;">Example:</span><br>If
1899the user has set <a href="#dt_data_output">dt_data_output</a>
1900= <span style="font-style: italic;">3600.0</span>
1901and <span style="font-weight: bold;">skip_time_data_output</span>
1902= <span style="font-style: italic;">1800.0</span>,
1903then the first output will be done at t = 5400 s.<br> </td>
1904</tr> <tr><td style="vertical-align: top;"><a name="skip_time_data_output_av"></a><span style="font-weight: bold;">skip_time_data_output_av</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="#skip_time_data_output">skip_time_<br>data_output</a></span></td><td style="vertical-align: top;">No output of temporally
1905averaged 2d/3d data before this interval has passed (in s).<br><br>This
1906parameter causes that data output activities are starting not before
1907this interval
1908(counting from the beginning of the simulation, t=0) has passed. <br><br><span style="font-weight: bold;">Example:</span><br>If
1909the user has set <a href="#dt_data_output_av">dt_data_output_av</a>
1910= <span style="font-style: italic;">3600.0</span>
1911and <span style="font-weight: bold;">skip_time_data_output_av</span>
1912= <span style="font-style: italic;">1800.0</span>,
1913then the first output will be done at t = 5400 s.</td></tr><tr>
1914<td style="vertical-align: top;"><a name="skip_time_dopr"></a><span style="font-weight: bold;">skip_time_dopr</span><br>
1915</td> <td style="vertical-align: top;">R<br> </td>
1916<td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="chapter_4.2.html#skip_time_data_output">skip_time_<br>data_output</a></span>
1917</td> <td style="vertical-align: top;">No output of
1918vertical profile data before this interval has passed (in s).<br><br>This
1919parameter causes that data output activities are starting not before
1920this interval
1921(counting from the beginning of the simulation, t=0) has passed. <br><br><span style="font-weight: bold;">Example:</span><br>If
1922the user has set <a href="#dt_dopr">dt_dopr</a> = <span style="font-style: italic;">3600.0</span> and <span style="font-weight: bold;">skip_time_dopr</span> = <span style="font-style: italic;">1800.0</span>, then the
1923first output will be done at t = 5400 s. </td> </tr> <tr>
1924<td style="vertical-align: top;"><a name="skip_time_do2d_xy"></a><span style="font-weight: bold;">skip_time_do2d_xy</span><br>
1925</td> <td style="vertical-align: top;">R<br> </td>
1926<td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="chapter_4.2.html#skip_time_data_output">skip_time_<br>data_output</a></span>
1927</td> <td style="vertical-align: top;">No output of
1928instantaneous horizontal cross section data before this interval has
1929passed (in s).<br><br>This
1930parameter causes that data output activities are starting not before
1931this interval
1932(counting from the beginning of the simulation, t=0) has passed. <br><br><span style="font-weight: bold;">Example:</span><br>If
1933the user has set <a href="#dt_do2d_xy">dt_do2d_xy</a>
1934= <span style="font-style: italic;">3600.0</span>
1935and <span style="font-weight: bold;">skip_time_do2d_xy</span>
1936= <span style="font-style: italic;">1800.0</span>,
1937then the first output will be done at t = 5400 s. </td> </tr>
1938<tr> <td style="vertical-align: top;"><a name="skip_time_do2d_xz"></a><span style="font-weight: bold;">skip_time_do2d_xz</span><br>
1939</td> <td style="vertical-align: top;">R<br> </td>
1940<td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="chapter_4.2.html#skip_time_data_output">skip_time_<br>data_output</a></span>
1941</td> <td style="vertical-align: top;">No output of
1942instantaneous vertical (xz) cross section data before this interval has
1943passed (in s).<br><br>This
1944parameter causes that data output activities are starting not before
1945this interval
1946(counting from the beginning of the simulation, t=0) has passed. <br><br><span style="font-weight: bold;">Example:</span><br>If
1947the user has set <a href="#dt_do2d_xz">dt_do2d_xz</a>
1948= <span style="font-style: italic;">3600.0</span>
1949and <span style="font-weight: bold;">skip_time_do2d_xz</span>
1950= <span style="font-style: italic;">1800.0</span>,
1951then the first output will be done at t = 5400 s. </td> </tr>
1952<tr> <td style="vertical-align: top;"><a name="skip_time_do2d_yz"></a><span style="font-weight: bold;">skip_time_do2d_yz</span><br>
1953</td> <td style="vertical-align: top;">R<br> </td>
1954<td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="chapter_4.2.html#skip_time_data_output">skip_time_<br>data_output</a></span>
1955</td> <td style="vertical-align: top;">No output of
1956instantaneous vertical (yz) cross section data before this interval has
1957passed (in s).<br><br>This
1958parameter causes that data output activities are starting not before
1959this interval
1960(counting from the beginning of the simulation, t=0) has passed. <br><br><span style="font-weight: bold;">Example:</span><br>If
1961the user has set <a href="#dt_do2d_yz">dt_do2d_yz</a>
1962= <span style="font-style: italic;">3600.0</span>
1963and <span style="font-weight: bold;">skip_time_do2d_yz</span>
1964= <span style="font-style: italic;">1800.0</span>,
1965then the first output will be done at t = 5400 s. </td> </tr>
1966<tr> <td style="vertical-align: top;"><a name="skip_time_do3d"></a><span style="font-weight: bold;">skip_time_do3d</span><br>
1967</td> <td style="vertical-align: top;">R<br> </td>
1968<td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="chapter_4.2.html#skip_time_data_output">skip_time_<br>data_output</a></span>
1969</td> <td style="vertical-align: top;">No output of
1970instantaneous 3d volume data before this interval has passed (in s).<br><br>This
1971parameter causes that data output activities are starting not before
1972this interval
1973(counting from the beginning of the simulation, t=0) has passed. <br><br><span style="font-weight: bold;">Example:</span><br>If
1974the user has set <a href="#dt_do3d">dt_do3d</a> = <span style="font-style: italic;">3600.0</span> and <span style="font-weight: bold;">skip_time_do3d</span> = <span style="font-style: italic;">1800.0</span>, then the
1975first output will be done at t = 5400 s. </td> </tr>
1976<tr> <td style="vertical-align: top;"> <p><a name="termination_time_needed"></a><b>termination_time</b>
1977<br> <b>_needed</b></p> </td> <td style="vertical-align: top;">R<br> </td> <td style="vertical-align: top;"><span style="font-style: italic;">35.0</span><br> </td>
1978<td style="vertical-align: top;"> <p>CPU time
1979needed for terminal actions at the end of a run in
1980batch mode (in s).<br> </p> <p>If the environment
1981variable <b>write_binary </b>is
1982set <i>true</i> (see <a href="chapter_3.3.html">chapter
19833.3</a>), PALM checks the remaining CPU time of the job after
1984each
1985timestep. Time integration must not consume the CPU time completely,
1986since several actions still have to be carried out after time
1987integration has finished (e.g. writing of binary data for the restart
1988run, carrying out output commands, copying of local files to their
1989permanent destinations, etc.) which also takes some time. The maximum
1990possible time needed for these activities plus a reserve is to be given
1991with the parameter <b>termination_time_needed</b>. Among
1992other things,
1993it depends on
1994the number of grid points used. If its value is selected too small,
1995then the
1996respective job will be prematurely aborted by the queuing system, which
1997may result in a data loss and will possibly interrupt the job chain.<br>
1998</p> <p>An abort happens in any way, if the environment
1999variable <span style="font-weight: bold;">write_binary</span>
2000is not set to <span style="font-style: italic;">true</span>
2001and if moreover the job has
2002been assigned an insufficient CPU time by <b>mrun</b>
2003option <tt><tt>-t</tt></tt>. <i><br>
2004</i> </p> <p><span style="font-weight: bold;">Note:</span><br>
2005On the IBM computers of the HLRN the time used by the job <span style="font-weight: bold;">before</span> the start of
2006PALM
2007have also to be accounted for (e.g. for
2008compilation and copying of input files).</p> </td> </tr>
2009<tr> <td style="vertical-align: top;"> <p><a name="use_prior_plot1d_parameters"></a><b>use_prior_plot1d</b>
2010<br> <b>_parameters</b></p> </td> <td style="vertical-align: top;">L</td> <td style="vertical-align: top;"><i>.F.</i></td>
2011<td style="vertical-align: top;"> <p>Additional
2012plot of vertical profile data with <span style="font-weight: bold;">profil</span>
2013from preceding runs of the
2014job chain.&nbsp; </p> <p>This parameter only applies
2015for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
2016= <span style="font-style: italic;">'profil'</span>.</p><p>By
2017default, plots of horizontally averaged vertical profiles
2018(see <a href="#data_output_pr">data_output_pr</a>)
2019only contain profiles of data produced by the model
2020run. If profiles of prior times (i.e. data of preceding jobs of a
2021job chain) shall be plotted additionally (e.g. for comparison
2022purposes), <b>use_prior_plot1d_parameters</b> = <i>.T</i>.
2023must be
2024set.<br> </p> <p>For further explanation see <a href="chapter_4.5.2.html">chapter
20254.5.2</a>.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="z_max_do1d"></a><b>z_max_do1d</b></p>
2026</td> <td style="vertical-align: top;">R</td>
2027<td style="vertical-align: top;"><i>zu(nzt+1) (model
2028top)</i></td> <td style="vertical-align: top;">
2029<p>Height level up to which horizontally averaged profiles are to
2030be
2031plotted with <span style="font-weight: bold;">profil</span>
2032(in
2033m).&nbsp; </p> <p>This parameter only applies for
2034&nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
2035= <span style="font-style: italic;">'profil'</span>.</p><p>It
2036affects plots of horizontally averaged profiles
2037(<a href="#data_output_pr">data_output_pr</a>)
2038when plotted with the plot software <span style="font-weight: bold;">profil</span>.
2039By default, profiles are plotted up to the top boundary. The height
2040level up to which profiles are plotted can be decreased by assigning <span style="font-weight: bold;">z_max_do1d</span> a smaller
2041value.
2042Nevertheless, <span style="font-weight: bold;">all</span>
2043vertical
2044grid points (0 &lt;= k &lt;= nz+1) are still output to file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>.</p>
2045<p>If a normalization for the vertical axis was selected (see <a href="#cross_normalized_y">cross_normalized_y</a>), <b>z_max_do1d</b>
2046has no effect. Instead, <a href="#z_max_do1d_normalized">z_max_do1d_normalized</a>
2047must be used.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="z_max_do1d_normalized"></a><b>z_max_do1d</b>
2048<br> <b>_normalized</b></p> </td> <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><i>determined by plot</i>
2049<br> <i>data</i> <br> </td> <td style="vertical-align: top;"> <p>Normalized height
2050level up to which horizontally averaged
2051profiles are to be plotted with <span style="font-weight: bold;">profil</span>.&nbsp;
2052</p> <p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
2053= <span style="font-style: italic;">'profil'</span>.</p><p>It
2054affects plots of horizontally averaged profiles
2055(<a href="#data_output_pr">data_output_pr</a>)
2056when plotted with the plot software <span style="font-weight: bold;">profil</span>,
2057if a normalization for the vertical axis is selected
2058(see <a href="#cross_normalized_y">cross_normalized_y</a>).
