source: palm/trunk/DOC/app/chapter_4.1.html @ 252

Last change on this file since 252 was 246, checked in by raasch, 16 years ago

further changes for dvrp clipping

  • Property svn:keywords set to Id
File size: 223.4 KB
Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head>
3
4
5
6
7
8
9
10 
11 
12 
13 
14 
15 
16  <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
17
18
19
20
21
22
23 
24 
25 
26 
27 
28 
29  <title>PALM chapter 4.1</title></head>
30<body>
31
32
33
34
35
36
37<h3><a name="chapter4.1"></a>4.1
38Initialization parameters</h3>
39
40
41
42
43
44
45
46<br>
47
48
49
50
51
52
53<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2">
54
55
56
57
58
59
60 <tbody>
61
62
63
64
65
66
67
68    <tr>
69
70
71
72
73
74
75 <td style="vertical-align: top;"><font size="4"><b>Parameter name</b></font></td>
76
77
78
79
80
81
82
83      <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
84
85
86
87
88
89
90
91      <td style="vertical-align: top;"> 
92     
93     
94     
95     
96     
97     
98      <p><b><font size="4">Default</font></b> <br>
99
100
101
102
103
104
105 <b><font size="4">value</font></b></p>
106
107
108
109
110
111
112 </td>
113
114
115
116
117
118
119
120      <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
121
122
123
124
125
126
127
128    </tr>
129
130
131
132
133
134
135 <tr>
136
137
138
139
140
141
142 <td style="vertical-align: top;">
143     
144     
145     
146     
147     
148     
149      <p><a name="adjust_mixing_length"></a><b>adjust_mixing_length</b></p>
150
151
152
153
154
155
156
157      </td>
158
159
160
161
162
163
164 <td style="vertical-align: top;">L</td>
165
166
167
168
169
170
171
172      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
173
174
175
176
177
178
179 <td style="vertical-align: top;"> 
180     
181     
182     
183     
184     
185     
186      <p style="font-style: normal;">Near-surface adjustment of the
187mixing length to the Prandtl-layer law.&nbsp; </p>
188
189
190
191
192
193
194 
195     
196     
197     
198     
199     
200     
201      <p>Usually
202the mixing length in LES models l<sub>LES</sub>
203depends (as in PALM) on the grid size and is possibly restricted
204further in case of stable stratification and near the lower wall (see
205parameter <a href="#wall_adjustment">wall_adjustment</a>).
206With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span>
207the Prandtl' mixing length l<sub>PR</sub> = kappa * z/phi
208is calculated
209and the mixing length actually used in the model is set l = MIN (l<sub>LES</sub>,
210l<sub>PR</sub>). This usually gives a decrease of the
211mixing length at
212the bottom boundary and considers the fact that eddy sizes
213decrease in the vicinity of the wall.&nbsp; </p>
214
215
216
217
218
219
220 
221     
222     
223     
224     
225     
226     
227      <p style="font-style: normal;"><b>Warning:</b> So
228far, there is
229no good experience with <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> !&nbsp; </p>
230
231
232
233
234
235
236
237     
238     
239     
240     
241     
242     
243      <p>With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> and the
244Prandtl-layer being
245switched on (see <a href="#prandtl_layer">prandtl_layer</a>)
246      <span style="font-style: italic;">'(u*)** 2+neumann'</span>
247should always be set as the lower boundary condition for the TKE (see <a href="#bc_e_b">bc_e_b</a>),
248otherwise the near-surface value of the TKE is not in agreement with
249the Prandtl-layer law (Prandtl-layer law and Prandtl-Kolmogorov-Ansatz
250should provide the same value for K<sub>m</sub>). A warning
251is given,
252if this is not the case.</p>
253
254
255
256
257
258
259 </td>
260
261
262
263
264
265
266 </tr>
267
268
269
270
271
272
273 <tr>
274
275
276
277
278
279
280
281      <td style="vertical-align: top;"> 
282     
283     
284     
285     
286     
287     
288      <p><a name="alpha_surface"></a><b>alpha_surface</b></p>
289
290
291
292
293
294
295
296      </td>
297
298
299
300
301
302
303 <td style="vertical-align: top;">R<br>
304
305
306
307
308
309
310 </td>
311
312
313
314
315
316
317
318      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
319
320
321
322
323
324
325 </td>
326
327
328
329
330
331
332
333      <td style="vertical-align: top;"> 
334     
335     
336     
337     
338     
339     
340      <p style="font-style: normal;">Inclination of the model domain
341with respect to the horizontal (in degrees).&nbsp; </p>
342
343
344
345
346
347
348 
349     
350     
351     
352     
353     
354     
355      <p style="font-style: normal;">By means of <b>alpha_surface</b>
356the model domain can be inclined in x-direction with respect to the
357horizontal. In this way flows over inclined surfaces (e.g. drainage
358flows, gravity flows) can be simulated. In case of <b>alpha_surface
359      </b>/= <span style="font-style: italic;">0</span>
360the buoyancy term
361appears both in
362the equation of motion of the u-component and of the w-component.<br>
363
364
365
366
367
368
369
370      </p>
371
372
373
374
375
376
377 
378     
379     
380     
381     
382     
383     
384      <p style="font-style: normal;">An inclination
385is only possible in
386case of cyclic horizontal boundary conditions along x AND y (see <a href="#bc_lr">bc_lr</a>
387and <a href="#bc_ns">bc_ns</a>) and <a href="#topography">topography</a> = <span style="font-style: italic;">'flat'</span>. </p>
388
389
390
391
392
393
394
395     
396     
397     
398     
399     
400     
401      <p>Runs with inclined surface still require additional
402user-defined code as well as modifications to the default code. Please
403ask the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM
404developer&nbsp; group</a>.</p>
405
406
407
408
409
410
411 </td>
412
413
414
415
416
417
418 </tr>
419
420
421
422
423
424
425
426    <tr>
427
428
429
430
431
432
433 <td style="vertical-align: top;"> 
434     
435     
436     
437     
438     
439     
440      <p><a name="bc_e_b"></a><b>bc_e_b</b></p>
441
442
443
444
445
446
447 </td>
448
449
450
451
452
453
454
455      <td style="vertical-align: top;">C * 20</td>
456
457
458
459
460
461
462 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
463
464
465
466
467
468
469
470      <td style="vertical-align: top;"> 
471     
472     
473     
474     
475     
476     
477      <p style="font-style: normal;">Bottom boundary condition of the
478TKE.&nbsp; </p>
479
480
481
482
483
484
485 
486     
487     
488     
489     
490     
491     
492      <p><b>bc_e_b</b> may be
493set to&nbsp;<span style="font-style: italic;">'neumann'</span>
494or <span style="font-style: italic;">'(u*) ** 2+neumann'</span>.
495      <b>bc_e_b</b>
496= <span style="font-style: italic;">'neumann'</span>
497yields to
498e(k=0)=e(k=1) (Neumann boundary condition), where e(k=1) is calculated
499via the prognostic TKE equation. Choice of <span style="font-style: italic;">'(u*)**2+neumann'</span>
500also yields to
501e(k=0)=e(k=1), but the TKE at the Prandtl-layer top (k=1) is calculated
502diagnostically by e(k=1)=(us/0.1)**2. However, this is only allowed if
503a Prandtl-layer is used (<a href="#prandtl_layer">prandtl_layer</a>).
504If this is not the case, a warning is given and <b>bc_e_b</b>
505is reset
506to <span style="font-style: italic;">'neumann'</span>.&nbsp;
507      </p>
508
509
510
511
512
513
514 
515     
516     
517     
518     
519     
520     
521      <p style="font-style: normal;">At the top
522boundary a Neumann
523boundary condition is generally used: (e(nz+1) = e(nz)).</p>
524
525
526
527
528
529
530 </td>
531
532
533
534
535
536
537
538    </tr>
539
540
541
542
543
544
545 <tr>
546
547
548
549
550
551
552 <td style="vertical-align: top;">
553     
554     
555     
556     
557     
558     
559      <p><a name="bc_lr"></a><b>bc_lr</b></p>
560
561
562
563
564
565
566
567      </td>
568
569
570
571
572
573
574 <td style="vertical-align: top;">C * 20</td>
575
576
577
578
579
580
581
582      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
583
584
585
586
587
588
589
590      <td style="vertical-align: top;">Boundary
591condition along x (for all quantities).<br>
592
593
594
595
596
597
598 <br>
599
600
601
602
603
604
605
606By default, a cyclic boundary condition is used along x.<br>
607
608
609
610
611
612
613 <br>
614
615
616
617
618
619
620
621      <span style="font-weight: bold;">bc_lr</span> may
622also be
623assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
624(inflow from left, outflow to the right) or <span style="font-style: italic;">'radiation/dirichlet'</span>
625(inflow from
626right, outflow to the left). This requires the multi-grid method to be
627used for solving the Poisson equation for perturbation pressure (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
628and it also requires cyclic boundary conditions along y (see&nbsp;<a href="#bc_ns">bc_ns</a>).<br>
629
630
631
632
633
634
635 <br>
636
637
638
639
640
641
642
643In case of these non-cyclic lateral boundaries, a Dirichlet condition
644is used at the inflow for all quantities (initial vertical profiles -
645see <a href="#initializing_actions">initializing_actions</a>
646- are fixed during the run) except u, to which a Neumann (zero
647gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
648gradient) condition is used for the scalars. For perturbation
649pressure Neumann (zero gradient) conditions are assumed both at the
650inflow and at the outflow.<br>
651
652
653
654
655
656
657 <br>
658
659
660
661
662
663
664
665When using non-cyclic lateral boundaries, a filter is applied to the
666velocity field in the vicinity of the outflow in order to suppress any
667reflections of outgoing disturbances (see <a href="#km_damp_max">km_damp_max</a>
668and <a href="#outflow_damping_width">outflow_damping_width</a>).<br>
669
670
671
672
673
674
675
676      <br>
677
678
679
680
681
682
683
684In order to maintain a turbulent state of the flow, it may be
685neccessary to continuously impose perturbations on the horizontal
686velocity field in the vicinity of the inflow throughout the whole run.
687This can be switched on using <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#create_disturbances">create_disturbances</a>.
688The horizontal range to which these perturbations are applied is
689controlled by the parameters <a href="#inflow_disturbance_begin">inflow_disturbance_begin</a>
690and <a href="#inflow_disturbance_end">inflow_disturbance_end</a>.
691The vertical range and the perturbation amplitude are given by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</a>,
692      <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</a>,
693and <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</a>.
694The time interval at which perturbations are to be imposed is set by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</a>.<br>
695
696
697
698
699
700
701
702      <br>
703
704
705
706
707
708
709
710In case of non-cyclic horizontal boundaries <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver
711at_all_substeps</a> = .T. should be used.<br>
712
713
714
715
716
717
718 <br>
719
720
721
722
723
724
725 <span style="font-weight: bold;">Note:</span><br>
726
727
728
729
730
731
732
733Using non-cyclic lateral boundaries requires very sensitive adjustments
734of the inflow (vertical profiles) and the bottom boundary conditions,
735e.g. a surface heating should not be applied near the inflow boundary
736because this may significantly disturb the inflow. Please check the
737model results very carefully.</td>
738
739
740
741
742
743
744 </tr>
745
746
747
748
749
750
751 <tr>
752
753
754
755
756
757
758 <td style="vertical-align: top;"> 
759     
760     
761     
762     
763     
764     
765      <p><a name="bc_ns"></a><b>bc_ns</b></p>
766
767
768
769
770
771
772
773      </td>
774
775
776
777
778
779
780 <td style="vertical-align: top;">C * 20</td>
781
782
783
784
785
786
787
788      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
789
790
791
792
793
794
795
796      <td style="vertical-align: top;">Boundary
797condition along y (for all quantities).<br>
798
799
800
801
802
803
804 <br>
805
806
807
808
809
810
811
812By default, a cyclic boundary condition is used along y.<br>
813
814
815
816
817
818
819 <br>
820
821
822
823
824
825
826
827      <span style="font-weight: bold;">bc_ns</span> may
828also be
829assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
830(inflow from rear ("north"), outflow to the front ("south")) or <span style="font-style: italic;">'radiation/dirichlet'</span>
831(inflow from front ("south"), outflow to the rear ("north")). This
832requires the multi-grid
833method to be used for solving the Poisson equation for perturbation
834pressure (see <a href="chapter_4.2.html#psolver">psolver</a>)
835and it also requires cyclic boundary conditions along x (see<br>
836
837
838
839
840
841
842 <a href="#bc_lr">bc_lr</a>).<br>
843
844
845
846
847
848
849 <br>
850
851
852
853
854
855
856
857In case of these non-cyclic lateral boundaries, a Dirichlet condition
858is used at the inflow for all quantities (initial vertical profiles -
859see <a href="chapter_4.1.html#initializing_actions">initializing_actions</a>
860- are fixed during the run) except u, to which a Neumann (zero
861gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
862gradient) condition is used for the scalars. For perturbation
863pressure Neumann (zero gradient) conditions are assumed both at the
864inflow and at the outflow.<br>
865
866
867
868
869
870
871 <br>
872
873
874
875
876
877
878
879For further details regarding non-cyclic lateral boundary conditions
880see <a href="#bc_lr">bc_lr</a>.</td>
881
882
883
884
885
886
887 </tr>
888
889
890
891
892
893
894
895    <tr>
896
897
898
899
900
901
902 <td style="vertical-align: top;"> 
903     
904     
905     
906     
907     
908     
909      <p><a name="bc_p_b"></a><b>bc_p_b</b></p>
910
911
912
913
914
915
916 </td>
917
918
919
920
921
922
923
924      <td style="vertical-align: top;">C * 20</td>
925
926
927
928
929
930
931 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
932
933
934
935
936
937
938
939      <td style="vertical-align: top;"> 
940     
941     
942     
943     
944     
945     
946      <p style="font-style: normal;">Bottom boundary condition of the
947perturbation pressure.&nbsp; </p>
948
949
950
951
952
953
954 
955     
956     
957     
958     
959     
960     
961      <p>Allowed values
962are <span style="font-style: italic;">'dirichlet'</span>,
963      <span style="font-style: italic;">'neumann'</span>
964and <span style="font-style: italic;">'neumann+inhomo'</span>.&nbsp;
965      <span style="font-style: italic;">'dirichlet'</span>
966sets
967p(k=0)=0.0,&nbsp; <span style="font-style: italic;">'neumann'</span>
968sets p(k=0)=p(k=1). <span style="font-style: italic;">'neumann+inhomo'</span>
969corresponds to an extended Neumann boundary condition where heat flux
970or temperature inhomogeneities near the
971surface (pt(k=1))&nbsp; are additionally regarded (see Shen and
972LeClerc
973(1995, Q.J.R. Meteorol. Soc.,
9741209)). This condition is only permitted with the Prandtl-layer
975switched on (<a href="#prandtl_layer">prandtl_layer</a>),
976otherwise the run is terminated.&nbsp; </p>
977
978
979
980
981
982
983 
984     
985     
986     
987     
988     
989     
990      <p>Since
991at the bottom boundary of the model the vertical
992velocity
993disappears (w(k=0) = 0.0), the consistent Neumann condition (<span style="font-style: italic;">'neumann'</span> or <span style="font-style: italic;">'neumann+inhomo'</span>)
994dp/dz = 0 should
995be used, which leaves the vertical component w unchanged when the
996pressure solver is applied. Simultaneous use of the Neumann boundary
997conditions both at the bottom and at the top boundary (<a href="#bc_p_t">bc_p_t</a>)
998usually yields no consistent solution for the perturbation pressure and
999should be avoided.</p>
1000
1001
1002
1003
1004
1005
1006 </td>
1007
1008
1009
1010
1011
1012
1013 </tr>
1014
1015
1016
1017
1018
1019
1020 <tr>
1021
1022
1023
1024
1025
1026
1027 <td style="vertical-align: top;"> 
1028     
1029     
1030     
1031     
1032     
1033     
1034      <p><a name="bc_p_t"></a><b>bc_p_t</b></p>
1035
1036
1037
1038
1039
1040
1041
1042      </td>
1043
1044
1045
1046
1047
1048
1049 <td style="vertical-align: top;">C * 20</td>
1050
1051
1052
1053
1054
1055
1056
1057      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1058
1059
1060
1061
1062
1063
1064
1065      <td style="vertical-align: top;"> 
1066     
1067     
1068     
1069     
1070     
1071     
1072      <p style="font-style: normal;">Top boundary condition of the
1073perturbation pressure.&nbsp; </p>
1074
1075
1076
1077
1078
1079
1080 
1081     
1082     
1083     
1084     
1085     
1086     
1087      <p style="font-style: normal;">Allowed values are <span style="font-style: italic;">'dirichlet'</span>
1088(p(k=nz+1)= 0.0) or <span style="font-style: italic;">'neumann'</span>
1089(p(k=nz+1)=p(k=nz)).&nbsp; </p>
1090
1091
1092
1093
1094
1095
1096 
1097     
1098     
1099     
1100     
1101     
1102     
1103      <p>Simultaneous use
1104of Neumann boundary conditions both at the
1105top and bottom boundary (<a href="#bc_p_b">bc_p_b</a>)
1106usually yields no consistent solution for the perturbation pressure and
1107should be avoided. Since at the bottom boundary the Neumann
1108condition&nbsp; is a good choice (see <a href="#bc_p_b">bc_p_b</a>),
1109a Dirichlet condition should be set at the top boundary.</p>
1110
1111
1112
1113
1114
1115
1116 </td>
1117
1118
1119
1120
1121
1122
1123
1124    </tr>
1125
1126
1127
1128
1129
1130
1131 <tr>
1132
1133
1134
1135
1136
1137
1138 <td style="vertical-align: top;">
1139     
1140     
1141     
1142     
1143     
1144     
1145      <p><a name="bc_pt_b"></a><b>bc_pt_b</b></p>
1146
1147
1148
1149
1150
1151
1152
1153      </td>
1154
1155
1156
1157
1158
1159
1160 <td style="vertical-align: top;">C*20</td>
1161
1162
1163
1164
1165
1166
1167
1168      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1169
1170
1171
1172
1173
1174
1175
1176      <td style="vertical-align: top;"> 
1177     
1178     
1179     
1180     
1181     
1182     
1183      <p style="font-style: normal;">Bottom boundary condition of the
1184potential temperature.&nbsp; </p>
1185
1186
1187
1188
1189
1190
1191 
1192     
1193     
1194     
1195     
1196     
1197     
1198      <p>Allowed values
1199are <span style="font-style: italic;">'dirichlet'</span>
1200(pt(k=0) = const. = <a href="#pt_surface">pt_surface</a>
1201+ <a href="#pt_surface_initial_change">pt_surface_initial_change</a>;
1202the user may change this value during the run using user-defined code)
1203and <span style="font-style: italic;">'neumann'</span>
1204(pt(k=0)=pt(k=1)).&nbsp; <br>
1205
1206
1207
1208
1209
1210
1211
1212When a constant surface sensible heat flux is used (<a href="#surface_heatflux">surface_heatflux</a>), <b>bc_pt_b</b>
1213= <span style="font-style: italic;">'neumann'</span>
1214must be used, because otherwise the resolved scale may contribute to
1215the surface flux so that a constant value cannot be guaranteed.</p>
1216
1217
1218
1219
1220
1221
1222     
1223     
1224     
1225     
1226     
1227     
1228      <p>In the <a href="chapter_3.8.html">coupled</a> atmosphere executable,&nbsp;<a href="chapter_4.2.html#bc_pt_b">bc_pt_b</a> is internally set and does not need to be prescribed.</p>
1229
1230
1231
1232
1233
1234
1235
1236      </td>
1237
1238
1239
1240
1241
1242
1243 </tr>
1244
1245
1246
1247
1248
1249
1250 <tr>
1251
1252
1253
1254
1255
1256
1257 <td style="vertical-align: top;"> 
1258     
1259     
1260     
1261     
1262     
1263     
1264      <p><a name="pc_pt_t"></a><b>bc_pt_t</b></p>
1265
1266
1267
1268
1269
1270
1271
1272      </td>
1273
1274
1275
1276
1277
1278
1279 <td style="vertical-align: top;">C * 20</td>
1280
1281
1282
1283
1284
1285
1286
1287      <td style="vertical-align: top;"><span style="font-style: italic;">'initial_ gradient'</span></td>
1288
1289
1290
1291
1292
1293
1294
1295      <td style="vertical-align: top;"> 
1296     
1297     
1298     
1299     
1300     
1301     
1302      <p style="font-style: normal;">Top boundary condition of the
1303potential temperature.&nbsp; </p>
1304
1305
1306
1307
1308
1309
1310 
1311     
1312     
1313     
1314     
1315     
1316     
1317      <p>Allowed are the
1318values <span style="font-style: italic;">'dirichlet' </span>(pt(k=nz+1)
1319does not change during the run), <span style="font-style: italic;">'neumann'</span>
1320(pt(k=nz+1)=pt(k=nz)), and <span style="font-style: italic;">'initial_gradient'</span>.
1321With the 'initial_gradient'-condition the value of the temperature
1322gradient at the top is
1323calculated from the initial
1324temperature profile (see <a href="#pt_surface">pt_surface</a>,
1325      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>)
1326by bc_pt_t_val = (pt_init(k=nz+1) -
1327pt_init(k=nz)) / dzu(nz+1).<br>
1328
1329
1330
1331
1332
1333
1334
1335Using this value (assumed constant during the
1336run) the temperature boundary values are calculated as&nbsp; </p>
1337
1338
1339
1340
1341
1342
1343
1344     
1345     
1346     
1347     
1348     
1349     
1350      <ul>
1351
1352
1353
1354
1355
1356
1357 
1358       
1359       
1360       
1361       
1362       
1363       
1364        <p style="font-style: normal;">pt(k=nz+1) =
1365pt(k=nz) +
1366bc_pt_t_val * dzu(nz+1)</p>
1367
1368
1369
1370
1371
1372
1373 
1374     
1375     
1376     
1377     
1378     
1379     
1380      </ul>
1381
1382
1383
1384
1385
1386
1387 
1388     
1389     
1390     
1391     
1392     
1393     
1394      <p style="font-style: normal;">(up to k=nz the prognostic
1395equation for the temperature is solved).<br>
1396
1397
1398
1399
1400
1401
1402
1403When a constant sensible heat flux is used at the top boundary (<a href="chapter_4.1.html#top_heatflux">top_heatflux</a>),
1404      <b>bc_pt_t</b> = <span style="font-style: italic;">'neumann'</span>
1405must be used, because otherwise the resolved scale may contribute to
1406the top flux so that a constant value cannot be guaranteed.</p>
1407
1408
1409
1410
1411
1412
1413 </td>
1414
1415
1416
1417
1418
1419
1420
1421    </tr>
1422
1423
1424
1425
1426
1427
1428 <tr>
1429
1430
1431
1432
1433
1434
1435 <td style="vertical-align: top;">
1436     
1437     
1438     
1439     
1440     
1441     
1442      <p><a name="bc_q_b"></a><b>bc_q_b</b></p>
1443
1444
1445
1446
1447
1448
1449
1450      </td>
1451
1452
1453
1454
1455
1456
1457 <td style="vertical-align: top;">C * 20</td>
1458
1459
1460
1461
1462
1463
1464
1465      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1466
1467
1468
1469
1470
1471
1472
1473      <td style="vertical-align: top;"> 
1474     
1475     
1476     
1477     
1478     
1479     
1480      <p style="font-style: normal;">Bottom boundary condition of the
1481specific humidity / total water content.&nbsp; </p>
1482
1483
1484
1485
1486
1487
1488 
1489     
1490     
1491     
1492     
1493     
1494     
1495      <p>Allowed
1496values are <span style="font-style: italic;">'dirichlet'</span>
1497(q(k=0) = const. = <a href="#q_surface">q_surface</a>
1498+ <a href="#q_surface_initial_change">q_surface_initial_change</a>;
1499the user may change this value during the run using user-defined code)
1500and <span style="font-style: italic;">'neumann'</span>
1501(q(k=0)=q(k=1)).&nbsp; <br>
1502
1503
1504
1505
1506
1507
1508
1509When a constant surface latent heat flux is used (<a href="#surface_waterflux">surface_waterflux</a>), <b>bc_q_b</b>
1510= <span style="font-style: italic;">'neumann'</span>
1511must be used, because otherwise the resolved scale may contribute to
1512the surface flux so that a constant value cannot be guaranteed.</p>
1513
1514
1515
1516
1517
1518
1519
1520      </td>
1521
1522
1523
1524
1525
1526
1527 </tr>
1528
1529
1530
1531
1532
1533
1534 <tr>
1535
1536
1537
1538
1539
1540
1541 <td style="vertical-align: top;"> 
1542     
1543     
1544     
1545     
1546     
1547     
1548      <p><a name="bc_q_t"></a><b>bc_q_t</b></p>
1549
1550
1551
1552
1553
1554
1555
1556      </td>
1557
1558
1559
1560
1561
1562
1563 <td style="vertical-align: top;"><span style="font-style: italic;">C
1564* 20</span></td>
1565
1566
1567
1568
1569
1570
1571 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1572
1573
1574
1575
1576
1577
1578
1579      <td style="vertical-align: top;"> 
1580     
1581     
1582     
1583     
1584     
1585     
1586      <p style="font-style: normal;">Top boundary condition of the
1587specific humidity / total water content.&nbsp; </p>
1588
1589
1590
1591
1592
1593
1594 
1595     
1596     
1597     
1598     
1599     
1600     
1601      <p>Allowed
1602are the values <span style="font-style: italic;">'dirichlet'</span>
1603(q(k=nz) and q(k=nz+1) do
1604not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1605With the Neumann boundary
1606condition the value of the humidity gradient at the top is calculated
1607from the
1608initial humidity profile (see <a href="#q_surface">q_surface</a>,
1609      <a href="#q_vertical_gradient">q_vertical_gradient</a>)
1610by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<br>
1611
1612
1613
1614
1615
1616
1617
1618Using this value (assumed constant during the run) the humidity
1619boundary values
1620are calculated as&nbsp; </p>
1621
1622
1623
1624
1625
1626
1627 
1628     
1629     
1630     
1631     
1632     
1633     
1634      <ul>
1635
1636
1637
1638
1639
1640
1641 
1642       
1643       
1644       
1645       
1646       
1647       
1648        <p style="font-style: normal;">q(k=nz+1) =q(k=nz) +
1649bc_q_t_val * dzu(nz+1)</p>
1650
1651
1652
1653
1654
1655
1656 
1657     
1658     
1659     
1660     
1661     
1662     
1663      </ul>
1664
1665
1666
1667
1668
1669
1670 
1671     
1672     
1673     
1674     
1675     
1676     
1677      <p style="font-style: normal;">(up tp k=nz the prognostic
1678equation for q is solved). </p>
1679
1680
1681
1682
1683
1684
1685 </td>
1686
1687
1688
1689
1690
1691
1692 </tr>
1693
1694
1695
1696
1697
1698
1699 <tr>
1700
1701
1702
1703
1704
1705
1706
1707      <td style="vertical-align: top;"> 
1708     
1709     
1710     
1711     
1712     
1713     
1714      <p><a name="bc_s_b"></a><b>bc_s_b</b></p>
1715
1716
1717
1718
1719
1720
1721 </td>
1722
1723
1724
1725
1726
1727
1728
1729      <td style="vertical-align: top;">C * 20</td>
1730
1731
1732
1733
1734
1735
1736 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1737
1738
1739
1740
1741
1742
1743
1744      <td style="vertical-align: top;"> 
1745     
1746     
1747     
1748     
1749     
1750     
1751      <p style="font-style: normal;">Bottom boundary condition of the
1752scalar concentration.&nbsp; </p>
1753
1754
1755
1756
1757
1758
1759 
1760     
1761     
1762     
1763     
1764     
1765     
1766      <p>Allowed values
1767are <span style="font-style: italic;">'dirichlet'</span>
1768(s(k=0) = const. = <a href="#s_surface">s_surface</a>
1769+ <a href="#s_surface_initial_change">s_surface_initial_change</a>;
1770the user may change this value during the run using user-defined code)
1771and <span style="font-style: italic;">'neumann'</span>
1772(s(k=0) =
1773s(k=1)).&nbsp; <br>
1774
1775
1776
1777
1778
1779
1780
1781When a constant surface concentration flux is used (<a href="#surface_scalarflux">surface_scalarflux</a>), <b>bc_s_b</b>
1782= <span style="font-style: italic;">'neumann'</span>
1783must be used, because otherwise the resolved scale may contribute to
1784the surface flux so that a constant value cannot be guaranteed.</p>
1785
1786
1787
1788
1789
1790
1791
1792      </td>
1793
1794
1795
1796
1797
1798
1799 </tr>
1800
1801
1802
1803
1804
1805
1806 <tr>
1807
1808
1809
1810
1811
1812
1813 <td style="vertical-align: top;"> 
1814     
1815     
1816     
1817     
1818     
1819     
1820      <p><a name="bc_s_t"></a><b>bc_s_t</b></p>
1821
1822
1823
1824
1825
1826
1827
1828      </td>
1829
1830
1831
1832
1833
1834
1835 <td style="vertical-align: top;">C * 20</td>
1836
1837
1838
1839
1840
1841
1842
1843      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1844
1845
1846
1847
1848
1849
1850
1851      <td style="vertical-align: top;"> 
1852     
1853     
1854     
1855     
1856     
1857     
1858      <p style="font-style: normal;">Top boundary condition of the
1859scalar concentration.&nbsp; </p>
1860
1861
1862
1863
1864
1865
1866 
1867     
1868     
1869     
1870     
1871     
1872     
1873      <p>Allowed are the
1874values <span style="font-style: italic;">'dirichlet'</span>
1875(s(k=nz) and s(k=nz+1) do
1876not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1877With the Neumann boundary
1878condition the value of the scalar concentration gradient at the top is
1879calculated
1880from the initial scalar concentration profile (see <a href="#s_surface">s_surface</a>, <a href="#s_vertical_gradient">s_vertical_gradient</a>)
1881by: bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<br>
1882
1883
1884
1885
1886
1887
1888
1889Using this value (assumed constant during the run) the concentration
1890boundary values
1891are calculated as </p>
1892
1893
1894
1895
1896
1897
1898 
1899     
1900     
1901     
1902     
1903     
1904     
1905      <ul>
1906
1907
1908
1909
1910
1911
1912 
1913       
1914       
1915       
1916       
1917       
1918       
1919        <p style="font-style: normal;">s(k=nz+1) = s(k=nz) +
1920bc_s_t_val * dzu(nz+1)</p>
1921
1922
1923
1924
1925
1926
1927 
1928     
1929     
1930     
1931     
1932     
1933     
1934      </ul>
1935
1936
1937
1938
1939
1940
1941 
1942     
1943     
1944     
1945     
1946     
1947     
1948      <p style="font-style: normal;">(up to k=nz the prognostic
1949equation for the scalar concentration is
1950solved).</p>
1951
1952
1953
1954
1955
1956
1957 </td>
1958
1959
1960
1961
1962
1963
1964 </tr>
1965
1966
1967
1968
1969
1970
1971 <tr>
1972
1973
1974
1975
1976
1977
1978      <td style="vertical-align: top;"><a name="bc_sa_t"></a><span style="font-weight: bold;">bc_sa_t</span></td>
1979
1980
1981
1982
1983
1984
1985      <td style="vertical-align: top;">C * 20</td>
1986
1987
1988
1989
1990
1991
1992      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1993
1994
1995
1996
1997
1998
1999      <td style="vertical-align: top;">
2000     
2001     
2002     
2003     
2004     
2005     
2006      <p style="font-style: normal;">Top boundary condition of the salinity.&nbsp; </p>
2007
2008
2009
2010
2011
2012
2013 
2014     
2015     
2016     
2017     
2018     
2019     
2020      <p>This parameter only comes into effect for ocean runs (see parameter <a href="#ocean">ocean</a>).</p>
2021
2022
2023
2024
2025
2026
2027     
2028     
2029     
2030     
2031     
2032     
2033      <p style="font-style: normal;">Allowed are the
2034values <span style="font-style: italic;">'dirichlet' </span>(sa(k=nz+1)
2035does not change during the run) and <span style="font-style: italic;">'neumann'</span>
2036(sa(k=nz+1)=sa(k=nz))<span style="font-style: italic;"></span>.&nbsp;<br>
2037
2038
2039
2040
2041
2042
2043      <br>
2044
2045
2046
2047
2048
2049
2050
2051When a constant salinity flux is used at the top boundary (<a href="chapter_4.1.html#top_salinityflux">top_salinityflux</a>),
2052      <b>bc_sa_t</b> = <span style="font-style: italic;">'neumann'</span>
2053must be used, because otherwise the resolved scale may contribute to
2054the top flux so that a constant value cannot be guaranteed.</p>
2055
2056
2057
2058
2059
2060
2061      </td>
2062
2063
2064
2065
2066
2067
2068    </tr>
2069
2070
2071
2072
2073
2074
2075    <tr>
2076
2077
2078
2079
2080
2081
2082 <td style="vertical-align: top;"> 
2083     
2084     
2085     
2086     
2087     
2088     
2089      <p><a name="bc_uv_b"></a><b>bc_uv_b</b></p>
2090
2091
2092
2093
2094
2095
2096
2097      </td>
2098
2099
2100
2101
2102
2103
2104 <td style="vertical-align: top;">C * 20</td>
2105
2106
2107
2108
2109
2110
2111
2112      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2113
2114
2115
2116
2117
2118
2119
2120      <td style="vertical-align: top;"> 
2121     
2122     
2123     
2124     
2125     
2126     
2127      <p style="font-style: normal;">Bottom boundary condition of the
2128horizontal velocity components u and v.&nbsp; </p>
2129
2130
2131
2132
2133
2134
2135 
2136     
2137     
2138     
2139     
2140     
2141     
2142      <p>Allowed
2143values are <span style="font-style: italic;">'dirichlet' </span>and
2144      <span style="font-style: italic;">'neumann'</span>. <b>bc_uv_b</b>
2145= <span style="font-style: italic;">'dirichlet'</span>
2146yields the
2147no-slip condition with u=v=0 at the bottom. Due to the staggered grid
2148u(k=0) and v(k=0) are located at z = - 0,5 * <a href="#dz">dz</a>
2149(below the bottom), while u(k=1) and v(k=1) are located at z = +0,5 *
2150dz. u=v=0 at the bottom is guaranteed using mirror boundary
2151condition:&nbsp; </p>
2152
2153
2154
2155
2156
2157
2158 
2159     
2160     
2161     
2162     
2163     
2164     
2165      <ul>
2166
2167
2168
2169
2170
2171
2172 
2173       
2174       
2175       
2176       
2177       
2178       
2179        <p style="font-style: normal;">u(k=0) = - u(k=1) and v(k=0) = -
2180v(k=1)</p>
2181
2182
2183
2184
2185
2186
2187 
2188     
2189     
2190     
2191     
2192     
2193     
2194      </ul>
2195
2196
2197
2198
2199
2200
2201 
2202     
2203     
2204     
2205     
2206     
2207     
2208      <p style="font-style: normal;">The
2209Neumann boundary condition
2210yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) =
2211v(k=1).