2059If e.g. the boundary layer height is used for normalization, then <b>z_max_do1d_normalized</b>
2060= <i>1.5</i> means that all profiles up to the height
2061level of z =
20621.5* z<sub>i </sub>are plotted.</p> </td> </tr>
2063<tr> <td style="vertical-align: top;"> <p><a name="z_max_do2d"></a><b>z_max_do2d</b></p>
2064</td> <td style="vertical-align: top;">R<br> </td>
2065<td style="vertical-align: top;"><span style="font-style: italic;">zu(nz)</span><br> </td>
2066<td style="vertical-align: top;"> <p>Height level
2067up to which 2d cross sections are to be plotted
2068with <span style="font-weight: bold;">iso2d</span>
2069(in m).&nbsp; </p> <p>This parameter only applies for
2070&nbsp;<a href="#data_output_format">data_output_format</a>
2071= <span style="font-style: italic;">'iso2d'</span>.</p><p>It
2072affects plots of&nbsp; 2d vertical cross
2073sections (<a href="#data_output">data_output</a>)
2074when plotted with <span style="font-weight: bold;">iso2d</span>.
2075By
2076default, vertical sections are plotted up to the top boundary. <span style="font-weight: bold;"></span>In contrast, with <b>z_max_do2d
2077</b>the
2078visualization within
2079the plot can be limited to a certain height level (0 &lt;= z
2080&lt;= <b>z_max_do2d</b>).
2081Nevertheless, <span style="font-weight: bold;">all</span>
2082grid points
2083of the complete cross section are still output to the local files <a href="chapter_3.4.html#PLOT2D_XZ">PLOT2D_XZ</a>
2084or <a href="chapter_3.4.html#PLOT2D_YZ">PLOT2D_YZ</a>.
2085The level up to which the section is visualized can later be changed by
2086manually editing the
2087file <a href="chapter_3.4.html#PLOT2D_XZ_GLOBAL">PLOT2D_XZ_GLOBAL</a>
2088or <a href="chapter_3.4.html#PLOT2D_YZ_GLOBAL">PLOT2D_YZ_GLOBAL</a>
2089(the respective <span style="font-weight: bold;">iso2d</span>-parameter
2090is <a href="http://www.muk.uni-hannover.de/institut/software/iso2d_beschreibung.html#YRIGHT">yright</a>).</p>
2091</td> </tr> </tbody></table><br>
2092<br><h3 style="line-height: 100%;"><a name="Paketparameter"></a>Package
2093parameters: </h3>
2094Package (<span style="font-weight: bold;">mrun</span>
2095option -p): <span style="font-weight: bold;"><a name="particles_package"></a>particles</span>&nbsp;&nbsp;&nbsp;&nbsp;
2096NAMELIST group name: <span style="font-weight: bold;">particles_par<br>
2097</span><table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2"> <tbody><tr>
2098<td style="vertical-align: top;"><font size="4"><b>Parameter
2099name</b></font></td>
2100<td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
2101<td style="vertical-align: top;"> <p><b><font size="4">Default</font></b> <br> <b><font size="4">value</font></b></p> </td>
2102<td style="vertical-align: top;"> <p><font size="4"><b>Explanation</b></font></p>
2103</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="dt_prel"></a><b>dt_prel</b></p>
2104</td> <td style="vertical-align: top;">R</td>
2105<td style="vertical-align: top;"><i>9999999.9</i></td>
2106<td style="vertical-align: top;"> <p><font face="Thorndale, serif"><span lang="en-GB">Temporal
2107interval at
2108which particles are to be released <span lang="en-GB">from
2109a particle
2110source </span>(</span></font>in <font face="Thorndale, serif"><span lang="en-GB">s).</span>&nbsp;
2111</font> </p> <p><span lang="en-GB"><font face="Thorndale, serif">By default
2112particles are released only at the beginning of a simulation
2113(t_init=0). The time of the first release (t_init) can be changed with
2114package parameter </font></span><span lang="en-GB"></span><font><a href="#particle_advection_start"><font face="Thorndale, serif">particle_advection_start</font></a>.
2115</font><span lang="en-GB"><font face="Thorndale, serif">The time of the last release can be
2116set with the package parameter <a href="#end_time_prel">end_time_prel</a>.
2117If <span style="font-weight: bold;">dt_prel</span>
2118has been set, additional
2119releases will be at t = t_init+<span style="font-weight: bold;">dt_prel</span>,
2120t_init+2*<span style="font-weight: bold;">dt_prel</span>,
2121t_init+3*<span style="font-weight: bold;">dt_prel</span>,
2122etc.. Actual release times
2123may slightly deviate from thesel values (</font></span><span lang="en-GB"><font face="Thorndale, serif">see
2124e.g. </font></span><a href="#dt_dopr"><span lang="en-GB"><font face="Thorndale, serif">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">).</font></span></p>
2125<p><span lang="en-GB"><font face="Thorndale, serif"> The domain
2126of the particle <span lang="en-GB"><font face="Thorndale, serif">source </font></span>as
2127well as the distance of&nbsp; released particles
2128within this source </font></span><span lang="en-GB"><font face="Thorndale, serif">are determined via package
2129parameters </font></span><a href="#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a>
2130<span lang="en-GB"><font face="Thorndale, serif">and
2131</font></span><a href="#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"><font face="Thorndale, serif">.</font></span><span lang="en-GB"><font face="Thorndale, serif"> By
2132default, one particle is released at all points defined by these
2133parameters. The package parameter <a href="#particles_per_point">particles_per_point</a>
2134can be used to start more than one particle per point.<br>
2135</font></span></p> <p><span lang="en-GB"><font face="Thorndale, serif">Up to 10
2136different groups of particles can be released at the same time (see </font></span><a href="chapter_4.2.html#number_of_particle_groups"><span lang="en-GB"><font face="Thorndale, serif">number_of_particle_groups</font></span></a><span lang="en-GB"><font face="Thorndale, serif">)
2137where each group may have a different source. All particles belonging
2138to one group have the same density ratio and the same radius. All other
2139particle features (e.g. location of the source) are
2140identical for all groups of particles.</font></span></p>Subgrid
2141scale velocities can (optionally) be included for calculating the
2142particle advection, using the method of Weil et al. (2004, JAS, 61,
21432877-2887). This method is switched on by the package
2144parameter <a href="#use_sgs_for_particles">use_sgs_for_particles</a>.
2145This also forces the Euler/upstream method to be used for time
2146advancement of the TKE (see initialization parameter <a href="chapter_4.1.html#use_upstream_for_tke">use_upstream_for_tke</a>).
2147The minimum timestep during the sub-timesteps is controlled by package
2148parameter <a href="#dt_min_part">dt_min_part</a>. <p><span lang="en-GB"><font face="Thorndale, serif">By
2149default, particles are weightless and transported passively with the
2150resolved scale flow. Particles can be given a mass and thus an inertia
2151by assigning the
2152package parameter </font></span><a href="#density_ratio"><span lang="en-GB"><font face="Thorndale, serif">density_ratio</font></span></a><span lang="en-GB"><font face="Thorndale, serif"> a
2153non-zero value (it
2154defines the ratio of the density of the fluid and the density of the
2155particles). In these cases their </font></span><a href="#radius"><span lang="en-GB"><font face="Thorndale, serif">radius</font></span></a><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale, serif">
2156must also be defined, which affects their flow resistance. </font></span><a href="#diameter"><span lang="en-GB"></span></a><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale, serif"> </font></span> </p>
2157<p><span lang="en-GB"><font face="Thorndale, serif">Boundary
2158conditions for the particle transport can be defined with package
2159parameters </font></span><a href="#bc_par_t"><span lang="en-GB"><font face="Thorndale, serif">bc_par_t</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="#bc_par_lr"><span lang="en-GB"><font face="Thorndale, serif">bc_par_lr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="bc_par_ns"><span lang="en-GB"><font face="Thorndale, serif">bc_par_ns</font></span></a>
2160<span lang="en-GB"><font face="Thorndale, serif">and
2161</font></span><a href="#bc_par_b"><span lang="en-GB"><font face="Thorndale, serif">bc_par_b</font></span></a><span lang="en-GB"><font face="Thorndale, serif">.</font></span></p><span lang="en-GB"><font face="Thorndale, serif">Timeseries
2162of particle quantities in NetCDF format can be output to local file <a href="chapter_3.4.html#DATA_1D_PTS_NETCDF">DATA_1D_PTS_NETCDF</a>
2163by using package parameter <a href="#dt_dopts">dt_dopts</a>.<br></font></span><p>For
2164analysis, additional output of
2165particle
2166information in equidistant temporal intervals can be carried out using <a href="#dt_write_particle_data">dt_write_particle_data</a>
2167(file <a href="chapter_3.4.html#PARTICLE_DATA">PARTICLE_DATA</a>).<br>
2168</p> <p><span style="font-family: thorndale,serif;">Statistical
2169informations</span> (e.g. the total number of particles used, the
2170number of particles exchanged between the PEs, etc.) are output to the
2171local file <a href="chapter_3.4.html#PARTICLE_DATA">PARTICLE_INFOS</a>,
2172if switched on by the parameter <a href="#write_particle_statistics">write_particle_statistics</a>.
2173<br> </p> <p><span lang="en-GB"><font face="Thorndale, serif">If a job
2174chain is to be carried out, particle
2175informations </font></span><span lang="en-GB"><font face="Thorndale, serif">for the restart run (e.g. current
2176location of
2177all
2178particles at the end of the
2179run) is output to
2180the local file</font></span> <font><a href="chapter_4.2.html#dt_dvrp"><span lang="en-GB"></span></a></font><a href="chapter_3.4.html#PARTICLE_RESTART_DATA_OUT">PARTICLE_RESTART_DATA_OUT</a><font><a href="chapter_4.2.html#dt_dvrp"><span lang="en-GB"></span></a></font>,
2181<span lang="en-GB"><font face="Thorndale, serif">which
2182must be saved at the
2183end of the run <tt><span lang="en-GB"></span></tt>and
2184given as an
2185input file to the restart run
2186under local file name</font></span> <a href="chapter_3.4.html#PARTICLE_RESTART_DATA_IN">PARTICLE_RESTART_DATA_IN</a>
2187u<span lang="en-GB"><font face="Thorndale, serif">sing
2188respective file
2189connection statements in the <span style="font-weight: bold;">mrun</span>
2190configuration file. </font></span> <span lang="en-GB"></span></p><p><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale, serif">The output of
2191particles for visualization with the graphic software <span style="font-weight: bold;">dvrp</span> is steered by
2192the package
2193parameter </font></span><a href="chapter_4.2.html#dt_dvrp"><span lang="en-GB"><font face="Thorndale, serif">dt_dvrp</font></span></a><font face="Thorndale, serif"><span lang="en-GB">.