2212With Prandtl - layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>), the free-slip condition is not
2213allowed (otherwise the run will be terminated)<font color="#000000">.</font></p>
2214
2215
2216
2217
2218
2219
2220
2221      </td>
2222
2223
2224
2225
2226
2227
2228 </tr>
2229
2230
2231
2232
2233
2234
2235 <tr>
2236
2237
2238
2239
2240
2241
2242 <td style="vertical-align: top;"> 
2243     
2244     
2245     
2246     
2247     
2248     
2249      <p><a name="bc_uv_t"></a><b>bc_uv_t</b></p>
2250
2251
2252
2253
2254
2255
2256
2257      </td>
2258
2259
2260
2261
2262
2263
2264 <td style="vertical-align: top;">C * 20</td>
2265
2266
2267
2268
2269
2270
2271
2272      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2273
2274
2275
2276
2277
2278
2279
2280      <td style="vertical-align: top;"> 
2281     
2282     
2283     
2284     
2285     
2286     
2287      <p style="font-style: normal;">Top boundary condition of the
2288horizontal velocity components u and v.&nbsp; </p>
2289
2290
2291
2292
2293
2294
2295 
2296     
2297     
2298     
2299     
2300     
2301     
2302      <p>Allowed
2303values are <span style="font-style: italic;">'dirichlet'</span>, <span style="font-style: italic;">'dirichlet_0'</span>
2304and <span style="font-style: italic;">'neumann'</span>.
2305The
2306Dirichlet condition yields u(k=nz+1) = ug(nz+1) and v(k=nz+1) =
2307vg(nz+1),
2308Neumann condition yields the free-slip condition with u(k=nz+1) =
2309u(k=nz) and v(k=nz+1) = v(k=nz) (up to k=nz the prognostic equations
2310for the velocities are solved). The special condition&nbsp;<span style="font-style: italic;">'dirichlet_0'</span> can be used for channel flow, it yields the no-slip condition u(k=nz+1) = ug(nz+1) = 0 and v(k=nz+1) =
2311vg(nz+1) = 0.</p>
2312
2313
2314
2315
2316
2317
2318     
2319     
2320     
2321     
2322     
2323     
2324      <p>In the <a href="chapter_3.8.html">coupled</a> ocean executable, <a href="chapter_4.2.html#bc_uv_t">bc_uv_t</a>&nbsp;is internally set ('neumann') and does not need to be prescribed.</p>
2325
2326
2327
2328
2329
2330
2331 </td>
2332
2333
2334
2335
2336
2337
2338 </tr>
2339
2340
2341
2342
2343
2344
2345 <tr>
2346
2347
2348
2349
2350
2351
2352      <td style="vertical-align: top;"><a name="bottom_salinityflux"></a><span style="font-weight: bold;">bottom_salinityflux</span></td>
2353
2354
2355
2356
2357
2358
2359      <td style="vertical-align: top;">R</td>
2360
2361
2362
2363
2364
2365
2366      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
2367
2368
2369
2370
2371
2372
2373      <td style="vertical-align: top;">
2374     
2375     
2376     
2377     
2378     
2379     
2380      <p>Kinematic salinity flux near the surface (in psu m/s).&nbsp;</p>
2381
2382
2383
2384
2385
2386
2387This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
2388     
2389     
2390     
2391     
2392     
2393     
2394      <p>The
2395respective salinity flux value is used
2396as bottom (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
2397condition must be used for the salinity, which is currently the only available condition.<br>
2398
2399
2400
2401
2402
2403
2404 </p>
2405
2406
2407
2408
2409
2410
2411 </td>
2412
2413
2414
2415
2416
2417
2418    </tr>
2419
2420
2421
2422
2423
2424
2425    <tr>
2426
2427
2428
2429
2430
2431
2432
2433      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_height"></a>building_height</span></td>
2434
2435
2436
2437
2438
2439
2440
2441      <td style="vertical-align: top;">R</td>
2442
2443
2444
2445
2446
2447
2448 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2449
2450
2451
2452
2453
2454
2455 <td>Height
2456of a single building in m.<br>
2457
2458
2459
2460
2461
2462
2463 <br>
2464
2465
2466
2467
2468
2469
2470 <span style="font-weight: bold;">building_height</span> must
2471be less than the height of the model domain. This parameter requires
2472the use of&nbsp;<a href="#topography">topography</a>
2473= <span style="font-style: italic;">'single_building'</span>.</td>
2474
2475
2476
2477
2478
2479
2480
2481    </tr>
2482
2483
2484
2485
2486
2487
2488 <tr>
2489
2490
2491
2492
2493
2494
2495 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_x"></a>building_length_x</span></td>
2496
2497
2498
2499
2500
2501
2502
2503      <td style="vertical-align: top;">R</td>
2504
2505
2506
2507
2508
2509
2510 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2511
2512
2513
2514
2515
2516
2517 <td><span style="font-style: italic;"></span>Width of a single
2518building in m.<br>
2519
2520
2521
2522
2523
2524
2525 <br>
2526
2527
2528
2529
2530
2531
2532
2533Currently, <span style="font-weight: bold;">building_length_x</span>
2534must be at least <span style="font-style: italic;">3
2535*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="#dx">dx</a>
2536      </span><span style="font-style: italic;">- <a href="#building_wall_left">building_wall_left</a></span>.
2537This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2538= <span style="font-style: italic;">'single_building'</span>.</td>
2539
2540
2541
2542
2543
2544
2545
2546    </tr>
2547
2548
2549
2550
2551
2552
2553 <tr>
2554
2555
2556
2557
2558
2559
2560 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_y"></a>building_length_y</span></td>
2561
2562
2563
2564
2565
2566
2567
2568      <td style="vertical-align: top;">R</td>
2569
2570
2571
2572
2573
2574
2575 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2576
2577
2578
2579
2580
2581
2582 <td>Depth
2583of a single building in m.<br>
2584
2585
2586
2587
2588
2589
2590 <br>
2591
2592
2593
2594
2595
2596
2597
2598Currently, <span style="font-weight: bold;">building_length_y</span>
2599must be at least <span style="font-style: italic;">3
2600*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="#dy">dy</a></span><span style="font-style: italic;"> - <a href="#building_wall_south">building_wall_south</a></span>. This parameter requires
2601the use of&nbsp;<a href="#topography">topography</a>
2602= <span style="font-style: italic;">'single_building'</span>.</td>
2603
2604
2605
2606
2607
2608
2609
2610    </tr>
2611
2612
2613
2614
2615
2616
2617 <tr>
2618
2619
2620
2621
2622
2623
2624 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_left"></a>building_wall_left</span></td>
2625
2626
2627
2628
2629
2630
2631
2632      <td style="vertical-align: top;">R</td>
2633
2634
2635
2636
2637
2638
2639 <td style="vertical-align: top;"><span style="font-style: italic;">building centered in x-direction</span></td>
2640
2641
2642
2643
2644
2645
2646
2647      <td>x-coordinate of the left building wall (distance between the
2648left building wall and the left border of the model domain) in m.<br>
2649
2650
2651
2652
2653
2654
2655
2656      <br>
2657
2658
2659
2660
2661
2662
2663
2664Currently, <span style="font-weight: bold;">building_wall_left</span>
2665must be at least <span style="font-style: italic;">1
2666*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and less than <span style="font-style: italic;">( <a href="#nx">nx</a>&nbsp;
2667- 1 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a></span>.
2668This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2669= <span style="font-style: italic;">'single_building'</span>.<br>
2670
2671
2672
2673
2674
2675
2676
2677      <br>
2678
2679
2680
2681
2682
2683
2684
2685The default value&nbsp;<span style="font-weight: bold;">building_wall_left</span>
2686= <span style="font-style: italic;">( ( <a href="#nx">nx</a>&nbsp;+
26871 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a> ) / 2</span>
2688centers the building in x-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
2689
2690
2691
2692
2693
2694
2695 </tr>
2696
2697
2698
2699
2700
2701
2702 <tr>
2703
2704
2705
2706
2707
2708
2709
2710      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_south"></a>building_wall_south</span></td>
2711
2712
2713
2714
2715
2716
2717
2718      <td style="vertical-align: top;">R</td>
2719
2720
2721
2722
2723
2724
2725 <td style="vertical-align: top;"><span style="font-style: italic;"></span><span style="font-style: italic;">building centered in y-direction</span></td>
2726
2727
2728
2729
2730
2731
2732
2733      <td>y-coordinate of the South building wall (distance between the
2734South building wall and the South border of the model domain) in m.<br>
2735
2736
2737
2738
2739
2740
2741
2742      <br>
2743
2744
2745
2746
2747
2748
2749
2750Currently, <span style="font-weight: bold;">building_wall_south</span>
2751must be at least <span style="font-style: italic;">1
2752*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and less than <span style="font-style: italic;">( <a href="#ny">ny</a>&nbsp;
2753- 1 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a></span>.
2754This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2755= <span style="font-style: italic;">'single_building'</span>.<br>
2756
2757
2758
2759
2760
2761
2762
2763      <br>
2764
2765
2766
2767
2768
2769
2770
2771The default value&nbsp;<span style="font-weight: bold;">building_wall_south</span>
2772= <span style="font-style: italic;">( ( <a href="#ny">ny</a>&nbsp;+
27731 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a> ) / 2</span>
2774centers the building in y-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
2775
2776
2777
2778
2779
2780
2781 </tr>
2782
2783
2784
2785
2786
2787
2788 <tr>
2789
2790      <td style="vertical-align: top;"><a name="canopy_mode"></a><span style="font-weight: bold;">canopy_mode</span></td>
2791
2792      <td style="vertical-align: top;">C * 20</td>
2793
2794      <td style="vertical-align: top;"><span style="font-style: italic;">'block'</span></td>
2795
2796      <td style="vertical-align: top;">Canopy mode.<br>
2797
2798      <br>
2799
2800      <font color="#000000">
2801Besides using the default value, that will create a horizontally
2802homogeneous plant canopy that extends over the total horizontal
2803extension of the model domain, the user may add code to the user
2804interface subroutine <a href="chapter_3.5.1.html#user_init_plant_canopy">user_init_plant_canopy</a>
2805to allow further canopy&nbsp;modes. <br>
2806
2807      <br>
2808
2809The setting of <a href="#canopy_mode">canopy_mode</a> becomes only active, if&nbsp;<a href="#plant_canopy">plant_canopy</a> has been set <span style="font-style: italic;">.T.</span> and a non-zero <a href="#drag_coefficient">drag_coefficient</a> has been defined.</font></td>
2810
2811    </tr>
2812
2813    <tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_height"></a>canyon_height</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">50.0</td><td>Street canyon height
2814in m.<br>
2815
2816
2817
2818
2819
2820
2821 <br>
2822
2823
2824
2825
2826
2827
2828 <span style="font-weight: bold;">canyon_height</span> must
2829be less than the height of the model domain. This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2830= <span style="font-style: italic;">'single_street_canyon'</span>.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_width_x"></a>canyon_width_x</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">9999999.9</td><td>Street canyon width in x-direction in m.<br>
2831
2832
2833
2834
2835
2836
2837 <br>
2838
2839
2840
2841
2842
2843
2844
2845Currently, <span style="font-weight: bold;">canyon_width_x</span>
2846must be at least <span style="font-style: italic;">3
2847*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="chapter_4.1.html#dx">dx</a>
2848      </span><span style="font-style: italic;">- <a href="chapter_4.1.html#canyon_wall_left">canyon_wall_left</a></span>.
2849This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2850= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>. A non-default value implies a canyon orientation in y-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_width_y"></a>canyon_width_y</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">9999999.9</td><td>Street canyon width in y-direction in m.<br>
2851
2852
2853
2854
2855
2856
2857 <br>
2858
2859
2860
2861
2862
2863
2864
2865Currently, <span style="font-weight: bold;">canyon_width_y</span>
2866must be at least <span style="font-style: italic;">3
2867*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="chapter_4.1.html#dy">dy</a></span><span style="font-style: italic;"> - <a href="chapter_4.1.html#canyon_wall_south">canyon_wall_south</a></span>. This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2868= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span>.&nbsp;A non-default value implies a canyon orientation in x-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_wall_left"></a>canyon_wall_left</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;"><span style="font-style: italic;">canyon centered in x-direction</span></td><td>x-coordinate of the left canyon wall (distance between the
2869left canyon wall and the left border of the model domain) in m.<br>
2870
2871
2872
2873
2874
2875
2876
2877      <br>
2878
2879
2880
2881
2882
2883
2884
2885Currently, <span style="font-weight: bold;">canyon_wall_left</span>
2886must be at least <span style="font-style: italic;">1
2887*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dx">dx</a> and less than <span style="font-style: italic;">( <a href="chapter_4.1.html#nx">nx</a>&nbsp;
2888- 1 ) * <a href="chapter_4.1.html#dx">dx</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a></span>.
2889This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2890= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>.<br>
2891
2892
2893
2894
2895
2896
2897
2898      <br>
2899
2900
2901
2902
2903
2904
2905
2906The default value <span style="font-weight: bold;">canyon_wall_left</span>
2907= <span style="font-style: italic;">( ( <a href="chapter_4.1.html#nx">nx</a>&nbsp;+
29081 ) * <a href="chapter_4.1.html#dx">dx</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a> ) / 2</span>
2909centers the canyon in x-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_wall_south"></a>canyon_wall_south</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;"><span style="font-style: italic;">canyon centered in y-direction</span></td><td>y-coordinate of the South canyon wall (distance between the
2910South canyon wall and the South border of the model domain) in m.<br>
2911
2912
2913
2914
2915
2916
2917
2918      <br>
2919
2920
2921
2922
2923
2924
2925
2926Currently, <span style="font-weight: bold;">canyon_wall_south</span>
2927must be at least <span style="font-style: italic;">1
2928*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dy">dy</a> and less than <span style="font-style: italic;">( <a href="chapter_4.1.html#ny">ny</a>&nbsp;
2929- 1 ) * <a href="chapter_4.1.html#dy">dy</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_y">canyon_width_y</a></span>.
2930This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2931= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>.<br>
2932
2933
2934
2935
2936
2937
2938
2939      <br>
2940
2941
2942
2943
2944
2945
2946
2947The default value <span style="font-weight: bold;">canyon_wall_south</span>
2948= <span style="font-style: italic;">( ( <a href="chapter_4.1.html#ny">ny</a>&nbsp;+
29491 ) * <a href="chapter_4.1.html#dy">dy</a> -&nbsp;&nbsp;</span><a href="chapter_4.1.html#building_length_y"><span style="font-style: italic;"></span></a><a style="font-style: italic;" href="chapter_4.1.html#canyon_width_y">canyon_wid</a><span style="font-style: italic;"><a style="font-style: italic;" href="chapter_4.1.html#canyon_width_y">th_y</a> ) / 2</span>
2950centers the canyon in y-direction.</td></tr><tr>
2951
2952
2953
2954
2955
2956
2957
2958      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="cloud_droplets"></a>cloud_droplets</span><br>
2959
2960
2961
2962
2963
2964
2965
2966      </td>
2967
2968
2969
2970
2971
2972
2973 <td style="vertical-align: top;">L<br>
2974
2975
2976
2977
2978
2979
2980 </td>
2981
2982
2983
2984
2985
2986
2987
2988      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br>
2989
2990
2991
2992
2993
2994
2995 </td>
2996
2997
2998
2999
3000
3001
3002
3003      <td style="vertical-align: top;">Parameter to switch on
3004usage of cloud droplets.<br>
3005
3006
3007
3008
3009
3010
3011 <br>
3012
3013
3014
3015
3016
3017
3018
3019      <span style="font-weight: bold;"></span><span style="font-family: monospace;"></span>
3020
3021
3022
3023
3024Cloud droplets require to use&nbsp;particles (i.e. the NAMELIST group <span style="font-family: Courier New,Courier,monospace;">particles_par</span> has to be included in the parameter file<span style="font-family: monospace;"></span>). Then each particle is a representative for a certain number of droplets. The droplet
3025features (number of droplets, initial radius, etc.) can be steered with
3026the&nbsp; respective particle parameters (see e.g. <a href="#chapter_4.2.html#radius">radius</a>).
3027The real number of initial droplets in a grid cell is equal to the
3028initial number of droplets (defined by the particle source parameters <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a>
3029      <span lang="en-GB"><font face="Thorndale, serif">and
3030      </font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>)
3031times the <a href="#initial_weighting_factor">initial_weighting_factor</a>.<br>
3032
3033
3034
3035
3036
3037
3038
3039      <br>
3040
3041
3042
3043
3044
3045
3046
3047In case of using cloud droplets, the default condensation scheme in
3048PALM cannot be used, i.e. <a href="#cloud_physics">cloud_physics</a>
3049must be set <span style="font-style: italic;">.F.</span>.<br>
3050
3051
3052
3053
3054
3055
3056
3057      </td>
3058
3059
3060
3061
3062
3063
3064 </tr>
3065
3066
3067
3068
3069
3070
3071 <tr>
3072
3073
3074
3075
3076
3077
3078 <td style="vertical-align: top;"> 
3079     
3080     
3081     
3082     
3083     
3084     
3085      <p><a name="cloud_physics"></a><b>cloud_physics</b></p>
3086
3087
3088
3089
3090
3091
3092
3093      </td>
3094
3095
3096
3097
3098
3099
3100 <td style="vertical-align: top;">L<br>
3101
3102
3103
3104
3105
3106
3107 </td>
3108
3109
3110
3111
3112
3113
3114
3115      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3116
3117
3118
3119
3120
3121
3122 <td style="vertical-align: top;"> 
3123     
3124     
3125     
3126     
3127     
3128     
3129      <p>Parameter to switch
3130on the condensation scheme.&nbsp; </p>
3131
3132
3133
3134
3135
3136
3137
3138For <b>cloud_physics =</b> <span style="font-style: italic;">.TRUE.</span>, equations
3139for the
3140liquid water&nbsp;
3141content and the liquid water potential temperature are solved instead
3142of those for specific humidity and potential temperature. Note
3143that a grid volume is assumed to be either completely saturated or
3144completely
3145unsaturated (0%-or-100%-scheme). A simple precipitation scheme can
3146additionally be switched on with parameter <a href="#precipitation">precipitation</a>.
3147Also cloud-top cooling by longwave radiation can be utilized (see <a href="#radiation">radiation</a>)<br>
3148
3149
3150
3151
3152
3153
3154 <b><br>
3155
3156
3157
3158
3159
3160
3161
3162cloud_physics =</b> <span style="font-style: italic;">.TRUE.
3163      </span>requires&nbsp;<a href="#humidity">humidity</a>
3164=<span style="font-style: italic;"> .TRUE.</span> .<br>
3165
3166
3167
3168
3169
3170
3171
3172Detailed information about the condensation scheme is given in the
3173description of the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud
3174physics module</a> (pdf-file, only in German).<br>
3175
3176
3177
3178
3179
3180
3181 <br>
3182
3183
3184
3185
3186
3187
3188
3189This condensation scheme is not allowed if cloud droplets are simulated
3190explicitly (see <a href="#cloud_droplets">cloud_droplets</a>).<br>
3191
3192
3193
3194
3195
3196
3197
3198      </td>
3199
3200
3201
3202
3203
3204
3205 </tr>
3206
3207
3208
3209
3210
3211
3212 <tr>
3213
3214
3215
3216
3217
3218
3219 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow"></a>conserve_volume_flow</span></td>
3220
3221
3222
3223
3224
3225
3226
3227      <td style="vertical-align: top;">L</td>
3228
3229
3230
3231
3232
3233
3234 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3235
3236
3237
3238
3239
3240
3241 <td>Conservation
3242of volume flow in x- and y-direction.<br>
3243
3244
3245
3246
3247
3248
3249 <br>
3250
3251
3252
3253
3254
3255
3256 <span style="font-weight: bold;">conserve_volume_flow</span>
3257= <span style="font-style: italic;">.T.</span>
3258guarantees that the volume flow through the xz- and yz-cross-sections of
3259the total model domain remains constant throughout the run depending on the chosen <a href="#conserve_volume_flow_mode">conserve_volume_flow_mode</a>.<br><br>Note that&nbsp;<span style="font-weight: bold;">conserve_volume_flow</span>
3260= <span style="font-style: italic;">.T.</span> requires <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.F.</span> .<br>
3261
3262
3263
3264
3265
3266
3267
3268      </td>
3269
3270
3271
3272
3273
3274
3275 </tr>
3276
3277
3278
3279
3280
3281
3282 <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow_mode"></a>conserve_volume_flow_mode</span></td><td style="vertical-align: top;">C * 16</td><td style="vertical-align: top;"><span style="font-style: italic;">'default'</span></td><td>Modus of volume flow conservation.<br><br>The following values are allowed:<br><p style="font-style: normal;"><span style="font-style: italic;">'default'</span>
3283      </p>
3284
3285
3286
3287
3288
3289
3290 
3291     
3292     
3293     
3294     
3295     
3296     
3297      <ul><p>Per default, PALM uses&nbsp;<span style="font-style: italic;">'initial_profiles'</span> for cyclic lateral boundary conditions (<a href="#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>) and&nbsp;<span style="font-style: italic;">'inflow_profile'</span> for non-cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> /= <span style="font-style: italic;">'cyclic'</span> or <a href="chapter_4.1.html#bc_ns">bc_ns</a> /= <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3298
3299
3300
3301
3302
3303
3304 
3305     
3306     
3307     
3308     
3309     
3310     
3311      <p style="font-style: italic;">'initial_profiles' </p>
3312
3313
3314
3315
3316
3317
3318
3319     
3320     
3321     
3322     
3323     
3324     
3325      <ul><p>The
3326target volume flow&nbsp;is calculated at t=0 from the initial profiles
3327of u and v.&nbsp;This setting is only allowed for&nbsp;cyclic lateral
3328boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="chapter_4.1.html#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3329
3330
3331
3332
3333
3334
3335 
3336     
3337     
3338     
3339     
3340     
3341     
3342      <p style="font-style: normal;"><span style="font-style: italic;">'inflow_profile'</span>
3343      </p>
3344
3345
3346
3347
3348
3349
3350 
3351     
3352     
3353     
3354     
3355     
3356     
3357      <ul><p>The
3358target volume flow&nbsp;is&nbsp;calculated at every timestep from the
3359inflow profile of&nbsp;u or v, respectively. This setting&nbsp;is only
3360allowed for&nbsp;non-cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> /= <span style="font-style: italic;">'cyclic'</span> or <a href="chapter_4.1.html#bc_ns">bc_ns</a> /= <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3361
3362
3363
3364
3365
3366
3367 
3368     
3369     
3370     
3371     
3372     
3373     
3374      <p style="font-style: italic;">'bulk_velocity' </p>
3375
3376
3377
3378
3379
3380
3381
3382     
3383     
3384     
3385     
3386     
3387     
3388      <ul><p>The target volume flow is calculated from a predefined bulk velocity (see <a href="#u_bulk">u_bulk</a> and <a href="#v_bulk">v_bulk</a>). This setting is only allowed for&nbsp;cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="chapter_4.1.html#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3389
3390
3391
3392
3393
3394
3395 
3396     
3397     
3398     
3399     
3400     
3401     
3402      <span style="font-style: italic;"></span>Note that&nbsp;<span style="font-weight: bold;">conserve_volume_flow_mode</span>
3403only comes into effect if <a href="#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T. .</span> </td></tr><tr>
3404
3405      <td style="vertical-align: top;"><a name="cthf"></a><span style="font-weight: bold;">cthf</span></td>
3406
3407      <td style="vertical-align: top;">R</td>
3408
3409      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
3410
3411      <td style="vertical-align: top;">Average heat flux that is prescribed at the top of the plant canopy.<br>
3412
3413
3414      <br>
3415
3416
3417If <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>, the user can prescribe a heat flux at the top of the plant canopy.<br>
3418
3419
3420It is assumed that solar radiation penetrates the canopy and warms the
3421foliage which, in turn, warms the air in contact with it. <br>
3422
3423
3424Note: Instead of using the value prescribed by <a href="#surface_heatflux">surface_heatflux</a>,
3425the near surface heat flux is determined from an exponential function
3426that is dependent on the cumulative leaf_area_index (Shaw and Schumann
3427(1992, Boundary Layer Meteorol., 61, 47-64)).</td>
3428
3429    </tr>
3430
3431    <tr>
3432
3433
3434
3435
3436
3437
3438 <td style="vertical-align: top;"> 
3439     
3440     
3441     
3442     
3443     
3444     
3445      <p><a name="cut_spline_overshoot"></a><b>cut_spline_overshoot</b></p>
3446
3447
3448
3449
3450
3451
3452
3453      </td>
3454
3455
3456
3457
3458
3459
3460 <td style="vertical-align: top;">L</td>
3461
3462
3463
3464
3465
3466
3467
3468      <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span></td>
3469
3470
3471
3472
3473
3474
3475 <td style="vertical-align: top;"> 
3476     
3477     
3478     
3479     
3480     
3481     
3482      <p>Cuts off of
3483so-called overshoots, which can occur with the
3484upstream-spline scheme.&nbsp; </p>
3485
3486
3487
3488
3489
3490
3491 
3492     
3493     
3494     
3495     
3496     
3497     
3498      <p><font color="#000000">The cubic splines tend to overshoot in
3499case of discontinuous changes of variables between neighbouring grid
3500points.</font><font color="#ff0000"> </font><font color="#000000">This
3501may lead to errors in calculating the advection tendency.</font>
3502Choice
3503of <b>cut_spline_overshoot</b> = <i>.TRUE.</i>
3504(switched on by
3505default)
3506allows variable values not to exceed an interval defined by the
3507respective adjacent grid points. This interval can be adjusted
3508seperately for every prognostic variable (see initialization parameters
3509      <a href="#overshoot_limit_e">overshoot_limit_e</a>, <a href="#overshoot_limit_pt">overshoot_limit_pt</a>, <a href="#overshoot_limit_u">overshoot_limit_u</a>,
3510etc.). This might be necessary in case that the
3511default interval has a non-tolerable effect on the model
3512results.&nbsp; </p>
3513
3514
3515
3516
3517
3518
3519 
3520     
3521     
3522     
3523     
3524     
3525     
3526      <p>Overshoots may also be removed
3527using the parameters <a href="#ups_limit_e">ups_limit_e</a>,
3528      <a href="#ups_limit_pt">ups_limit_pt</a>,
3529etc. as well as by applying a long-filter (see <a href="#long_filter_factor">long_filter_factor</a>).</p>
3530
3531
3532
3533
3534
3535
3536
3537      </td>
3538
3539
3540
3541
3542
3543
3544 </tr>
3545
3546
3547
3548
3549
3550
3551 <tr>
3552
3553
3554
3555
3556
3557
3558 <td style="vertical-align: top;"> 
3559     
3560     
3561     
3562     
3563     
3564     
3565      <p><a name="damp_level_1d"></a><b>damp_level_1d</b></p>
3566
3567
3568
3569
3570
3571
3572
3573      </td>
3574
3575
3576
3577
3578
3579
3580 <td style="vertical-align: top;">R</td>
3581
3582
3583
3584
3585
3586
3587
3588      <td style="vertical-align: top;"><span style="font-style: italic;">zu(nz+1)</span></td>
3589
3590
3591
3592
3593
3594
3595
3596      <td style="vertical-align: top;"> 
3597     
3598     
3599     
3600     
3601     
3602     
3603      <p>Height where
3604the damping layer begins in the 1d-model
3605(in m).&nbsp; </p>
3606
3607
3608
3609
3610
3611
3612 
3613     
3614     
3615     
3616     
3617     
3618     
3619      <p>This parameter is used to
3620switch on a damping layer for the
36211d-model, which is generally needed for the damping of inertia
3622oscillations. Damping is done by gradually increasing the value
3623of the eddy diffusivities about 10% per vertical grid level
3624(starting with the value at the height given by <b>damp_level_1d</b>,
3625or possibly from the next grid pint above), i.e. K<sub>m</sub>(k+1)
3626=
36271.1 * K<sub>m</sub>(k).
3628The values of K<sub>m</sub> are limited to 10 m**2/s at
3629maximum.&nbsp; <br>
3630
3631
3632
3633
3634
3635
3636
3637This parameter only comes into effect if the 1d-model is switched on
3638for
3639the initialization of the 3d-model using <a href="#initializing_actions">initializing_actions</a>
3640= <span style="font-style: italic;">'set_1d-model_profiles'</span>.
3641      <br>
3642
3643
3644
3645
3646
3647
3648 </p>
3649
3650
3651
3652
3653
3654
3655 </td>
3656
3657
3658
3659
3660
3661
3662 </tr>
3663
3664
3665
3666
3667
3668
3669 <tr>
3670
3671
3672
3673
3674
3675
3676 <td style="vertical-align: top;"><a name="dissipation_1d"></a><span style="font-weight: bold;">dissipation_1d</span><br>
3677
3678
3679
3680
3681
3682
3683
3684      </td>
3685
3686
3687
3688
3689
3690
3691 <td style="vertical-align: top;">C*20<br>
3692
3693
3694
3695
3696
3697
3698
3699      </td>
3700
3701
3702
3703
3704
3705
3706 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
3707
3708
3709
3710
3711
3712
3713 <span style="font-style: italic;">model'</span><br>
3714
3715
3716
3717
3718
3719
3720 </td>
3721
3722
3723
3724
3725
3726
3727
3728      <td style="vertical-align: top;">Calculation method for
3729the energy dissipation term in the TKE equation of the 1d-model.<br>
3730
3731
3732
3733
3734
3735
3736
3737      <br>
3738
3739
3740
3741
3742
3743
3744
3745By default the dissipation is calculated as in the 3d-model using diss
3746= (0.19 + 0.74 * l / l_grid) * e**1.5 / l.<br>
3747
3748
3749
3750
3751
3752
3753 <br>
3754
3755
3756
3757
3758
3759
3760
3761Setting <span style="font-weight: bold;">dissipation_1d</span>
3762= <span style="font-style: italic;">'detering'</span>
3763forces the dissipation to be calculated as diss = 0.064 * e**1.5 / l.<br>
3764
3765
3766
3767
3768
3769
3770
3771      </td>
3772
3773
3774
3775
3776
3777
3778 </tr>
3779    <tr><td style="vertical-align: top;"><p><a name="dp_external"></a><b>dp_external</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top; font-style: italic;">.F.</td><td>External pressure gradient switch.<br><br>This
3780parameter is used to switch on/off an external pressure gradient as
3781driving force. The external pressure gradient is controlled by the
3782parameters <a href="#dp_smooth">dp_smooth</a>, <a href="#dp_level_b">dp_level_b</a> and <a href="#dpdxy">dpdxy</a>.<br><br>Note that&nbsp;<span style="font-weight: bold;">dp_external</span> = <span style="font-style: italic;">.T.</span> requires <a href="#conserve_volume_flow">conserve_volume_flow</a> =<span style="font-style: italic;"> .F. </span>It is normally recommended to disable the Coriolis force by setting <a href="l#omega">omega</a> = 0.0.</td></tr><tr><td style="vertical-align: top;"><p><a name="dp_smooth"></a><b>dp_smooth</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top; font-style: italic;">.F.</td><td>Vertically smooth the external pressure gradient using a sinusoidal smoothing function.<br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span>. It is useful in combination with&nbsp;<a href="#dp_level_b">dp_level_b</a> &gt;&gt; 0 to generate a non-accelerated boundary layer well below&nbsp;<a href="#dp_level_b">dp_level_b</a>.</td></tr><tr><td style="vertical-align: top;"><p><a name="dp_level_b"></a><b>dp_level_b</b></p></td><td style="vertical-align: top;">R</td><td style="vertical-align: top; font-style: italic;">0.0</td><td><font size="3">Lower
3783limit of the vertical range for which the external pressure gradient is applied (</font>in <font size="3">m).</font><br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span><span lang="en-GB">It
3784must hold the condition zu(0) &lt;= <b>dp_level_b</b>
3785&lt;= zu(</span><a href="#nz"><span lang="en-GB">nz</span></a><span lang="en-GB">)</span><span lang="en-GB">.&nbsp;</span>It can be used in combination with&nbsp;<a href="#dp_smooth">dp_smooth</a> = <span style="font-style: italic;">.T.</span> to generate a non-accelerated boundary layer well below&nbsp;<span style="font-weight: bold;">dp_level_b</span> if&nbsp;<span style="font-weight: bold;">dp_level_b</span> &gt;&gt; 0.<br><br>Note
3786that there is no upper limit of the vertical range because the external
3787pressure gradient is always applied up to the top of the model domain.</td></tr><tr><td style="vertical-align: top;"><p><a name="dpdxy"></a><b>dpdxy</b></p></td><td style="vertical-align: top;">R(2)</td><td style="font-style: italic; vertical-align: top;">2 * 0.0</td><td>Values of the external pressure gradient applied in x- and y-direction, respectively (in Pa/m).<br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span>It sets the pressure gradient values. Negative values mean an acceleration, positive values mean deceleration. For example, <span style="font-weight: bold;">dpdxy</span> = -0.0002, 0.0, drives the flow in positive x-direction, <span lang="en-GB"></span></td></tr>
3788
3789
3790
3791
3792
3793
3794    <tr>
3795
3796      <td style="vertical-align: top;"><a name="drag_coefficient"></a><span style="font-weight: bold;">drag_coefficient</span></td>
3797
3798      <td style="vertical-align: top;">R</td>
3799
3800      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
3801
3802      <td style="vertical-align: top;">Drag coefficient used in the plant canopy model.<br>
3803
3804      <br>
3805
3806This parameter has to be non-zero, if the parameter <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>.</td>
3807
3808    </tr>
3809
3810    <tr>
3811
3812
3813
3814
3815
3816
3817 <td style="vertical-align: top;"> 
3818     
3819     
3820     
3821     
3822     
3823     
3824      <p><a name="dt"></a><b>dt</b></p>
3825
3826
3827
3828
3829
3830
3831 </td>
3832
3833
3834
3835
3836
3837
3838
3839      <td style="vertical-align: top;">R</td>
3840
3841
3842
3843
3844
3845
3846 <td style="vertical-align: top;"><span style="font-style: italic;">variable</span></td>
3847
3848
3849
3850
3851
3852
3853
3854      <td style="vertical-align: top;"> 
3855     
3856     
3857     
3858     
3859     
3860     
3861      <p>Time step for
3862the 3d-model (in s).&nbsp; </p>
3863
3864
3865
3866
3867
3868
3869 
3870     
3871     
3872     
3873     
3874     
3875     
3876      <p>By default, (i.e.