2194For visualization
2195purposes particles can be given a
2196diameter by the parameter <a href="chapter_4.2.html#dvrp_psize">dvrp_psize</a>
2197(this diameter only affects the visualization). All particles have the
2198same size. Alternatively, particles can be given an individual size and
2199a </span>color <span lang="en-GB">by modifying the
2200user-interface (subroutine</span></font> <span style="font-family: monospace;">user_init_particles</span>)<span lang="en-GB"><font face="Thorndale, serif">.
2201Particles can pull a
2202&ldquo;tail&rdquo; behind themselves to improve their
2203visualization.
2204This is steered via the parameter&nbsp;<a href="chapter_4.2.html#use_particle_tails">use_particle_tails</a>.</font></span><a href="chapter_4.2.html#maximum_number_of_tailpoints"><span lang="en-GB"></span></a></p> <span lang="en-GB"></span><p><b>So far, the
2205particle transport realized in PALM does only
2206work
2207duly in case of a constant vertical grid spacing!</b></p> </td>
2208</tr> <tr> <td style="vertical-align: top;"><p><a name="bc_par_b"></a><b>bc_par_b</b></p>
2209</td> <td style="vertical-align: top;">C*15</td>
2210<td style="vertical-align: top;"><i>&acute;reflect&acute;</i></td>
2211<td style="vertical-align: top;"> <p>Bottom
2212boundary condition for particle transport. </p> <p>By
2213default, particles are reflected at the bottom boundary.
2214Alternatively, a particle absorption can set by <b>bc_par_b</b>
2215= <i>&acute;absorb&acute;</i>.</p> </td>
2216</tr> <tr> <td style="vertical-align: top;"><p><a name="bc_par_lr"></a><b>bc_par_lr</b></p>
2217</td> <td style="vertical-align: top;">C*15</td>
2218<td style="vertical-align: top;"><i>&acute;cyclic&acute;</i></td>
2219<td style="vertical-align: top;"> <p>Lateral
2220boundary condition (x-direction) for particle
2221transport. </p> <p>By default, cyclic boundary conditions
2222are used along x.
2223Alternatively, reflection (<b>bc_par_lr</b>
2224= <i>&acute;reflect&acute;</i>) or absorption (<b>bc_par_lr</b>
2225= <i>&acute;absorb&acute;</i>)
2226can be set. <br> </p> <p>This lateral boundary
2227conditions should correspond to the
2228lateral boundary condition used for the flow (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>).</p> </td>
2229</tr> <tr> <td style="vertical-align: top;"><p><a name="bc_par_ns"></a><b>bc_par_ns</b></p>
2230</td> <td style="vertical-align: top;">C*15</td>
2231<td style="vertical-align: top;"><i>&acute;cyclic&acute;</i></td>
2232<td style="vertical-align: top;"> <p>Lateral
2233boundary condition (y-direction) for particle
2234transport. </p> <p>By default, cyclic boundary conditions
2235are used along y.
2236Alternatively, reflection (<b>bc_par_ns</b>
2237= <i>&acute;reflect&acute;</i>) or absorption (<b>bc_par_ns</b>
2238= <i>&acute;absorb&acute;</i>)
2239can be set.<br> </p>
2240This lateral boundary conditions should correspond to the lateral
2241boundary condition used for the flow (see <a href="chapter_4.1.html#bc_ns">bc_ns</a>).</td> </tr>
2242<tr> <td style="vertical-align: top;"> <p><a name="bc_par_t"></a><b>bc_par_t</b></p>
2243</td> <td style="vertical-align: top;">C*15</td>
2244<td style="vertical-align: top;"><i>&acute;absorb&acute;</i></td>
2245<td style="vertical-align: top;"> <p>Top boundary
2246condition for particle transport. </p> <p>By default,
2247particles are absorbed at the top boundary.
2248Alternatively, a reflection condition can be set by <b>bc_par_t</b>
2249= <i>&acute;reflect&acute;</i>.</p> </td>
2250</tr> <tr> <td style="vertical-align: top;"><p><a name="density_ratio"></a><b>density_ratio</b></p>
2251</td> <td style="vertical-align: top;">R (10)</td>
2252<td style="vertical-align: top;"> <p><i>0.0, 9</i>
2253*<br> <i>9999999.9</i></p> </td> <td style="vertical-align: top;"> <p>Ratio of the density
2254of the fluid and the density of the
2255particles. </p> <p>With the default value<i> </i>the
2256particles are weightless and transported passively with the resolved
2257scale flow.
2258In case of <span style="font-weight: bold;">density_ratio</span>
2259/=
22600.0 particles have a mass and hence inertia so that their velocity
2261deviates more or less from the velocity of the surrounding flow.
2262Particle velocity is calculated analytically and depends on (besides
2263the density ratio and the current velocity difference between particles
2264and surrounding fluid) the
2265particle radius which is determined via <a href="#radius">radius</a>
2266as well as on the molecular viscosity (assumed as 1.461E-5 m<sup>2</sup>/s).
2267</p> <p>If <b>density_ratio</b> = <i>1.0</i>,
2268the particle density
2269corresponds to the density of the surrounding fluid and the particles
2270do not feel any buoyancy. Otherwise, particles will be accelerated
2271upwards (<b>density_ratio</b> &gt; <i>1.0</i>)
2272or downwards (<b>density_ratio</b> &lt; <i>1.0</i>).<br>
2273</p> <p>With several groups of particles (see <a href="chapter_4.2.html#number_of_particle_groups">number_of_particle_groups</a>),
2274each group can be assigned a different value. If the number of values
2275given for <span style="font-weight: bold;">density_ratio</span>
2276is less than the number of
2277groups defined by <span style="font-weight: bold;">number_of_particle_groups</span>,
2278then the last assigned value is used for all remaining groups. This
2279means that by default the particle density ratio for all groups will be
2280<span style="font-style: italic;">0.0</span>.</p>
2281</td> </tr> <tr><td align="left" valign="top"><a name="dt_dopts"></a><span style="font-weight: bold;">dt_dopts</span></td><td align="left" valign="top">R</td><td align="left" valign="top"><i>value of &nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>output</a></i></td><td align="left" valign="top"><p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
2282interval</font> at which time series data of particle quantities
2283shall be output (</font>in <font face="Thorndale">s).&nbsp;</font></p>
2284<span lang="en-GB"><font face="Thorndale">If
2285particle advection is switched on (see</font></span><font><span style="font-family: thorndale;"> <a href="#dt_prel">dt_prel</a>)
2286this parameter can be used to assign
2287th</span></font><span lang="en-GB"><font face="Thorndale">e temporal
2288interval at which time series of particle quantities shall be output.
2289Output is written in NetCDF format on local file <a href="chapter_3.4.html#DATA_1D_PTS_NETCDF">DATA_1D_PTS_NETCDF</a>.<br><br>The
2290following list gives a short description of the&nbsp;quantities
2291available. Most quantities are averages over all particles. The
2292quantity name given in the first column is identical to the respective
2293name of the variable on the NetCDF file (see section <a href="chapter_4.5.1.html">4.5.1</a> for a general
2294description of the NetCDF files).<br><br>In case of using
2295more than one particle group (see <a href="#number_of_particle_groups">number_of_particle_groups</a>),
2296seperate time series are output for each of the groups. The long names
2297of the variables in the NetCDF file containing the respective
2298timeseries all end with the string</font><span style="font-style: italic; font-family: monospace;">' PG ##'</span><font face="Thorndale">, where ## is the number of the particle
2299group (<span style="font-style: italic;">01</span>, <span style="font-style: italic;">02</span>, etc.). <br>&nbsp;</font></span><table style="text-align: left; width: 631px; height: 652px;" border="1" cellpadding="2" cellspacing="2"><tbody><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">tnpt</span></td><td align="undefined" valign="undefined">total number of
2300particles</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">x_</span></td><td align="undefined" valign="undefined">particle
2301x-coordinate&nbsp;with respect to the particle origin (in m)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">y_</span></td><td align="undefined" valign="undefined">particle
2302y-coordinate&nbsp;with respect to the particle origin (in m)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">z_</span></td><td align="undefined" valign="undefined">particle
2303z-coordinate&nbsp;with respect to the particle origin (in m)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">z_abs</span></td><td align="undefined" valign="undefined">absolute
2304particle z-coordinate (in m)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">u</span></td><td align="undefined" valign="undefined">u particle
2305velocity component (in m/s)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">v</span></td><td align="undefined" valign="undefined">v particle
2306velocity component (in m/s)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">w</span></td><td align="undefined" valign="undefined">w particle
2307velocity component (in m/s)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">u"</span></td><td align="undefined" valign="undefined">subgrid-scale u
2308particle velocity component (in m/s)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">v"</span></td><td align="undefined" valign="undefined">subgrid-scale v
2309particle velocity component (in m/s)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">w"</span></td><td align="undefined" valign="undefined">subgrid-scale w
2310particle velocity component (in m/s)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">npt_up</span></td><td align="undefined" valign="undefined">total number of
2311upward moving particles</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">w_up</span></td><td align="undefined" valign="undefined">vertical
2312velocity of the upward moving particles (in m/s)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">w_down</span></td><td align="undefined" valign="undefined">vertical
2313velocity of the downward moving particles (in m/s)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">npt_max</span></td><td align="undefined" valign="undefined">maximum number
2314of particles in a subdomain (=tnpt for non-parallel runs)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">npt_min</span></td><td align="undefined" valign="undefined">minimum number
2315of particles in a subdomain (=tnpt for non-parallel runs)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">x*2</span></td><td align="undefined" valign="undefined">variance of the
2316particle x-coordinate&nbsp;with respect to <span style="color: rgb(255, 0, 0);">x_ </span>(in m<sup>2</sup>)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">y*2</span></td><td align="undefined" valign="undefined">variance of the
2317particle y-coordinate&nbsp;with respect to <span style="color: rgb(255, 0, 0);">y_</span> (in m<sup>2</sup>)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">z*2</span></td><td align="undefined" valign="undefined">variance of the
2318particle z-coordinate&nbsp;with respect to <span style="color: rgb(255, 0, 0);">z_</span> (in m<sup>2</sup>)</td></tr><tr><td align="undefined" valign="undefined"><span style="color: rgb(255, 0, 0);">u*2</span></td><td align="undefined" valign="undefined">variance of the
2319u particle velocity component with respect to <span style="color: rgb(255, 0, 0);">u </span>(in m<sup>2</sup>/s<sup>2</sup>)</td></tr><tr><td align="undefined" valign="undefined">v*2</td><td align="undefined" valign="undefined">variance of the
2320v particle velocity component with respect to&nbsp;<span style="color: rgb(255, 0, 0);">v </span>(in m<sup>2</sup>/s<sup>2</sup>)</td></tr><tr><td align="undefined" valign="undefined">w*2</td><td align="undefined" valign="undefined">variance of the
2321w particle velocity component with respect to&nbsp;<span style="color: rgb(255, 0, 0);">w </span>(in m<sup>2</sup>/s<sup>2</sup>)</td></tr><tr><td align="undefined" valign="undefined">u"2</td><td align="undefined" valign="undefined">variance of the
2322subgrid-scale u particle velocity component with respect to <span style="color: rgb(255, 0, 0);">u" </span>(in m<sup>2</sup>/s<sup>2</sup>)</td></tr><tr><td align="undefined" valign="undefined">v"2</td><td align="undefined" valign="undefined">variance of the
2323subgrid-scale v particle velocity component with respect to <span style="color: rgb(255, 0, 0);">v" </span>(in m<sup>2</sup>/s<sup>2</sup>)</td></tr><tr><td align="undefined" valign="undefined">w"2</td><td align="undefined" valign="undefined">variance of the
2324subgrid-scale w particle velocity component with respect to <span style="color: rgb(255, 0, 0);">w" </span>(in m<sup>2</sup>/s<sup>2</sup>)</td></tr><tr><td align="undefined" valign="undefined">npt*2</td><td align="undefined" valign="undefined">variance of the
2325number of particles with respect to the average number of particles per
2326subdomain</td></tr></tbody></table><span lang="en-GB"></span><span lang="en-GB"></span></td></tr><tr><td align="left" valign="top"><a name="dt_min_part"></a><span style="font-weight: bold;">dt_min_part</span></td><td align="left" valign="top">R</td><td align="left" valign="top"><span style="font-style: italic;">0.0002</span></td><td align="left" valign="top">Minimum value for the
2327particle timestep when SGS velocities are used (in s).<br><br>For
2328a further explanation see package parameter <a href="#use_sgs_for_particles">use_sgs_for_particles</a>.</td></tr><tr>
2329<td style="vertical-align: top;"> <p><a name="dt_write_particle_data"></a><b>dt_write_particle_</b>
2330<b>data</b></p> </td> <td style="vertical-align: top;">R<br> </td> <td style="vertical-align: top;"><i>9999999.9</i></td>
2331<td style="vertical-align: top;"> <p>Temporal
2332interval for output of particle data (in s). </p> <p>T<span lang="en-GB"></span><a href="#pr1d"><span lang="en-GB"></span></a><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">his
2333parameter can be used to
2334assign the temporal interval at which particle data shall be output.</font></span>
2335Data are output to
2336the local file <a href="chapter_3.4.html#PARTICLE_DATA">PARTICLE_DATA</a>.