3877if a Runge-Kutta scheme is used, see <a href="#timestep_scheme">timestep_scheme</a>)
3878the value of the time step is calculating after each time step
3879(following the time step criteria) and
3880used for the next step.</p>
3881
3882
3883
3884
3885
3886
3887 
3888     
3889     
3890     
3891     
3892     
3893     
3894      <p>If the user assigns <b>dt</b>
3895a value, then the time step is
3896fixed to this value throughout the whole run (whether it fulfills the
3897time step
3898criteria or not). However, changes are allowed for restart runs,
3899because <b>dt</b> can also be used as a <a href="chapter_4.2.html#dt_laufparameter">run
3900parameter</a>.&nbsp; </p>
3901
3902
3903
3904
3905
3906
3907 
3908     
3909     
3910     
3911     
3912     
3913     
3914      <p>In case that the
3915calculated time step meets the condition<br>
3916
3917
3918
3919
3920
3921
3922 </p>
3923
3924
3925
3926
3927
3928
3929 
3930     
3931     
3932     
3933     
3934     
3935     
3936      <ul>
3937
3938
3939
3940
3941
3942
3943
3944       
3945       
3946       
3947       
3948       
3949       
3950        <p><b>dt</b> &lt; 0.00001 * <a href="chapter_4.2.html#dt_max">dt_max</a> (with dt_max
3951= 20.0)</p>
3952
3953
3954
3955
3956
3957
3958 
3959     
3960     
3961     
3962     
3963     
3964     
3965      </ul>
3966
3967
3968
3969
3970
3971
3972 
3973     
3974     
3975     
3976     
3977     
3978     
3979      <p>the simulation will be
3980aborted. Such situations usually arise
3981in case of any numerical problem / instability which causes a
3982non-realistic increase of the wind speed.&nbsp; </p>
3983
3984
3985
3986
3987
3988
3989 
3990     
3991     
3992     
3993     
3994     
3995     
3996      <p>A
3997small time step due to a large mean horizontal windspeed
3998speed may be enlarged by using a coordinate transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
3999in order to spare CPU time.<br>
4000
4001
4002
4003
4004
4005
4006 </p>
4007
4008
4009
4010
4011
4012
4013 
4014     
4015     
4016     
4017     
4018     
4019     
4020      <p>If the
4021leapfrog timestep scheme is used (see <a href="#timestep_scheme">timestep_scheme</a>)
4022a temporary time step value dt_new is calculated first, with dt_new = <a href="chapter_4.2.html#fcl_factor">cfl_factor</a>
4023* dt_crit where dt_crit is the maximum timestep allowed by the CFL and
4024diffusion condition. Next it is examined whether dt_new exceeds or
4025falls below the
4026value of the previous timestep by at
4027least +5 % / -2%. If it is smaller, <span style="font-weight: bold;">dt</span>
4028= dt_new is immediately used for the next timestep. If it is larger,
4029then <span style="font-weight: bold;">dt </span>=
40301.02 * dt_prev
4031(previous timestep) is used as the new timestep, however the time
4032step is only increased if the last change of the time step is dated
4033back at
4034least 30 iterations. If dt_new is located in the interval mentioned
4035above, then dt
4036does not change at all. By doing so, permanent time step changes as
4037well as large
4038sudden changes (increases) in the time step are avoided.</p>
4039
4040
4041
4042
4043
4044
4045 </td>
4046
4047
4048
4049
4050
4051
4052
4053    </tr>
4054
4055
4056
4057
4058
4059
4060 <tr>
4061
4062
4063
4064
4065
4066
4067 <td style="vertical-align: top;">
4068     
4069     
4070     
4071     
4072     
4073     
4074      <p><a name="dt_pr_1d"></a><b>dt_pr_1d</b></p>
4075
4076
4077
4078
4079
4080
4081
4082      </td>
4083
4084
4085
4086
4087
4088
4089 <td style="vertical-align: top;">R</td>
4090
4091
4092
4093
4094
4095
4096
4097      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4098
4099
4100
4101
4102
4103
4104
4105      <td style="vertical-align: top;"> 
4106     
4107     
4108     
4109     
4110     
4111     
4112      <p>Temporal
4113interval of vertical profile output of the 1D-model
4114(in s).&nbsp; </p>
4115
4116
4117
4118
4119
4120
4121 
4122     
4123     
4124     
4125     
4126     
4127     
4128      <p>Data are written in ASCII
4129format to file <a href="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</a>.
4130This parameter is only in effect if the 1d-model has been switched on
4131for the
4132initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
4133= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
4134
4135
4136
4137
4138
4139
4140
4141      </td>
4142
4143
4144
4145
4146
4147
4148 </tr>
4149
4150
4151
4152
4153
4154
4155 <tr>
4156
4157
4158
4159
4160
4161
4162 <td style="vertical-align: top;"> 
4163     
4164     
4165     
4166     
4167     
4168     
4169      <p><a name="dt_run_control_1d"></a><b>dt_run_control_1d</b></p>
4170
4171
4172
4173
4174
4175
4176
4177      </td>
4178
4179
4180
4181
4182
4183
4184 <td style="vertical-align: top;">R</td>
4185
4186
4187
4188
4189
4190
4191
4192      <td style="vertical-align: top;"><span style="font-style: italic;">60.0</span></td>
4193
4194
4195
4196
4197
4198
4199 <td style="vertical-align: top;"> 
4200     
4201     
4202     
4203     
4204     
4205     
4206      <p>Temporal interval of
4207runtime control output of the 1d-model
4208(in s).&nbsp; </p>
4209
4210
4211
4212
4213
4214
4215 
4216     
4217     
4218     
4219     
4220     
4221     
4222      <p>Data are written in ASCII
4223format to file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
4224This parameter is only in effect if the 1d-model is switched on for the
4225initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
4226= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
4227
4228
4229
4230
4231
4232
4233
4234      </td>
4235
4236
4237
4238
4239
4240
4241 </tr>
4242
4243
4244
4245
4246
4247
4248 <tr>
4249
4250
4251
4252
4253
4254
4255 <td style="vertical-align: top;"> 
4256     
4257     
4258     
4259     
4260     
4261     
4262      <p><a name="dx"></a><b>dx</b></p>
4263
4264
4265
4266
4267
4268
4269
4270      </td>
4271
4272
4273
4274
4275
4276
4277 <td style="vertical-align: top;">R</td>
4278
4279
4280
4281
4282
4283
4284
4285      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4286
4287
4288
4289
4290
4291
4292 <td style="vertical-align: top;"> 
4293     
4294     
4295     
4296     
4297     
4298     
4299      <p>Horizontal grid
4300spacing along the x-direction (in m).&nbsp; </p>
4301
4302
4303
4304
4305
4306
4307 
4308     
4309     
4310     
4311     
4312     
4313     
4314      <p>Along
4315x-direction only a constant grid spacing is allowed.</p>
4316
4317
4318
4319
4320
4321
4322     
4323     
4324     
4325     
4326     
4327     
4328      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4329and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4330
4331
4332
4333
4334
4335
4336 </td>
4337
4338
4339
4340
4341
4342
4343
4344    </tr>
4345
4346
4347
4348
4349
4350
4351 <tr>
4352
4353
4354
4355
4356
4357
4358 <td style="vertical-align: top;">
4359     
4360     
4361     
4362     
4363     
4364     
4365      <p><a name="dy"></a><b>dy</b></p>
4366
4367
4368
4369
4370
4371
4372
4373      </td>
4374
4375
4376
4377
4378
4379
4380 <td style="vertical-align: top;">R</td>
4381
4382
4383
4384
4385
4386
4387
4388      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4389
4390
4391
4392
4393
4394
4395 <td style="vertical-align: top;"> 
4396     
4397     
4398     
4399     
4400     
4401     
4402      <p>Horizontal grid
4403spacing along the y-direction (in m).&nbsp; </p>
4404
4405
4406
4407
4408
4409
4410 
4411     
4412     
4413     
4414     
4415     
4416     
4417      <p>Along y-direction only a constant grid spacing is allowed.</p>
4418
4419
4420
4421
4422
4423
4424     
4425     
4426     
4427     
4428     
4429     
4430      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4431and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4432
4433
4434
4435
4436
4437
4438 </td>
4439
4440
4441
4442
4443
4444
4445
4446    </tr>
4447
4448
4449
4450
4451
4452
4453 <tr>
4454
4455
4456
4457
4458
4459
4460 <td style="vertical-align: top;">
4461     
4462     
4463     
4464     
4465     
4466     
4467      <p><a name="dz"></a><b>dz</b></p>
4468
4469
4470
4471
4472
4473
4474
4475      </td>
4476
4477
4478
4479
4480
4481
4482 <td style="vertical-align: top;">R</td>
4483
4484
4485
4486
4487
4488
4489
4490      <td style="vertical-align: top;"><br>
4491
4492
4493
4494
4495
4496
4497 </td>
4498
4499
4500
4501
4502
4503
4504 <td style="vertical-align: top;"> 
4505     
4506     
4507     
4508     
4509     
4510     
4511      <p>Vertical grid
4512spacing (in m).&nbsp; </p>
4513
4514
4515
4516
4517
4518
4519 
4520     
4521     
4522     
4523     
4524     
4525     
4526      <p>This parameter must be
4527assigned by the user, because no
4528default value is given.<br>
4529
4530
4531
4532
4533
4534
4535 </p>
4536
4537
4538
4539
4540
4541
4542 
4543     
4544     
4545     
4546     
4547     
4548     
4549      <p>By default, the
4550model uses constant grid spacing along z-direction, but it can be
4551stretched using the parameters <a href="#dz_stretch_level">dz_stretch_level</a>
4552and <a href="#dz_stretch_factor">dz_stretch_factor</a>.
4553In case of stretching, a maximum allowed grid spacing can be given by <a href="#dz_max">dz_max</a>.<br>
4554
4555
4556
4557
4558
4559
4560 </p>
4561
4562
4563
4564
4565
4566
4567 
4568     
4569     
4570     
4571     
4572     
4573     
4574      <p>Assuming
4575a constant <span style="font-weight: bold;">dz</span>,
4576the scalar levels (zu) are calculated directly by:&nbsp; </p>
4577
4578
4579
4580
4581
4582
4583
4584     
4585     
4586     
4587     
4588     
4589     
4590      <ul>
4591
4592
4593
4594
4595
4596
4597 
4598       
4599       
4600       
4601       
4602       
4603       
4604        <p>zu(0) = - dz * 0.5&nbsp; <br>
4605
4606
4607
4608
4609
4610
4611
4612zu(1) = dz * 0.5</p>
4613
4614
4615
4616
4617
4618
4619 
4620     
4621     
4622     
4623     
4624     
4625     
4626      </ul>
4627
4628
4629
4630
4631
4632
4633 
4634     
4635     
4636     
4637     
4638     
4639     
4640      <p>The w-levels lie
4641half between them:&nbsp; </p>
4642
4643
4644
4645
4646
4647
4648 
4649     
4650     
4651     
4652     
4653     
4654     
4655      <ul>
4656
4657
4658
4659
4660
4661
4662 
4663       
4664       
4665       
4666       
4667       
4668       
4669        <p>zw(k) =
4670( zu(k) + zu(k+1) ) * 0.5</p>
4671
4672
4673
4674
4675
4676
4677 
4678     
4679     
4680     
4681     
4682     
4683     
4684      </ul>
4685
4686
4687
4688
4689
4690
4691 </td>
4692
4693
4694
4695
4696
4697
4698 </tr>
4699
4700
4701
4702
4703
4704
4705
4706    <tr>
4707
4708
4709
4710
4711
4712
4713      <td style="vertical-align: top;"><a name="dz_max"></a><span style="font-weight: bold;">dz_max</span></td>
4714
4715
4716
4717
4718
4719
4720      <td style="vertical-align: top;">R</td>
4721
4722
4723
4724
4725
4726
4727      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4728
4729
4730
4731
4732
4733
4734      <td style="vertical-align: top;">Allowed maximum vertical grid
4735spacing (in m).<br>
4736
4737
4738
4739
4740
4741
4742      <br>
4743
4744
4745
4746
4747
4748
4749If the vertical grid is stretched
4750(see <a href="#dz_stretch_factor">dz_stretch_factor</a>
4751and <a href="#dz_stretch_level">dz_stretch_level</a>),
4752      <span style="font-weight: bold;">dz_max</span> can
4753be used to limit the vertical grid spacing.</td>
4754
4755
4756
4757
4758
4759
4760    </tr>
4761
4762
4763
4764
4765
4766
4767    <tr>
4768
4769
4770
4771
4772
4773
4774
4775      <td style="vertical-align: top;"> 
4776     
4777     
4778     
4779     
4780     
4781     
4782      <p><a name="dz_stretch_factor"></a><b>dz_stretch_factor</b></p>
4783
4784
4785
4786
4787
4788
4789
4790      </td>
4791
4792
4793
4794
4795
4796
4797 <td style="vertical-align: top;">R</td>
4798
4799
4800
4801
4802
4803
4804
4805      <td style="vertical-align: top;"><span style="font-style: italic;">1.08</span></td>
4806
4807
4808
4809
4810
4811
4812 <td style="vertical-align: top;"> 
4813     
4814     
4815     
4816     
4817     
4818     
4819      <p>Stretch factor for a
4820vertically stretched grid (see <a href="#dz_stretch_level">dz_stretch_level</a>).&nbsp;
4821      </p>
4822
4823
4824
4825
4826
4827
4828 
4829     
4830     
4831     
4832     
4833     
4834     
4835      <p>The stretch factor should not exceed a value of
4836approx. 1.10 -
48371.12, otherwise the discretization errors due to the stretched grid not
4838negligible any more. (refer Kalnay de Rivas)</p>
4839
4840
4841
4842
4843
4844
4845 </td>
4846
4847
4848
4849
4850
4851
4852 </tr>
4853
4854
4855
4856
4857
4858
4859
4860    <tr>
4861
4862
4863
4864
4865
4866
4867 <td style="vertical-align: top;"> 
4868     
4869     
4870     
4871     
4872     
4873     
4874      <p><a name="dz_stretch_level"></a><b>dz_stretch_level</b></p>
4875
4876
4877
4878
4879
4880
4881
4882      </td>
4883
4884
4885
4886
4887
4888
4889 <td style="vertical-align: top;">R</td>
4890
4891
4892
4893
4894
4895
4896
4897      <td style="vertical-align: top;"><span style="font-style: italic;">100000.0</span><br>
4898
4899
4900
4901
4902
4903
4904 </td>
4905
4906
4907
4908
4909
4910
4911
4912      <td style="vertical-align: top;"> 
4913     
4914     
4915     
4916     
4917     
4918     
4919      <p>Height level
4920above/below which the grid is to be stretched
4921vertically (in m).&nbsp; </p>
4922
4923
4924
4925
4926
4927
4928 
4929     
4930     
4931     
4932     
4933     
4934     
4935      <p>For <a href="chapter_4.1.html#ocean">ocean</a> = .F., <b>dz_stretch_level </b>is the height level (in m)&nbsp;<span style="font-weight: bold;">above </span>which the grid is to be stretched
4936vertically. The vertical grid
4937spacings <a href="#dz">dz</a>
4938above this level are calculated as&nbsp; </p>
4939
4940
4941
4942
4943
4944
4945 
4946     
4947     
4948     
4949     
4950     
4951     
4952      <ul>
4953
4954
4955
4956
4957
4958
4959 
4960       
4961       
4962       
4963       
4964       
4965       
4966        <p><b>dz</b>(k+1)
4967= <b>dz</b>(k) * <a href="#dz_stretch_factor">dz_stretch_factor</a></p>
4968
4969
4970
4971
4972
4973
4974
4975     
4976     
4977     
4978     
4979     
4980     
4981      </ul>
4982
4983
4984
4985
4986
4987
4988 
4989     
4990     
4991     
4992     
4993     
4994     
4995      <p>and used as spacings for the scalar levels (zu).
4996The
4997w-levels are then defined as:&nbsp; </p>
4998
4999
5000
5001
5002
5003
5004 
5005     
5006     
5007     
5008     
5009     
5010     
5011      <ul>
5012
5013
5014
5015
5016
5017
5018 
5019       
5020       
5021       
5022       
5023       
5024       
5025        <p>zw(k)
5026= ( zu(k) + zu(k+1) ) * 0.5.
5027
5028 
5029     
5030      </p>
5031
5032
5033
5034
5035     
5036     
5037     
5038     
5039      </ul>
5040
5041
5042
5043
5044     
5045     
5046     
5047     
5048      <p>For <a href="#ocean">ocean</a> = .T., <b>dz_stretch_level </b>is the height level (in m, negative) <span style="font-weight: bold;">below</span> which the grid is to be stretched
5049vertically. The vertical grid
5050spacings <a href="chapter_4.1.html#dz">dz</a> below this level are calculated correspondingly as
5051
5052 
5053     
5054      </p>
5055
5056
5057
5058
5059     
5060     
5061     
5062     
5063      <ul>
5064
5065
5066
5067
5068       
5069       
5070       
5071       
5072        <p><b>dz</b>(k-1)
5073= <b>dz</b>(k) * <a href="chapter_4.1.html#dz_stretch_factor">dz_stretch_factor</a>.</p>
5074
5075
5076
5077
5078     
5079     
5080     
5081     
5082      </ul>
5083
5084
5085
5086
5087
5088
5089 </td>
5090
5091
5092
5093
5094
5095
5096 </tr>
5097
5098
5099
5100
5101
5102
5103
5104    <tr>
5105
5106
5107
5108
5109
5110      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_init"></a>e_init</span></td>
5111
5112
5113
5114
5115
5116      <td style="vertical-align: top;">R</td>
5117
5118
5119
5120
5121
5122      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
5123
5124
5125
5126
5127
5128      <td>Initial subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
5129
5130
5131
5132
5133
5134
5135
5136      <br>
5137
5138
5139
5140
5141
5142
5143This
5144option prescribes an initial&nbsp;subgrid-scale TKE from which the initial diffusion coefficients K<sub>m</sub> and K<sub>h</sub> will be calculated if <span style="font-weight: bold;">e_init</span> is positive. This option only has an effect if&nbsp;<a href="#km_constant">km_constant</a> is not set.</td>
5145
5146
5147
5148
5149
5150    </tr>
5151
5152
5153
5154
5155
5156    <tr>
5157
5158
5159
5160
5161
5162
5163 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_min"></a>e_min</span></td>
5164
5165
5166
5167
5168
5169
5170
5171      <td style="vertical-align: top;">R</td>
5172
5173
5174
5175
5176
5177
5178 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
5179
5180
5181
5182
5183
5184
5185 <td>Minimum
5186subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
5187
5188
5189
5190
5191
5192
5193
5194      <br>
5195
5196
5197
5198
5199
5200
5201This
5202option&nbsp;adds artificial viscosity to the flow by ensuring that
5203the
5204subgrid-scale TKE does not fall below the minimum threshold <span style="font-weight: bold;">e_min</span>.</td>
5205
5206
5207
5208
5209
5210
5211 </tr>
5212
5213
5214
5215
5216
5217
5218
5219    <tr>
5220
5221
5222
5223
5224
5225
5226 <td style="vertical-align: top;"> 
5227     
5228     
5229     
5230     
5231     
5232     
5233      <p><a name="end_time_1d"></a><b>end_time_1d</b></p>
5234
5235
5236
5237
5238
5239
5240
5241      </td>
5242
5243
5244
5245
5246
5247
5248 <td style="vertical-align: top;">R</td>
5249
5250
5251
5252
5253
5254
5255
5256      <td style="vertical-align: top;"><span style="font-style: italic;">864000.0</span><br>
5257
5258
5259
5260
5261
5262
5263 </td>
5264
5265
5266
5267
5268
5269
5270
5271      <td style="vertical-align: top;"> 
5272     
5273     
5274     
5275     
5276     
5277     
5278      <p>Time to be
5279simulated for the 1d-model (in s).&nbsp; </p>
5280
5281
5282
5283
5284
5285
5286 
5287     
5288     
5289     
5290     
5291     
5292     
5293      <p>The
5294default value corresponds to a simulated time of 10 days.
5295Usually, after such a period the inertia oscillations have completely
5296decayed and the solution of the 1d-model can be regarded as stationary
5297(see <a href="#damp_level_1d">damp_level_1d</a>).
5298This parameter is only in effect if the 1d-model is switched on for the
5299initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
5300= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
5301
5302
5303
5304
5305
5306
5307
5308      </td>
5309
5310
5311
5312
5313
5314
5315 </tr>
5316
5317
5318
5319
5320
5321
5322 <tr>
5323
5324
5325
5326
5327
5328
5329 <td style="vertical-align: top;"> 
5330     
5331     
5332     
5333     
5334     
5335     
5336      <p><a name="fft_method"></a><b>fft_method</b></p>
5337
5338
5339
5340
5341
5342
5343
5344      </td>
5345
5346
5347
5348
5349
5350
5351 <td style="vertical-align: top;">C * 20</td>
5352
5353
5354
5355
5356
5357
5358
5359      <td style="vertical-align: top;"><span style="font-style: italic;">'system-</span><br style="font-style: italic;">
5360
5361
5362
5363
5364
5365
5366 <span style="font-style: italic;">specific'</span></td>
5367
5368
5369
5370
5371
5372
5373
5374      <td style="vertical-align: top;"> 
5375     
5376     
5377     
5378     
5379     
5380     
5381      <p>FFT-method to
5382be used.<br>
5383
5384
5385
5386
5387
5388
5389 </p>
5390
5391
5392
5393
5394
5395
5396 
5397     
5398     
5399     
5400     
5401     
5402     
5403      <p><br>
5404
5405
5406
5407
5408
5409
5410
5411The fast fourier transformation (FFT) is used for solving the
5412perturbation pressure equation with a direct method (see <a href="chapter_4.2.html#psolver">psolver</a>)
5413and for calculating power spectra (see optional software packages,
5414section <a href="chapter_4.2.html#spectra_package">4.2</a>).</p>
5415
5416
5417
5418
5419
5420
5421
5422     
5423     
5424     
5425     
5426     
5427     
5428      <p><br>
5429
5430
5431
5432
5433
5434
5435
5436By default, system-specific, optimized routines from external
5437vendor libraries are used. However, these are available only on certain
5438computers and there are more or less severe restrictions concerning the
5439number of gridpoints to be used with them.<br>
5440
5441
5442
5443
5444
5445
5446 </p>
5447
5448
5449
5450
5451
5452
5453 
5454     
5455     
5456     
5457     
5458     
5459     
5460      <p>There
5461are two other PALM internal methods available on every
5462machine (their respective source code is part of the PALM source code):</p>
5463
5464
5465
5466
5467
5468
5469
5470     
5471     
5472     
5473     
5474     
5475     
5476      <p>1.: The <span style="font-weight: bold;">Temperton</span>-method
5477from Clive Temperton (ECWMF) which is computationally very fast and
5478switched on with <b>fft_method</b> = <span style="font-style: italic;">'temperton-algorithm'</span>.
5479The number of horizontal gridpoints (nx+1, ny+1) to be used with this
5480method must be composed of prime factors 2, 3 and 5.<br>
5481
5482
5483
5484
5485
5486
5487 </p>
5488
5489
5490
5491
5492
5493
5494
54952.: The <span style="font-weight: bold;">Singleton</span>-method
5496which is very slow but has no restrictions concerning the number of
5497gridpoints to be used with, switched on with <b>fft_method</b>
5498= <span style="font-style: italic;">'singleton-algorithm'</span>.
5499      </td>
5500
5501
5502
5503
5504
5505
5506 </tr>
5507
5508
5509
5510
5511
5512
5513 <tr>
5514
5515
5516
5517
5518
5519
5520 <td style="vertical-align: top;"> 
5521     
5522     
5523     
5524     
5525     
5526     
5527      <p><a name="galilei_transformation"></a><b>galilei_transformation</b></p>
5528
5529
5530
5531
5532
5533
5534
5535      </td>
5536
5537
5538
5539
5540
5541
5542 <td style="vertical-align: top;">L</td>
5543
5544
5545
5546
5547
5548
5549
5550      <td style="vertical-align: top;"><i>.F.</i></td>
5551
5552
5553
5554
5555
5556
5557
5558      <td style="vertical-align: top;">Application of a
5559Galilei-transformation to the
5560coordinate
5561system of the model.<br>
5562
5563
5564
5565
5566
5567
5568     
5569     
5570     
5571     
5572     
5573     
5574      <p>With <b>galilei_transformation</b>
5575= <i>.T.,</i> a so-called
5576Galilei-transformation is switched on which ensures that the coordinate
5577system of the model is moved along with the geostrophical wind.
5578Alternatively, the model domain can be moved along with the averaged
5579horizontal wind (see <a href="#use_ug_for_galilei_tr">use_ug_for_galilei_tr</a>,
5580this can and will naturally change in time). With this method,
5581numerical inaccuracies of the Piascek - Williams - scheme (concerns in
5582particular the momentum advection) are minimized. Beyond that, in the
5583majority of cases the lower relative velocities in the moved system
5584permit a larger time step (<a href="#dt">dt</a>).
5585Switching the transformation on is only worthwhile if the geostrophical
5586wind (ug, vg)
5587and the averaged horizontal wind clearly deviate from the value 0. In
5588each case, the distance the coordinate system has been moved is written
5589to the file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.&nbsp;
5590      </p>
5591
5592
5593
5594
5595
5596
5597 
5598     
5599     
5600     
5601     
5602     
5603     
5604      <p>Non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
5605and <a href="#bc_ns">bc_ns</a>), the specification
5606of a gestrophic
5607wind that is not constant with height
5608as well as e.g. stationary inhomogeneities at the bottom boundary do
5609not allow the use of this transformation.</p>
5610
5611
5612
5613
5614
5615
5616 </td>
5617
5618
5619
5620
5621
5622
5623 </tr>
5624
5625
5626
5627
5628
5629
5630
5631    <tr>
5632
5633
5634
5635
5636
5637
5638 <td style="vertical-align: top;"> 
5639     
5640     
5641     
5642     
5643     
5644     
5645      <p><a name="grid_matching"></a><b>grid_matching</b></p>
5646
5647
5648
5649
5650
5651
5652
5653      </td>
5654
5655
5656
5657
5658
5659
5660 <td style="vertical-align: top;">C * 6</td>
5661
5662
5663
5664
5665
5666
5667
5668      <td style="vertical-align: top;"><span style="font-style: italic;">'match'</span></td>
5669
5670
5671
5672
5673
5674
5675 <td style="vertical-align: top;">Variable to adjust the
5676subdomain
5677sizes in parallel runs.<br>
5678
5679
5680
5681
5682
5683
5684 <br>
5685
5686
5687
5688
5689
5690
5691
5692For <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>,
5693the subdomains are forced to have an identical
5694size on all processors. In this case the processor numbers in the
5695respective directions of the virtual processor net must fulfill certain
5696divisor conditions concerning the grid point numbers in the three
5697directions (see <a href="#nx">nx</a>, <a href="#ny">ny</a>
5698and <a href="#nz">nz</a>).
5699Advantage of this method is that all PEs bear the same computational
5700load.<br>
5701
5702
5703
5704
5705
5706
5707 <br>
5708
5709
5710
5711
5712
5713
5714
5715There is no such restriction by default, because then smaller
5716subdomains are allowed on those processors which
5717form the right and/or north boundary of the virtual processor grid. On
5718all other processors the subdomains are of same size. Whether smaller
5719subdomains are actually used, depends on the number of processors and
5720the grid point numbers used. Information about the respective settings
5721are given in file <a href="file:///home/raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.<br>
5722
5723
5724
5725
5726
5727
5728
5729      <br>
5730
5731
5732
5733
5734
5735
5736
5737When using a multi-grid method for solving the Poisson equation (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
5738only <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>
5739is allowed.<br>
5740
5741
5742
5743
5744
5745
5746 <br>
5747
5748
5749
5750
5751
5752
5753 <b>Note:</b><br>
5754
5755
5756
5757
5758
5759
5760
5761In some cases for small processor numbers there may be a very bad load
5762balancing among the
5763processors which may reduce the performance of the code.</td>
5764
5765
5766
5767
5768
5769
5770 </tr>
5771
5772
5773
5774
5775
5776
5777
5778    <tr><td style="vertical-align: top;"><p><a name="humidity"></a><b>humidity</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><i>.F.</i></td><td style="vertical-align: top;"><p>Parameter to
5779switch on the prognostic equation for specific
5780humidity q.<br>
5781
5782
5783
5784
5785
5786
5787 </p>
5788
5789
5790
5791
5792
5793
5794 
5795     
5796     
5797     
5798     
5799     
5800     
5801      <p>The initial vertical
5802profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a>
5803and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>.&nbsp;
5804Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a>
5805and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br>
5806
5807
5808
5809
5810
5811
5812
5813      </p>
5814
5815
5816
5817
5818
5819
5820
5821If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
5822= .TRUE.), q becomes the total liquid water content (sum of specific
5823humidity and liquid water content).</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_height"></a>inflow_damping_height</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">from precursor run</span></td><td style="vertical-align: top;">Height below which the turbulence signal is used for turbulence recycling (in m).<br><br>In case of a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>),
5824this parameter defines the vertical thickness of the turbulent layer up
5825to which the turbulence extracted at the recycling plane (see <a href="chapter_4.1.html#recycling_width">recycling_width</a>)
5826shall be imposed to the inflow. Above this level the turbulence signal
5827is linearly damped to zero. The transition range within which the
5828signal falls to zero is given by the parameter <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>By default, this height is set as the height of the convective boundary layer as calculated from a precursor run. See <a href="chapter_3.9.html">chapter 3.9</a> about proper settings for getting this CBL height from a precursor run. </td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_width"></a>inflow_damping_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#inflow_damping_height">inflow_damping</a></span><a href="chapter_4.1.html#inflow_damping_height"><br style="font-style: italic;"><span style="font-style: italic;">_height</span></a></td><td style="vertical-align: top;">Transition range within which the turbulance signal is damped to zero (in m).<br><br>See <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> for explanation.</td></tr><tr>
5829
5830
5831
5832
5833
5834
5835 <td style="vertical-align: top;"><a name="inflow_disturbance_begin"></a><b>inflow_disturbance_<br>
5836
5837
5838
5839
5840
5841
5842
5843begin</b></td>
5844
5845
5846
5847
5848
5849
5850 <td style="vertical-align: top;">I</td>
5851
5852
5853
5854
5855
5856
5857
5858      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(10,</span><br style="font-style: italic;">
5859
5860
5861
5862
5863
5864
5865 <span style="font-style: italic;">nx/2 or ny/2)</span></td>
5866
5867
5868
5869
5870
5871
5872
5873      <td style="vertical-align: top;">Lower
5874limit of the horizontal range for which random perturbations are to be
5875imposed on the horizontal velocity field (gridpoints).<br>
5876
5877
5878
5879
5880
5881
5882 <br>
5883
5884
5885
5886
5887
5888
5889
5890If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5891or <a href="#bc_ns">bc_ns</a>),
5892this parameter gives the gridpoint number (counted horizontally from
5893the inflow)&nbsp; from which on perturbations are imposed on the
5894horizontal velocity field. Perturbations must be switched on with
5895parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5896
5897
5898
5899
5900
5901
5902
5903    </tr>
5904
5905
5906
5907
5908
5909
5910 <tr>
5911
5912
5913
5914
5915
5916
5917 <td style="vertical-align: top;"><a name="inflow_disturbance_end"></a><b>inflow_disturbance_<br>
5918
5919
5920
5921
5922
5923
5924
5925end</b></td>
5926
5927
5928
5929
5930
5931
5932 <td style="vertical-align: top;">I</td>
5933
5934
5935
5936
5937
5938
5939
5940      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(100,</span><br style="font-style: italic;">
5941
5942
5943
5944
5945
5946
5947 <span style="font-style: italic;">3/4*nx or</span><br style="font-style: italic;">
5948
5949
5950
5951
5952
5953
5954 <span style="font-style: italic;">3/4*ny)</span></td>
5955
5956
5957
5958
5959
5960
5961 <td style="vertical-align: top;">Upper
5962limit of the horizontal range for which random perturbations are
5963to be imposed on the horizontal velocity field (gridpoints).<br>
5964
5965
5966
5967
5968
5969
5970 <br>
5971
5972
5973
5974
5975
5976
5977
5978If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5979or <a href="#bc_ns">bc_ns</a>),
5980this parameter gives the gridpoint number (counted horizontally from
5981the inflow)&nbsp; unto which perturbations are imposed on the
5982horizontal
5983velocity field. Perturbations must be switched on with parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5984
5985
5986
5987
5988
5989
5990
5991    </tr>
5992
5993
5994
5995
5996
5997
5998 <tr>
5999
6000
6001
6002
6003
6004
6005 <td style="vertical-align: top;">
6006     
6007     
6008     
6009     
6010     
6011     
6012      <p><a name="initializing_actions"></a><b>initializing_actions</b></p>
6013
6014
6015
6016
6017
6018
6019
6020      </td>
6021
6022
6023
6024
6025
6026
6027 <td style="vertical-align: top;">C * 100</td>
6028
6029
6030
6031
6032
6033
6034
6035      <td style="vertical-align: top;"><br>
6036
6037
6038
6039
6040
6041
6042 </td>
6043
6044
6045
6046
6047
6048
6049 <td style="vertical-align: top;"> 
6050     
6051     
6052     
6053     
6054     
6055     
6056      <p style="font-style: normal;">Initialization actions
6057to be carried out.&nbsp; </p>
6058
6059
6060
6061
6062
6063
6064 
6065     
6066     
6067     
6068     
6069     
6070     
6071      <p style="font-style: normal;">This parameter does not have a
6072default value and therefore must be assigned with each model run. For
6073restart runs <b>initializing_actions</b> = <span style="font-style: italic;">'read_restart_data'</span>
6074must be set. For the initial run of a job chain the following values
6075are allowed:&nbsp; </p>
6076
6077
6078
6079
6080
6081
6082 
6083     
6084     
6085     
6086     
6087     
6088     
6089      <p style="font-style: normal;"><span style="font-style: italic;">'set_constant_profiles'</span>
6090      </p>
6091
6092
6093
6094
6095
6096
6097 
6098     
6099     
6100     
6101     
6102     
6103     
6104      <ul>
6105
6106
6107
6108
6109
6110
6111 
6112       
6113       
6114       
6115       
6116       
6117       
6118        <p>A horizontal wind profile consisting
6119of linear sections (see <a href="#ug_surface">ug_surface</a>,
6120        <a href="#ug_vertical_gradient">ug_vertical_gradient</a>,
6121        <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
6122and <a href="#vg_surface">vg_surface</a>, <a href="#vg_vertical_gradient">vg_vertical_gradient</a>,
6123        <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
6124respectively) as well as a vertical temperature (humidity) profile
6125consisting of
6126linear sections (see <a href="#pt_surface">pt_surface</a>,
6127        <a href="#pt_vertical_gradient">pt_vertical_gradient</a>,
6128        <a href="#q_surface">q_surface</a>
6129and <a href="#q_vertical_gradient">q_vertical_gradient</a>)
6130are assumed as initial profiles. The subgrid-scale TKE is set to 0 but K<sub>m</sub>
6131and K<sub>h</sub> are set to very small values because
6132otherwise no TKE
6133would be generated.</p>
6134
6135
6136
6137
6138
6139
6140 
6141     
6142     
6143     
6144     
6145     
6146     
6147      </ul>
6148
6149
6150
6151
6152
6153
6154 
6155     
6156     
6157     
6158     
6159     
6160     
6161      <p style="font-style: italic;">'set_1d-model_profiles' </p>
6162
6163
6164
6165
6166
6167
6168
6169     
6170     
6171     
6172     
6173     
6174     
6175      <ul>
6176
6177
6178
6179
6180
6181
6182 
6183       
6184       
6185       
6186       
6187       
6188       
6189        <p>The arrays of the 3d-model are initialized with
6190the
6191(stationary) solution of the 1d-model. These are the variables e, kh,
6192km, u, v and with Prandtl layer switched on rif, us, usws, vsws. The
6193temperature (humidity) profile consisting of linear sections is set as
6194for 'set_constant_profiles' and assumed as constant in time within the
61951d-model. For steering of the 1d-model a set of parameters with suffix
6196"_1d" (e.g. <a href="#end_time_1d">end_time_1d</a>,
6197        <a href="#damp_level_1d">damp_level_1d</a>)
6198is available.</p>
6199
6200
6201
6202
6203
6204
6205 
6206     
6207     
6208     
6209     
6210     
6211     
6212      </ul>
6213
6214
6215
6216
6217
6218
6219 
6220     
6221     
6222     
6223     
6224     
6225     
6226      <p><span style="font-style: italic;">'by_user'</span></p>
6227
6228
6229
6230
6231
6232
6233     
6234     
6235     
6236     
6237     
6238     
6239      <p style="margin-left: 40px;">The initialization of the arrays
6240of the 3d-model is under complete control of the user and has to be
6241done in routine <a href="chapter_3.5.1.html#user_init_3d_model">user_init_3d_model</a>
6242of the user-interface.<span style="font-style: italic;"></span></p>
6243
6244
6245
6246
6247
6248
6249     
6250     
6251     
6252     
6253     
6254     
6255      <p><span style="font-style: italic;">'initialize_vortex'</span>
6256      </p>
6257
6258
6259
6260
6261
6262
6263 
6264     
6265     
6266     
6267     
6268     
6269     
6270      <div style="margin-left: 40px;">The initial
6271velocity field of the
62723d-model corresponds to a
6273Rankine-vortex with vertical axis. This setting may be used to test
6274advection schemes. Free-slip boundary conditions for u and v (see <a href="#bc_uv_b">bc_uv_b</a>, <a href="#bc_uv_t">bc_uv_t</a>)
6275are necessary. In order not to distort the vortex, an initial
6276horizontal wind profile constant
6277with height is necessary (to be set by <b>initializing_actions</b>
6278= <span style="font-style: italic;">'set_constant_profiles'</span>)
6279and some other conditions have to be met (neutral stratification,
6280diffusion must be
6281switched off, see <a href="#km_constant">km_constant</a>).