2337<span style="font-family: mon;">See the file description
2338for more
2339details about its format</span>. </p> <p>By
2340default, no particle data are output.</p> </td> </tr>
2341<tr> <td style="vertical-align: top;"> <p><a name="dvrp_psize"></a><b>dvrp_psize</b></p>
2342</td> <td style="vertical-align: top;">R<br> </td>
2343<td style="vertical-align: top;">0.2 * dx<br> </td>
2344<td style="vertical-align: top;"> <p>Diameter that
2345the particles is given in visualizations with
2346the <span style="font-weight: bold;">dvrp</span>
2347software (in
2348m).&nbsp; </p> <p>In case that particles are
2349visualized with the <span style="font-weight: bold;">dvrp</span>
2350software (see <a href="chapter_4.5.7.html">chapter
23514.5.7</a>), their size can be set by parameter <b>dvrp_psize</b>.
2352All
2353particles are displayed with this same size.<br> </p> <p>Alternatively,
2354the particle diameters can be set with the
2355user-interface in routine <span style="font-family: monospace;">user_init_particles</span>
2356(at the beginning of the simulation) and/or can be redefined after each
2357timestep in routine <tt>user<font style="font-size: 11pt;" size="2">_particle_attributes</font></tt>
2358(both routines can be found in file <tt><font style="font-size: 11pt;" size="2">user_interface.f90</font></tt><font style="font-size: 11pt;" size="2">)</font>.&nbsp;</p>
2359<p><b>Note:</b> This parameter determines exclusively
2360the size
2361under which particles appear in the <span style="font-weight: bold;">dvrp</span>
2362visualization. The flow relevant particle radius is determined via the
2363particle package parameter <a href="#radius">radius</a>!</p>
2364</td> </tr> <tr><td align="left" valign="top"><a name="end_time_prel"></a><span style="font-weight: bold;">end_time_prel</span></td><td align="left" valign="top">R</td><td align="left" valign="top"><span style="font-style: italic;">9999999.9</span></td><td align="left" valign="top">Time of the last release of
2365particles (in s).<br><br>See also <a href="#particle_advection_start">particle_advection_start</a>.</td></tr><tr>
2366<td style="vertical-align: top;"><span style="font-weight: bold;"><a name="initial_weighting_factor"></a>initial_weighting_factor</span></td>
2367<td style="vertical-align: top;">R<br> </td> <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span><br> </td>
2368<td style="vertical-align: top;">Factor to define the real
2369number of initial droplets in a grid box.<br> <br>
2370In case of explicitly simulating cloud droplets (see <a href="chapter_4.1.html#cloud_droplets">cloud_droplets</a>),
2371the real number of initial droplets in a grid box is equal to the
2372initial number of droplets in this box (defined by the particle source
2373parameters <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a>
2374<span lang="en-GB"><font face="Thorndale, serif">and
2375</font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>)
2376times the <span style="font-weight: bold;">initial_weighting_factor</span>.</td>
2377</tr><tr> <td style="vertical-align: top;"> <p><a name="maximum_number_of_particles"></a><b>maximum_number_of_</b>
2378<br> <b>particles</b></p> </td> <td style="vertical-align: top;">I</td> <td style="vertical-align: top;"><i>1000</i></td>
2379<td style="vertical-align: top;"> <p>Maximum number
2380of particles (on a PE).&nbsp; </p> <p>This parameter
2381allows to set the number of particles for which
2382memory must be allocated at the beginning of the run.
2383If this memory becomes insufficient during the run, due to the
2384release of further particles (see <a href="#dt_prel">dt_prel</a>),
2385then more memory is automatically allocated.<br> </p>
2386For runs on several processors, <span style="font-weight: bold;">maximum_number_of_particles</span>
2387defines
2388the maximum number on each PE. This number must be larger than the
2389maximum number of particles initially released in a subdomain.</td>
2390</tr> <tr> <td style="vertical-align: top;"><p><a name="maximum_number_of_tailpoints"></a><b>maximum_number_of_</b>
2391<br> <b>tailpoints</b></p> </td> <td style="vertical-align: top;">I</td> <td style="vertical-align: top;"><i>100</i></td>
2392<td style="vertical-align: top;"> <p>Maximum number
2393of tailpoints that a particle tail can
2394have.&nbsp; </p> <p>&nbsp;<b>maximum_number_of_tailpoints</b>
2395sets the number of descrete points the tail consists of. A new point is
2396added to the particle tails after each time step. If the maximum number
2397of tail
2398points is reached after the corresponding number of timesteps, the
2399oldest respective tail points is deleted within the following
2400timestep.&nbsp; </p> <p>All particle tails have the
2401same number of points. The maximum
2402length of
2403these
2404tails is determined by the value of <b>maximum_number_of_tailpoints</b>
2405and by the minimum distance between each of the adjoining
2406tailpoints,&nbsp; which can be set by <a href="#minimum_tailpoint_distance">minimum_tailpoint_distance</a>.
2407Additionally, it can be determined that the temporal displacement
2408between the current position of the particle and the oldest point of
2409the tail may become not larger than a value to be assigned by <a href="#maximum_tailpoint_age">maximum_tailpoint_age</a>.</p>
2410</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="maximum_tailpoint_age"></a><b>maximum_tailpoint_</b>
2411<br> <b>age</b></p> </td> <td style="vertical-align: top;">R</td> <td style="vertical-align: top;">100000.0</td> <td style="vertical-align: top;"> <p>Maximum age that the
2412end point of a particle tail is allowed to have (in s).&nbsp; </p>
2413<p>If the temporal displacement between the oldest point of a
2414particle tail and the current position of the particle becomes larger
2415than the value given by <b>maximum_tailpoint_age</b>, this
2416oldest
2417point (which defines the end of the tail) is
2418removed. If this time is so small that the number of points defining
2419the particle tail do not exceed the value given by <b>maximum_number_of_tailpoints</b>,
2420then the length the particle tails is a measure for the distance the
2421particle travelled along during the time interval defined via <b>maximum_tailpoint_age</b>,
2422i.e. for the
2423particle velocity. Fast particles will have long tails, slow particles
2424shorter ones (note: this will not neccessarily hold if <a href="#minimum_tailpoint_distance">minimum_tailpoint_distance</a>
2425= <i>0.0</i>).</p> </td> </tr> <tr>
2426<td style="vertical-align: top;"> <p><a name="minimum_tailpoint_distance"></a><b>minimum_tailpoint_distance</b></p>
2427</td> <td style="vertical-align: top;">R</td>
2428<td style="vertical-align: top;"><i>0.0</i></td>
2429<td style="vertical-align: top;"> <p>Minimum
2430distance allowed between two adjacent points of a
2431particle tail (in m).&nbsp; </p> <p>In case of <b>minimum_tailpoint_distance</b>
2432&gt; <i>0.0 </i>the
2433particle tail is extended by a new point only if the distance between
2434its current position and the most recent tail point exceed the
2435distance given via <b>minimum_tailpoint_distance</b>.<br>
2436</p> <p>If the length of the particle tails shall be
2437proportional to
2438the respective particle velocity, the parameter <a href="#maximum_tailpoint_age">maximum_tailpoint_age</a>
2439must also be set appropriately. </p> <b>Note:</b><br>
2440A suitable choice of <b>minimum_tailpoint_distance</b>
2441&gt; <i>0.0</i> is recommended, because then the tail
2442coordinates of
2443slowly moving particles require less memory and can also be drawn
2444faster. The upper limit of <b>minimum_tailpoint_distance</b>
2445should be chosen in a way that the visualized particle
2446tails still appear as smooth lines. Example: with a model domain of
24471000 m and a monitor resolution of 1280 * 1024 pixels it
2448should be sufficient to set <b>minimum_tailpoint_distance</b>
2449= <i>5.0</i>
2450(m). </td> </tr> <tr> <td style="vertical-align: top;"><a name="number_of_particle_groups"></a><span style="font-weight: bold;">number_of_particle_groups</span><br>
2451</td> <td style="vertical-align: top;">I<br> </td>
2452<td style="vertical-align: top;">1<br> </td> <td style="vertical-align: top;">Number of particle groups to be
2453used.<br> <br>
2454Each particle group can be assigned its own source region (see <a href="#pdx">pdx</a>, <a href="#psl">psl</a>,
2455<a href="#psr">psr</a>, etc.), particle diameter (<a href="#radius">radius</a>) and particle density ratio (<a href="density_ratio">density_ratio</a>).<br><br>If
2456less values are given for <a href="#pdx">pdx</a>, <a href="#psl">psl</a>,
2457etc. than the number of particle groups, then the last value is used
2458for the remaining values (or the default value, if the user did not set
2459the parameter).<br> <br>
2460The maximum allowed number of particle groups is limited to <span style="font-style: italic;">10</span>.<br> </td>
2461</tr><tr><td align="left" valign="top"><a name="particles_per_point"></a><span style="font-weight: bold;">particles_per_point</span></td><td align="left" valign="top">I</td><td align="left" valign="top">1</td><td align="left" valign="top">Number of particles to be
2462started per point.<br><br>By default, one particle is
2463started at all points of the particle source,&nbsp;defined by <span style="font-family: Thorndale,serif;">the </span><span lang="en-GB"><font face="Thorndale, serif">package
2464parameters </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a>
2465<span lang="en-GB"><font face="Thorndale, serif">and
2466</font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"><font face="Thorndale, serif">.</font></span><span lang="en-GB"></span></td></tr><tr> <td style="vertical-align: top;"> <p><a name="particle_advection_start"></a><b>particle_advection_</b>
2467<br> <b>start</b></p> </td> <td style="vertical-align: top;">R </td> <td style="vertical-align: top;">0.0 </td> <td style="vertical-align: top;"> <p>Time of the first
2468release of particles (in s). </p> <p>If particles are not
2469to be released at the beginning of the
2470run, the release time can be set via <b>particle_advection_start</b>.<br>
2471If particle transport is switched on in a restart run, then <a href="#read_particles_from_restartfile">read_particles_from_restartfile</a>
2472= <span style="font-style: italic;">.F.</span> is
2473also required.</p><p>See also <a href="#end_time_prel">end_time_prel</a>.