6282The center of the vortex is located at jc = (nx+1)/2. It
6283extends from k = 0 to k = nz+1. Its radius is 8 * <a href="#dx">dx</a>
6284and the exponentially decaying part ranges to 32 * <a href="#dx">dx</a>
6285(see init_rankine.f90). </div>
6286
6287
6288
6289
6290
6291
6292 
6293     
6294     
6295     
6296     
6297     
6298     
6299      <p><span style="font-style: italic;">'initialize_ptanom'</span>
6300      </p>
6301
6302
6303
6304
6305
6306
6307 
6308     
6309     
6310     
6311     
6312     
6313     
6314      <ul>
6315
6316
6317
6318
6319
6320
6321 
6322       
6323       
6324       
6325       
6326       
6327       
6328        <p>A 2d-Gauss-like shape disturbance
6329(x,y) is added to the
6330initial temperature field with radius 10.0 * <a href="#dx">dx</a>
6331and center at jc = (nx+1)/2. This may be used for tests of scalar
6332advection schemes
6333(see <a href="#scalar_advec">scalar_advec</a>).
6334Such tests require a horizontal wind profile constant with hight and
6335diffusion
6336switched off (see <span style="font-style: italic;">'initialize_vortex'</span>).
6337Additionally, the buoyancy term
6338must be switched of in the equation of motion&nbsp; for w (this
6339requires the user to comment out the call of <span style="font-family: monospace;">buoyancy</span> in the
6340source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p></ul>
6341
6342
6343
6344
6345
6346
6347 
6348     
6349     
6350     
6351     
6352     
6353     
6354      <p style="font-style: italic;">'read_data_for_recycling'</p><p style="font-style: normal; margin-left: 40px;">Here,
63553d-data from a precursor run are read by the initial (main) run. The
6356precursor run is allowed to have a smaller domain along x and y
6357compared with the main run. Also, different numbers of processors can
6358be used for these two runs. Limitations are that the precursor run must
6359use cyclic horizontal boundary conditions and that the subdomains of
6360the main run must not be larger than the subdomains of the precursor
6361run. If the total domain of the main run is larger than that of the precursor
6362run, the domain is filled by cyclic repetition&nbsp;of the (cyclic)
6363precursor data. This initialization method is recommended if a
6364turbulent inflow is used (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). 3d-data must be made available to the run by activating an appropriate file connection statement for local file BININ. See <a href="chapter_3.9.html">chapter 3.9</a> for more details, where usage of a turbulent inflow is explained. </p><p style="font-style: normal;">Values may be
6365combined, e.g. <b>initializing_actions</b> = <span style="font-style: italic;">'set_constant_profiles
6366initialize_vortex'</span>, but the values of <span style="font-style: italic;">'set_constant_profiles'</span>,
6367      <span style="font-style: italic;">'set_1d-model_profiles'</span>
6368, and <span style="font-style: italic;">'by_user'</span>
6369must not be given at the same time.</p>
6370
6371
6372
6373
6374
6375
6376 
6377     
6378     
6379     
6380     
6381     
6382     
6383     
6384
6385
6386
6387
6388
6389
6390 </td>
6391
6392
6393
6394
6395
6396
6397 </tr>
6398
6399
6400
6401
6402
6403
6404
6405    <tr>
6406
6407
6408
6409
6410
6411
6412 <td style="vertical-align: top;"> 
6413     
6414     
6415     
6416     
6417     
6418     
6419      <p><a name="km_constant"></a><b>km_constant</b></p>
6420
6421
6422
6423
6424
6425
6426
6427      </td>
6428
6429
6430
6431
6432
6433
6434 <td style="vertical-align: top;">R</td>
6435
6436
6437
6438
6439
6440
6441
6442      <td style="vertical-align: top;"><i>variable<br>
6443
6444
6445
6446
6447
6448
6449
6450(computed from TKE)</i></td>
6451
6452
6453
6454
6455
6456
6457 <td style="vertical-align: top;"> 
6458     
6459     
6460     
6461     
6462     
6463     
6464      <p>Constant eddy
6465diffusivities are used (laminar
6466simulations).&nbsp; </p>
6467
6468
6469
6470
6471
6472
6473 
6474     
6475     
6476     
6477     
6478     
6479     
6480      <p>If this parameter is
6481specified, both in the 1d and in the
64823d-model constant values for the eddy diffusivities are used in
6483space and time with K<sub>m</sub> = <b>km_constant</b>
6484and K<sub>h</sub> = K<sub>m</sub> / <a href="chapter_4.2.html#prandtl_number">prandtl_number</a>.
6485The prognostic equation for the subgrid-scale TKE is switched off.
6486Constant eddy diffusivities are only allowed with the Prandtl layer (<a href="#prandtl_layer">prandtl_layer</a>)
6487switched off.</p>
6488
6489
6490
6491
6492
6493
6494 </td>
6495
6496
6497
6498
6499
6500
6501 </tr>
6502
6503
6504
6505
6506
6507
6508 <tr>
6509
6510
6511
6512
6513
6514
6515 <td style="vertical-align: top;"> 
6516     
6517     
6518     
6519     
6520     
6521     
6522      <p><a name="km_damp_max"></a><b>km_damp_max</b></p>
6523
6524
6525
6526
6527
6528
6529
6530      </td>
6531
6532
6533
6534
6535
6536
6537 <td style="vertical-align: top;">R</td>
6538
6539
6540
6541
6542
6543
6544
6545      <td style="vertical-align: top;"><span style="font-style: italic;">0.5*(dx
6546or dy)</span></td>
6547
6548
6549
6550
6551
6552
6553 <td style="vertical-align: top;">Maximum
6554diffusivity used for filtering the velocity field in the vicinity of
6555the outflow (in m<sup>2</sup>/s).<br>
6556
6557
6558
6559
6560
6561
6562 <br>
6563
6564
6565
6566
6567
6568
6569
6570When using non-cyclic lateral boundaries (see <a href="#bc_lr">bc_lr</a>
6571or <a href="#bc_ns">bc_ns</a>),
6572a smoothing has to be applied to the
6573velocity field in the vicinity of the outflow in order to suppress any
6574reflections of outgoing disturbances. Smoothing is done by increasing
6575the eddy diffusivity along the horizontal direction which is
6576perpendicular to the outflow boundary. Only velocity components
6577parallel to the outflow boundary are filtered (e.g. v and w, if the
6578outflow is along x). Damping is applied from the bottom to the top of
6579the domain.<br>
6580
6581
6582
6583
6584
6585
6586 <br>
6587
6588
6589
6590
6591
6592
6593
6594The horizontal range of the smoothing is controlled by <a href="#outflow_damping_width">outflow_damping_width</a>
6595which defines the number of gridpoints (counted from the outflow
6596boundary) from where on the smoothing is applied. Starting from that
6597point, the eddy diffusivity is linearly increased (from zero to its
6598maximum value given by <span style="font-weight: bold;">km_damp_max</span>)
6599until half of the damping range width, from where it remains constant
6600up to the outflow boundary. If at a certain grid point the eddy
6601diffusivity calculated from the flow field is larger than as described
6602above, it is used instead.<br>
6603
6604
6605
6606
6607
6608
6609 <br>
6610
6611
6612
6613
6614
6615
6616
6617The default value of <span style="font-weight: bold;">km_damp_max</span>
6618has been empirically proven to be sufficient.</td>
6619
6620
6621
6622
6623
6624
6625 </tr>
6626
6627
6628
6629
6630
6631
6632 <tr>
6633
6634      <td style="vertical-align: top;"><a name="lad_surface"></a><span style="font-weight: bold;">lad_surface</span></td>
6635
6636      <td style="vertical-align: top;">R</td>
6637
6638      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
6639
6640      <td style="vertical-align: top;">Surface value of the leaf area density (in m<sup>2</sup>/m<sup>3</sup>).<br>
6641
6642      <br>
6643
6644This
6645parameter assigns the value of the leaf area density <span style="font-weight: bold;">lad</span> at the surface (k=0)<b>.</b> Starting from this value,
6646the leaf area density profile is constructed with <a href="#lad_vertical_gradient">lad_vertical_gradient</a>
6647and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level
6648      </a>.</td>
6649
6650    </tr>
6651
6652    <tr>
6653
6654      <td style="vertical-align: top;"><a name="lad_vertical_gradient"></a><span style="font-weight: bold;">lad_vertical_gradient</span></td>
6655
6656      <td style="vertical-align: top;">R (10)</td>
6657
6658      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
6659
6660      <td style="vertical-align: top;">Gradient(s) of the leaf area density (in&nbsp;m<sup>2</sup>/m<sup>4</sup>).<br>
6661
6662      <br>
6663
6664     
6665      <p>This leaf area density gradient
6666holds starting from the height&nbsp;
6667level defined by <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>
6668(precisely: for all uv levels k where zu(k) &gt; lad_vertical_gradient_level, lad(k) is set: lad(k) = lad(k-1) + dzu(k) * <b>lad_vertical_gradient</b>)
6669up to the level defined by <a href="#pch_index">pch_index</a>. Above that level lad(k) will automatically set to 0.0. A total of 10 different gradients for 11 height intervals (10 intervals
6670if <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>(1)
6671= <i>0.0</i>) can be assigned. The leaf area density at the surface is
6672assigned via <a href="#lad_surface">lad_surface</a>.&nbsp;
6673      </p>
6674
6675      </td>
6676
6677    </tr>
6678
6679    <tr>
6680
6681      <td style="vertical-align: top;"><a name="lad_vertical_gradient_level"></a><span style="font-weight: bold;">lad_vertical_gradient_level</span></td>
6682
6683      <td style="vertical-align: top;">R (10)</td>
6684
6685      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
6686
6687      <td style="vertical-align: top;">Height level from which on the&nbsp;gradient
6688of the leaf area density defined by <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>
6689is effective (in m).<br>
6690
6691      <br>
6692
6693The height levels have to be assigned in ascending order. The
6694default values result in a leaf area density that is constant with height uup to the top of the plant canopy layer defined by <a href="#pch_index">pch_index</a>. For the piecewise construction of temperature profiles see <a href="#lad_vertical_gradient">lad_vertical_gradient</a>.</td>
6695
6696    </tr>
6697
6698    <tr>
6699
6700      <td style="vertical-align: top;"><a name="leaf_surface_concentration"></a><b>leaf_surface_concentration</b></td>
6701
6702      <td style="vertical-align: top;">R</td>
6703
6704      <td style="vertical-align: top;"><i>0.0</i></td>
6705
6706      <td style="vertical-align: top;">Concentration of a passive scalar at the surface of a leaf (in K m/s).<br>
6707
6708
6709      <br>
6710
6711
6712This parameter is only of importance in cases in that both, <a href="#plant_canopy">plant_canopy</a> and <a href="#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
6713The value of the concentration of a passive scalar at the surface of a
6714leaf is required for the parametrisation of the sources and sinks of
6715scalar concentration due to the canopy.</td>
6716
6717    </tr>
6718
6719    <tr>
6720
6721
6722
6723
6724
6725
6726
6727      <td style="vertical-align: top;"> 
6728     
6729     
6730     
6731     
6732     
6733     
6734      <p><a name="long_filter_factor"></a><b>long_filter_factor</b></p>
6735
6736
6737
6738
6739
6740
6741
6742      </td>
6743
6744
6745
6746
6747
6748
6749 <td style="vertical-align: top;">R</td>
6750
6751
6752
6753
6754
6755
6756
6757      <td style="vertical-align: top;"><i>0.0</i></td>
6758
6759
6760
6761
6762
6763
6764
6765      <td style="vertical-align: top;"> 
6766     
6767     
6768     
6769     
6770     
6771     
6772      <p>Filter factor
6773for the so-called Long-filter.<br>
6774
6775
6776
6777
6778
6779
6780 </p>
6781
6782
6783
6784
6785
6786
6787 
6788     
6789     
6790     
6791     
6792     
6793     
6794      <p><br>
6795
6796
6797
6798
6799
6800
6801
6802This filter very efficiently
6803eliminates 2-delta-waves sometimes cauesed by the upstream-spline
6804scheme (see Mahrer and
6805Pielke, 1978: Mon. Wea. Rev., 106, 818-830). It works in all three
6806directions in space. A value of <b>long_filter_factor</b>
6807= <i>0.01</i>
6808sufficiently removes the small-scale waves without affecting the
6809longer waves.<br>
6810
6811
6812
6813
6814
6815
6816 </p>
6817
6818
6819
6820
6821
6822
6823 
6824     
6825     
6826     
6827     
6828     
6829     
6830      <p>By default, the filter is
6831switched off (= <i>0.0</i>).
6832It is exclusively applied to the tendencies calculated by the
6833upstream-spline scheme (see <a href="#momentum_advec">momentum_advec</a>
6834and <a href="#scalar_advec">scalar_advec</a>),
6835not to the prognostic variables themselves. At the bottom and top
6836boundary of the model domain the filter effect for vertical
68372-delta-waves is reduced. There, the amplitude of these waves is only
6838reduced by approx. 50%, otherwise by nearly 100%.&nbsp; <br>
6839
6840
6841
6842
6843
6844
6845
6846Filter factors with values &gt; <i>0.01</i> also
6847reduce the amplitudes
6848of waves with wavelengths longer than 2-delta (see the paper by Mahrer
6849and
6850Pielke, quoted above). </p>
6851
6852
6853
6854
6855
6856
6857 </td>
6858
6859
6860
6861
6862
6863
6864 </tr>
6865
6866
6867
6868
6869
6870
6871 <tr>
6872
6873
6874
6875
6876
6877
6878      <td style="vertical-align: top;"><a name="loop_optimization"></a><span style="font-weight: bold;">loop_optimization</span></td>
6879
6880
6881
6882
6883
6884
6885      <td style="vertical-align: top;">C*16</td>
6886
6887
6888
6889
6890
6891
6892      <td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td>
6893
6894
6895
6896
6897
6898
6899      <td>Method used to optimize loops for solving the prognostic equations .<br>
6900
6901
6902
6903
6904
6905
6906      <br>
6907
6908
6909
6910
6911
6912
6913By
6914default, the optimization method depends on the host on which PALM is
6915running. On machines with vector-type CPUs, single 3d-loops are used to
6916calculate each tendency term of each prognostic equation, while on all
6917other machines, all prognostic equations are solved within one big loop
6918over the two horizontal indices<span style="font-family: Courier New,Courier,monospace;"> i </span>and<span style="font-family: Courier New,Courier,monospace;"> j </span>(giving a good cache uitilization).<br>
6919
6920
6921
6922
6923
6924
6925      <br>
6926
6927
6928
6929
6930
6931
6932The default behaviour can be changed by setting either <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'vector'</span> or <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'cache'</span>.</td>
6933
6934
6935
6936
6937
6938
6939    </tr>
6940
6941
6942
6943
6944
6945
6946    <tr>
6947
6948
6949
6950
6951
6952
6953
6954      <td style="vertical-align: top;"><a name="mixing_length_1d"></a><span style="font-weight: bold;">mixing_length_1d</span><br>
6955
6956
6957
6958
6959
6960
6961
6962      </td>
6963
6964
6965
6966
6967
6968
6969 <td style="vertical-align: top;">C*20<br>
6970
6971
6972
6973
6974
6975
6976
6977      </td>
6978
6979
6980
6981
6982
6983
6984 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
6985
6986
6987
6988
6989
6990
6991 <span style="font-style: italic;">model'</span><br>
6992
6993
6994
6995
6996
6997
6998 </td>
6999
7000
7001
7002
7003
7004
7005
7006      <td style="vertical-align: top;">Mixing length used in the
70071d-model.<br>
7008
7009
7010
7011
7012
7013
7014 <br>
7015
7016
7017
7018
7019
7020
7021
7022By default the mixing length is calculated as in the 3d-model (i.e. it
7023depends on the grid spacing).<br>
7024
7025
7026
7027
7028
7029
7030 <br>
7031
7032
7033
7034
7035
7036
7037
7038By setting <span style="font-weight: bold;">mixing_length_1d</span>
7039= <span style="font-style: italic;">'blackadar'</span>,
7040the so-called Blackadar mixing length is used (l = kappa * z / ( 1 +
7041kappa * z / lambda ) with the limiting value lambda = 2.7E-4 * u_g / f).<br>
7042
7043
7044
7045
7046
7047
7048
7049      </td>
7050
7051
7052
7053
7054
7055
7056 </tr>
7057
7058
7059
7060
7061
7062
7063 
7064
7065
7066
7067
7068
7069
7070
7071    <tr>
7072
7073
7074
7075
7076
7077
7078 <td style="vertical-align: top;"> 
7079     
7080     
7081     
7082     
7083     
7084     
7085      <p><a name="momentum_advec"></a><b>momentum_advec</b></p>
7086
7087
7088
7089
7090
7091
7092
7093      </td>
7094
7095
7096
7097
7098
7099
7100 <td style="vertical-align: top;">C * 10</td>
7101
7102
7103
7104
7105
7106
7107
7108      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
7109
7110
7111
7112
7113
7114
7115
7116      <td style="vertical-align: top;"> 
7117     
7118     
7119     
7120     
7121     
7122     
7123      <p>Advection
7124scheme to be used for the momentum equations.<br>
7125
7126
7127
7128
7129
7130
7131 <br>
7132
7133
7134
7135
7136
7137
7138
7139The user can choose between the following schemes:<br>
7140
7141
7142
7143
7144
7145
7146
7147&nbsp;<br>
7148
7149
7150
7151
7152
7153
7154 <br>
7155
7156
7157
7158
7159
7160
7161 <span style="font-style: italic;">'pw-scheme'</span><br>
7162
7163
7164
7165
7166
7167
7168
7169      </p>
7170
7171
7172
7173
7174
7175
7176 
7177     
7178     
7179     
7180     
7181     
7182     
7183      <div style="margin-left: 40px;">The scheme of
7184Piascek and
7185Williams (1970, J. Comp. Phys., 6,
7186392-405) with central differences in the form C3 is used.<br>
7187
7188
7189
7190
7191
7192
7193
7194If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
7195= <span style="font-style: italic;">'leapfrog+euler'</span>
7196the
7197advection scheme is - for the Euler-timestep - automatically switched
7198to an upstream-scheme.<br>
7199
7200
7201
7202
7203
7204
7205 </div>
7206
7207
7208
7209
7210
7211
7212 
7213     
7214     
7215     
7216     
7217     
7218     
7219      <p> </p>
7220
7221
7222
7223
7224
7225
7226 
7227     
7228     
7229     
7230     
7231     
7232     
7233      <p><span style="font-style: italic;">'ups-scheme'</span><br>
7234
7235
7236
7237
7238
7239
7240
7241      </p>
7242
7243
7244
7245
7246
7247
7248 
7249     
7250     
7251     
7252     
7253     
7254     
7255      <div style="margin-left: 40px;">The
7256upstream-spline scheme is
7257used
7258(see Mahrer and Pielke,
72591978: Mon. Wea. Rev., 106, 818-830). In opposite to the
7260Piascek-Williams scheme, this is characterized by much better numerical
7261features (less numerical diffusion, better preservation of flow
7262structures, e.g. vortices), but computationally it is much more
7263expensive. In
7264addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
7265= <span style="font-style: italic;">'</span><i>euler'</i>),
7266i.e. the
7267timestep accuracy is only of first order.
7268For this reason the advection of scalar variables (see <a href="#scalar_advec">scalar_advec</a>)
7269should then also be carried out with the upstream-spline scheme,
7270because otherwise the scalar variables would
7271be subject to large numerical diffusion due to the upstream
7272scheme.&nbsp; </div>
7273
7274
7275
7276
7277
7278
7279 
7280     
7281     
7282     
7283     
7284     
7285     
7286      <p style="margin-left: 40px;">Since
7287the cubic splines used tend
7288to overshoot under
7289certain circumstances, this effect must be adjusted by suitable
7290filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
7291      <a href="#long_filter_factor">long_filter_factor</a>,
7292      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
7293This is always neccessary for runs with stable stratification,
7294even if this stratification appears only in parts of the model domain.<br>
7295
7296
7297
7298
7299
7300
7301
7302      </p>
7303
7304
7305
7306
7307
7308
7309 
7310     
7311     
7312     
7313     
7314     
7315     
7316      <div style="margin-left: 40px;">With stable
7317stratification the
7318upstream-spline scheme also
7319produces gravity waves with large amplitude, which must be
7320suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
7321
7322
7323
7324
7325
7326
7327
7328      <br>
7329
7330
7331
7332
7333
7334
7335 <span style="font-weight: bold;">Important: </span>The&nbsp;
7336upstream-spline scheme is not implemented for humidity and passive
7337scalars (see&nbsp;<a href="#humidity">humidity</a>
7338and <a href="#passive_scalar">passive_scalar</a>)
7339and requires the use of a 2d-domain-decomposition. The last conditions
7340severely restricts code optimization on several machines leading to
7341very long execution times! The scheme is also not allowed for
7342non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
7343and <a href="#bc_ns">bc_ns</a>).</div>
7344
7345
7346
7347
7348
7349
7350 </td>
7351
7352
7353
7354
7355
7356
7357
7358    </tr>
7359
7360
7361
7362
7363
7364
7365 <tr>
7366
7367
7368
7369
7370
7371
7372 <td style="vertical-align: top;"><a name="netcdf_precision"></a><span style="font-weight: bold;">netcdf_precision</span><br>
7373
7374
7375
7376
7377
7378
7379
7380      </td>
7381
7382
7383
7384
7385
7386
7387 <td style="vertical-align: top;">C*20<br>
7388
7389
7390
7391
7392
7393
7394
7395(10)<br>
7396
7397
7398
7399
7400
7401
7402 </td>
7403
7404
7405
7406
7407
7408
7409 <td style="vertical-align: top;"><span style="font-style: italic;">single preci-</span><br style="font-style: italic;">
7410
7411
7412
7413
7414
7415
7416 <span style="font-style: italic;">sion for all</span><br style="font-style: italic;">
7417
7418
7419
7420
7421
7422
7423 <span style="font-style: italic;">output quan-</span><br style="font-style: italic;">
7424
7425
7426
7427
7428
7429
7430 <span style="font-style: italic;">tities</span><br>
7431
7432
7433
7434
7435
7436
7437 </td>
7438
7439
7440
7441
7442
7443
7444
7445      <td style="vertical-align: top;">Defines the accuracy of
7446the NetCDF output.<br>
7447
7448
7449
7450
7451
7452
7453 <br>
7454
7455
7456
7457
7458
7459
7460
7461By default, all NetCDF output data (see <a href="chapter_4.2.html#data_output_format">data_output_format</a>)
7462have single precision&nbsp; (4 byte) accuracy. Double precision (8
7463byte) can be choosen alternatively.<br>
7464
7465
7466
7467
7468
7469
7470
7471Accuracy for the different output data (cross sections, 3d-volume data,
7472spectra, etc.) can be set independently.<br>
7473
7474
7475
7476
7477
7478
7479 <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL4'</span>
7480(single precision) or <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL8'</span>
7481(double precision) are the two principally allowed values for <span style="font-weight: bold;">netcdf_precision</span>,
7482where the string <span style="font-style: italic;">'&lt;out&gt;'
7483      </span>can be chosen out of the following list:<br>
7484
7485
7486
7487
7488
7489
7490 <br>
7491
7492
7493
7494
7495
7496
7497
7498     
7499     
7500     
7501     
7502     
7503     
7504      <table style="text-align: left; width: 284px; height: 234px;" border="1" cellpadding="2" cellspacing="2">
7505
7506
7507
7508
7509
7510
7511 <tbody>
7512
7513
7514
7515
7516
7517
7518
7519          <tr>
7520
7521
7522
7523
7524
7525
7526 <td style="vertical-align: top;"><span style="font-style: italic;">'xy'</span><br>
7527
7528
7529
7530
7531
7532
7533 </td>
7534
7535
7536
7537
7538
7539
7540
7541            <td style="vertical-align: top;">horizontal cross section<br>
7542
7543
7544
7545
7546
7547
7548
7549            </td>
7550
7551
7552
7553
7554
7555
7556 </tr>
7557
7558
7559
7560
7561
7562
7563 <tr>
7564
7565
7566
7567
7568
7569
7570 <td style="vertical-align: top;"><span style="font-style: italic;">'xz'</span><br>
7571
7572
7573
7574
7575
7576
7577 </td>
7578
7579
7580
7581
7582
7583
7584
7585            <td style="vertical-align: top;">vertical (xz) cross
7586section<br>
7587
7588
7589
7590
7591
7592
7593 </td>
7594
7595
7596
7597
7598
7599
7600 </tr>
7601
7602
7603
7604
7605
7606
7607 <tr>
7608
7609
7610
7611
7612
7613
7614 <td style="vertical-align: top;"><span style="font-style: italic;">'yz'</span><br>
7615
7616
7617
7618
7619
7620
7621 </td>
7622
7623
7624
7625
7626
7627
7628
7629            <td style="vertical-align: top;">vertical (yz) cross
7630section<br>
7631
7632
7633
7634
7635
7636
7637 </td>
7638
7639
7640
7641
7642
7643
7644 </tr>
7645
7646
7647
7648
7649
7650
7651 <tr>
7652
7653
7654
7655
7656
7657
7658 <td style="vertical-align: top;"><span style="font-style: italic;">'2d'</span><br>
7659
7660
7661
7662
7663
7664
7665 </td>
7666
7667
7668
7669
7670
7671
7672
7673            <td style="vertical-align: top;">all cross sections<br>
7674
7675
7676
7677
7678
7679
7680
7681            </td>
7682
7683
7684
7685
7686
7687
7688 </tr>
7689
7690
7691
7692
7693
7694
7695 <tr>
7696
7697
7698
7699
7700
7701
7702 <td style="vertical-align: top;"><span style="font-style: italic;">'3d'</span><br>
7703
7704
7705
7706
7707
7708
7709 </td>
7710
7711
7712
7713
7714
7715
7716
7717            <td style="vertical-align: top;">volume data<br>
7718
7719
7720
7721
7722
7723
7724 </td>
7725
7726
7727
7728
7729
7730
7731
7732          </tr>
7733
7734
7735
7736
7737
7738
7739 <tr>
7740
7741
7742
7743
7744
7745
7746 <td style="vertical-align: top;"><span style="font-style: italic;">'pr'</span><br>
7747
7748
7749
7750
7751
7752
7753 </td>
7754
7755
7756
7757
7758
7759
7760
7761            <td style="vertical-align: top;">vertical profiles<br>
7762
7763
7764
7765
7766
7767
7768
7769            </td>
7770
7771
7772
7773
7774
7775
7776 </tr>
7777
7778
7779
7780
7781
7782
7783 <tr>
7784
7785
7786
7787
7788
7789
7790 <td style="vertical-align: top;"><span style="font-style: italic;">'ts'</span><br>
7791
7792
7793
7794
7795
7796
7797 </td>
7798
7799
7800
7801
7802
7803
7804
7805            <td style="vertical-align: top;">time series, particle
7806time series<br>
7807
7808
7809
7810
7811
7812
7813 </td>
7814
7815
7816
7817
7818
7819
7820 </tr>
7821
7822
7823
7824
7825
7826
7827 <tr>
7828
7829
7830
7831
7832
7833
7834 <td style="vertical-align: top;"><span style="font-style: italic;">'sp'</span><br>
7835
7836
7837
7838
7839
7840
7841 </td>
7842
7843
7844
7845
7846
7847
7848
7849            <td style="vertical-align: top;">spectra<br>
7850
7851
7852
7853
7854
7855
7856 </td>
7857
7858
7859
7860
7861
7862
7863
7864          </tr>
7865
7866
7867
7868
7869
7870
7871 <tr>
7872
7873
7874
7875
7876
7877
7878 <td style="vertical-align: top;"><span style="font-style: italic;">'prt'</span><br>
7879
7880
7881
7882
7883
7884
7885 </td>
7886
7887
7888
7889
7890
7891
7892
7893            <td style="vertical-align: top;">particles<br>
7894
7895
7896
7897
7898
7899
7900 </td>
7901
7902
7903
7904
7905
7906
7907
7908          </tr>
7909
7910
7911
7912
7913
7914
7915 <tr>
7916
7917
7918
7919
7920
7921
7922 <td style="vertical-align: top;"><span style="font-style: italic;">'all'</span><br>
7923
7924
7925
7926
7927
7928
7929 </td>
7930
7931
7932
7933
7934
7935
7936
7937            <td style="vertical-align: top;">all output quantities<br>
7938
7939
7940
7941
7942
7943
7944
7945            </td>
7946
7947
7948
7949
7950
7951
7952 </tr>
7953
7954
7955
7956
7957
7958
7959 
7960       
7961       
7962       
7963       
7964       
7965       
7966        </tbody> 
7967     
7968     
7969     
7970     
7971     
7972     
7973      </table>
7974
7975
7976
7977
7978
7979
7980 <br>
7981
7982
7983
7984
7985
7986
7987 <span style="font-weight: bold;">Example:</span><br>
7988
7989
7990
7991
7992
7993
7994
7995If all cross section data and the particle data shall be output in
7996double precision and all other quantities in single precision, then <span style="font-weight: bold;">netcdf_precision</span> = <span style="font-style: italic;">'2d_NF90_REAL8'</span>, <span style="font-style: italic;">'prt_NF90_REAL8'</span>
7997has to be assigned.<br>
7998
7999
8000
8001
8002
8003
8004 </td>
8005
8006
8007
8008
8009
8010
8011 </tr>
8012
8013
8014
8015
8016
8017
8018
8019   
8020
8021
8022
8023
8024
8025
8026 
8027
8028
8029
8030
8031
8032
8033
8034    <tr>
8035
8036
8037
8038
8039
8040
8041 <td style="vertical-align: top;"> 
8042     
8043     
8044     
8045     
8046     
8047     
8048      <p><a name="nsor_ini"></a><b>nsor_ini</b></p>
8049
8050
8051
8052
8053
8054
8055
8056      </td>
8057
8058
8059
8060
8061
8062
8063 <td style="vertical-align: top;">I</td>
8064
8065
8066
8067
8068
8069
8070
8071      <td style="vertical-align: top;"><i>100</i></td>
8072
8073
8074
8075
8076
8077
8078
8079      <td style="vertical-align: top;"> 
8080     
8081     
8082     
8083     
8084     
8085     
8086      <p>Initial number
8087of iterations with the SOR algorithm.&nbsp; </p>
8088
8089
8090
8091
8092
8093
8094 
8095     
8096     
8097     
8098     
8099     
8100     
8101      <p>This
8102parameter is only effective if the SOR algorithm was
8103selected as the pressure solver scheme (<a href="chapter_4.2.html#psolver">psolver</a>
8104= <span style="font-style: italic;">'sor'</span>)
8105and specifies the
8106number of initial iterations of the SOR
8107scheme (at t = 0). The number of subsequent iterations at the following
8108timesteps is determined
8109with the parameter <a href="#nsor">nsor</a>.
8110Usually <b>nsor</b> &lt; <b>nsor_ini</b>,
8111since in each case
8112subsequent calls to <a href="chapter_4.2.html#psolver">psolver</a>
8113use the solution of the previous call as initial value. Suitable
8114test runs should determine whether sufficient convergence of the
8115solution is obtained with the default value and if necessary the value
8116of <b>nsor_ini</b> should be changed.</p>
8117
8118
8119
8120
8121
8122
8123 </td>
8124
8125
8126
8127
8128
8129
8130
8131    </tr>
8132
8133
8134
8135
8136
8137
8138 <tr>
8139
8140
8141
8142
8143
8144
8145 <td style="vertical-align: top;">
8146     
8147     
8148     
8149     
8150     
8151     
8152      <p><a name="nx"></a><b>nx</b></p>
8153
8154
8155
8156
8157
8158
8159
8160      </td>
8161
8162
8163
8164
8165
8166
8167 <td style="vertical-align: top;">I</td>
8168
8169
8170
8171
8172
8173
8174
8175      <td style="vertical-align: top;"><br>
8176
8177
8178
8179
8180
8181
8182 </td>
8183
8184
8185
8186
8187
8188
8189 <td style="vertical-align: top;"> 
8190     
8191     
8192     
8193     
8194     
8195     
8196      <p>Number of grid
8197points in x-direction.&nbsp; </p>
8198
8199
8200
8201
8202
8203
8204 
8205     
8206     
8207     
8208     
8209     
8210     
8211      <p>A value for this
8212parameter must be assigned. Since the lower
8213array bound in PALM
8214starts with i = 0, the actual number of grid points is equal to <b>nx+1</b>.
8215In case of cyclic boundary conditions along x, the domain size is (<b>nx+1</b>)*
8216      <a href="#dx">dx</a>.</p>
8217
8218
8219
8220
8221
8222
8223 
8224     
8225     
8226     
8227     
8228     
8229     
8230      <p>For
8231parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8232= <span style="font-style: italic;">'strict'</span>,
8233      <b>nx+1</b> must
8234be an integral multiple
8235of the processor numbers (see <a href="#npex">npex</a>
8236and <a href="#npey">npey</a>)
8237along x- as well as along y-direction (due to data
8238transposition restrictions).</p>
8239
8240
8241
8242
8243
8244
8245     
8246     
8247     
8248     
8249     
8250     
8251      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8252and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8253
8254
8255
8256
8257
8258
8259 </td>
8260
8261
8262
8263
8264
8265
8266 </tr>
8267
8268
8269
8270
8271
8272
8273 <tr>
8274
8275
8276
8277
8278
8279
8280
8281      <td style="vertical-align: top;"> 
8282     
8283     
8284     
8285     
8286     
8287     
8288      <p><a name="ny"></a><b>ny</b></p>
8289
8290
8291
8292
8293
8294
8295
8296      </td>
8297
8298
8299
8300
8301
8302
8303 <td style="vertical-align: top;">I</td>
8304
8305
8306
8307
8308
8309
8310
8311      <td style="vertical-align: top;"><br>
8312
8313
8314
8315
8316
8317
8318 </td>
8319
8320
8321
8322
8323
8324
8325 <td style="vertical-align: top;"> 
8326     
8327     
8328     
8329     
8330     
8331     
8332      <p>Number of grid
8333points in y-direction.&nbsp; </p>
8334
8335
8336
8337
8338
8339
8340 
8341     
8342     
8343     
8344     
8345     
8346     
8347      <p>A value for this
8348parameter must be assigned. Since the lower
8349array bound in PALM starts with j = 0, the actual number of grid points
8350is equal to <b>ny+1</b>. In case of cyclic boundary
8351conditions along
8352y, the domain size is (<b>ny+1</b>) * <a href="#dy">dy</a>.</p>
8353
8354
8355
8356
8357
8358
8359
8360     
8361     
8362     
8363     
8364     
8365     
8366      <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8367= <span style="font-style: italic;">'strict'</span>,
8368      <b>ny+1</b> must
8369be an integral multiple
8370of the processor numbers (see <a href="#npex">npex</a>
8371and <a href="#npey">npey</a>)&nbsp;
8372along y- as well as along x-direction (due to data
8373transposition restrictions).</p>
8374
8375
8376
8377
8378
8379
8380     
8381     
8382     
8383     
8384     
8385     
8386      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8387and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8388
8389
8390
8391
8392
8393
8394 </td>
8395
8396
8397
8398
8399
8400
8401 </tr>
8402
8403
8404
8405
8406
8407
8408 <tr>
8409
8410
8411
8412
8413
8414
8415
8416      <td style="vertical-align: top;"> 
8417     
8418     
8419     
8420     
8421     
8422     
8423      <p><a name="nz"></a><b>nz</b></p>
8424
8425
8426
8427
8428
8429
8430
8431      </td>
8432
8433
8434
8435
8436
8437
8438 <td style="vertical-align: top;">I</td>
8439
8440
8441
8442
8443
8444
8445
8446      <td style="vertical-align: top;"><br>
8447
8448
8449
8450
8451
8452
8453 </td>
8454
8455
8456
8457
8458
8459
8460 <td style="vertical-align: top;"> 
8461     
8462     
8463     
8464     
8465     
8466     
8467      <p>Number of grid
8468points in z-direction.&nbsp; </p>
8469
8470
8471
8472
8473
8474
8475 
8476     
8477     
8478     
8479     
8480     
8481     
8482      <p>A value for this
8483parameter must be assigned. Since the lower
8484array bound in PALM
8485starts with k = 0 and since one additional grid point is added at the
8486top boundary (k = <b>nz+1</b>), the actual number of grid
8487points is <b>nz+2</b>.
8488However, the prognostic equations are only solved up to <b>nz</b>
8489(u,
8490v)
8491or up to <b>nz-1</b> (w, scalar quantities). The top
8492boundary for u
8493and v is at k = <b>nz+1</b> (u, v) while at k = <b>nz</b>
8494for all
8495other quantities.&nbsp; </p>
8496
8497
8498
8499
8500
8501
8502 
8503     
8504     
8505     
8506     
8507     
8508     
8509      <p>For parallel
8510runs,&nbsp; in case of <a href="#grid_matching">grid_matching</a>
8511= <span style="font-style: italic;">'strict'</span>,
8512      <b>nz</b> must
8513be an integral multiple of
8514the number of processors in x-direction (due to data transposition
8515restrictions).</p>
8516
8517
8518
8519
8520
8521
8522 </td>
8523
8524
8525
8526
8527
8528
8529 </tr>
8530
8531
8532
8533
8534
8535
8536 <tr>
8537
8538
8539
8540
8541
8542
8543      <td style="vertical-align: top;"><a name="ocean"></a><span style="font-weight: bold;">ocean</span></td>
8544
8545
8546
8547
8548
8549
8550      <td style="vertical-align: top;">L</td>
8551
8552
8553
8554
8555
8556
8557      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
8558
8559
8560
8561
8562
8563
8564      <td style="vertical-align: top;">Parameter to switch on&nbsp;ocean runs.<br>
8565
8566
8567
8568
8569
8570
8571      <br>
8572
8573
8574
8575
8576
8577
8578By default PALM is configured to simulate&nbsp;atmospheric flows. However, starting from version 3.3, <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> allows&nbsp;simulation of ocean turbulent flows. Setting this switch has several effects:<br>
8579
8580
8581
8582
8583
8584
8585      <br>
8586
8587
8588
8589
8590
8591
8592     
8593     
8594     
8595     
8596     
8597     
8598      <ul>
8599
8600
8601
8602
8603
8604
8605        <li>An additional prognostic equation for salinity is solved.</li>
8606
8607
8608
8609
8610
8611
8612        <li>Potential temperature in buoyancy and stability-related terms is replaced by potential density.</li>
8613
8614
8615
8616
8617
8618
8619        <li>Potential
8620density is calculated from the equation of state for seawater after
8621each timestep, using the algorithm proposed by Jackett et al. (2006, J.
8622Atmos. Oceanic Technol., <span style="font-weight: bold;">23</span>, 1709-1728).<br>
8623
8624
8625
8626
8627
8628
8629So far, only the initial hydrostatic pressure is entered into this equation.</li>
8630
8631
8632
8633
8634
8635
8636        <li>z=0 (sea surface) is assumed at the model top (vertical grid index <span style="font-family: Courier New,Courier,monospace;">k=nzt</span> on the w-grid), with negative values of z indicating the depth.</li>
8637
8638
8639
8640
8641
8642
8643        <li>Initial profiles are constructed (e.g. from <a href="#pt_vertical_gradient">pt_vertical_gradient</a> / <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>) starting from the sea surface, using surface values&nbsp;given by <a href="#pt_surface">pt_surface</a>, <a href="#sa_surface">sa_surface</a>, <a href="#ug_surface">ug_surface</a>, and <a href="#vg_surface">vg_surface</a>.</li>
8644
8645
8646
8647
8648
8649
8650        <li>Zero salinity flux is used as default boundary condition at the bottom of the sea.</li>
8651
8652
8653
8654
8655
8656
8657        <li>If switched on, random perturbations are by default imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3).</li>
8658
8659
8660
8661
8662
8663
8664     
8665     
8666     
8667     
8668     
8669     
8670      </ul>
8671
8672
8673
8674
8675
8676
8677      <br>
8678
8679
8680
8681
8682
8683
8684Relevant parameters to be exclusively used for steering ocean runs are <a href="#bc_sa_t">bc_sa_t</a>, <a href="#bottom_salinityflux">bottom_salinityflux</a>, <a href="#sa_surface">sa_surface</a>, <a href="#sa_vertical_gradient">sa_vertical_gradient</a>, <a href="#sa_vertical_gradient_level">sa_vertical_gradient_level</a>, and <a href="#top_salinityflux">top_salinityflux</a>.<br>
8685
8686
8687
8688
8689
8690
8691      <br>
8692
8693
8694
8695
8696
8697
8698Section <a href="chapter_4.2.2.html">4.4.2</a> gives an example for appropriate settings of these and other parameters neccessary for ocean runs.<br>
8699
8700
8701
8702
8703
8704
8705      <br>
8706
8707
8708
8709
8710
8711
8712      <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> does not allow settings of <a href="#timestep_scheme">timestep_scheme</a> = <span style="font-style: italic;">'leapfrog'</span> or <span style="font-style: italic;">'leapfrog+euler'</span> as well as <a href="#scalar_advec">scalar_advec</a> = <span style="font-style: italic;">'ups-scheme'</span>.<span style="font-weight: bold;"></span><br>
8713
8714
8715
8716      </td>
8717
8718
8719
8720
8721
8722
8723    </tr>
8724
8725
8726
8727
8728
8729
8730    <tr>
8731
8732
8733
8734
8735
8736
8737 <td style="vertical-align: top;"> 
8738     
8739     
8740     
8741     
8742     
8743     
8744      <p><a name="omega"></a><b>omega</b></p>
8745
8746
8747
8748
8749
8750
8751
8752      </td>
8753
8754
8755
8756
8757
8758
8759 <td style="vertical-align: top;">R</td>
8760
8761
8762
8763
8764
8765
8766
8767      <td style="vertical-align: top;"><i>7.29212E-5</i></td>
8768
8769
8770
8771
8772
8773
8774
8775      <td style="vertical-align: top;"> 
8776     
8777     
8778     
8779     
8780     
8781     
8782      <p>Angular
8783velocity of the rotating system (in rad s<sup>-1</sup>).&nbsp;
8784      </p>
8785
8786
8787
8788
8789
8790
8791 
8792     
8793     
8794     
8795     
8796     
8797     
8798      <p>The angular velocity of the earth is set by
8799default. The
8800values
8801of the Coriolis parameters are calculated as:&nbsp; </p>
8802
8803
8804
8805
8806
8807
8808 
8809     
8810     
8811     
8812     
8813     
8814     
8815      <ul>
8816
8817
8818
8819
8820
8821
8822
8823       
8824       
8825       
8826       
8827       
8828       
8829        <p>f = 2.0 * <b>omega</b> * sin(<a href="#phi">phi</a>)&nbsp;
8830        <br>
8831
8832
8833
8834
8835
8836
8837f* = 2.0 * <b>omega</b> * cos(<a href="#phi">phi</a>)</p>
8838
8839
8840
8841
8842
8843
8844
8845     
8846     
8847     
8848     
8849     
8850     
8851      </ul>
8852
8853
8854
8855
8856
8857
8858 </td>
8859
8860
8861
8862
8863
8864
8865 </tr>
8866
8867
8868
8869
8870
8871
8872 <tr>
8873
8874
8875
8876
8877
8878
8879 <td style="vertical-align: top;"> 
8880     
8881     
8882     
8883     
8884     
8885     
8886      <p><a name="outflow_damping_width"></a><b>outflow_damping_width</b></p>
8887
8888
8889
8890
8891
8892
8893
8894      </td>
8895
8896
8897
8898
8899
8900
8901 <td style="vertical-align: top;">I</td>
8902
8903
8904
8905
8906
8907
8908
8909      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(20,
8910nx/2</span> or <span style="font-style: italic;">ny/2)</span></td>
8911
8912
8913
8914
8915
8916
8917
8918      <td style="vertical-align: top;">Width of
8919the damping range in the vicinity of the outflow (gridpoints).<br>
8920
8921
8922
8923
8924
8925
8926
8927      <br>
8928
8929
8930
8931
8932
8933
8934
8935When using non-cyclic lateral boundaries (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
8936or <a href="chapter_4.1.html#bc_ns">bc_ns</a>),
8937a smoothing has to be applied to the
8938velocity field in the vicinity of the outflow in order to suppress any
8939reflections of outgoing disturbances. This parameter controlls the
8940horizontal range to which the smoothing is applied. The range is given
8941in gridpoints counted from the respective outflow boundary. For further
8942details about the smoothing see parameter <a href="chapter_4.1.html#km_damp_max">km_damp_max</a>,
8943which defines the magnitude of the damping.</td>
8944
8945
8946
8947
8948
8949
8950 </tr>
8951
8952
8953
8954
8955
8956
8957
8958    <tr>
8959
8960
8961
8962
8963
8964
8965 <td style="vertical-align: top;"> 
8966     
8967     
8968     
8969     
8970     
8971     
8972      <p><a name="overshoot_limit_e"></a><b>overshoot_limit_e</b></p>
8973
8974
8975
8976
8977
8978
8979
8980      </td>
8981
8982
8983
8984
8985
8986
8987 <td style="vertical-align: top;">R</td>
8988
8989
8990
8991
8992
8993
8994
8995      <td style="vertical-align: top;"><i>0.0</i></td>
8996
8997
8998
8999
9000
9001
9002
9003      <td style="vertical-align: top;"> 
9004     
9005     
9006     
9007     
9008     
9009     
9010      <p>Allowed limit
9011for the overshooting of subgrid-scale TKE in
9012case that the upstream-spline scheme is switched on (in m<sup>2</sup>/s<sup>2</sup>).&nbsp;
9013      </p>
9014
9015
9016
9017
9018
9019
9020 
9021     
9022     
9023     
9024     
9025     
9026     
9027      <p>By deafult, if cut-off of overshoots is switched
9028on for the
9029upstream-spline scheme (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>),
9030no overshoots are permitted at all. If <b>overshoot_limit_e</b>
9031is given a non-zero value, overshoots with the respective
9032amplitude (both upward and downward) are allowed.&nbsp; </p>
9033
9034
9035
9036
9037
9038
9039
9040     
9041     
9042     
9043     
9044     
9045     
9046      <p>Only positive values are allowed for <b>overshoot_limit_e</b>.</p>
9047
9048
9049
9050
9051
9052
9053
9054      </td>
9055
9056
9057
9058
9059
9060
9061 </tr>
9062
9063
9064
9065
9066
9067
9068 <tr>
9069
9070
9071
9072
9073
9074
9075 <td style="vertical-align: top;"> 
9076     
9077     
9078     
9079     
9080     
9081     
9082      <p><a name="overshoot_limit_pt"></a><b>overshoot_limit_pt</b></p>
9083
9084
9085
9086
9087
9088
9089
9090      </td>
9091
9092
9093
9094
9095
9096
9097 <td style="vertical-align: top;">R</td>
9098
9099
9100
9101
9102
9103
9104
9105      <td style="vertical-align: top;"><i>0.0</i></td>
9106
9107
9108
9109
9110
9111
9112
9113      <td style="vertical-align: top;"> 
9114     
9115     
9116     
9117     
9118     
9119     
9120      <p>Allowed limit
9121for the overshooting of potential temperature in
9122case that the upstream-spline scheme is switched on (in K).&nbsp; </p>
9123
9124
9125
9126
9127
9128
9129
9130     
9131     
9132     
9133     
9134     
9135     
9136      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9137      </p>
9138
9139
9140
9141
9142
9143
9144 
9145     
9146     
9147     
9148     
9149     
9150     
9151      <p>Only positive values are allowed for <b>overshoot_limit_pt</b>.</p>
9152
9153
9154
9155
9156
9157
9158
9159      </td>
9160
9161
9162
9163
9164
9165
9166 </tr>
9167
9168
9169
9170
9171
9172
9173 <tr>
9174
9175
9176
9177
9178
9179
9180 <td style="vertical-align: top;"> 
9181     
9182     
9183     
9184     
9185     
9186     
9187      <p><a name="overshoot_limit_u"></a><b>overshoot_limit_u</b></p>
9188
9189
9190
9191
9192
9193
9194
9195      </td>
9196
9197
9198
9199
9200
9201
9202 <td style="vertical-align: top;">R</td>
9203
9204
9205
9206
9207
9208
9209
9210      <td style="vertical-align: top;"><i>0.0</i></td>
9211
9212
9213
9214
9215
9216
9217
9218      <td style="vertical-align: top;">Allowed limit for the
9219overshooting of
9220the u-component of velocity in case that the upstream-spline scheme is
9221switched on (in m/s).
9222     
9223     
9224     
9225     
9226     
9227     
9228      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9229      </p>
9230
9231
9232
9233
9234
9235
9236 
9237     
9238     
9239     
9240     
9241     
9242     
9243      <p>Only positive values are allowed for <b>overshoot_limit_u</b>.</p>
9244
9245
9246
9247
9248
9249
9250
9251      </td>
9252
9253
9254
9255
9256
9257
9258 </tr>
9259
9260
9261
9262
9263
9264
9265 <tr>
9266
9267
9268
9269
9270
9271
9272 <td style="vertical-align: top;"> 
9273     
9274     
9275     
9276     
9277     
9278     
9279      <p><a name="overshoot_limit_v"></a><b>overshoot_limit_v</b></p>
9280
9281
9282
9283
9284
9285
9286
9287      </td>
9288
9289
9290
9291
9292
9293
9294 <td style="vertical-align: top;">R</td>
9295
9296
9297
9298
9299
9300
9301
9302      <td style="vertical-align: top;"><i>0.0</i></td>
9303
9304
9305
9306
9307
9308
9309
9310      <td style="vertical-align: top;"> 
9311     
9312     
9313     
9314     
9315     
9316     
9317      <p>Allowed limit
9318for the overshooting of the v-component of
9319velocity in case that the upstream-spline scheme is switched on
9320(in m/s).&nbsp; </p>
9321
9322
9323
9324
9325
9326
9327 
9328     
9329     
9330     
9331     
9332     
9333     
9334      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9335      </p>
9336
9337
9338
9339
9340
9341
9342 
9343     
9344     
9345     
9346     
9347     
9348     
9349      <p>Only positive values are allowed for <b>overshoot_limit_v</b>.</p>
9350
9351
9352
9353
9354
9355
9356
9357      </td>
9358
9359
9360
9361
9362
9363
9364 </tr>
9365
9366
9367
9368
9369
9370
9371 <tr>
9372
9373
9374
9375
9376
9377
9378 <td style="vertical-align: top;"> 
9379     
9380     
9381     
9382     
9383     
9384     
9385      <p><a name="overshoot_limit_w"></a><b>overshoot_limit_w</b></p>
9386
9387
9388
9389
9390
9391
9392
9393      </td>
9394
9395
9396
9397
9398
9399
9400 <td style="vertical-align: top;">R</td>
9401
9402
9403
9404
9405
9406
9407
9408      <td style="vertical-align: top;"><i>0.0</i></td>
9409
9410
9411
9412
9413
9414
9415
9416      <td style="vertical-align: top;"> 
9417     
9418     
9419     
9420     
9421     
9422     
9423      <p>Allowed limit
9424for the overshooting of the w-component of
9425velocity in case that the upstream-spline scheme is switched on
9426(in m/s).&nbsp; </p>
9427
9428
9429
9430
9431
9432
9433 
9434     
9435     
9436     
9437     
9438     
9439     
9440      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9441      </p>
9442
9443
9444
9445
9446
9447
9448 
9449     
9450     
9451     
9452     
9453     
9454     
9455      <p>Only positive values are permitted for <b>overshoot_limit_w</b>.</p>
9456
9457
9458
9459
9460
9461
9462
9463      </td>
9464
9465
9466
9467
9468
9469
9470 </tr>
9471
9472
9473
9474
9475
9476
9477 <tr>
9478
9479
9480
9481
9482
9483
9484 <td style="vertical-align: top;"> 
9485     
9486     
9487     
9488     
9489     
9490     
9491      <p><a name="passive_scalar"></a><b>passive_scalar</b></p>
9492
9493
9494
9495
9496
9497
9498
9499      </td>
9500
9501
9502
9503
9504
9505
9506 <td style="vertical-align: top;">L</td>
9507
9508
9509
9510
9511
9512
9513
9514      <td style="vertical-align: top;"><i>.F.</i></td>
9515
9516
9517
9518
9519
9520
9521
9522      <td style="vertical-align: top;"> 
9523     
9524     
9525     
9526     
9527     
9528     
9529      <p>Parameter to
9530switch on the prognostic equation for a passive
9531scalar. <br>
9532
9533
9534
9535
9536
9537
9538 </p>
9539
9540
9541
9542
9543
9544
9545 
9546     
9547     
9548     
9549     
9550     
9551     
9552      <p>The initial vertical profile
9553of s can be set via parameters <a href="#s_surface">s_surface</a>,
9554      <a href="#s_vertical_gradient">s_vertical_gradient</a>
9555and&nbsp; <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
9556Boundary conditions can be set via <a href="#s_surface_initial_change">s_surface_initial_change</a>
9557and <a href="#surface_scalarflux">surface_scalarflux</a>.&nbsp;
9558      </p>
9559
9560
9561
9562
9563
9564
9565 
9566     
9567     
9568     
9569     
9570     
9571     
9572      <p><b>Note:</b> <br>
9573
9574
9575
9576
9577
9578
9579
9580With <span style="font-weight: bold;">passive_scalar</span>
9581switched
9582on, the simultaneous use of humidity (see&nbsp;<a href="#humidity">humidity</a>)
9583is impossible.</p>
9584
9585
9586
9587
9588
9589
9590 </td>
9591
9592
9593
9594
9595
9596
9597 </tr>
9598
9599
9600
9601
9602
9603
9604 <tr>
9605
9606      <td style="vertical-align: top;"><a name="pch_index"></a><span style="font-weight: bold;">pch_index</span></td>
9607
9608      <td style="vertical-align: top;">I</td>
9609
9610      <td style="vertical-align: top;"><span style="font-style: italic;">0</span></td>
9611
9612      <td style="vertical-align: top;">Grid point index (scalar) of the upper boundary of the plant canopy layer.<br>
9613
9614      <br>
9615
9616Above <span style="font-weight: bold;">pch_index</span> the arrays of leaf area density and drag_coeffient are automatically set to zero in case of <a href="#plant_canopy">plant_canopy</a> = .T.. Up to <span style="font-weight: bold;">pch_index</span> a leaf area density profile can be prescribed by using the parameters <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a> and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>.</td>
9617
9618    </tr>
9619
9620    <tr>
9621
9622
9623
9624
9625
9626
9627 <td style="vertical-align: top;"> 
9628     
9629     
9630     
9631     
9632     
9633     
9634      <p><a name="phi"></a><b>phi</b></p>
9635
9636
9637
9638
9639
9640
9641
9642      </td>
9643
9644
9645
9646
9647
9648
9649 <td style="vertical-align: top;">R</td>
9650
9651
9652
9653
9654
9655
9656
9657      <td style="vertical-align: top;"><i>55.0</i></td>
9658
9659
9660
9661
9662
9663
9664
9665      <td style="vertical-align: top;"> 
9666     
9667     
9668     
9669     
9670     
9671     
9672      <p>Geographical
9673latitude (in degrees).&nbsp; </p>
9674
9675
9676
9677
9678
9679
9680 
9681     
9682     
9683     
9684     
9685     
9686     
9687      <p>The value of
9688this parameter determines the value of the
9689Coriolis parameters f and f*, provided that the angular velocity (see <a href="#omega">omega</a>)
9690is non-zero.</p>
9691
9692
9693
9694
9695
9696
9697 </td>
9698
9699
9700
9701
9702
9703
9704 </tr>
9705
9706
9707
9708
9709
9710
9711 <tr>
9712
9713      <td style="vertical-align: top;"><a name="plant_canopy"></a><span style="font-weight: bold;">plant_canopy</span></td>
9714
9715      <td style="vertical-align: top;">L</td>
9716
9717      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
9718
9719      <td style="vertical-align: top;">Switch for the plant_canopy_model.<br>
9720
9721      <br>
9722
9723If <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>, the plant canopy model of Watanabe (2004, BLM 112, 307-341) is used. <br>
9724
9725The
9726impact of a plant canopy on a turbulent flow is considered by an
9727additional drag term in the momentum equations and an additional sink
9728term in the prognostic equation for the subgrid-scale TKE. These
9729additional terms are dependent on the leaf drag coefficient (see <a href="#drag_coefficient">drag_coefficient</a>) and the leaf area density (see <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a>, <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>). The top boundary of the plant canopy is determined by the parameter <a href="#pch_index">pch_index</a>. For all heights equal to or larger than zw(k=<span style="font-weight: bold;">pch_index</span>) the leaf area density is 0 (i.e. there is no canopy at these heights!). <br>
9730
9731By default, a horizontally homogeneous plant canopy is prescribed, if&nbsp; <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>. However, the user can define other types of plant canopies (see <a href="#canopy_mode">canopy_mode</a>).<br><br>If <span style="font-weight: bold;">plant_canopy</span> and&nbsp; <span style="font-weight: bold;">passive_scalar</span><span style="font-style: italic;"> </span>are set <span style="font-style: italic;">.T.</span>,
9732the canopy acts as an additional source or sink, respectively, of
9733scalar concentration. The source/sink strength is dependent on the
9734scalar concentration at the leaf surface, which is generally constant
9735with time in PALM and which can be specified by specifying the
9736parameter <a href="#leaf_surface_concentration">leaf_surface_concentration</a>. <br><br>Additional heating of the air by the plant canopy is taken into account, when the default value of the parameter <a href="#cthf">cthf</a> is altered in the parameter file. In that case the value of <a href="#surface_heatflux">surface_heatflux</a>
9737specified in the parameter file is not used in the model. Instead the
9738near-surface heat flux is derived from an expontial function that is
9739dependent on the cumulative leaf area index. <br> 
9740
9741      <br>
9742
9743      <span style="font-weight: bold;">plant_canopy</span> = <span style="font-style: italic;">.T. </span>is only allowed together with a non-zero <a href="#drag_coefficient">drag_coefficient</a>.</td>
9744
9745    </tr>
9746
9747    <tr>
9748
9749
9750
9751
9752
9753
9754 <td style="vertical-align: top;"> 
9755     
9756     
9757     
9758     
9759     
9760     
9761      <p><a name="prandtl_layer"></a><b>prandtl_layer</b></p>
9762
9763
9764
9765
9766
9767
9768
9769      </td>
9770
9771
9772
9773
9774
9775
9776 <td style="vertical-align: top;">L</td>
9777
9778
9779
9780
9781
9782
9783
9784      <td style="vertical-align: top;"><i>.T.</i></td>
9785
9786
9787
9788
9789
9790
9791
9792      <td style="vertical-align: top;"> 
9793     
9794     
9795     
9796     
9797     
9798     
9799      <p>Parameter to
9800switch on a Prandtl layer.&nbsp; </p>
9801
9802
9803
9804
9805
9806
9807 
9808     
9809     
9810     
9811     
9812     
9813     
9814      <p>By default,
9815a Prandtl layer is switched on at the bottom
9816boundary between z = 0 and z = 0.5 * <a href="#dz">dz</a>
9817(the first computational grid point above ground for u, v and the
9818scalar quantities).
9819In this case, at the bottom boundary, free-slip conditions for u and v
9820(see <a href="#bc_uv_b">bc_uv_b</a>)
9821are not allowed. Likewise, laminar
9822simulations with constant eddy diffusivities (<a href="#km_constant">km_constant</a>)
9823are forbidden.&nbsp; </p>
9824
9825
9826
9827
9828
9829
9830 
9831     
9832     
9833     
9834     
9835     
9836     
9837      <p>With Prandtl-layer
9838switched off, the TKE boundary condition <a href="#bc_e_b">bc_e_b</a>
9839= '<i>(u*)**2+neumann'</i> must not be used and is
9840automatically
9841changed to <i>'neumann'</i> if necessary.&nbsp; Also,
9842the pressure
9843boundary condition <a href="#bc_p_b">bc_p_b</a>
9844= <i>'neumann+inhomo'</i>&nbsp; is not allowed. </p>
9845
9846
9847
9848
9849
9850
9851
9852     
9853     
9854     
9855     
9856     
9857     
9858      <p>The roughness length is declared via the parameter <a href="#roughness_length">roughness_length</a>.</p>
9859
9860
9861
9862
9863
9864
9865
9866      </td>
9867
9868
9869
9870
9871
9872
9873 </tr>
9874
9875
9876
9877
9878
9879
9880 <tr>
9881
9882
9883
9884
9885
9886
9887 <td style="vertical-align: top;"> 
9888     
9889     
9890     
9891     
9892     
9893     
9894      <p><a name="precipitation"></a><b>precipitation</b></p>
9895
9896
9897
9898
9899
9900
9901
9902      </td>
9903
9904
9905
9906
9907
9908
9909 <td style="vertical-align: top;">L</td>
9910
9911
9912
9913
9914
9915
9916
9917      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
9918
9919
9920
9921
9922
9923
9924 <td style="vertical-align: top;"> 
9925     
9926     
9927     
9928     
9929     
9930     
9931      <p>Parameter to switch
9932on the precipitation scheme.<br>
9933
9934
9935
9936
9937
9938
9939 </p>
9940
9941
9942
9943
9944
9945
9946 
9947     
9948     
9949     
9950     
9951     
9952     
9953      <p>For
9954precipitation processes PALM uses a simplified Kessler
9955scheme. This scheme only considers the
9956so-called autoconversion, that means the generation of rain water by
9957coagulation of cloud drops among themselves. Precipitation begins and
9958is immediately removed from the flow as soon as the liquid water
9959content exceeds the critical value of 0.5 g/kg.</p>
9960
9961
9962
9963
9964
9965
9966     
9967     
9968     
9969     
9970     
9971     
9972      <p>The precipitation rate and amount can be output by assigning the runtime parameter <a href="chapter_4.2.html#data_output">data_output</a> = <span style="font-style: italic;">'prr*'</span> or <span style="font-style: italic;">'pra*'</span>, respectively. The time interval on which the precipitation amount is defined can be controlled via runtime parameter <a href="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</a>.</p>
9973
9974
9975
9976
9977
9978
9979 </td>
9980
9981
9982
9983
9984
9985
9986 </tr>
9987
9988
9989
9990
9991
9992
9993
9994    <tr>
9995
9996
9997
9998
9999
10000
10001      <td style="vertical-align: top;"><a name="pt_reference"></a><span style="font-weight: bold;">pt_reference</span></td>
10002
10003
10004
10005
10006
10007
10008      <td style="vertical-align: top;">R</td>
10009
10010
10011
10012
10013
10014
10015      <td style="vertical-align: top;"><span style="font-style: italic;">use horizontal average as
10016refrence</span></td>
10017
10018
10019
10020
10021
10022
10023      <td style="vertical-align: top;">Reference
10024temperature to be used in all buoyancy terms (in K).<br>
10025
10026
10027
10028
10029
10030
10031      <br>
10032
10033
10034
10035
10036
10037
10038By
10039default, the instantaneous horizontal average over the total model
10040domain is used.<br>
10041
10042
10043
10044
10045
10046
10047      <br>
10048
10049
10050
10051
10052
10053
10054      <span style="font-weight: bold;">Attention:</span><br>
10055
10056
10057
10058
10059
10060
10061In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), always a reference temperature is used in the buoyancy terms with a default value of <span style="font-weight: bold;">pt_reference</span> = <a href="#pt_surface">pt_surface</a>.</td>
10062
10063
10064
10065
10066
10067
10068    </tr>
10069
10070
10071
10072
10073
10074
10075    <tr>
10076
10077
10078
10079
10080
10081
10082 <td style="vertical-align: top;"> 
10083     
10084     
10085     
10086     
10087     
10088     
10089      <p><a name="pt_surface"></a><b>pt_surface</b></p>
10090
10091
10092
10093
10094
10095
10096
10097      </td>
10098
10099
10100
10101
10102
10103
10104 <td style="vertical-align: top;">R</td>
10105
10106
10107
10108
10109
10110
10111
10112      <td style="vertical-align: top;"><i>300.0</i></td>
10113
10114
10115
10116
10117
10118
10119
10120      <td style="vertical-align: top;"> 
10121     
10122     
10123     
10124     
10125     
10126     
10127      <p>Surface
10128potential temperature (in K).&nbsp; </p>
10129
10130
10131
10132
10133
10134
10135 
10136     
10137     
10138     
10139     
10140     
10141     
10142      <p>This
10143parameter assigns the value of the potential temperature
10144      <span style="font-weight: bold;">pt</span> at the surface (k=0)<b>.</b> Starting from this value,
10145the
10146initial vertical temperature profile is constructed with <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10147and <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level
10148      </a>.