2474</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="particle_maximum_age"></a><b>particle_maximum_age</b></p>
2475</td> <td style="vertical-align: top;">R </td>
2476<td style="vertical-align: top;"><i>9999999.9</i>
2477</td> <td style="vertical-align: top;"> <p>Maximum
2478allowed age of particles (in s).&nbsp; </p> <p>If the
2479age of a particle exceeds the time set by <b>particle_maximum_age</b>,
2480the particle as well as its tail is deleted.</p> </td> </tr>
2481<tr> <td style="vertical-align: top;"> <p><a name="pdx"></a><b>pdx</b></p> </td>
2482<td style="vertical-align: top;">R (10)<br> </td>
2483<td style="vertical-align: top;"><i>10 * dx</i>
2484</td> <td style="vertical-align: top;"> <p>Distance
2485along x between particles within a particle source
2486(in m).&nbsp; </p> <p>If the particle source shall be
2487confined to one grid point,
2488the distances given by <span style="font-weight: bold;">pdx</span>,
2489<a href="#pdy">pdy</a>
2490and <a href="#pdz">pdz</a>
2491must be set larger than the respective domain size or <a href="#psl">psl</a>
2492= <a href="#psr">psr</a> has to be set
2493alternatively.<br>
2494</p> <p><span style="font-weight: bold;">pdx</span>
2495can be assigned a different value for each particle group (see <a href="#number_of_particle_groups">number_of_particle_groups</a>).<br>
2496</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="pdy"></a><b>pdy</b></p>
2497</td> <td style="vertical-align: top;">R (10)<br>
2498</td> <td style="vertical-align: top;"><i>10
2499* dy</i> </td> <td style="vertical-align: top;">Distance
2500along y between
2501particles within a
2502particle source (in m).&nbsp; </td> </tr> <tr>
2503<td style="vertical-align: top;"> <p><a name="pdz"></a><b>pdz</b></p> </td>
2504<td style="vertical-align: top;">R (10)<br>
2505</td> <td style="vertical-align: top;"><i>10
2506* ( zu(2) - zu(1) )</i> </td> <td style="vertical-align: top;">Distance along z between
2507particles within a particle source
2508(in m). </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="psb"></a><b>psb</b></p>
2509</td> <td style="vertical-align: top;">R (10)<br>
2510</td> <td style="vertical-align: top;"><i>10&nbsp;
2511* zu(nz/2)</i> </td> <td style="vertical-align: top;">Bottom
2512edge of a particle
2513source (in m). </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="psl"></a><b>psl</b></p>
2514</td> <td style="vertical-align: top;">R (10)<br>
2515</td> <td style="vertical-align: top;"><i>10
2516* 0.0</i> </td> <td style="vertical-align: top;">Left
2517edge of a particle source
2518(in m). </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="psn"></a><b>psn</b></p>
2519</td> <td style="vertical-align: top;">R (10)<br>
2520</td> <td style="vertical-align: top;"><i>10
2521* (ny * dy)</i> </td> <td style="vertical-align: top;">Rear
2522(&ldquo;north&rdquo;) edge of a
2523particle source (in m). </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="psr"></a><b>psr</b></p>
2524</td> <td style="vertical-align: top;">R (10)<br>
2525</td> <td style="vertical-align: top;"><i>10
2526* (nx * dx)</i> </td> <td style="vertical-align: top;">Right
2527edge of a particle
2528source (in m). </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="pss"></a><b>pss</b></p>
2529</td> <td style="vertical-align: top;">R (10)<br>
2530</td> <td style="vertical-align: top;"><i>10
2531* 0.0</i> </td> <td style="vertical-align: top;">Front
2532(&ldquo;south&rdquo;) edge of a
2533particle source (in m). </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="pst"></a><b>pst</b></p>
2534</td> <td style="vertical-align: top;">R (10)<br>
2535</td> <td style="vertical-align: top;"><i>10
2536* zu(nz/2)</i> </td> <td style="vertical-align: top;">Top
2537edge of a particle source
2538(in m). </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="radius"></a><b>radius</b></p>
2539</td> <td style="vertical-align: top;">R (10)</td>
2540<td style="vertical-align: top;"><i>0.0, 9</i>*<br>
2541<i>9999999.9</i></td> <td style="vertical-align: top;">Particle radius (in m).<br>
2542<br>The viscous friction (in case of a velocity difference
2543between
2544particles and surrounding fluid) depends on the particle radius which
2545must be assigned as soon as <a href="chapter_4.2.html#density_ratio">density_ratio</a>
2546/= <i>0.0</i>.<br> <br>
2547With several groups of particles (see <a href="#number_of_particle_groups">number_of_particle_groups</a>),
2548each group can be assigned a different value. If the number of values
2549given for <span style="font-weight: bold;">radius</span>
2550is less than the number of
2551groups defined by <span style="font-weight: bold;">number_of_particle_groups</span>,
2552then the last assigned value is used for all remaining groups. This
2553means that by default the particle radius for all groups will be <span style="font-style: italic;">0.0</span>.<br> </td>
2554</tr><tr> <td style="vertical-align: top;"> <p><a name="random_start_position"></a><b>random_start_position</b></p>
2555</td> <td style="vertical-align: top;">L<br> </td>
2556<td style="vertical-align: top;"><i>.F.</i> </td>
2557<td style="vertical-align: top;"> <p><span style="background: transparent none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="#000000">Initial position of the</font></span>
2558particles is
2559varied randomly within certain limits.&nbsp; </p> <p>By
2560default, the initial positions of particles within the
2561source excatly correspond with the positions given by <a href="#psl">psl</a>,
2562<a href="#psr">psr</a>, <a href="#psn">psn</a>,
2563<a href="#pss">pss</a>, <a href="#psb">psb</a>,
2564<a href="#pst">pst</a>, <a href="#pdx">pdx</a>,
2565<a href="#pdy">pdy</a>,
2566and<a href="#pdz">
2567pdz</a>. With <b>random_start_position</b> = <i>.T.
2568</i>the initial
2569positions of the particles are allowed to randomly vary from these
2570positions within certain limits.&nbsp; </p> <p><b>Very
2571important:<br> </b>In case of <b>random_start_position</b>
2572= <i>.T.</i>, the
2573random-number generators on the individual PEs no longer&nbsp;
2574run synchronously. If random disturbances are applied to the velocity
2575field
2576(see <a href="#create_disturbances">create_disturbances</a>),
2577<font color="#000000">then as consequence for parallel
2578runs the
2579realizations of the turbulent flow
2580fields will deviate between runs which used different numbers of PEs!</font></p>
2581</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="read_particles_from_restartfile"></a><b>read_particles_from_</b>
2582<br> <b>restartfile</b></p> </td> <td style="vertical-align: top;">L<br> </td> <td style="vertical-align: top;"><i>.T.</i> </td>
2583<td style="vertical-align: top;"> <p>Read particle
2584data from the previous run.&nbsp; </p> <p>By default,
2585with restart runs particle data is read
2586from file <a href="chapter_3.4.html#PARTICLE_RESTART_DATA_IN">PARTICLE_RESTART_DATA_IN</a>,
2587which is created by the preceding run. If this is not requested or if
2588in a restart run particle transport is switched on for the
2589first time (see <a href="#particle_advection_start">particle_advection_start</a>),
2590then <b>read_particles_from_restartfile</b> = <i>.F.</i>
2591is required.</p> </td> </tr> <tr> <td style="vertical-align: top;"><a name="skip_particles_for_tail"></a><span style="font-weight: bold;">skip_particles_for_tail</span><br>
2592</td> <td style="vertical-align: top;">I<br> </td>
2593<td style="vertical-align: top;"><span style="font-style: italic;">1</span><br> </td>
2594<td style="vertical-align: top;">Limit the number of
2595particle tails.<br> <br>
2596If particle tails are switched on (see <a href="#use_particle_tails">use_particle_tails</a>),
2597every particle is given a tail by default. <span style="font-weight: bold;">skip_particles_for_tail </span>can
2598be used to give only every n'th particle a tail.<br> <br> <span style="font-weight: bold;">Example:</span><br> <span style="font-weight: bold;">skip_particles_for_tail</span>
2599= <span style="font-style: italic;">10</span> means
2600that only every 10th particle will be given a tail.<br> </td>
2601</tr> <tr> <td style="vertical-align: top;"><a name="use_particle_tails"></a><span style="font-weight: bold;">use_particle_tails</span><br>
2602</td> <td style="vertical-align: top;">L<br> </td>
2603<td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br> </td>
2604<td style="vertical-align: top;">Give particles a tail.<br>
2605<br>A particle tail is defined by the path a particle has moved
2606along starting from some point of time in the past. It consists of a
2607set of descrete points in space which may e.g. be connected by a line
2608in order visualize how the particle has moved.<br> <br>
2609By default, particles have no tail. Parameter&nbsp;<a href="#skip_particles_for_tail">skip_particles_for_tail</a>
2610can be used to give only every n'th particle a tail.<br> <br>
2611The length of the tail is controlled by parameters&nbsp;<a href="#maximum_number_of_tailpoints">maximum_number_of_tailpoints</a>,&nbsp;<a href="#maximum_tailpoint_age">maximum_tailpoint_age</a>,
2612and <a href="#minimum_tailpoint_distance">minimum_tailpoint_distance</a>.<br>
2613</td> </tr><tr><td align="left" valign="top"><a name="use_sgs_for_particles"></a><span style="font-weight: bold;">use_sgs_for_particles</span></td><td align="left" valign="top">L</td><td align="left" valign="top"><span style="font-style: italic;">.F.</span></td><td align="left" valign="top">Use subgrid-scale
2614velocities for particle advection.<br><br>These
2615velocities are calculated from the resolved and subgrid-scale TKE using
2616the Monte-Carlo random-walk method described by Weil et al. (2004, JAS,
261761,
26182877-2887). When using this method, the timestep for the advancement of
2619the particles is limited by the so-called Lagrangian time scale. This
2620may be smaller than the current LES timestep so that several particle
2621(sub-) timesteps have to be carried out within one LES timestep. In
2622order to limit the number of sub-timesteps (and to limit the CPU-time),
2623the minimum value for the particle timestep is defined by the package
2624parameter <a href="#dt_min_part">dt_min_part</a>.<br><br>Setting
2625<span style="font-weight: bold;">use_sgs_for_particles</span>
2626= <span style="font-style: italic;">.TRUE.</span>
2627automatically forces <a href="chapter_4.1.html#use_upstream_for_tke">use_upstream_for_tke</a>
2628= <span style="font-style: italic;">.TRUE.</span>.