10149This profile is also used for the 1d-model as a stationary profile.</p>
10150
10151
10152
10153
10154
10155
10156     
10157     
10158     
10159     
10160     
10161     
10162      <p><span style="font-weight: bold;">Attention:</span><br>
10163
10164
10165
10166
10167
10168
10169In case of ocean runs (see <a href="#ocean">ocean</a>),
10170this parameter gives the temperature value at the sea surface, which is
10171at k=nzt. The profile is then constructed from the surface down to the
10172bottom of the model.</p>
10173
10174
10175
10176
10177
10178
10179
10180      </td>
10181
10182
10183
10184
10185
10186
10187 </tr>
10188
10189
10190
10191
10192
10193
10194 <tr>
10195
10196
10197
10198
10199
10200
10201 <td style="vertical-align: top;"> 
10202     
10203     
10204     
10205     
10206     
10207     
10208      <p><a name="pt_surface_initial_change"></a><b>pt_surface_initial</b>
10209      <br>
10210
10211
10212
10213
10214
10215
10216 <b>_change</b></p>
10217
10218
10219
10220
10221
10222
10223 </td>
10224
10225
10226
10227
10228
10229
10230 <td style="vertical-align: top;">R</td>
10231
10232
10233
10234
10235
10236
10237 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
10238
10239
10240
10241
10242
10243
10244 </td>
10245
10246
10247
10248
10249
10250
10251
10252      <td style="vertical-align: top;"> 
10253     
10254     
10255     
10256     
10257     
10258     
10259      <p>Change in
10260surface temperature to be made at the beginning of
10261the 3d run
10262(in K).&nbsp; </p>
10263
10264
10265
10266
10267
10268
10269 
10270     
10271     
10272     
10273     
10274     
10275     
10276      <p>If <b>pt_surface_initial_change</b>
10277is set to a non-zero
10278value, the near surface sensible heat flux is not allowed to be given
10279simultaneously (see <a href="#surface_heatflux">surface_heatflux</a>).</p>
10280
10281
10282
10283
10284
10285
10286
10287      </td>
10288
10289
10290
10291
10292
10293
10294 </tr>
10295
10296
10297
10298
10299
10300
10301 <tr>
10302
10303
10304
10305
10306
10307
10308 <td style="vertical-align: top;"> 
10309     
10310     
10311     
10312     
10313     
10314     
10315      <p><a name="pt_vertical_gradient"></a><b>pt_vertical_gradient</b></p>
10316
10317
10318
10319
10320
10321
10322
10323      </td>
10324
10325
10326
10327
10328
10329
10330 <td style="vertical-align: top;">R (10)</td>
10331
10332
10333
10334
10335
10336
10337
10338      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10339
10340
10341
10342
10343
10344
10345
10346      <td style="vertical-align: top;"> 
10347     
10348     
10349     
10350     
10351     
10352     
10353      <p>Temperature
10354gradient(s) of the initial temperature profile (in
10355K
10356/ 100 m).&nbsp; </p>
10357
10358
10359
10360
10361
10362
10363 
10364     
10365     
10366     
10367     
10368     
10369     
10370      <p>This temperature gradient
10371holds starting from the height&nbsp;
10372level defined by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>
10373(precisely: for all uv levels k where zu(k) &gt;
10374pt_vertical_gradient_level,
10375pt_init(k) is set: pt_init(k) = pt_init(k-1) + dzu(k) * <b>pt_vertical_gradient</b>)
10376up to the top boundary or up to the next height level defined
10377by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>.
10378A total of 10 different gradients for 11 height intervals (10 intervals
10379if <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>(1)
10380= <i>0.0</i>) can be assigned. The surface temperature is
10381assigned via <a href="#pt_surface">pt_surface</a>.&nbsp;
10382      </p>
10383
10384
10385
10386
10387
10388
10389 
10390     
10391     
10392     
10393     
10394     
10395     
10396      <p>Example:&nbsp; </p>
10397
10398
10399
10400
10401
10402
10403 
10404     
10405     
10406     
10407     
10408     
10409     
10410      <ul>
10411
10412
10413
10414
10415
10416
10417 
10418       
10419       
10420       
10421       
10422       
10423       
10424        <p><b>pt_vertical_gradient</b>
10425= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
10426
10427
10428
10429
10430
10431
10432
10433        <b>pt_vertical_gradient_level</b> = <i>500.0</i>,
10434        <i>1000.0</i>,</p>
10435
10436
10437
10438
10439
10440
10441 
10442     
10443     
10444     
10445     
10446     
10447     
10448      </ul>
10449
10450
10451
10452
10453
10454
10455 
10456     
10457     
10458     
10459     
10460     
10461     
10462      <p>That
10463defines the temperature profile to be neutrally
10464stratified
10465up to z = 500.0 m with a temperature given by <a href="#pt_surface">pt_surface</a>.
10466For 500.0 m &lt; z &lt;= 1000.0 m the temperature gradient is
104671.0 K /
10468100 m and for z &gt; 1000.0 m up to the top boundary it is
104690.5 K / 100 m (it is assumed that the assigned height levels correspond
10470with uv levels).</p>
10471
10472
10473
10474
10475
10476
10477     
10478     
10479     
10480     
10481     
10482     
10483      <p><span style="font-weight: bold;">Attention:</span><br>
10484
10485
10486
10487
10488
10489
10490In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
10491the profile is constructed like described above, but starting from the
10492sea surface (k=nzt) down to the bottom boundary of the model. Height
10493levels have then to be given as negative values, e.g. <span style="font-weight: bold;">pt_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</p>
10494
10495
10496
10497
10498
10499
10500 </td>
10501
10502
10503
10504
10505
10506
10507 </tr>
10508
10509
10510
10511
10512
10513
10514 <tr>
10515
10516
10517
10518
10519
10520
10521 <td style="vertical-align: top;"> 
10522     
10523     
10524     
10525     
10526     
10527     
10528      <p><a name="pt_vertical_gradient_level"></a><b>pt_vertical_gradient</b>
10529      <br>
10530
10531
10532
10533
10534
10535
10536 <b>_level</b></p>
10537
10538
10539
10540
10541
10542
10543 </td>
10544
10545
10546
10547
10548
10549
10550 <td style="vertical-align: top;">R (10)</td>
10551
10552
10553
10554
10555
10556
10557 <td style="vertical-align: top;"> 
10558     
10559     
10560     
10561     
10562     
10563     
10564      <p><i>10 *</i>&nbsp;
10565      <span style="font-style: italic;">0.0</span><br>
10566
10567
10568
10569
10570
10571
10572
10573      </p>
10574
10575
10576
10577
10578
10579
10580 </td>
10581
10582
10583
10584
10585
10586
10587 <td style="vertical-align: top;">
10588     
10589     
10590     
10591     
10592     
10593     
10594      <p>Height level from which on the temperature gradient defined by
10595      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10596is effective (in m).&nbsp; </p>
10597
10598
10599
10600
10601
10602
10603 
10604     
10605     
10606     
10607     
10608     
10609     
10610      <p>The height levels have to be assigned in ascending order. The
10611default values result in a neutral stratification regardless of the
10612values of <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10613(unless the top boundary of the model is higher than 100000.0 m).
10614For the piecewise construction of temperature profiles see <a href="#pt_vertical_gradient">pt_vertical_gradient</a>.</p>
10615
10616
10617
10618
10619
10620
10621      <span style="font-weight: bold;">Attention:</span><br>
10622
10623
10624
10625
10626
10627
10628In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.
10629      </td>
10630
10631
10632
10633
10634
10635
10636 </tr>
10637
10638
10639
10640
10641
10642
10643 <tr>
10644
10645
10646
10647
10648
10649
10650 <td style="vertical-align: top;"> 
10651     
10652     
10653     
10654     
10655     
10656     
10657      <p><a name="q_surface"></a><b>q_surface</b></p>
10658
10659
10660
10661
10662
10663
10664
10665      </td>
10666
10667
10668
10669
10670
10671
10672 <td style="vertical-align: top;">R</td>
10673
10674
10675
10676
10677
10678
10679
10680      <td style="vertical-align: top;"><i>0.0</i></td>
10681
10682
10683
10684
10685
10686
10687
10688      <td style="vertical-align: top;"> 
10689     
10690     
10691     
10692     
10693     
10694     
10695      <p>Surface
10696specific humidity / total water content (kg/kg).&nbsp; </p>
10697
10698
10699
10700
10701
10702
10703 
10704     
10705     
10706     
10707     
10708     
10709     
10710      <p>This
10711parameter assigns the value of the specific humidity q at
10712the surface (k=0).&nbsp; Starting from this value, the initial
10713humidity
10714profile is constructed with&nbsp; <a href="#q_vertical_gradient">q_vertical_gradient</a>
10715and <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10716This profile is also used for the 1d-model as a stationary profile.</p>
10717
10718
10719
10720
10721
10722
10723
10724      </td>
10725
10726
10727
10728
10729
10730
10731 </tr>
10732
10733
10734
10735
10736
10737
10738 <tr>
10739
10740
10741
10742
10743
10744
10745 <td style="vertical-align: top;"> 
10746     
10747     
10748     
10749     
10750     
10751     
10752      <p><a name="q_surface_initial_change"></a><b>q_surface_initial</b>
10753      <br>
10754
10755
10756
10757
10758
10759
10760 <b>_change</b></p>
10761
10762
10763
10764
10765
10766
10767 </td>
10768
10769
10770
10771
10772
10773
10774 <td style="vertical-align: top;">R<br>
10775
10776
10777
10778
10779
10780
10781 </td>
10782
10783
10784
10785
10786
10787
10788 <td style="vertical-align: top;"><i>0.0</i></td>
10789
10790
10791
10792
10793
10794
10795
10796      <td style="vertical-align: top;"> 
10797     
10798     
10799     
10800     
10801     
10802     
10803      <p>Change in
10804surface specific humidity / total water content to
10805be made at the beginning
10806of the 3d run (kg/kg).&nbsp; </p>
10807
10808
10809
10810
10811
10812
10813 
10814     
10815     
10816     
10817     
10818     
10819     
10820      <p>If <b>q_surface_initial_change</b><i>
10821      </i>is set to a
10822non-zero value the
10823near surface latent heat flux (water flux) is not allowed to be given
10824simultaneously (see <a href="#surface_waterflux">surface_waterflux</a>).</p>
10825
10826
10827
10828
10829
10830
10831
10832      </td>
10833
10834
10835
10836
10837
10838
10839 </tr>
10840
10841
10842
10843
10844
10845
10846 <tr>
10847
10848
10849
10850
10851
10852
10853 <td style="vertical-align: top;"> 
10854     
10855     
10856     
10857     
10858     
10859     
10860      <p><a name="q_vertical_gradient"></a><b>q_vertical_gradient</b></p>
10861
10862
10863
10864
10865
10866
10867
10868      </td>
10869
10870
10871
10872
10873
10874
10875 <td style="vertical-align: top;">R (10)</td>
10876
10877
10878
10879
10880
10881
10882
10883      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10884
10885
10886
10887
10888
10889
10890
10891      <td style="vertical-align: top;"> 
10892     
10893     
10894     
10895     
10896     
10897     
10898      <p>Humidity
10899gradient(s) of the initial humidity profile
10900(in 1/100 m).&nbsp; </p>
10901
10902
10903
10904
10905
10906
10907 
10908     
10909     
10910     
10911     
10912     
10913     
10914      <p>This humidity gradient
10915holds starting from the height
10916level&nbsp; defined by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>
10917(precisely: for all uv levels k, where zu(k) &gt;
10918q_vertical_gradient_level,
10919q_init(k) is set: q_init(k) = q_init(k-1) + dzu(k) * <b>q_vertical_gradient</b>)
10920up to the top boundary or up to the next height level defined
10921by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10922A total of 10 different gradients for 11 height intervals (10 intervals
10923if <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>(1)
10924= <i>0.0</i>) can be asigned. The surface humidity is
10925assigned
10926via <a href="#q_surface">q_surface</a>. </p>
10927
10928
10929
10930
10931
10932
10933
10934     
10935     
10936     
10937     
10938     
10939     
10940      <p>Example:&nbsp; </p>
10941
10942
10943
10944
10945
10946
10947 
10948     
10949     
10950     
10951     
10952     
10953     
10954      <ul>
10955
10956
10957
10958
10959
10960
10961 
10962       
10963       
10964       
10965       
10966       
10967       
10968        <p><b>q_vertical_gradient</b>
10969= <i>0.001</i>, <i>0.0005</i>,&nbsp; <br>
10970
10971
10972
10973
10974
10975
10976
10977        <b>q_vertical_gradient_level</b> = <i>500.0</i>,
10978        <i>1000.0</i>,</p>
10979
10980
10981
10982
10983
10984
10985 
10986     
10987     
10988     
10989     
10990     
10991     
10992      </ul>
10993
10994
10995
10996
10997
10998
10999
11000That defines the humidity to be constant with height up to z =
11001500.0
11002m with a
11003value given by <a href="#q_surface">q_surface</a>.
11004For 500.0 m &lt; z &lt;= 1000.0 m the humidity gradient is
110050.001 / 100
11006m and for z &gt; 1000.0 m up to the top boundary it is
110070.0005 / 100 m (it is assumed that the assigned height levels
11008correspond with uv
11009levels). </td>
11010
11011
11012
11013
11014
11015
11016 </tr>
11017
11018
11019
11020
11021
11022
11023 <tr>
11024
11025
11026
11027
11028
11029
11030 <td style="vertical-align: top;"> 
11031     
11032     
11033     
11034     
11035     
11036     
11037      <p><a name="q_vertical_gradient_level"></a><b>q_vertical_gradient</b>
11038      <br>
11039
11040
11041
11042
11043
11044
11045 <b>_level</b></p>
11046
11047
11048
11049
11050
11051
11052 </td>
11053
11054
11055
11056
11057
11058
11059 <td style="vertical-align: top;">R (10)</td>
11060
11061
11062
11063
11064
11065
11066 <td style="vertical-align: top;"> 
11067     
11068     
11069     
11070     
11071     
11072     
11073      <p><i>10 *</i>&nbsp;
11074      <i>0.0</i></p>
11075
11076
11077
11078
11079
11080
11081 </td>
11082
11083
11084
11085
11086
11087
11088 <td style="vertical-align: top;"> 
11089     
11090     
11091     
11092     
11093     
11094     
11095      <p>Height level from
11096which on the humidity gradient defined by <a href="#q_vertical_gradient">q_vertical_gradient</a>
11097is effective (in m).&nbsp; </p>
11098
11099
11100
11101
11102
11103
11104 
11105     
11106     
11107     
11108     
11109     
11110     
11111      <p>The height levels
11112are to be assigned in ascending order. The
11113default values result in a humidity constant with height regardless of
11114the values of <a href="#q_vertical_gradient">q_vertical_gradient</a>
11115(unless the top boundary of the model is higher than 100000.0 m). For
11116the piecewise construction of humidity profiles see <a href="#q_vertical_gradient">q_vertical_gradient</a>.</p>
11117
11118
11119
11120
11121
11122
11123
11124      </td>
11125
11126
11127
11128
11129
11130
11131 </tr>
11132
11133
11134
11135
11136
11137
11138 <tr>
11139
11140
11141
11142
11143
11144
11145 <td style="vertical-align: top;"> 
11146     
11147     
11148     
11149     
11150     
11151     
11152      <p><a name="radiation"></a><b>radiation</b></p>
11153
11154
11155
11156
11157
11158
11159
11160      </td>
11161
11162
11163
11164
11165
11166
11167 <td style="vertical-align: top;">L</td>
11168
11169
11170
11171
11172
11173
11174
11175      <td style="vertical-align: top;"><i>.F.</i></td>
11176
11177
11178
11179
11180
11181
11182
11183      <td style="vertical-align: top;"> 
11184     
11185     
11186     
11187     
11188     
11189     
11190      <p>Parameter to
11191switch on longwave radiation cooling at
11192cloud-tops.&nbsp; </p>
11193
11194
11195
11196
11197
11198
11199 
11200     
11201     
11202     
11203     
11204     
11205     
11206      <p>Long-wave radiation
11207processes are parameterized by the
11208effective emissivity, which considers only the absorption and emission
11209of long-wave radiation at cloud droplets. The radiation scheme can be
11210used only with <a href="#cloud_physics">cloud_physics</a>
11211= .TRUE. .</p>
11212
11213
11214
11215
11216
11217
11218 </td>
11219
11220
11221
11222
11223
11224
11225 </tr>
11226
11227
11228
11229
11230
11231
11232 <tr>
11233
11234
11235
11236
11237
11238
11239 <td style="vertical-align: top;"> 
11240     
11241     
11242     
11243     
11244     
11245     
11246      <p><a name="random_generator"></a><b>random_generator</b></p>
11247
11248
11249
11250
11251
11252
11253
11254      </td>
11255
11256
11257
11258
11259
11260
11261 <td style="vertical-align: top;">C * 20</td>
11262
11263
11264
11265
11266
11267
11268
11269      <td style="vertical-align: top;"> 
11270     
11271     
11272     
11273     
11274     
11275     
11276      <p><i>'numerical</i><br>
11277
11278
11279
11280
11281
11282
11283
11284      <i>recipes'</i></p>
11285
11286
11287
11288
11289
11290
11291 </td>
11292
11293
11294
11295
11296
11297
11298 <td style="vertical-align: top;"> 
11299     
11300     
11301     
11302     
11303     
11304     
11305      <p>Random number
11306generator to be used for creating uniformly
11307distributed random numbers. <br>
11308
11309
11310
11311
11312
11313
11314 </p>
11315
11316
11317
11318
11319
11320
11321 
11322     
11323     
11324     
11325     
11326     
11327     
11328      <p>It is
11329used if random perturbations are to be imposed on the
11330velocity field or on the surface heat flux field (see <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>
11331and <a href="chapter_4.2.html#random_heatflux">random_heatflux</a>).
11332By default, the "Numerical Recipes" random number generator is used.
11333This one provides exactly the same order of random numbers on all
11334different machines and should be used in particular for comparison runs.<br>
11335
11336
11337
11338
11339
11340
11341
11342      <br>
11343
11344
11345
11346
11347
11348
11349
11350Besides, a system-specific generator is available ( <b>random_generator</b>
11351= <i>'system-specific')</i> which should particularly be
11352used for runs
11353on vector parallel computers (NEC), because the default generator
11354cannot be vectorized and therefore significantly drops down the code
11355performance on these machines.<br>
11356
11357
11358
11359
11360
11361
11362 </p>
11363
11364
11365
11366
11367
11368
11369 <span style="font-weight: bold;">Note:</span><br>
11370
11371
11372
11373
11374
11375
11376
11377Results from two otherwise identical model runs will not be comparable
11378one-to-one if they used different random number generators.</td>
11379
11380
11381
11382
11383
11384
11385 </tr>
11386
11387
11388
11389
11390
11391
11392
11393    <tr>
11394
11395
11396
11397
11398
11399
11400 <td style="vertical-align: top;"> 
11401     
11402     
11403     
11404     
11405     
11406     
11407      <p><a name="random_heatflux"></a><b>random_heatflux</b></p>
11408
11409
11410
11411
11412
11413
11414
11415      </td>
11416
11417
11418
11419
11420
11421
11422 <td style="vertical-align: top;">L</td>
11423
11424
11425
11426
11427
11428
11429
11430      <td style="vertical-align: top;"><i>.F.</i></td>
11431
11432
11433
11434
11435
11436
11437
11438      <td style="vertical-align: top;"> 
11439     
11440     
11441     
11442     
11443     
11444     
11445      <p>Parameter to
11446impose random perturbations on the internal two-dimensional near
11447surface heat flux field <span style="font-style: italic;">shf</span>.
11448      <br>
11449
11450
11451
11452
11453
11454
11455 </p>
11456
11457
11458
11459
11460
11461
11462If a near surface heat flux is used as bottom
11463boundary
11464condition (see <a href="#surface_heatflux">surface_heatflux</a>),
11465it is by default assumed to be horizontally homogeneous. Random
11466perturbations can be imposed on the internal
11467two-dimensional&nbsp;heat flux field <span style="font-style: italic;">shf</span> by assigning <b>random_heatflux</b>
11468= <i>.T.</i>. The disturbed heat flux field is calculated
11469by
11470multiplying the
11471values at each mesh point with a normally distributed random number
11472with a mean value and standard deviation of 1. This is repeated after
11473every timestep.<br>
11474
11475
11476
11477
11478
11479
11480 <br>
11481
11482
11483
11484
11485
11486
11487
11488In case of a non-flat <a href="#topography">topography</a>,&nbsp;assigning
11489      <b>random_heatflux</b>
11490= <i>.T.</i> imposes random perturbations on the
11491combined&nbsp;heat
11492flux field <span style="font-style: italic;">shf</span>
11493composed of <a href="#surface_heatflux">surface_heatflux</a>
11494at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a>
11495at the topography top face.</td>
11496
11497
11498
11499
11500
11501
11502 </tr>
11503
11504
11505
11506
11507
11508
11509 <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="recycling_width"></a>recycling_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#nx">nx</a> * <a href="chapter_4.1.html#dx">dx</a></span></td><td style="vertical-align: top;">Distance of the recycling plane from the inflow boundary (in m).<br><br>This
11510parameter sets the horizontal extension (along the direction of the
11511main flow) of the so-called recycling domain which is used to generate
11512a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). <span style="font-weight: bold;">recycling_width</span> must be larger than the grid spacing (dx) and smaller than the length of the total domain (nx * dx).</td></tr><tr>
11513
11514
11515
11516
11517
11518
11519 <td style="vertical-align: top;"> 
11520     
11521     
11522     
11523     
11524     
11525     
11526      <p><a name="rif_max"></a><b>rif_max</b></p>
11527
11528
11529
11530
11531
11532
11533
11534      </td>
11535
11536
11537
11538
11539
11540
11541 <td style="vertical-align: top;">R</td>
11542
11543
11544
11545
11546
11547
11548
11549      <td style="vertical-align: top;"><i>1.0</i></td>
11550
11551
11552
11553
11554
11555
11556
11557      <td style="vertical-align: top;"> 
11558     
11559     
11560     
11561     
11562     
11563     
11564      <p>Upper limit of
11565the flux-Richardson number.&nbsp; </p>
11566
11567
11568
11569
11570
11571
11572 
11573     
11574     
11575     
11576     
11577     
11578     
11579      <p>With the
11580Prandtl layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>),
11581flux-Richardson numbers (rif) are calculated for z=z<sub>p</sub>
11582(k=1)
11583in the 3d-model (in the 1d model for all heights). Their values in
11584particular determine the
11585values of the friction velocity (1d- and 3d-model) and the values of
11586the eddy diffusivity (1d-model). With small wind velocities at the
11587Prandtl layer top or small vertical wind shears in the 1d-model, rif
11588can take up unrealistic large values. They are limited by an upper (<span style="font-weight: bold;">rif_max</span>) and lower
11589limit (see <a href="#rif_min">rif_min</a>)
11590for the flux-Richardson number. The condition <b>rif_max</b>
11591&gt; <b>rif_min</b>
11592must be met.</p>
11593
11594
11595
11596
11597
11598
11599 </td>
11600
11601
11602
11603
11604
11605
11606 </tr>
11607
11608
11609
11610
11611
11612
11613 <tr>
11614
11615
11616
11617
11618
11619
11620 <td style="vertical-align: top;"> 
11621     
11622     
11623     
11624     
11625     
11626     
11627      <p><a name="rif_min"></a><b>rif_min</b></p>
11628
11629
11630
11631
11632
11633
11634
11635      </td>
11636
11637
11638
11639
11640
11641
11642 <td style="vertical-align: top;">R</td>
11643
11644
11645
11646
11647
11648
11649
11650      <td style="vertical-align: top;"><i>- 5.0</i></td>
11651
11652
11653
11654
11655
11656
11657
11658      <td style="vertical-align: top;"> 
11659     
11660     
11661     
11662     
11663     
11664     
11665      <p>Lower limit of
11666the flux-Richardson number.&nbsp; </p>
11667
11668
11669
11670
11671
11672
11673 
11674     
11675     
11676     
11677     
11678     
11679     
11680      <p>For further
11681explanations see <a href="#rif_max">rif_max</a>.
11682The condition <b>rif_max</b> &gt; <b>rif_min </b>must
11683be met.</p>
11684
11685
11686
11687
11688
11689
11690 </td>
11691
11692
11693
11694
11695
11696
11697 </tr>
11698
11699
11700
11701
11702
11703
11704 <tr>
11705
11706
11707
11708
11709
11710
11711 <td style="vertical-align: top;"> 
11712     
11713     
11714     
11715     
11716     
11717     
11718      <p><a name="roughness_length"></a><b>roughness_length</b></p>
11719
11720
11721
11722
11723
11724
11725
11726      </td>
11727
11728
11729
11730
11731
11732
11733 <td style="vertical-align: top;">R</td>
11734
11735
11736
11737
11738
11739
11740
11741      <td style="vertical-align: top;"><i>0.1</i></td>
11742
11743
11744
11745
11746
11747
11748
11749      <td style="vertical-align: top;"> 
11750     
11751     
11752     
11753     
11754     
11755     
11756      <p>Roughness
11757length (in m).&nbsp; </p>
11758
11759
11760
11761
11762
11763
11764 
11765     
11766     
11767     
11768     
11769     
11770     
11771      <p>This parameter is
11772effective only in case that a Prandtl layer
11773is switched
11774on (see <a href="#prandtl_layer">prandtl_layer</a>).</p>
11775
11776
11777
11778
11779
11780
11781
11782      </td>
11783
11784
11785
11786
11787
11788
11789 </tr>
11790
11791
11792
11793
11794
11795
11796 <tr>
11797
11798
11799
11800
11801
11802
11803      <td style="vertical-align: top;"><a name="sa_surface"></a><span style="font-weight: bold;">sa_surface</span></td>
11804
11805
11806
11807
11808
11809
11810      <td style="vertical-align: top;">R</td>
11811
11812
11813
11814
11815
11816
11817      <td style="vertical-align: top;"><span style="font-style: italic;">35.0</span></td>
11818
11819
11820
11821
11822
11823
11824      <td style="vertical-align: top;"> 
11825     
11826     
11827     
11828     
11829     
11830     
11831      <p>Surface salinity (in psu).&nbsp;</p>
11832
11833
11834
11835
11836
11837
11838This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
11839     
11840     
11841     
11842     
11843     
11844     
11845      <p>This
11846parameter assigns the value of the salinity <span style="font-weight: bold;">sa</span> at the sea surface (k=nzt)<b>.</b> Starting from this value,
11847the
11848initial vertical salinity profile is constructed from the surface down to the bottom of the model (k=0) by using&nbsp;<a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
11849and&nbsp;<a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level
11850      </a>.</p>
11851
11852
11853
11854
11855
11856
11857      </td>
11858
11859
11860
11861
11862
11863
11864    </tr>
11865
11866
11867
11868
11869
11870
11871    <tr>
11872
11873
11874
11875
11876
11877
11878      <td style="vertical-align: top;"><a name="sa_vertical_gradient"></a><span style="font-weight: bold;">sa_vertical_gradient</span></td>
11879
11880
11881
11882
11883
11884
11885      <td style="vertical-align: top;">R(10)</td>
11886
11887
11888
11889
11890
11891
11892      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
11893
11894
11895
11896
11897
11898
11899      <td style="vertical-align: top;">
11900     
11901     
11902     
11903     
11904     
11905     
11906      <p>Salinity gradient(s) of the initial salinity profile (in psu
11907/ 100 m).&nbsp; </p>
11908
11909
11910
11911
11912
11913
11914 
11915     
11916     
11917     
11918     
11919     
11920     
11921      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
11922
11923
11924
11925
11926
11927
11928     
11929     
11930     
11931     
11932     
11933     
11934      <p>This salinity gradient
11935holds starting from the height&nbsp;
11936level defined by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>
11937(precisely: for all uv levels k where zu(k) &lt;
11938sa_vertical_gradient_level, sa_init(k) is set: sa_init(k) =
11939sa_init(k+1) - dzu(k+1) * <b>sa_vertical_gradient</b>) down to the bottom boundary or down to the next height level defined
11940by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>.
11941A total of 10 different gradients for 11 height intervals (10 intervals
11942if <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>(1)
11943= <i>0.0</i>) can be assigned. The surface salinity at k=nzt is
11944assigned via <a href="chapter_4.1.html#sa_surface">sa_surface</a>.&nbsp;
11945      </p>
11946
11947
11948
11949
11950
11951
11952 
11953     
11954     
11955     
11956     
11957     
11958     
11959      <p>Example:&nbsp; </p>
11960
11961
11962
11963
11964
11965
11966 
11967     
11968     
11969     
11970     
11971     
11972     
11973      <ul>
11974
11975
11976
11977
11978
11979
11980       
11981       
11982       
11983       
11984       
11985       
11986        <p><b>sa_vertical_gradient</b>
11987= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
11988
11989
11990
11991
11992
11993
11994
11995        <b>sa_vertical_gradient_level</b> = <i>-500.0</i>,
11996-<i>1000.0</i>,</p>
11997
11998
11999
12000
12001
12002
12003     
12004     
12005     
12006     
12007     
12008     
12009      </ul>
12010
12011
12012
12013
12014
12015
12016 
12017     
12018     
12019     
12020     
12021     
12022     
12023      <p>That
12024defines the salinity to be constant down to z = -500.0 m with a salinity given by <a href="chapter_4.1.html#sa_surface">sa_surface</a>.
12025For -500.0 m &lt; z &lt;= -1000.0 m the salinity gradient is
120261.0 psu /
12027100 m and for z &lt; -1000.0 m down to the bottom boundary it is
120280.5 psu / 100 m (it is assumed that the assigned height levels correspond
12029with uv levels).</p>
12030
12031
12032
12033
12034
12035
12036      </td>
12037
12038
12039
12040
12041
12042
12043    </tr>
12044
12045
12046
12047
12048
12049
12050    <tr>
12051
12052
12053
12054
12055
12056
12057      <td style="vertical-align: top;"><a name="sa_vertical_gradient_level"></a><span style="font-weight: bold;">sa_vertical_gradient_level</span></td>
12058
12059
12060
12061
12062
12063
12064      <td style="vertical-align: top;">R(10)</td>
12065
12066
12067
12068
12069
12070
12071      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
12072
12073
12074
12075
12076
12077
12078      <td style="vertical-align: top;">
12079     
12080     
12081     
12082     
12083     
12084     
12085      <p>Height level from which on the salinity gradient defined by <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
12086is effective (in m).&nbsp; </p>
12087
12088
12089
12090
12091
12092
12093 
12094     
12095     
12096     
12097     
12098     
12099     
12100      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
12101
12102
12103
12104
12105
12106
12107     
12108     
12109     
12110     
12111     
12112     
12113      <p>The height levels have to be assigned in descending order. The
12114default values result in a constant salinity profile regardless of the
12115values of <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
12116(unless the bottom boundary of the model is lower than -100000.0 m).
12117For the piecewise construction of salinity profiles see <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>.</p>
12118
12119
12120
12121
12122
12123
12124      </td>
12125
12126
12127
12128
12129
12130
12131    </tr>
12132
12133
12134
12135
12136
12137
12138    <tr>
12139
12140
12141
12142
12143
12144
12145 <td style="vertical-align: top;"> 
12146     
12147     
12148     
12149     
12150     
12151     
12152      <p><a name="scalar_advec"></a><b>scalar_advec</b></p>
12153
12154
12155
12156
12157
12158
12159
12160      </td>
12161
12162
12163
12164
12165
12166
12167 <td style="vertical-align: top;">C * 10</td>
12168
12169
12170
12171
12172
12173
12174
12175      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
12176
12177
12178
12179
12180
12181
12182
12183      <td style="vertical-align: top;"> 
12184     
12185     
12186     
12187     
12188     
12189     
12190      <p>Advection
12191scheme to be used for the scalar quantities.&nbsp; </p>
12192
12193
12194
12195
12196
12197
12198 
12199     
12200     
12201     
12202     
12203     
12204     
12205      <p>The
12206user can choose between the following schemes:<br>
12207
12208
12209
12210
12211
12212
12213 </p>
12214
12215
12216
12217
12218
12219
12220 
12221     
12222     
12223     
12224     
12225     
12226     
12227      <p><span style="font-style: italic;">'pw-scheme'</span><br>
12228
12229
12230
12231
12232
12233
12234
12235      </p>
12236
12237
12238
12239
12240
12241
12242 
12243     
12244     
12245     
12246     
12247     
12248     
12249      <div style="margin-left: 40px;">The scheme of
12250Piascek and
12251Williams (1970, J. Comp. Phys., 6,
12252392-405) with central differences in the form C3 is used.<br>
12253
12254
12255
12256
12257
12258
12259
12260If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
12261= <span style="font-style: italic;">'leapfrog+euler'</span>
12262the
12263advection scheme is - for the Euler-timestep - automatically switched
12264to an upstream-scheme. <br>
12265
12266
12267
12268
12269
12270
12271 </div>
12272
12273
12274
12275
12276
12277
12278 <br>
12279
12280
12281
12282
12283
12284
12285 
12286     
12287     
12288     
12289     
12290     
12291     
12292      <p><span style="font-style: italic;">'bc-scheme'</span><br>
12293
12294
12295
12296
12297
12298
12299
12300      </p>
12301
12302
12303
12304
12305
12306
12307 
12308     
12309     
12310     
12311     
12312     
12313     
12314      <div style="margin-left: 40px;">The Bott
12315scheme modified by
12316Chlond (1994, Mon.
12317Wea. Rev., 122, 111-125). This is a conservative monotonous scheme with
12318very small numerical diffusion and therefore very good conservation of
12319scalar flow features. The scheme however, is computationally very
12320expensive both because it is expensive itself and because it does (so
12321far) not allow specific code optimizations (e.g. cache optimization).
12322Choice of this
12323scheme forces the Euler timestep scheme to be used for the scalar
12324quantities. For output of horizontally averaged
12325profiles of the resolved / total heat flux, <a href="chapter_4.2.html#data_output_pr">data_output_pr</a>
12326= <i>'w*pt*BC'</i> / <i>'wptBC' </i>should
12327be used, instead of the
12328standard profiles (<span style="font-style: italic;">'w*pt*'</span>
12329and <span style="font-style: italic;">'wpt'</span>)
12330because these are
12331too inaccurate with this scheme. However, for subdomain analysis (see <a href="#statistic_regions">statistic_regions</a>)
12332exactly the reverse holds: here <i>'w*pt*BC'</i> and <i>'wptBC'</i>
12333show very large errors and should not be used.<br>
12334
12335
12336
12337
12338
12339
12340 <br>
12341
12342
12343
12344
12345
12346
12347
12348This scheme is not allowed for non-cyclic lateral boundary conditions
12349(see <a href="#bc_lr">bc_lr</a>
12350and <a href="#bc_ns">bc_ns</a>).<br>
12351
12352
12353
12354
12355
12356
12357 <br>
12358
12359
12360
12361
12362
12363
12364
12365      </div>
12366
12367
12368
12369
12370
12371
12372 <span style="font-style: italic;">'ups-scheme'</span><br>
12373
12374
12375
12376
12377
12378
12379
12380     
12381     
12382     
12383     
12384     
12385     
12386      <p style="margin-left: 40px;">The upstream-spline-scheme
12387is used
12388(see Mahrer and Pielke,
123891978: Mon. Wea. Rev., 106, 818-830). In opposite to the Piascek
12390Williams scheme, this is characterized by much better numerical
12391features (less numerical diffusion, better preservation of flux
12392structures, e.g. vortices), but computationally it is much more
12393expensive. In
12394addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
12395= <span style="font-style: italic;">'</span><i>euler'</i>),
12396i.e. the
12397timestep accuracy is only first order. For this reason the advection of
12398momentum (see <a href="#momentum_advec">momentum_advec</a>)
12399should then also be carried out with the upstream-spline scheme,
12400because otherwise the momentum would
12401be subject to large numerical diffusion due to the upstream
12402scheme.&nbsp; </p>
12403
12404
12405
12406
12407
12408
12409 
12410     
12411     
12412     
12413     
12414     
12415     
12416      <p style="margin-left: 40px;">Since
12417the cubic splines used tend
12418to overshoot under
12419certain circumstances, this effect must be adjusted by suitable
12420filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
12421      <a href="#long_filter_factor">long_filter_factor</a>,
12422      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
12423This is always neccesssary for runs with stable stratification,
12424even if this stratification appears only in parts of the model
12425domain.&nbsp; </p>
12426
12427
12428
12429
12430
12431
12432 
12433     
12434     
12435     
12436     
12437     
12438     
12439      <p style="margin-left: 40px;">With
12440stable stratification the
12441upstream-upline scheme also produces gravity waves with large
12442amplitude, which must be
12443suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
12444
12445
12446
12447
12448
12449
12450
12451      </p>
12452
12453
12454
12455
12456
12457
12458 
12459     
12460     
12461     
12462     
12463     
12464     
12465      <p style="margin-left: 40px;"><span style="font-weight: bold;">Important: </span>The&nbsp;
12466upstream-spline scheme is not implemented for humidity and passive
12467scalars (see&nbsp;<a href="#humidity">humidity</a>
12468and <a href="#passive_scalar">passive_scalar</a>)
12469and requires the use of a 2d-domain-decomposition. The last conditions
12470severely restricts code optimization on several machines leading to
12471very long execution times! This scheme is also not allowed for
12472non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
12473and <a href="#bc_ns">bc_ns</a>).</p>
12474
12475
12476
12477
12478
12479
12480      <br>
12481
12482
12483
12484
12485
12486
12487A
12488differing advection scheme can be choosed for the subgrid-scale TKE
12489using parameter <a href="chapter_4.1.html#use_upstream_for_tke">use_upstream_for_tke</a>.</td>
12490
12491
12492
12493
12494
12495
12496
12497    </tr>
12498
12499
12500
12501
12502
12503
12504 <tr>
12505
12506      <td style="vertical-align: top;"><a name="scalar_exchange_coefficient"></a><b>scalar_exchange_coefficient</b></td>
12507
12508      <td style="vertical-align: top;">R</td>
12509
12510      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
12511
12512      <td style="vertical-align: top;">Scalar exchange coefficient for a leaf (dimensionless).<br>
12513
12514
12515      <br>
12516
12517
12518This parameter is only of importance in cases in that both, <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</a> and <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
12519The value of the scalar exchange coefficient is required for the parametrisation of the sources and sinks of
12520scalar concentration due to the canopy.</td>
12521
12522    </tr>
12523
12524    <tr>
12525
12526
12527
12528
12529
12530
12531 <td style="vertical-align: top;">
12532     
12533     
12534     
12535     
12536     
12537     
12538      <p><a name="statistic_regions"></a><b>statistic_regions</b></p>
12539
12540
12541
12542
12543
12544
12545
12546      </td>
12547
12548
12549
12550
12551
12552
12553 <td style="vertical-align: top;">I</td>
12554
12555
12556
12557
12558
12559
12560
12561      <td style="vertical-align: top;"><i>0</i></td>
12562
12563
12564
12565
12566
12567
12568
12569      <td style="vertical-align: top;"> 
12570     
12571     
12572     
12573     
12574     
12575     
12576      <p>Number of
12577additional user-defined subdomains for which
12578statistical analysis
12579and corresponding output (profiles, time series) shall be
12580made.&nbsp; </p>
12581
12582
12583
12584
12585
12586
12587 
12588     
12589     
12590     
12591     
12592     
12593     
12594      <p>By default, vertical profiles and
12595other statistical quantities
12596are calculated as horizontal and/or volume average of the total model
12597domain. Beyond that, these calculations can also be carried out for
12598subdomains which can be defined using the field <a href="chapter_3.5.3.html">rmask </a>within the
12599user-defined software
12600(see <a href="chapter_3.5.3.html">chapter
126013.5.3</a>). The number of these subdomains is determined with the
12602parameter <b>statistic_regions</b>. Maximum 9 additional
12603subdomains
12604are allowed. The parameter <a href="chapter_4.3.html#region">region</a>
12605can be used to assigned names (identifier) to these subdomains which
12606are then used in the headers
12607of the output files and plots.</p>
12608
12609
12610
12611
12612
12613
12614     
12615     
12616     
12617     
12618     
12619     
12620      <p>If the default NetCDF
12621output format is selected (see parameter <a href="chapter_4.2.html#data_output_format">data_output_format</a>),
12622data for the total domain and all defined subdomains are output to the
12623same file(s) (<a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>,
12624      <a href="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</a>).
12625In case of <span style="font-weight: bold;">statistic_regions</span>
12626&gt; <span style="font-style: italic;">0</span>,
12627data on the file for the different domains can be distinguished by a
12628suffix which is appended to the quantity names. Suffix 0 means data for
12629the total domain, suffix 1 means data for subdomain 1, etc.</p>
12630
12631
12632
12633
12634
12635
12636     
12637     
12638     
12639     
12640     
12641     
12642      <p>In
12643case of <span style="font-weight: bold;">data_output_format</span>
12644= <span style="font-style: italic;">'profil'</span>,
12645individual local files for profiles (<a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>)&nbsp;are
12646created for each subdomain. The individual subdomain files differ by
12647their name (the
12648number of the respective subdomain is attached, e.g.
12649PLOT1D_DATA_1). In this case the name of the file with the data of
12650the total domain is PLOT1D_DATA_0. If no subdomains
12651are declared (<b>statistic_regions</b> = <i>0</i>),
12652the name
12653PLOT1D_DATA is used (this must be considered in the
12654respective file connection statements of the <span style="font-weight: bold;">mrun</span> configuration
12655file).</p>
12656
12657
12658
12659
12660
12661
12662 </td>
12663
12664
12665
12666
12667
12668
12669 </tr>
12670
12671
12672
12673
12674
12675
12676 <tr>
12677
12678
12679
12680
12681
12682
12683 <td style="vertical-align: top;"> 
12684     
12685     
12686     
12687     
12688     
12689     
12690      <p><a name="surface_heatflux"></a><b>surface_heatflux</b></p>
12691
12692
12693
12694
12695
12696
12697
12698      </td>
12699
12700
12701
12702
12703
12704
12705 <td style="vertical-align: top;">R</td>
12706
12707
12708
12709
12710
12711
12712
12713      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
12714
12715
12716
12717
12718
12719
12720
12721heatflux<br>
12722
12723
12724
12725
12726
12727
12728 </span></td>
12729
12730
12731
12732
12733
12734
12735 <td style="vertical-align: top;"> 
12736     
12737     
12738     
12739     
12740     
12741     
12742      <p>Kinematic sensible
12743heat flux at the bottom surface (in K m/s).&nbsp; </p>
12744
12745
12746
12747
12748
12749
12750 
12751     
12752     
12753     
12754     
12755     
12756     
12757      <p>If
12758a value is assigned to this parameter, the internal two-dimensional
12759surface heat flux field <span style="font-style: italic;">shf</span>
12760is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span>&nbsp;as
12761bottom (horizontally homogeneous) boundary condition for the
12762temperature equation. This additionally requires that a Neumann
12763condition must be used for the potential temperature (see <a href="#bc_pt_b">bc_pt_b</a>),
12764because otherwise the resolved scale may contribute to
12765the surface flux so that a constant value cannot be guaranteed. Also,
12766changes of the
12767surface temperature (see <a href="#pt_surface_initial_change">pt_surface_initial_change</a>)
12768are not allowed. The parameter <a href="#random_heatflux">random_heatflux</a>
12769can be used to impose random perturbations on the (homogeneous) surface
12770heat
12771flux field <span style="font-style: italic;">shf</span>.&nbsp;</p>
12772
12773
12774
12775
12776
12777
12778
12779     
12780     
12781     
12782     
12783     
12784     
12785      <p>
12786In case of a non-flat <a href="#topography">topography</a>,&nbsp;the
12787internal two-dimensional&nbsp;surface heat
12788flux field <span style="font-style: italic;">shf</span>
12789is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span>
12790at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a>
12791at the topography top face.&nbsp;The parameter<a href="#random_heatflux"> random_heatflux</a>
12792can be used to impose random perturbations on this combined surface
12793heat
12794flux field <span style="font-style: italic;">shf</span>.&nbsp;
12795      </p>
12796
12797
12798
12799
12800
12801
12802 
12803     
12804     
12805     
12806     
12807     
12808     
12809      <p>If no surface heat flux is assigned, <span style="font-style: italic;">shf</span> is calculated
12810at each timestep by u<sub>*</sub> * theta<sub>*</sub>
12811(of course only with <a href="#prandtl_layer">prandtl_layer</a>
12812switched on). Here, u<sub>*</sub>
12813and theta<sub>*</sub> are calculated from the Prandtl law
12814assuming
12815logarithmic wind and temperature
12816profiles between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_pt_b">bc_pt_b</a>)
12817must be used as bottom boundary condition for the potential temperature.</p>
12818
12819
12820
12821
12822
12823
12824     
12825     
12826     
12827     
12828     
12829     
12830      <p>See
12831also <a href="#top_heatflux">top_heatflux</a>.</p>
12832
12833
12834
12835
12836
12837
12838
12839      </td>
12840
12841
12842
12843
12844
12845
12846 </tr>
12847
12848
12849
12850
12851
12852
12853 <tr>
12854
12855
12856
12857
12858
12859
12860 <td style="vertical-align: top;"> 
12861     
12862     
12863     
12864     
12865     
12866     
12867      <p><a name="surface_pressure"></a><b>surface_pressure</b></p>
12868
12869
12870
12871
12872
12873
12874
12875      </td>
12876
12877
12878
12879
12880
12881
12882 <td style="vertical-align: top;">R</td>
12883
12884
12885
12886
12887
12888
12889
12890      <td style="vertical-align: top;"><i>1013.25</i></td>
12891
12892
12893
12894
12895
12896
12897
12898      <td style="vertical-align: top;"> 
12899     
12900     
12901     
12902     
12903     
12904     
12905      <p>Atmospheric
12906pressure at the surface (in hPa).&nbsp; </p>
12907
12908
12909
12910
12911
12912
12913
12914Starting from this surface value, the vertical pressure
12915profile is calculated once at the beginning of the run assuming a
12916neutrally stratified
12917atmosphere. This is needed for
12918converting between the liquid water potential temperature and the
12919potential temperature (see <a href="#cloud_physics">cloud_physics</a><span style="text-decoration: underline;"></span>).</td>
12920
12921
12922
12923
12924
12925
12926
12927    </tr>
12928
12929
12930
12931
12932
12933
12934 <tr>
12935
12936
12937
12938
12939
12940
12941 <td style="vertical-align: top;">
12942     
12943     
12944     
12945     
12946     
12947     
12948      <p><a name="surface_scalarflux"></a><b>surface_scalarflux</b></p>
12949
12950
12951
12952
12953
12954
12955
12956      </td>
12957
12958
12959
12960
12961
12962
12963 <td style="vertical-align: top;">R</td>
12964
12965
12966
12967
12968
12969
12970
12971      <td style="vertical-align: top;"><i>0.0</i></td>
12972
12973
12974
12975
12976
12977
12978
12979      <td style="vertical-align: top;"> 
12980     
12981     
12982     
12983     
12984     
12985     
12986      <p>Scalar flux at
12987the surface (in kg/(m<sup>2</sup> s)).&nbsp; </p>
12988
12989
12990
12991
12992
12993
12994
12995     
12996     
12997     
12998     
12999     
13000     
13001      <p>If a non-zero value is assigned to this parameter, the
13002respective scalar flux value is used
13003as bottom (horizontally homogeneous) boundary condition for the scalar
13004concentration equation.&nbsp;This additionally requires that a
13005Neumann
13006condition must be used for the scalar concentration&nbsp;(see <a href="#bc_s_b">bc_s_b</a>),
13007because otherwise the resolved scale may contribute to
13008the surface flux so that a constant value cannot be guaranteed. Also,
13009changes of the
13010surface scalar concentration (see <a href="#s_surface_initial_change">s_surface_initial_change</a>)
13011are not allowed. <br>
13012
13013
13014
13015
13016
13017
13018 </p>
13019
13020
13021
13022
13023
13024
13025 
13026     
13027     
13028     
13029     
13030     
13031     
13032      <p>If no surface scalar
13033flux is assigned (<b>surface_scalarflux</b>
13034= <i>0.0</i>),
13035it is calculated at each timestep by u<sub>*</sub> * s<sub>*</sub>
13036(of course only with Prandtl layer switched on). Here, s<sub>*</sub>
13037is calculated from the Prandtl law assuming a logarithmic scalar
13038concentration
13039profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_s_b">bc_s_b</a>)
13040must be used as bottom boundary condition for the scalar concentration.</p>
13041
13042
13043
13044
13045
13046
13047
13048      </td>
13049
13050
13051
13052
13053
13054
13055 </tr>
13056
13057
13058
13059
13060
13061
13062 <tr>
13063
13064
13065
13066
13067
13068
13069 <td style="vertical-align: top;"> 
13070     
13071     
13072     
13073     
13074     
13075     
13076      <p><a name="surface_waterflux"></a><b>surface_waterflux</b></p>
13077
13078
13079
13080
13081
13082
13083
13084      </td>
13085
13086
13087
13088
13089
13090
13091 <td style="vertical-align: top;">R</td>
13092
13093
13094
13095
13096
13097
13098
13099      <td style="vertical-align: top;"><i>0.0</i></td>
13100
13101
13102
13103
13104
13105
13106
13107      <td style="vertical-align: top;"> 
13108     
13109     
13110     
13111     
13112     
13113     
13114      <p>Kinematic
13115water flux near the surface (in m/s).&nbsp; </p>
13116
13117
13118
13119
13120
13121
13122 
13123     
13124     
13125     
13126     
13127     
13128     
13129      <p>If
13130a non-zero value is assigned to this parameter, the
13131respective water flux value is used
13132as bottom (horizontally homogeneous) boundary condition for the
13133humidity equation. This additionally requires that a Neumann
13134condition must be used for the specific humidity / total water content
13135(see <a href="#bc_q_b">bc_q_b</a>),
13136because otherwise the resolved scale may contribute to
13137the surface flux so that a constant value cannot be guaranteed. Also,
13138changes of the
13139surface humidity (see <a href="#q_surface_initial_change">q_surface_initial_change</a>)
13140are not allowed.<br>
13141
13142
13143
13144
13145
13146
13147 </p>
13148
13149
13150
13151
13152
13153
13154 
13155     
13156     
13157     
13158     
13159     
13160     
13161      <p>If no surface water
13162flux is assigned (<b>surface_waterflux</b>
13163= <i>0.0</i>),
13164it is calculated at each timestep by u<sub>*</sub> * q<sub>*</sub>
13165(of course only with Prandtl layer switched on). Here, q<sub>*</sub>
13166is calculated from the Prandtl law assuming a logarithmic temperature
13167profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_q_b">bc_q_b</a>)
13168must be used as the bottom boundary condition for the humidity.</p>
13169
13170
13171
13172
13173
13174
13175
13176      </td>
13177
13178
13179
13180
13181
13182
13183 </tr>
13184
13185
13186
13187
13188
13189
13190 <tr>
13191
13192
13193
13194
13195
13196
13197 <td style="vertical-align: top;"> 
13198     
13199     
13200     
13201     
13202     
13203     
13204      <p><a name="s_surface"></a><b>s_surface</b></p>
13205
13206
13207
13208
13209
13210
13211
13212      </td>
13213
13214
13215
13216
13217
13218
13219 <td style="vertical-align: top;">R</td>
13220
13221
13222
13223
13224
13225
13226
13227      <td style="vertical-align: top;"><i>0.0</i></td>
13228
13229
13230
13231
13232
13233
13234
13235      <td style="vertical-align: top;"> 
13236     
13237     
13238     
13239     
13240     
13241     
13242      <p>Surface value
13243of the passive scalar (in kg/m<sup>3</sup>).&nbsp;<br>
13244
13245
13246
13247
13248
13249
13250
13251      </p>
13252
13253
13254
13255
13256
13257
13258
13259This parameter assigns the value of the passive scalar s at
13260the surface (k=0)<b>.</b> Starting from this value, the
13261initial vertical scalar concentration profile is constructed with<a href="#s_vertical_gradient">
13262s_vertical_gradient</a> and <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.</td>
13263
13264
13265
13266
13267
13268
13269
13270    </tr>
13271
13272
13273
13274
13275
13276
13277 <tr>
13278
13279
13280
13281
13282
13283
13284 <td style="vertical-align: top;">
13285     
13286     
13287     
13288     
13289     
13290     
13291      <p><a name="s_surface_initial_change"></a><b>s_surface_initial</b>
13292      <br>
13293
13294
13295
13296
13297
13298
13299 <b>_change</b></p>
13300
13301
13302
13303
13304
13305
13306 </td>
13307
13308
13309
13310
13311
13312
13313 <td style="vertical-align: top;">R</td>
13314
13315
13316
13317
13318
13319
13320 <td style="vertical-align: top;"><i>0.0</i></td>
13321
13322
13323
13324
13325
13326
13327
13328      <td style="vertical-align: top;"> 
13329     
13330     
13331     
13332     
13333     
13334     
13335      <p>Change in
13336surface scalar concentration to be made at the
13337beginning of the 3d run (in kg/m<sup>3</sup>).&nbsp; </p>
13338
13339
13340
13341
13342
13343
13344
13345     
13346     
13347     
13348     
13349     
13350     
13351      <p>If <b>s_surface_initial_change</b><i>&nbsp;</i>is
13352set to a
13353non-zero
13354value, the near surface scalar flux is not allowed to be given
13355simultaneously (see <a href="#surface_scalarflux">surface_scalarflux</a>).</p>
13356
13357
13358
13359
13360
13361
13362
13363      </td>
13364
13365
13366
13367
13368
13369
13370 </tr>
13371
13372
13373
13374
13375
13376
13377 <tr>
13378
13379
13380
13381
13382
13383
13384 <td style="vertical-align: top;"> 
13385     
13386     
13387     
13388     
13389     
13390     
13391      <p><a name="s_vertical_gradient"></a><b>s_vertical_gradient</b></p>
13392
13393
13394
13395
13396
13397
13398
13399      </td>
13400
13401
13402
13403
13404
13405
13406 <td style="vertical-align: top;">R (10)</td>
13407
13408
13409
13410
13411
13412
13413
13414      <td style="vertical-align: top;"><i>10 * 0</i><i>.0</i></td>
13415
13416
13417
13418
13419
13420
13421
13422      <td style="vertical-align: top;"> 
13423     
13424     
13425     
13426     
13427     
13428     
13429      <p>Scalar
13430concentration gradient(s) of the initial scalar
13431concentration profile (in kg/m<sup>3 </sup>/
13432100 m).&nbsp; </p>
13433
13434
13435
13436
13437
13438
13439 
13440     
13441     
13442     
13443     
13444     
13445     
13446      <p>The scalar gradient holds
13447starting from the height level
13448defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level
13449      </a>(precisely: for all uv levels k, where zu(k) &gt;
13450s_vertical_gradient_level, s_init(k) is set: s_init(k) = s_init(k-1) +
13451dzu(k) * <b>s_vertical_gradient</b>) up to the top
13452boundary or up to
13453the next height level defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
13454A total of 10 different gradients for 11 height intervals (10 intervals
13455if <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>(1)
13456= <i>0.0</i>) can be assigned. The surface scalar value is
13457assigned
13458via <a href="#s_surface">s_surface</a>.<br>
13459
13460
13461
13462
13463
13464
13465 </p>
13466
13467
13468
13469
13470
13471
13472
13473     
13474     
13475     
13476     
13477     
13478     
13479      <p>Example:&nbsp; </p>
13480
13481
13482
13483
13484
13485
13486 
13487     
13488     
13489     
13490     
13491     
13492     
13493      <ul>
13494
13495
13496
13497
13498
13499
13500 
13501       
13502       
13503       
13504       
13505       
13506       
13507        <p><b>s_vertical_gradient</b>
13508= <i>0.1</i>, <i>0.05</i>,&nbsp; <br>
13509
13510
13511
13512
13513
13514
13515
13516        <b>s_vertical_gradient_level</b> = <i>500.0</i>,
13517        <i>1000.0</i>,</p>
13518
13519
13520
13521
13522
13523
13524 
13525     
13526     
13527     
13528     
13529     
13530     
13531      </ul>
13532
13533
13534
13535
13536
13537
13538 
13539     
13540     
13541     
13542     
13543     
13544     
13545      <p>That
13546defines the scalar concentration to be constant with
13547height up to z = 500.0 m with a value given by <a href="#s_surface">s_surface</a>.
13548For 500.0 m &lt; z &lt;= 1000.0 m the scalar gradient is 0.1
13549kg/m<sup>3 </sup>/ 100 m and for z &gt; 1000.0 m up to
13550the top
13551boundary it is 0.05 kg/m<sup>3 </sup>/ 100 m (it is
13552assumed that the
13553assigned height levels
13554correspond with uv
13555levels).</p>
13556
13557
13558
13559
13560
13561
13562 </td>
13563
13564
13565
13566
13567
13568
13569 </tr>
13570
13571
13572
13573
13574
13575
13576 <tr>
13577
13578
13579
13580
13581
13582
13583 <td style="vertical-align: top;"> 
13584     
13585     
13586     
13587     
13588     
13589     
13590      <p><a name="s_vertical_gradient_level"></a><b>s_vertical_gradient_</b>
13591      <br>
13592
13593
13594
13595
13596
13597
13598 <b>level</b></p>
13599
13600
13601
13602
13603
13604
13605 </td>
13606
13607
13608
13609
13610
13611
13612 <td style="vertical-align: top;">R (10)</td>
13613
13614
13615
13616
13617
13618
13619 <td style="vertical-align: top;"> 
13620     
13621     
13622     
13623     
13624     
13625     
13626      <p><i>10 *</i>
13627      <i>0.0</i></p>
13628
13629
13630
13631
13632
13633
13634 </td>
13635
13636
13637
13638
13639
13640
13641 <td style="vertical-align: top;"> 
13642     
13643     
13644     
13645     
13646     
13647     
13648      <p>Height level from
13649which on the scalar gradient defined by <a href="#s_vertical_gradient">s_vertical_gradient</a>
13650is effective (in m).&nbsp; </p>
13651
13652
13653
13654
13655
13656
13657 
13658     
13659     
13660     
13661     
13662     
13663     
13664      <p>The height levels
13665are to be assigned in ascending order. The
13666default values result in a scalar concentration constant with height
13667regardless of the values of <a href="#s_vertical_gradient">s_vertical_gradient</a>
13668(unless the top boundary of the model is higher than 100000.0 m). For
13669the
13670piecewise construction of scalar concentration profiles see <a href="#s_vertical_gradient">s_vertical_gradient</a>.</p>
13671
13672
13673
13674
13675
13676
13677
13678      </td>
13679
13680
13681
13682
13683
13684
13685 </tr>
13686
13687
13688
13689
13690
13691
13692 <tr>
13693
13694
13695
13696
13697
13698
13699 <td style="vertical-align: top;"> 
13700     
13701     
13702     
13703     
13704     
13705     
13706      <p><a name="timestep_scheme"></a><b>timestep_scheme</b></p>
13707
13708
13709
13710
13711
13712
13713
13714      </td>
13715
13716
13717
13718
13719
13720
13721 <td style="vertical-align: top;">C * 20</td>
13722
13723
13724
13725
13726
13727
13728
13729      <td style="vertical-align: top;"> 
13730     
13731     
13732     
13733     
13734     
13735     
13736      <p><i>'runge</i><br>
13737
13738
13739
13740
13741
13742
13743
13744      <i>kutta-3'</i></p>
13745
13746
13747
13748
13749
13750
13751 </td>
13752
13753
13754
13755
13756
13757
13758 <td style="vertical-align: top;"> 
13759     
13760     
13761     
13762     
13763     
13764     
13765      <p>Time step scheme to
13766be used for the integration of the prognostic
13767variables.&nbsp; </p>
13768
13769
13770
13771
13772
13773
13774 
13775     
13776     
13777     
13778     
13779     
13780     
13781      <p>The user can choose between
13782the following schemes:<br>
13783
13784
13785
13786
13787
13788
13789 </p>
13790
13791
13792
13793
13794
13795
13796 
13797     
13798     
13799     
13800     
13801     
13802     
13803      <p><span style="font-style: italic;">'runge-kutta-3'</span><br>
13804
13805
13806
13807
13808
13809
13810
13811      </p>
13812
13813
13814
13815
13816
13817
13818 
13819     
13820     
13821     
13822     
13823     
13824     
13825      <div style="margin-left: 40px;">Third order
13826Runge-Kutta scheme.<br>
13827
13828
13829
13830
13831
13832
13833
13834This scheme requires the use of <a href="#momentum_advec">momentum_advec</a>
13835= <a href="#scalar_advec">scalar_advec</a>
13836= '<i>pw-scheme'</i>. Please refer to the&nbsp;<a href="../tec/numerik.heiko/zeitschrittverfahren.pdf">documentation
13837on PALM's time integration schemes&nbsp;(28p., in German)</a>
13838fur further details.<br>
13839
13840
13841
13842
13843
13844
13845 </div>
13846
13847
13848
13849
13850
13851
13852 
13853     
13854     
13855     
13856     
13857     
13858     
13859      <p><span style="font-style: italic;">'runge-kutta-2'</span><br>
13860
13861
13862
13863
13864
13865
13866
13867      </p>
13868
13869
13870
13871
13872
13873
13874 
13875     
13876     
13877     
13878     
13879     
13880     
13881      <div style="margin-left: 40px;">Second order
13882Runge-Kutta scheme.<br>
13883
13884
13885
13886
13887
13888
13889
13890For special features see <b>timestep_scheme</b> = '<i>runge-kutta-3'</i>.<br>
13891
13892
13893
13894
13895
13896
13897
13898      </div>
13899
13900
13901
13902
13903
13904
13905 <br>
13906
13907
13908
13909
13910
13911
13912 <span style="font-style: italic;"><span style="font-style: italic;">'leapfrog'</span><br>
13913
13914
13915
13916
13917
13918
13919
13920      <br>
13921
13922
13923
13924
13925
13926
13927 </span> 
13928     
13929     
13930     
13931     
13932     
13933     
13934      <div style="margin-left: 40px;">Second
13935order leapfrog scheme.<br>
13936
13937
13938
13939
13940
13941
13942
13943Although this scheme requires a constant timestep (because it is
13944centered in time),&nbsp; is even applied in case of changes in
13945timestep. Therefore, only small
13946changes of the timestep are allowed (see <a href="#dt">dt</a>).
13947However, an Euler timestep is always used as the first timestep of an
13948initiali run. When using the Bott-Chlond scheme for scalar advection
13949(see <a href="#scalar_advec">scalar_advec</a>),
13950the prognostic equation for potential temperature will be calculated
13951with the Euler scheme, although the leapfrog scheme is switched
13952on.&nbsp; <br>
13953
13954
13955
13956
13957
13958
13959
13960The leapfrog scheme must not be used together with the upstream-spline
13961scheme for calculating the advection (see <a href="#scalar_advec">scalar_advec</a>
13962= '<i>ups-scheme'</i> and <a href="#momentum_advec">momentum_advec</a>
13963= '<i>ups-scheme'</i>).<br>
13964
13965
13966
13967
13968
13969
13970 </div>
13971
13972
13973
13974
13975
13976
13977 <br>
13978
13979
13980
13981
13982
13983
13984
13985      <span style="font-style: italic;">'</span><span style="font-style: italic;"><span style="font-style: italic;">leapfrog+euler'</span><br>
13986
13987
13988
13989
13990
13991
13992
13993      <br>
13994
13995
13996
13997
13998
13999
14000 </span> 
14001     
14002     
14003     
14004     
14005     
14006     
14007      <div style="margin-left: 40px;">The
14008leapfrog scheme is used, but
14009after each change of a timestep an Euler timestep is carried out.