2629This inhibits the occurrence of large (artificial) spatial gradients of
2630the subgrid-scale TKE which otherwise would lead to wrong results for
2631the particle advection.</td></tr><tr> <td style="vertical-align: top;"> <p><a name="vertical_particle_advection"></a><b>vertical_particle_</b>
2632<br> <b>advection</b></p> </td> <td style="vertical-align: top;">L<br> </td> <td style="vertical-align: top;"><i>.T.</i> </td>
2633<td style="vertical-align: top;"> <p>Switch on/off
2634vertical particle transport. </p> <p>By default,
2635particles are transported along all three
2636directions in space. With <b>vertical_particle_advection</b>
2637= <i>.F., </i>the
2638particles will only be transported horizontally.</p> </td>
2639</tr> <tr> <td style="vertical-align: top;"><p><a name="write_particle_statistics"></a><b>write_particle_</b>
2640<br> <b>statistics</b></p> </td> <td style="vertical-align: top;">L<br> </td> <td style="vertical-align: top;"><i>.F.</i> </td>
2641<td style="vertical-align: top;"> <p>Switch on/off
2642output of particle informations.<br> </p> <p><br>
2643For <span style="font-weight: bold;">write_particle_statistics</span>
2644= <span style="font-style: italic;">.T.</span> s<span style="font-family: thorndale,serif;">tatistical
2645informations</span> (e.g. the total number of particles used, the
2646number of particles exchanged between the PEs, etc.) which may be used
2647for debugging are output to the
2648local file <a href="chapter_3.4.html#PARTICLE_DATA">PARTICLE_INFOS</a>.&nbsp;
2649</p> <p><b>Note:</b> For parallel runs files
2650may become very large
2651and performance of PALM may decrease.</p> </td> </tr>
2652</tbody></table><span style="font-weight: bold;"><br>
2653<br></span><span style="font-weight: bold;">Package
2654(<span style="font-weight: bold;">mrun</span> option
2655-p): <span style="font-weight: bold;"><a name="dvrp_graphics"></a>dvrp_graphics</span>
2656&nbsp;&nbsp;&nbsp;
2657NAMELIST group name: <span style="font-weight: bold;">dvrp_graphics_par<br>
2658<br></span></span><table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2"> <tbody> <tr>
2659<td style="vertical-align: top;"><font size="4"><b>Parameter
2660name</b></font></td> <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
2661<td style="vertical-align: top;"> <p><b><font size="4">Default</font></b> <br> <b><font size="4">value</font></b></p> </td>
2662<td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
2663</tr> <tr> <td style="vertical-align: top;"><p><a name="dt_dvrp"></a><b>dt_dvrp</b></p>
2664</td> <td style="vertical-align: top;">R</td>
2665<td style="vertical-align: top;"><i>9999999.9</i></td>
2666<td style="vertical-align: top;"> <p>Temporal
2667interval of scenes to be displayed with the <span style="font-weight: bold;">dvrp</span> software (in
2668s).&nbsp; </p> <p>Isosurfaces, cross sections and
2669particles can be displayed
2670simultaneous. The display of particles requires that the particle
2671transport is switched on (see <a href="#dt_prel">dt_prel</a>).
2672Objects to be displayed have to be determined with <a href="#mode_dvrp">mode_dvrp</a>. </p> <p>If
2673output of scenes created by dvrp software is switched on
2674(see <a href="#mode_dvrp">mode_dvrp</a>),
2675this parameter can be used to assign the temporal interval at which
2676scenes are to be created (and the respective&nbsp; graphical data
2677is to
2678be output to the streaming server). <span lang="en-GB"><font face="Thorndale">Reference time is the beginning of
2679&nbsp;the simulation, i.e. output takes place at times t = <b>dt_dvrp</b>,
26802*<b>dt_dvrp</b>, 3*<b>dt_dvrp</b>, etc. The
2681actual output times can
2682deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).&nbsp;
2683Is <b>dt_dvrp</b> &lt; </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale">dt</font></span></a><span lang="en-GB"><font face="Thorndale">, then
2684scenes are created and
2685output after each time step (if this is requested it should be <b>dt_dvrp</b>
2686= <i>0</i>).</font></span> </p> </td>
2687</tr> <tr> <td style="vertical-align: top;"><p><a name="dvrp_directory"></a><b>dvrp_directory</b></p>
2688</td> <td style="vertical-align: top;">C*80</td>
2689<td style="vertical-align: top;"><i>'default'</i></td>
2690<td style="vertical-align: top;"> <p>Name of the
2691directory into which data created by the <span style="font-weight: bold;">dvrp</span>
2692software shall be saved.&nbsp; </p> <p>By default,
2693the directory name is generated from the user
2694name
2695(see package parameter <a href="#dvrp_username">dvrp_username</a>)
2696and the base file name (given as the argument of <span style="font-weight: bold;">mrun</span> option -d) as <span style="font-style: italic;">'&lt;user
2697name&gt;/&lt;base file name&gt;'</span>.</p> </td>
2698</tr> <tr> <td style="vertical-align: top;"><p><a name="dvrp_file"></a><b>dvrp_file</b></p>
2699</td> <td style="vertical-align: top;">C*80</td>
2700<td style="vertical-align: top;"><i>'default'</i></td>
2701<td style="vertical-align: top;"> <p>Name of the
2702file into which data created by the <span style="font-weight: bold;">dvrp</span>
2703software shall be output.&nbsp; </p> <p>This
2704parameter can be given a value only in case of <a href="#dvrp_output">dvrp_output</a>
2705= <span style="font-style: italic;">'local'</span><i>
2706</i>which
2707determines that the data created by <span style="font-weight: bold;">dvrp</span>
2708is output to a local file (on the machine where PALM is executed).
2709Apart from the default, it is only allowed to assign <span style="font-style: italic;">'/dev/null'</span> (which
2710means that no output is really stored). This can be used for special
2711runtime measurements of the <span style="font-weight: bold;">dvrp</span>
2712software.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="dvrp_host"></a><b>dvrp_host</b></p>
2713</td> <td style="vertical-align: top;">C*80</td>
2714<td style="vertical-align: top;"> <p><i>'origin.rvs.</i>
2715<br>u<i>ni- hanover.de'</i></p> </td> <td style="vertical-align: top;"> <p>Name of the computer
2716to which data created by the <span style="font-weight: bold;">dvrp</span>
2717software shall be
2718transferred.&nbsp; </p> <p>In case of <a href="#dvrp_output">dvrp_output</a>
2719= <span style="font-style: italic;">'rtsp'</span>
2720only the default
2721value is allowed (streaming server of
2722the RRZN). For <a href="#dvrp_output">dvrp_output</a>
2723= <span style="font-style: italic;">'local'</span><i>
2724</i>the
2725assigned value is ignored.</p> </td> </tr> <tr>
2726<td style="vertical-align: top;"> <p><a name="dvrp_output"></a><b>dvrp_output</b></p>
2727</td> <td style="vertical-align: top;">C*10</td>
2728<td style="vertical-align: top;"><i>'rtsp'</i></td>
2729<td style="vertical-align: top;"> <p>Output mode
2730for the <span style="font-weight: bold;">dvrp</span>
2731software. <br> <br> </p>
2732The following settings are allowed:<br> <br> <table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2"> <tbody> <tr> <td style="vertical-align: top;"><i>'rtsp'</i></td>
2733<td style="vertical-align: top;">Data created by the <span style="font-weight: bold;">dvrp</span>
2734software is transferred using
2735a special transmission protocol to a so-called streaming server, which
2736is able to continuously transfer visualization data with a
2737high transmission rate.&nbsp; <br>
2738Additionally, with this output mode a
2739set of files is generated automatically
2740within a directory on the streaming server (beside the visualization
2741data e.g. some html-files) which can be used to
2742visualize the data via an internet-browser plugin. Host
2743(streaming-server) and directory can be defined by the user with <a href="#dvrp_host">dvrp_host</a>
2744and <a href="#dvrp_directory">dvrp_directory</a>.</td>
2745</tr> <tr> <td style="vertical-align: top;"><i>'ftp'</i></td>
2746<td style="vertical-align: top;">Data created by the <span style="font-weight: bold;">dvrp</span>
2747software is transferred to the destination host (see <a href="#dvrp_host">dvrp_host</a>
2748and <a href="#dvrp_directory">dvrp_directory</a>)
2749using ftp.</td> </tr> <tr> <td style="vertical-align: top;"><i>'local'</i></td>
2750<td style="vertical-align: top;">Data created by the <span style="font-weight: bold;">dvrp</span>
2751software is output locally on a file defined by <a href="#dvrp_file">dvrp_file
2752</a>.</td> </tr> </tbody> </table> <br>
2753</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="dvrp_password"></a><b>dvrp_password</b></p>
2754</td> <td style="vertical-align: top;">C*80</td>
2755<td style="vertical-align: top;">'********'</td> <td style="vertical-align: top;"> <p>Password for the
2756computer to which data created by the <span style="font-weight: bold;">dvrp</span> software is to
2757be
2758transferred.&nbsp; </p> <p>Assigning a password is
2759only necessary in case of <a href="#dvrp_output">dvrp_output</a>
2760= <span style="font-style: italic;">'ftp'</span>.
2761For <a href="#dvrp_output">dvrp_output</a>
2762= <span style="font-style: italic;">'rtsp'</span><i>
2763</i>the default
2764value must not be changed!</p> </td> </tr> <tr>
2765<td style="vertical-align: top;"> <p><a name="dvrp_username"></a><b>dvrp_username</b></p>
2766</td> <td style="vertical-align: top;">C*80</td>
2767<td style="vertical-align: top;"><br> </td> <td style="vertical-align: top;"> <p>User name of a valid
2768account on the computer to which data
2769created by the <span style="font-weight: bold;">dvrp</span>
2770software
2771is to be
2772transferred.&nbsp; </p> <p>Assigning a value to this
2773parameter is required in case of <a href="#dvrp_output">dvrp_output</a>
2774= <span style="font-style: italic;">'rtsp'</span>
2775or <span style="font-style: italic;">'ftp'</span>.</p>
2776</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="mode_dvrp"></a><b>mode_dvrp</b></p>
2777</td> <td style="vertical-align: top;">C*20&nbsp;
2778<br>(10)</td> <td style="vertical-align: top;"><i>10
2779* ''</i></td> <td style="vertical-align: top;">
2780<p>Graphical objects (isosurfaces, slicers, particles) which are
2781to be created by the <span style="font-weight: bold;">dvrp</span>
2782software.&nbsp; </p> <p>Several different objects can
2783be assigned simultaneously and
2784will be displayed in the same scene. Allowed values for <span style="font-weight: bold;">mode_dvrp</span> are <span style="font-style: italic;">'isosurface#'</span>
2785(isosurface), <span style="font-style: italic;">'slicer#'</span>
2786(cross sections), and <span style="font-style: italic;">'particles'</span>.
2787Within the strings the hash character ("#") has to be replaced by a
2788digit &le;9. Up to 10 objects
2789can be assigned at the same time, e.g. :&nbsp; </p> <blockquote><b>mode_dvrp</b>
2790= <span style="font-style: italic;">'isosurface2'</span><i>,
2791'slicer1',
2792'particles', 'slicer2'</i></blockquote> <p>In this
2793case one isosurface, two cross sections, and particles
2794will be created. The quantities for which an isosurface are to be
2795created have to be selected with
2796the parameter <a href="#data_output">data_output</a>,
2797those for cross sections with <a href="#data_output">data_output</a>
2798(<span style="font-weight: bold;">data_output</span>
2799also determines the
2800orientation of the cross section, thus xy, xz, or yz). Since for <span style="font-weight: bold;">data_output</span> and <span style="font-weight: bold;">data_output</span> lists of
2801variables may be
2802assigned, the digit at the end of the <span style="font-weight: bold;">mode_dvrp</span>-string
2803selects the quantity, which is given
2804at the respective position in the respective list (e.g. <span style="font-style: italic;">'isosurface2'</span>
2805selects the quantity
2806given in the second position of <span style="font-weight: bold;">data_output</span>).
2807If e.g. <span style="font-weight: bold;">data_output</span>
2808and <span style="font-weight: bold;">data_output</span>
2809are assigned as <b>data_output</b> = <span style="font-style: italic;">'u_xy'</span><i>,
2810'w_xz', 'v_yz'</i> and <b>data_output</b> = <span style="font-style: italic;">'pt'</span><i>,
2811'u', 'w' </i>are
2812indicated, then - assuming the above assignment of <span style="font-weight: bold;">mode_dvrp</span> - an
2813isosurface of u, a
2814horizontal cross section of u and
2815a vertical cross section (xz) of w is created. For locations of the
2816cross sections see <a href="#data_output">data_output</a>.
2817The theshold value for which the isosurface is
2818to be created can be defined with parameter <a href="#threshold">threshold</a>.<br>
2819</p> <p>The vertical extension of the displayed domain is
2820given by <a href="#nz_do3d">nz_do3d</a>.<br> </p>
2821<p>The vertical extension of the displayed domain is given by <a href="#nz_do3d">nz_do3d</a>. </p> <p><b>Assignments
2822of mode_dvrp must correspond to those of data_output
2823and
2824data_output! </b>If e.g. <b>data_output</b> = <span style="font-style: italic;">'pt_xy'</span>
2825and <b>data_output</b>
2826= 'w'<i> </i>was set, then only the digit "1" is allowed
2827for <b>mode_dvrp</b>,
2828thus <span style="font-style: italic;">'isosurface1'</span>
2829and/or <span style="font-style: italic;">'slicer1'</span><i>.</i>&nbsp;
2830</p> <p>Further details about using the <span style="font-weight: bold;">dvrp</span> software are
2831given in <a href="chapter_4.5.7.html">chapter
28324.5.7</a>.<br> </p> <b>Note:</b><br>
2833The declaration color charts to be
2834used still have to be given "manually" in subroutine <span style="font-family: monospace;">user_dvrp_coltab</span>
2835(file <tt><font style="font-size: 11pt;" size="2">user_interface.f90</font></tt>).&nbsp;
2836<br>A change of particle colors and/or particle diameters (e.g.
2837according
2838to the local characteristics of the flow field) to be used for the
2839visualization, must be carried out by adding respective code extensions
2840to <tt><font style="font-size: 11pt;" size="2">user_particle_attributes</font></tt>
2841(in file <tt><font style="font-size: 11pt;" size="2">user_interface.f90</font></tt>).&nbsp;</td>
2842</tr> <tr> <td style="vertical-align: top;"><a name="slicer_range_limits_dvrp"></a><span style="font-weight: bold;">slicer_range_limits_<br>
2843dvrp</span></td> <td style="vertical-align: top;">R(2,10)</td>
2844<td style="vertical-align: top;"><span style="font-style: italic;">10
2845* (-1,1)</span></td> <td style="vertical-align: top;">Ranges
2846of values to which a color table has to be mapped (units of the
2847respective quantity).<br> <br>
2848In case that slicers have to be displayed (see <a href="#threshold">mode_dvrp</a>),
2849this parameter defines the ranges of values of the respective
2850quantities to which the colortable in use has to be mapped. If e.g. a
2851temperature slice shall be displayed, the colortable defines colors
2852from blue to red, and <span style="font-weight: bold;">slicer_range_limits_dvrp</span>
2853= 290.0, 305.0 then areas with temperature of 290 K are displayed in
2854dark blue and those with 305.0 are displayed in dark red. Temperatures
2855within these limits will be displayed by a continuous color gradient
2856from blue to red and Temperatures outside the limits will
2857be displayed either in dark blue or in dark red.<br> <br>
2858Up to ten different ranges can be assigned in case that more than one
2859slicer has to be displayed.<br> <br>
2860See <a href="#threshold">mode_dvrp</a>
2861for the declaration of color charts.</td> </tr> <tr>
2862<td style="vertical-align: top;"> <p><a name="superelevation"></a><b>superelevation</b></p>
2863</td> <td style="vertical-align: top;">R</td>
2864<td style="vertical-align: top;"><i>1.0</i></td>
2865<td style="vertical-align: top;"> <p>Superelevation
2866factor for the vertical coordinate.&nbsp; </p> <p>For
2867domains with unfavorable ratio between the vertical and
2868the horizontal size
2869(the vertical size is determined by <a href="#nz_do3d">nz_do3d</a>)
2870a <span style="font-weight: bold;">superelevation</span>
2871/= <span style="font-style: italic;">1.0</span> may
2872be used. If e.g. the
2873horizontal size is substantially larger
2874than the vertical size, a <span style="font-weight: bold;">superelevation</span>
2875much larger than <span style="font-style: italic;">1.0</span>
2876should
2877be used, since otherwise the domain appears as a
2878"flat disk" in the visualization and thus the vertical direction is
2879only very poorly resolved.</p> </td> </tr> <tr>
2880<td style="vertical-align: top;"> <p><a name="superelevation_x"></a><b>superelevation_x</b></p>
2881</td> <td style="vertical-align: top;">R<br> </td>
2882<td style="vertical-align: top; font-style: italic;">1.0<br>
2883</td> <td style="vertical-align: top;"> <p>Superelevation
2884factor for the horizontal (x) coordinate.&nbsp; </p> <p>This
2885parameter can be used to stretch the displayed domain
2886along the x-direction. See also <a href="#superelevation">superelevation</a>.</p>
2887</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="superelevation_y"></a><b>superelevation_y</b></p>
2888</td> <td style="vertical-align: top;">R<br> </td>
2889<td style="vertical-align: top; font-style: italic;">1.0<br>
2890</td> <td style="vertical-align: top;">Superelevation
2891factor for the
2892horizontal (y) coordinate.&nbsp; <p>This parameter can be
2893used to
2894stretch the displayed domain along the y-direction. See also <a href="#superelevation">superelevation</a>.</p> </td>
2895</tr> <tr> <td style="vertical-align: top;"><p><a name="threshold"></a><b>threshold</b></p>
2896</td> <td style="vertical-align: top;">R(10)<br>
2897</td> <td style="vertical-align: top; font-style: italic;">0.0<br>
2898</td> <td style="vertical-align: top;"> <p>Threshold
2899value for which an isosurface is to be created by
2900the <span style="font-weight: bold;">dvrp</span>
2901software.&nbsp; </p> <p>If the creation of
2902isosurfaces is switched on via
2903parameter <a href="#mode_dvrp">mode_dvrp</a>,
2904then the respective threshold value for which the isosurface is to be
2905created can be assigned via <b>threshold</b>. If several
2906isosurfaces
2907are given by <b>mode_dvrp</b>, then an individual
2908threshold value for
2909each isosurface can be assigned. The order of the threshold values
2910refers to the order of the isosurfaces given by <b>mode_dvrp</b>.</p>
2911</td> </tr> </tbody></table><span style="font-weight: bold;"><span style="font-weight: bold;"><br>
2912</span></span><span style="font-weight: bold;"><span style="font-weight: bold;">Package (<span style="font-weight: bold;">mrun</span>
2913option -p): <span style="font-weight: bold;"><a name="spectra"></a>spectra</span>&nbsp;&nbsp;&nbsp;&nbsp;
2914NAMELIST group name: <span style="font-weight: bold;">spectra_par<br>
2915<br></span></span></span><table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2"> <tbody> <tr>
2916<td style="vertical-align: top;"><font size="4"><b>Parameter
2917name</b></font></td> <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
2918<td style="vertical-align: top;"> <p><b><font size="4">Default</font></b> <br> <b><font size="4">value</font></b></p> </td>
2919<td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
2920</tr> <tr> <td style="vertical-align: top;"><p><a name="averaging_interval_sp"></a><b>averaging_interval_sp</b></p>
2921</td> <td style="vertical-align: top;">R<br> </td>
2922<td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="chapter_4.2.html#averaging_interval">averaging_<br>
2923interval</a></span> </td> <td style="vertical-align: top;"> <p>Averaging interval
2924for spectra output to local
2925file <font color="#000000"><font color="#000000"><a href="chapter_3.4.html#DATA_1D_SP_NETCDF">DATA_1D_SP_NETCDF</a>
2926</font></font>and/or&nbsp; <a href="chapter_3.4.html#PLOTSP_X_DATA">PLOTSP_X_DATA</a>
2927/ &nbsp;&nbsp; <a href="chapter_3.4.html#PLOTSP_Y_DATA">PLOTSP_Y_DATA</a>
2928(in s).&nbsp; </p> <p>If
2929this parameter is given a non-zero value, temporally
2930averaged spectra data are output. By default, spectra data data are not
2931subject to temporal averaging. The interval length is limited by the
2932parameter <a href="#dt_dosp">dt_dosp</a>. In any
2933case <b>averaging_interval_sp</b> &lt;= <b>dt_dosp
2934</b>must
2935hold.</p>If an interval is defined, then by default the average
2936is calculated
2937from the data values of all timesteps lying within this interval. The
2938number of time levels entering into the average can be reduced with the
2939parameter <a href="chapter_4.2.html#dt_averaging_input_pr">dt_averaging_input_pr</a>.
2940<p>If
2941an averaging interval can not be completed at the end of a run, it will
2942be finished at the beginning of the next restart run. Thus for restart
2943runs, averaging intervals do not
2944necessarily begin at the beginning of the run.</p></td> </tr>
2945<tr> <td style="vertical-align: top;"><b><a name="comp_spectra_level"></a>comp_spectra_level</b></td>
2946<td style="vertical-align: top;">I(10)</td> <td style="vertical-align: top;"><i>no level</i></td>
2947<td style="vertical-align: top;"> <p>Vertical level
2948for which horizontal spectra are to be
2949calculated and output (gridpoints).<br> </p> <br>
2950Spectra can be calculated for up to ten levels.</td> </tr>
2951<tr><td style="vertical-align: top;"><p><a name="data_output_sp"></a><b>data_output_sp</b></p></td><td style="vertical-align: top;">C*10 (10)</td><td style="vertical-align: top;"><i>10 * ' '</i></td><td style="vertical-align: top;"><p>Quantities for which
2952horizontal spectra are to be calculated
2953and output.</p> <p>Allowed values are:&nbsp; <b>data_output_sp</b>
2954= <span style="font-style: italic;">'u'</span>, <span style="font-style: italic;">'v'</span>, <span style="font-style: italic;">'w'</span>, <span style="font-style: italic;">'pt'</span>, <span style="font-style: italic;">'q'</span>.<br> </p>
2955<p>Spectra are calculated using the FFT-method defined by <a href="chapter_4.1.html#fft_method">fft_method</a>.</p>
2956<p>By default spectra data are output to the local file <a href="chapter_3.4.html#DATA_1D_SP_NETCDF">DATA_1D_SP_NETCDF</a>.
2957The file's format is NetCDF.&nbsp; Further details about processing
2958NetCDF data are given in chapter <a href="chapter_4.5.1.html">4.5.1</a>.</p><p>The
2959temporal interval of the output times of profiles is
2960assigned via the parameter <a href="chapter_4.2.html#dt_dosp">dt_dosp</a>.&nbsp;</p><p>The
2961vertical levels for which spectra are to be computed and output must be
2962given by parameter <font><a href="chapter_4.2.html#comp_spectra_level"><span lang="en-GB"><font face="Thorndale">comp_spectra_level</font></span></a></font>.
2963</p><span style="font-weight: bold;">Note:</span><br>
2964Beside <span style="font-weight: bold;">data_output_sp</span>,
2965values <span style="font-weight: bold;">must</span>
2966be given for each of the
2967parameters,&nbsp; <font><a href="chapter_4.2.html#comp_spectra_level"><span lang="en-GB"><font face="Thorndale">comp_spectra_level</font></span></a></font>,
2968and <font><a href="chapter_4.2.html#spectra_direction"><span lang="en-GB"><font face="Thorndale">spectra_direction</font></span></a></font>,
2969otherwise <span style="font-weight: bold;">no</span>
2970output will be
2971created!<br><br><br>
2972Calculation of spectra requires cyclic boundary conditions
2973along the respective directions (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
2974and <a href="chapter_4.1.html#bc_ns">bc_ns</a>).For
2975historical reasons, data can also be output in ASCII-format on local
2976files <a href="chapter_3.4.html#PLOTSP_X_DATA">PLOTSP_X_DATA</a>
2977and/or <a href="chapter_3.4.html#PLOTSP_Y_DATA">PLOTSP_Y_DATA</a>
2978(depending on the direction(s) along which spectra are to be
2979calculated; see <font><a href="chapter_4.2.html#spectra_direction"><span lang="en-GB"><font face="Thorndale">spectra_direction</font></span></a>),</font>
2980which are readable by the graphic software <span style="font-weight: bold;">profil</span>. See
2981parameter <a href="chapter_4.2.html#data_output_format">data_output_format</a>
2982for defining the format in which data shall be output.&nbsp;Within
2983these file, the spectra are ordered with respect to their
2984output times. Spectra can also be temporally averaged (see <a href="chapter_4.2.html#averaging_interval_sp">averaging_interval_sp</a>
2985).&nbsp;<font><a href="chapter_4.2.html#spectra_direction"><span lang="en-GB"></span></a>Each data point of a
2986spectrum is output in a single line (1st column:
2987wavenumber, 2nd column: spectral coefficient). If spectra are to be
2988calculated and output for more than one height (see </font><font><a href="chapter_4.2.html#comp_spectra_level"><span lang="en-GB"><font face="Thorndale">comp_spectra_level</font></span></a></font><font>),
2989the spectral coefficients for the further heighs can be found in the
2990subsequent columns. </font>The order
2991of the data in the file follows the order used in the assignment for <b>data_output_sp</b>
2992(<b>data_output_sp</b> = <span style="font-style: italic;">'u'</span>, <span style="font-style: italic;">'v'</span>,&hellip;
2993means that the file starts with the spectra of the u-component,
2994followed by the v-component spectra, etc.). Additional to the files
2995PLOTSP_X_DATA and PLOTSP_Y_DATA which contain
2996the data,
2997PALM creates NAMELIST parameter files (local name <a href="chapter_3.4.html#PLOTSP_X_PAR">PLOTSP_X_PAR</a>
2998and <a href="chapter_3.4.html#PLOTSP_X_PAR">PLOTSP_Y_PAR</a>)
2999which can be used as parameter input file for the plot software <a href="http://www.muk.uni-hannover.de/institut/software/profil_intro.html">profil</a>.
3000Spectra can be directly plotted with <span style="font-weight: bold;">profil</span>
3001using the data and the corresponding parameter file. The
3002plot layout is
3003steered via the parameter input file. The vertical levels for which
3004spectra are to be plotted must be given by <font><a href="chapter_4.2.html#plot_spectra_level"><span lang="en-GB"><font face="Thorndale">plot_spectra_level</font></span></a></font><font><a href="chapter_4.2.html#comp_spectra_level"><span lang="en-GB"></span></a></font>. <span style="font-weight: bold;"></span>Otherwise, no
3005spectra
3006will appear on the plot, although data are available on file. All
3007parameter values can be changed by editing the parameter
3008input
3009file.<span style="font-weight: bold;"><br></span></td></tr><tr>
3010<td style="vertical-align: top;"> <p><a name="dt_dosp"></a><b>dt_dosp</b></p>
3011</td> <td style="vertical-align: top;">R</td>
3012<td style="vertical-align: top;"><i>value of
3013&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>output</a></i></td>
3014<td style="vertical-align: top;"> <p>Temporal
3015interval at which&nbsp;spectra data shall be output
3016(in s).&nbsp; </p> <p><span lang="en-GB"><font face="Thorndale">If output of
3017horizontal spectra is switched on (see </font></span><a href="#data_output_sp"><span lang="en-GB"><font face="Thorndale">data_output_sp</font></span></a><span lang="en-GB"><font face="Thorndale">), </font></span><span lang="en-GB"><font face="Thorndale">this
3018parameter can be used to
3019assign the temporal interval at which spectral data&nbsp; shall be
3020output. </font></span><span lang="en-GB"><font face="Thorndale">Output can be skipped at the beginning of a
3021simulation using parameter <a href="#skip_time_dosp">skip_time_dosp</a>,
3022which has zero value by default. </font></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">Reference
3023time is the beginning of
3024&nbsp;the simulation, i.e. output takes place at times t = <span style="font-weight: bold;">skip_time_dosp</span> + <b>dt_dosp</b>,
3025<span style="font-weight: bold;">skip_time_dosp</span>
3026+ 2*<b>dt_dosp</b>, skip_time_dosp + 3*<b>dt_dosp</b>,
3027etc. The actual output times can
3028deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).&nbsp;
3029If <b>dt_dosp</b> &lt; </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale">dt</font></span></a><span lang="en-GB"><font face="Thorndale">, then
3030spectral data are output
3031after each time step (if this is requested it should be <b>dt_dosp</b>
3032= <i>0</i>).</font></span> </p> </td>
3033</tr> <tr> <td style="vertical-align: top;"><p><a name="plot_spectra_level"></a><b>plot_spectra_level</b></p>
3034</td> <td style="vertical-align: top;">I(10)</td>
3035<td style="vertical-align: top;"><i>no level</i></td>
3036<td style="vertical-align: top;"> <p>Vertical
3037level(s) for which horizontal spectra are to be
3038plotted (in gridpoints).&nbsp; </p> <p>This parameter
3039only affects the display of spectra in plots
3040created with <span style="font-weight: bold;">profil</span>.
3041The
3042spectral data created and output to file are exclusively determined via
3043<font><a href="#comp_spectra_level"><span lang="en-GB"><font face="Thorndale">comp_spectra_level</font></span></a></font>.</p>
3044</td> </tr> <tr> <td style="vertical-align: top;"><a name="skip_time_dosp"></a><span style="font-weight: bold;">skip_time_dosp</span></td>
3045<td style="vertical-align: top;">R<br> </td> <td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="chapter_4.2.html#skip_time_data_output">skip_time_<br>data_output</a></span>
3046</td> <td style="vertical-align: top;">No output of
3047spectra data before this interval has passed (in s).<br><br>This
3048parameter causes that data output activities are starting not before
3049this interval
3050(counting from the beginning of the simulation, t=0) has passed. <br><br><span style="font-weight: bold;">Example:</span><br>If
3051the user has set <a href="#dt_dosp">dt_dosp</a> = <span style="font-style: italic;">3600.0</span> and <span style="font-weight: bold;">skip_time_dosp</span> = <span style="font-style: italic;">1800.0</span>, then the
3052first output will be done at t = 5400 s. </td> </tr>
3053<tr> <td style="vertical-align: top;"> <p><a name="spectra_direction"></a><b>spectra_direction</b></p>
3054</td> <td style="vertical-align: top;">C*2 (10)</td>
3055<td style="vertical-align: top;"><i>10 * ' '</i></td>
3056<td style="vertical-align: top;"> <p>Direction(s)
3057along which spectra are to be calculated.&nbsp; </p> <p>Allowed
3058values are <span style="font-style: italic;">'x'</span>,
3059<span style="font-style: italic;">'y'</span> and <span style="font-style: italic;">'xy'</span>. For
3060every quantity given by <a href="#data_output_sp">data_output_sp</a>
3061a corresponding
3062direction<span style="font-weight: bold;"> </span>must
3063be assigned.<br> </p> <p>Calculation of spectra
3064requires cyclic boundary conditions
3065along the respective directions (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
3066and <a href="chapter_4.1.html#bc_ns">bc_ns</a>).</p>
3067</td> </tr> </tbody></table><span style="font-weight: bold;"><span style="font-weight: bold;"><span style="font-weight: bold;"><br>
3068</span></span></span><h3 style="line-height: 100%;"><br><a href="chapter_4.1.html"><img src="left.gif" name="Grafik1" align="bottom" border="2" height="32" width="32"></a><a href="index.html"><img src="up.gif" name="Grafik2" align="bottom" border="2" height="32" width="32"></a><a href="chapter_4.3.html"><img src="right.gif" name="Grafik3" align="bottom" border="2" height="32" width="32"></a></h3><span style="font-style: italic;">Last change:</span>
3069$Id: chapter_4.2.html 89 2007-05-25 12:08:31Z raasch $ <span style="font-weight: bold;"><span style="font-weight: bold;"><br>
3070</span></span><br></body></html>
Note: See TracBrowser for help on using the repository browser.