14010Although this method is theoretically correct (because the pure
14011leapfrog method does not allow timestep changes), the divergence of the
14012velocity field (after applying the pressure solver) may be
14013significantly larger than with <span style="font-style: italic;">'leapfrog'</span>.<br>
14014
14015
14016
14017
14018
14019
14020
14021      </div>
14022
14023
14024
14025
14026
14027
14028 <br>
14029
14030
14031
14032
14033
14034
14035 <span style="font-style: italic;">'euler'</span><br>
14036
14037
14038
14039
14040
14041
14042
14043      <br>
14044
14045
14046
14047
14048
14049
14050 
14051     
14052     
14053     
14054     
14055     
14056     
14057      <div style="margin-left: 40px;">First order
14058Euler scheme.&nbsp; <br>
14059
14060
14061
14062
14063
14064
14065
14066The Euler scheme must be used when treating the advection terms with
14067the upstream-spline scheme (see <a href="#scalar_advec">scalar_advec</a>
14068= <span style="font-style: italic;">'ups-scheme'</span>
14069and <a href="#momentum_advec">momentum_advec</a>
14070= <span style="font-style: italic;">'ups-scheme'</span>).</div>
14071
14072
14073
14074
14075
14076
14077
14078      <br>
14079
14080
14081
14082
14083
14084
14085      <br>
14086
14087
14088
14089
14090
14091
14092A differing timestep scheme can be choosed for the
14093subgrid-scale TKE using parameter <a href="#use_upstream_for_tke">use_upstream_for_tke</a>.<br>
14094
14095
14096
14097
14098
14099
14100
14101      </td>
14102
14103
14104
14105
14106
14107
14108 </tr>
14109
14110
14111
14112
14113
14114
14115 <tr>
14116
14117
14118
14119
14120
14121
14122 <td style="text-align: left; vertical-align: top;"><span style="font-weight: bold;"><a name="topography"></a></span><span style="font-weight: bold;">topography</span></td>
14123
14124
14125
14126
14127
14128
14129
14130      <td style="vertical-align: top;">C * 40</td>
14131
14132
14133
14134
14135
14136
14137 <td style="vertical-align: top;"><span style="font-style: italic;">'flat'</span></td>
14138
14139
14140
14141
14142
14143
14144 <td>
14145     
14146     
14147     
14148     
14149     
14150     
14151      <p>Topography mode.&nbsp; </p>
14152
14153
14154
14155
14156
14157
14158 
14159     
14160     
14161     
14162     
14163     
14164     
14165      <p>The user can
14166choose between the following modes:<br>
14167
14168
14169
14170
14171
14172
14173 </p>
14174
14175
14176
14177
14178
14179
14180 
14181     
14182     
14183     
14184     
14185     
14186     
14187      <p><span style="font-style: italic;">'flat'</span><br>
14188
14189
14190
14191
14192
14193
14194 </p>
14195
14196
14197
14198
14199
14200
14201
14202     
14203     
14204     
14205     
14206     
14207     
14208      <div style="margin-left: 40px;">Flat surface.</div>
14209
14210
14211
14212
14213
14214
14215 
14216     
14217     
14218     
14219     
14220     
14221     
14222      <p><span style="font-style: italic;">'single_building'</span><br>
14223
14224
14225
14226
14227
14228
14229
14230      </p>
14231
14232
14233
14234
14235
14236
14237 
14238     
14239     
14240     
14241     
14242     
14243     
14244      <div style="margin-left: 40px;">Flow
14245around&nbsp;a single rectangular building mounted on a flat surface.<br>
14246
14247
14248
14249
14250
14251
14252
14253The building size and location can be specified by the parameters <a href="#building_height">building_height</a>, <a href="#building_length_x">building_length_x</a>, <a href="#building_length_y">building_length_y</a>, <a href="#building_wall_left">building_wall_left</a> and <a href="#building_wall_south">building_wall_south</a>.<font color="#000000"><br></font></div>
14254
14255
14256
14257
14258
14259
14260
14261      <span style="font-style: italic;"></span> 
14262     
14263     
14264     
14265     
14266     
14267     
14268      <p><span style="font-style: italic;">'single_street_canyon'</span><br>
14269
14270
14271
14272
14273
14274
14275
14276      </p>
14277
14278
14279
14280
14281
14282
14283 
14284     
14285     
14286     
14287     
14288     
14289     
14290      <div style="margin-left: 40px;">Flow
14291over a single, quasi-2D street canyon of infinite length oriented either in x- or in y-direction.<br>
14292
14293
14294
14295
14296
14297
14298
14299The canyon size, orientation and location can be specified by the parameters <a href="chapter_4.1.html#canyon_height">canyon_height</a> plus <span style="font-weight: bold;">either</span>&nbsp;<a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a> and <a href="chapter_4.1.html#canyon_wall_left">canyon_wall_left</a> <span style="font-weight: bold;">or</span>&nbsp; <a href="chapter_4.1.html#canyon_width_y">canyon_width_y</a> and <a href="chapter_4.1.html#canyon_wall_south">canyon_wall_south</a>.<font color="#000000"><br></font></div>
14300
14301
14302
14303
14304
14305
14306
14307      <span style="font-style: italic;"></span>&nbsp;<span style="font-style: italic;"></span><p><span style="font-style: italic;">'read_from_file'</span><br>
14308
14309
14310
14311
14312
14313
14314
14315      </p>
14316
14317
14318
14319
14320
14321
14322 
14323     
14324     
14325     
14326     
14327     
14328     
14329      <div style="margin-left: 40px;">Flow around
14330arbitrary topography.<br>
14331
14332
14333
14334
14335
14336
14337
14338This mode requires the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">. This file contains </font><font color="#000000"><font color="#000000">the&nbsp;</font></font><font color="#000000">arbitrary topography </font><font color="#000000"><font color="#000000">height
14339information</font></font><font color="#000000">
14340in m. These data&nbsp;<span style="font-style: italic;"></span>must
14341exactly match the horizontal grid.<br></font> </div>
14342
14343
14344
14345
14346
14347
14348 <span style="font-style: italic;"><br>
14349
14350
14351
14352
14353
14354
14355 </span><font color="#000000">
14356Alternatively, the user may add code to the user interface subroutine <a href="chapter_3.5.1.html#user_init_grid">user_init_grid</a>
14357to allow further topography modes. </font>These require to explicitly set the<span style="font-weight: bold;"> </span><a href="chapter_4.3.html#topography_grid_convention">topography_grid_convention</a>&nbsp;to either <span style="font-style: italic;">'cell_edge'</span> or <span style="font-style: italic;">'cell_center'</span>.<br>
14358
14359      <font color="#000000">
14360
14361
14362
14363
14364 <br>
14365
14366
14367
14368
14369
14370
14371
14372Non-flat <span style="font-weight: bold;">topography</span>
14373modes may assign a</font>
14374kinematic sensible<font color="#000000"> <a href="chapter_4.1.html#wall_heatflux">wall_heatflux</a> at the five topography faces.</font><br>
14375
14376      <font color="#000000">
14377
14378
14379
14380
14381 <br>
14382
14383
14384
14385
14386
14387
14388
14389All non-flat <span style="font-weight: bold;">topography</span>
14390modes </font>require the use of <a href="#momentum_advec">momentum_advec</a>
14391= <a href="#scalar_advec">scalar_advec</a>
14392= '<i>pw-scheme'</i>, <a href="chapter_4.2.html#psolver">psolver</a>
14393/= <i>'sor</i><i>'</i>,
14394      <i>&nbsp;</i><a href="#alpha_surface">alpha_surface</a>
14395= 0.0,<span style="font-style: italic;"></span>&nbsp;<a style="" href="#galilei_transformation">galilei_transformation</a>
14396= <span style="font-style: italic;">.F.</span>,&nbsp;<a href="#cloud_physics">cloud_physics&nbsp;</a> = <span style="font-style: italic;">.F.</span>,&nbsp; <a href="#cloud_droplets">cloud_droplets</a> = <span style="font-style: italic;">.F.</span>,&nbsp;&nbsp;<a href="#humidity">humidity</a> = <span style="font-style: italic;">.F.</span>, and <a href="#prandtl_layer">prandtl_layer</a> = .T..<br>
14397
14398
14399
14400
14401
14402
14403
14404      <font color="#000000"><br>
14405
14406
14407
14408
14409
14410
14411
14412Note that an inclined model domain requires the use of <span style="font-weight: bold;">topography</span> = <span style="font-style: italic;">'flat'</span> and a
14413nonzero </font><a href="#alpha_surface">alpha_surface</a>.</td>
14414
14415
14416
14417
14418
14419
14420
14421    </tr>
14422
14423
14424
14425
14426
14427
14428 <tr>
14429
14430
14431
14432
14433
14434
14435      <td style="vertical-align: top;"><a name="top_heatflux"></a><span style="font-weight: bold;">top_heatflux</span></td>
14436
14437
14438
14439
14440
14441
14442      <td style="vertical-align: top;">R</td>
14443
14444
14445
14446
14447
14448
14449      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
14450
14451
14452
14453
14454
14455
14456
14457heatflux</span></td>
14458
14459
14460
14461
14462
14463
14464      <td style="vertical-align: top;">
14465     
14466     
14467     
14468     
14469     
14470     
14471      <p>Kinematic
14472sensible heat flux at the top boundary (in K m/s).&nbsp; </p>
14473
14474
14475
14476
14477
14478
14479
14480     
14481     
14482     
14483     
14484     
14485     
14486      <p>If a value is assigned to this parameter, the internal
14487two-dimensional surface heat flux field <span style="font-family: monospace;">tswst</span> is
14488initialized with the value of <span style="font-weight: bold;">top_heatflux</span>&nbsp;as
14489top (horizontally homogeneous) boundary condition for the
14490temperature equation. This additionally requires that a Neumann
14491condition must be used for the potential temperature (see <a href="chapter_4.1.html#bc_pt_t">bc_pt_t</a>),
14492because otherwise the resolved scale may contribute to
14493the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14494
14495
14496
14497
14498
14499
14500
14501     
14502     
14503     
14504     
14505     
14506     
14507      <p><span style="font-weight: bold;">Note:</span><br>
14508
14509
14510
14511
14512
14513
14514The
14515application of a top heat flux additionally requires the setting of
14516initial parameter <a href="#use_top_fluxes">use_top_fluxes</a>
14517= .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p>
14518
14519
14520
14521
14522
14523
14524     
14525     
14526     
14527     
14528     
14529     
14530      <p>No
14531Prandtl-layer is available at the top boundary so far.</p>
14532
14533
14534
14535
14536
14537
14538     
14539     
14540     
14541     
14542     
14543     
14544      <p>See
14545also <a href="#surface_heatflux">surface_heatflux</a>.</p>
14546
14547
14548
14549
14550
14551
14552
14553      </td>
14554
14555
14556
14557
14558
14559
14560    </tr>
14561
14562
14563
14564
14565
14566
14567    <tr>
14568
14569
14570
14571
14572
14573
14574      <td style="vertical-align: top;"><a name="top_momentumflux_u"></a><span style="font-weight: bold;">top_momentumflux_u</span></td>
14575
14576
14577
14578
14579
14580
14581      <td style="vertical-align: top;">R</td>
14582
14583
14584
14585
14586
14587
14588      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td>
14589
14590
14591
14592
14593
14594
14595      <td style="vertical-align: top;">Momentum flux along x at the top boundary (in m2/s2).<br>
14596
14597
14598
14599
14600
14601
14602     
14603     
14604     
14605     
14606     
14607     
14608      <p>If a value is assigned to this parameter, the internal
14609two-dimensional u-momentum flux field <span style="font-family: monospace;">uswst</span> is
14610initialized with the value of <span style="font-weight: bold;">top_momentumflux_u</span> as
14611top (horizontally homogeneous) boundary condition for the u-momentum equation.</p>
14612
14613
14614
14615
14616
14617
14618     
14619     
14620     
14621     
14622     
14623     
14624      <p><span style="font-weight: bold;">Notes:</span><br>
14625
14626
14627
14628
14629
14630
14631The
14632application of a top momentum flux additionally requires the setting of
14633initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14634= .T.. Setting of <span style="font-weight: bold;">top_momentumflux_u</span> requires setting of <a href="#top_momentumflux_v">top_momentumflux_v</a> also.</p>
14635
14636
14637
14638
14639
14640
14641     
14642     
14643     
14644     
14645     
14646     
14647      <p>A&nbsp;Neumann
14648condition should be used for the u velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>),
14649because otherwise the resolved scale may contribute to
14650the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14651
14652
14653
14654
14655
14656
14657
14658      <span style="font-weight: bold;"></span>
14659     
14660     
14661     
14662     
14663     
14664     
14665      <p>No
14666Prandtl-layer is available at the top boundary so far.</p>
14667
14668
14669
14670
14671
14672
14673     
14674     
14675     
14676     
14677     
14678     
14679      <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and&nbsp;<a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g.&nbsp;top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p>
14680
14681
14682
14683
14684
14685
14686      </td>
14687
14688
14689
14690
14691
14692
14693    </tr>
14694
14695
14696
14697
14698
14699
14700    <tr>
14701
14702
14703
14704
14705
14706
14707      <td style="vertical-align: top;"><a name="top_momentumflux_v"></a><span style="font-weight: bold;">top_momentumflux_v</span></td>
14708
14709
14710
14711
14712
14713
14714      <td style="vertical-align: top;">R</td>
14715
14716
14717
14718
14719
14720
14721      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td>
14722
14723
14724
14725
14726
14727
14728      <td style="vertical-align: top;">Momentum flux along y at the top boundary (in m2/s2).<br>
14729
14730
14731
14732
14733
14734
14735     
14736     
14737     
14738     
14739     
14740     
14741      <p>If a value is assigned to this parameter, the internal
14742two-dimensional v-momentum flux field <span style="font-family: monospace;">vswst</span> is
14743initialized with the value of <span style="font-weight: bold;">top_momentumflux_v</span> as
14744top (horizontally homogeneous) boundary condition for the v-momentum equation.</p>
14745
14746
14747
14748
14749
14750
14751     
14752     
14753     
14754     
14755     
14756     
14757      <p><span style="font-weight: bold;">Notes:</span><br>
14758
14759
14760
14761
14762
14763
14764The
14765application of a top momentum flux additionally requires the setting of
14766initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14767= .T.. Setting of <span style="font-weight: bold;">top_momentumflux_v</span> requires setting of <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> also.</p>
14768
14769
14770
14771
14772
14773
14774     
14775     
14776     
14777     
14778     
14779     
14780      <p>A&nbsp;Neumann
14781condition should be used for the v velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>),
14782because otherwise the resolved scale may contribute to
14783the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14784
14785
14786
14787
14788
14789
14790
14791      <span style="font-weight: bold;"></span>
14792     
14793     
14794     
14795     
14796     
14797     
14798      <p>No
14799Prandtl-layer is available at the top boundary so far.</p>
14800
14801
14802
14803
14804
14805
14806     
14807     
14808     
14809     
14810     
14811     
14812      <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and&nbsp;<a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g.&nbsp;top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p>
14813
14814
14815
14816
14817
14818
14819      </td>
14820
14821
14822
14823
14824
14825
14826    </tr>
14827
14828
14829
14830
14831
14832
14833    <tr>
14834
14835
14836
14837
14838
14839
14840      <td style="vertical-align: top;"><a name="top_salinityflux"></a><span style="font-weight: bold;">top_salinityflux</span></td>
14841
14842
14843
14844
14845
14846
14847      <td style="vertical-align: top;">R</td>
14848
14849
14850
14851
14852
14853
14854      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
14855
14856
14857
14858
14859
14860
14861
14862salinityflux</span></td>
14863
14864
14865
14866
14867
14868
14869      <td style="vertical-align: top;">
14870     
14871     
14872     
14873     
14874     
14875     
14876      <p>Kinematic
14877salinity flux at the top boundary, i.e. the sea surface (in psu m/s).&nbsp; </p>
14878
14879
14880
14881
14882
14883
14884
14885     
14886     
14887     
14888     
14889     
14890     
14891      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
14892
14893
14894
14895
14896
14897
14898     
14899     
14900     
14901     
14902     
14903     
14904      <p>If a value is assigned to this parameter, the internal
14905two-dimensional surface heat flux field <span style="font-family: monospace;">saswst</span> is
14906initialized with the value of <span style="font-weight: bold;">top_salinityflux</span>&nbsp;as
14907top (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
14908condition must be used for the salinity (see <a href="chapter_4.1.html#bc_sa_t">bc_sa_t</a>),
14909because otherwise the resolved scale may contribute to
14910the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14911
14912
14913
14914
14915
14916
14917
14918     
14919     
14920     
14921     
14922     
14923     
14924      <p><span style="font-weight: bold;">Note:</span><br>
14925
14926
14927
14928
14929
14930
14931The
14932application of a salinity flux at the model top additionally requires the setting of
14933initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14934= .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p>
14935
14936
14937
14938
14939
14940
14941     
14942     
14943     
14944     
14945     
14946     
14947      <p>See
14948also <a href="chapter_4.1.html#bottom_salinityflux">bottom_salinityflux</a>.</p>
14949
14950
14951
14952
14953
14954
14955      </td>
14956
14957
14958
14959
14960
14961
14962    </tr>
14963
14964
14965
14966
14967
14968
14969    <tr><td style="vertical-align: top;"><a name="turbulent_inflow"></a><span style="font-weight: bold;">turbulent_inflow</span></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td><td style="vertical-align: top;">Generates a turbulent inflow at side boundaries using a turbulence recycling method.<br><br>Turbulent inflow is realized using the turbulence recycling method from Lund et al. (1998, J. Comp. Phys., <span style="font-weight: bold;">140</span>, 233-258) modified by Kataoka and Mizuno (2002, Wind and Structures, <span style="font-weight: bold;">5</span>, 379-392).<br><br>A turbulent inflow requires Dirichlet conditions at the respective inflow boundary. <span style="font-weight: bold;">So far, a turbulent inflow is realized from the left (west) side only, i.e. </span><a style="font-weight: bold;" href="chapter_4.1.html#bc_lr">bc_lr</a><span style="font-weight: bold;">&nbsp;=</span><span style="font-style: italic; font-weight: bold;"> 'dirichlet/radiation'</span><span style="font-weight: bold;"> is required!</span><br><br>The initial (quasi-stationary) turbulence field should be generated by a precursor run and used by setting <a href="chapter_4.1.html#initializing_actions">initializing_actions</a> =<span style="font-style: italic;"> 'read_data_for_recycling'</span>.<br><br>The distance of the recycling plane from the inflow boundary can be set with parameter <a href="chapter_4.1.html#recycling_width">recycling_width</a>.
14970The heigth above ground above which the turbulence signal is not used
14971for recycling and the width of the layer within&nbsp;the magnitude of
14972the turbulence signal is damped from 100% to 0% can be set with
14973parameters <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> and <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>The detailed setup for a turbulent inflow is described in <a href="chapter_3.9.html">chapter 3.9</a>.</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="u_bulk"></a>u_bulk</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td>u-component of the predefined bulk velocity (in m/s).<br><br>This parameter comes into effect if <a href="#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T.</span> and <a href="#conserve_volume_flow_mode">conserve_volume_flow_mode</a> = <span style="font-style: italic;">'bulk_velocity'</span>.</td></tr><tr>
14974
14975
14976
14977
14978
14979
14980 <td style="vertical-align: top;">
14981     
14982     
14983     
14984     
14985     
14986     
14987      <p><a name="ug_surface"></a><span style="font-weight: bold;">ug_surface</span></p>
14988
14989
14990
14991
14992
14993
14994
14995      </td>
14996
14997
14998
14999
15000
15001
15002 <td style="vertical-align: top;">R<br>
15003
15004
15005
15006
15007
15008
15009 </td>
15010
15011
15012
15013
15014
15015
15016
15017      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
15018
15019
15020
15021
15022
15023
15024 </td>
15025
15026
15027
15028
15029
15030
15031
15032      <td style="vertical-align: top;">u-component of the
15033geostrophic
15034wind at the surface (in m/s).<br>
15035
15036
15037
15038
15039
15040
15041 <br>
15042
15043
15044
15045
15046
15047
15048
15049This parameter assigns the value of the u-component of the geostrophic
15050wind (ug) at the surface (k=0). Starting from this value, the initial
15051vertical profile of the <br>
15052
15053
15054
15055
15056
15057
15058
15059u-component of the geostrophic wind is constructed with <a href="#ug_vertical_gradient">ug_vertical_gradient</a>
15060and <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>.
15061The
15062profile constructed in that way is used for creating the initial
15063vertical velocity profile of the 3d-model. Either it is applied, as it
15064has been specified by the user (<a href="#initializing_actions">initializing_actions</a>
15065= 'set_constant_profiles') or it is used for calculating a stationary
15066boundary layer wind profile (<a href="#initializing_actions">initializing_actions</a>
15067= 'set_1d-model_profiles'). If ug is constant with height (i.e. ug(k)=<span style="font-weight: bold;">ug_surface</span>)
15068and&nbsp; has a large
15069value, it is recommended to use a Galilei-transformation of the
15070coordinate system, if possible (see <a href="#galilei_transformation">galilei_transformation</a>),
15071in order to obtain larger time steps.<br>
15072
15073
15074
15075
15076
15077
15078      <br>
15079
15080
15081
15082
15083
15084
15085      <span style="font-weight: bold;">Attention:</span><br>
15086
15087
15088
15089
15090
15091
15092In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
15093this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is
15094at k=nzt. The profile is then constructed from the surface down to the
15095bottom of the model.<br>
15096
15097
15098
15099
15100
15101
15102 </td>
15103
15104
15105
15106
15107
15108
15109 </tr>
15110
15111
15112
15113
15114
15115
15116
15117    <tr>
15118
15119
15120
15121
15122
15123
15124 <td style="vertical-align: top;"> 
15125     
15126     
15127     
15128     
15129     
15130     
15131      <p><a name="ug_vertical_gradient"></a><span style="font-weight: bold;">ug_vertical_gradient</span></p>
15132
15133
15134
15135
15136
15137
15138
15139      </td>
15140
15141
15142
15143
15144
15145
15146 <td style="vertical-align: top;">R(10)<br>
15147
15148
15149
15150
15151
15152
15153
15154      </td>
15155
15156
15157
15158
15159
15160
15161 <td style="vertical-align: top;"><span style="font-style: italic;">10
15162* 0.0</span><br>
15163
15164
15165
15166
15167
15168
15169 </td>
15170
15171
15172
15173
15174
15175
15176 <td style="vertical-align: top;">Gradient(s) of the initial
15177profile of the&nbsp; u-component of the geostrophic wind (in
151781/100s).<br>
15179
15180
15181
15182
15183
15184
15185 <br>
15186
15187
15188
15189
15190
15191
15192
15193The gradient holds starting from the height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
15194(precisely: for all uv levels k where zu(k) &gt; <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>,
15195ug(k) is set: ug(k) = ug(k-1) + dzu(k) * <span style="font-weight: bold;">ug_vertical_gradient</span>)
15196up to the top
15197boundary or up to the next height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>.
15198A
15199total of 10 different gradients for 11 height intervals (10
15200intervals&nbsp; if <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>(1)
15201= 0.0) can be assigned. The surface geostrophic wind is assigned by <a href="#ug_surface">ug_surface</a>.<br>
15202
15203
15204
15205
15206
15207
15208      <br>
15209
15210
15211
15212
15213
15214
15215      <span style="font-weight: bold;">Attention:</span><br>
15216
15217
15218
15219
15220
15221
15222In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
15223the profile is constructed like described above, but starting from the
15224sea surface (k=nzt) down to the bottom boundary of the model. Height
15225levels have then to be given as negative values, e.g. <span style="font-weight: bold;">ug_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.<br>
15226
15227
15228
15229
15230
15231
15232 </td>
15233
15234
15235
15236
15237
15238
15239
15240    </tr>
15241
15242
15243
15244
15245
15246
15247 <tr>
15248
15249
15250
15251
15252
15253
15254 <td style="vertical-align: top;">
15255     
15256     
15257     
15258     
15259     
15260     
15261      <p><a name="ug_vertical_gradient_level"></a><span style="font-weight: bold;">ug_vertical_gradient_level</span></p>
15262
15263
15264
15265
15266
15267
15268
15269      </td>
15270
15271
15272
15273
15274
15275
15276 <td style="vertical-align: top;">R(10)<br>
15277
15278
15279
15280
15281
15282
15283
15284      </td>
15285
15286
15287
15288
15289
15290
15291 <td style="vertical-align: top;"><span style="font-style: italic;">10
15292* 0.0</span><br>
15293
15294
15295
15296
15297
15298
15299 </td>
15300
15301
15302
15303
15304
15305
15306 <td style="vertical-align: top;">Height level from which on the
15307gradient defined by <a href="#ug_vertical_gradient">ug_vertical_gradient</a>
15308is effective (in m).<br>
15309
15310
15311
15312
15313
15314
15315 <br>
15316
15317
15318
15319
15320
15321
15322
15323The height levels have to be assigned in ascending order. For the
15324piecewise construction of a profile of the u-component of the
15325geostrophic wind component (ug) see <a href="#ug_vertical_gradient">ug_vertical_gradient</a>.<br>
15326
15327
15328
15329
15330
15331
15332      <br>
15333
15334
15335
15336
15337
15338
15339      <span style="font-weight: bold;">Attention:</span><br>
15340
15341
15342
15343
15344
15345
15346In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td>
15347
15348
15349
15350
15351
15352
15353 </tr>
15354
15355
15356
15357
15358
15359
15360 <tr>
15361
15362
15363
15364
15365
15366
15367 <td style="vertical-align: top;"> 
15368     
15369     
15370     
15371     
15372     
15373     
15374      <p><a name="ups_limit_e"></a><b>ups_limit_e</b></p>
15375
15376
15377
15378
15379
15380
15381
15382      </td>
15383
15384
15385
15386
15387
15388
15389 <td style="vertical-align: top;">R</td>
15390
15391
15392
15393
15394
15395
15396
15397      <td style="vertical-align: top;"><i>0.0</i></td>
15398
15399
15400
15401
15402
15403
15404
15405      <td style="vertical-align: top;"> 
15406     
15407     
15408     
15409     
15410     
15411     
15412      <p>Subgrid-scale
15413turbulent kinetic energy difference used as
15414criterion for applying the upstream scheme when upstream-spline
15415advection is switched on (in m<sup>2</sup>/s<sup>2</sup>).
15416&nbsp; </p>
15417
15418
15419
15420
15421
15422
15423 
15424     
15425     
15426     
15427     
15428     
15429     
15430      <p>This variable steers the appropriate
15431treatment of the
15432advection of the subgrid-scale turbulent kinetic energy in case that
15433the uptream-spline scheme is used . For further information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp; </p>
15434
15435
15436
15437
15438
15439
15440
15441     
15442     
15443     
15444     
15445     
15446     
15447      <p>Only positive values are allowed for <b>ups_limit_e</b>.
15448      </p>
15449
15450
15451
15452
15453
15454
15455 </td>
15456
15457
15458
15459
15460
15461
15462 </tr>
15463
15464
15465
15466
15467
15468
15469 <tr>
15470
15471
15472
15473
15474
15475
15476 <td style="vertical-align: top;"> 
15477     
15478     
15479     
15480     
15481     
15482     
15483      <p><a name="ups_limit_pt"></a><b>ups_limit_pt</b></p>
15484
15485
15486
15487
15488
15489
15490
15491      </td>
15492
15493
15494
15495
15496
15497
15498 <td style="vertical-align: top;">R</td>
15499
15500
15501
15502
15503
15504
15505
15506      <td style="vertical-align: top;"><i>0.0</i></td>
15507
15508
15509
15510
15511
15512
15513
15514      <td style="vertical-align: top;"> 
15515     
15516     
15517     
15518     
15519     
15520     
15521      <p>Temperature
15522difference used as criterion for applying&nbsp;
15523the upstream scheme when upstream-spline advection&nbsp; is
15524switched on
15525(in K).&nbsp; </p>
15526
15527
15528
15529
15530
15531
15532 
15533     
15534     
15535     
15536     
15537     
15538     
15539      <p>This criterion is used if the
15540upstream-spline scheme is
15541switched on (see <a href="#scalar_advec">scalar_advec</a>).<br>
15542
15543
15544
15545
15546
15547
15548
15549If, for a given gridpoint, the absolute temperature difference with
15550respect to the upstream
15551grid point is smaller than the value given for <b>ups_limit_pt</b>,
15552the upstream scheme is used for this gridpoint (by default, the
15553upstream-spline scheme is always used). Reason: in case of a very small
15554upstream gradient, the advection should cause only a very small
15555tendency. However, in such situations the upstream-spline scheme may
15556give wrong tendencies at a
15557grid point due to spline overshooting, if simultaneously the downstream
15558gradient is very large. In such cases it may be more reasonable to use
15559the upstream scheme. The numerical diffusion caused by the upstream
15560schme remains small as long as the upstream gradients are small.<br>
15561
15562
15563
15564
15565
15566
15567
15568      </p>
15569
15570
15571
15572
15573
15574
15575 
15576     
15577     
15578     
15579     
15580     
15581     
15582      <p>The percentage of grid points for which the
15583upstream
15584scheme is actually used, can be output as a time series with respect to
15585the
15586three directions in space with run parameter (see <a href="chapter_4.2.html#dt_dots">dt_dots</a>, the
15587timeseries names in the NetCDF file are <i>'splptx'</i>, <i>'splpty'</i>,
15588      <i>'splptz'</i>). The percentage
15589of gridpoints&nbsp; should stay below a certain limit, however, it
15590is
15591not possible to give
15592a general limit, since it depends on the respective flow.&nbsp; </p>
15593
15594
15595
15596
15597
15598
15599
15600     
15601     
15602     
15603     
15604     
15605     
15606      <p>Only positive values are permitted for <b>ups_limit_pt</b>.<br>
15607
15608
15609
15610
15611
15612
15613
15614      </p>
15615
15616
15617
15618
15619
15620
15621
15622A more effective control of
15623the &ldquo;overshoots&rdquo; can be achieved with parameter <a href="#cut_spline_overshoot">cut_spline_overshoot</a>.
15624      </td>
15625
15626
15627
15628
15629
15630
15631 </tr>
15632
15633
15634
15635
15636
15637
15638 <tr>
15639
15640
15641
15642
15643
15644
15645 <td style="vertical-align: top;"> 
15646     
15647     
15648     
15649     
15650     
15651     
15652      <p><a name="ups_limit_u"></a><b>ups_limit_u</b></p>
15653
15654
15655
15656
15657
15658
15659
15660      </td>
15661
15662
15663
15664
15665
15666
15667 <td style="vertical-align: top;">R</td>
15668
15669
15670
15671
15672
15673
15674
15675      <td style="vertical-align: top;"><i>0.0</i></td>
15676
15677
15678
15679
15680
15681
15682
15683      <td style="vertical-align: top;"> 
15684     
15685     
15686     
15687     
15688     
15689     
15690      <p>Velocity
15691difference (u-component) used as criterion for
15692applying the upstream scheme
15693when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15694
15695
15696
15697
15698
15699
15700
15701     
15702     
15703     
15704     
15705     
15706     
15707      <p>This variable steers the appropriate treatment of the
15708advection of the u-velocity-component in case that the upstream-spline
15709scheme is used. For further
15710information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15711      </p>
15712
15713
15714
15715
15716
15717
15718 
15719     
15720     
15721     
15722     
15723     
15724     
15725      <p>Only positive values are permitted for <b>ups_limit_u</b>.</p>
15726
15727
15728
15729
15730
15731
15732
15733      </td>
15734
15735
15736
15737
15738
15739
15740 </tr>
15741
15742
15743
15744
15745
15746
15747 <tr>
15748
15749
15750
15751
15752
15753
15754 <td style="vertical-align: top;"> 
15755     
15756     
15757     
15758     
15759     
15760     
15761      <p><a name="ups_limit_v"></a><b>ups_limit_v</b></p>
15762
15763
15764
15765
15766
15767
15768
15769      </td>
15770
15771
15772
15773
15774
15775
15776 <td style="vertical-align: top;">R</td>
15777
15778
15779
15780
15781
15782
15783
15784      <td style="vertical-align: top;"><i>0.0</i></td>
15785
15786
15787
15788
15789
15790
15791
15792      <td style="vertical-align: top;"> 
15793     
15794     
15795     
15796     
15797     
15798     
15799      <p>Velocity
15800difference (v-component) used as criterion for
15801applying the upstream scheme
15802when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15803
15804
15805
15806
15807
15808
15809
15810     
15811     
15812     
15813     
15814     
15815     
15816      <p>This variable steers the appropriate treatment of the
15817advection of the v-velocity-component in case that the upstream-spline
15818scheme is used. For further
15819information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15820      </p>
15821
15822
15823
15824
15825
15826
15827 
15828     
15829     
15830     
15831     
15832     
15833     
15834      <p>Only positive values are permitted for <b>ups_limit_v</b>.</p>
15835
15836
15837
15838
15839
15840
15841
15842      </td>
15843
15844
15845
15846
15847
15848
15849 </tr>
15850
15851
15852
15853
15854
15855
15856 <tr>
15857
15858
15859
15860
15861
15862
15863 <td style="vertical-align: top;"> 
15864     
15865     
15866     
15867     
15868     
15869     
15870      <p><a name="ups_limit_w"></a><b>ups_limit_w</b></p>
15871
15872
15873
15874
15875
15876
15877
15878      </td>
15879
15880
15881
15882
15883
15884
15885 <td style="vertical-align: top;">R</td>
15886
15887
15888
15889
15890
15891
15892
15893      <td style="vertical-align: top;"><i>0.0</i></td>
15894
15895
15896
15897
15898
15899
15900
15901      <td style="vertical-align: top;"> 
15902     
15903     
15904     
15905     
15906     
15907     
15908      <p>Velocity
15909difference (w-component) used as criterion for
15910applying the upstream scheme
15911when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15912
15913
15914
15915
15916
15917
15918
15919     
15920     
15921     
15922     
15923     
15924     
15925      <p>This variable steers the appropriate treatment of the
15926advection of the w-velocity-component in case that the upstream-spline
15927scheme is used. For further
15928information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15929      </p>
15930
15931
15932
15933
15934
15935
15936 
15937     
15938     
15939     
15940     
15941     
15942     
15943      <p>Only positive values are permitted for <b>ups_limit_w</b>.</p>
15944
15945
15946
15947
15948
15949
15950
15951      </td>
15952
15953
15954
15955
15956
15957
15958 </tr>
15959
15960
15961
15962
15963
15964
15965 <tr>
15966
15967
15968
15969
15970
15971
15972 <td style="vertical-align: top;"> 
15973     
15974     
15975     
15976     
15977     
15978     
15979      <p><a name="use_surface_fluxes"></a><b>use_surface_fluxes</b></p>
15980
15981
15982
15983
15984
15985
15986
15987      </td>
15988
15989
15990
15991
15992
15993
15994 <td style="vertical-align: top;">L</td>
15995
15996
15997
15998
15999
16000
16001
16002      <td style="vertical-align: top;"><i>.F.</i></td>
16003
16004
16005
16006
16007
16008
16009
16010      <td style="vertical-align: top;"> 
16011     
16012     
16013     
16014     
16015     
16016     
16017      <p>Parameter to
16018steer the treatment of the subgrid-scale vertical
16019fluxes within the diffusion terms at k=1 (bottom boundary).<br>
16020
16021
16022
16023
16024
16025
16026 </p>
16027
16028
16029
16030
16031
16032
16033
16034     
16035     
16036     
16037     
16038     
16039     
16040      <p>By default, the near-surface subgrid-scale fluxes are
16041parameterized (like in the remaining model domain) using the gradient
16042approach. If <b>use_surface_fluxes</b>
16043= <i>.TRUE.</i>, the user-assigned surface fluxes are used
16044instead
16045(see <a href="#surface_heatflux">surface_heatflux</a>,
16046      <a href="#surface_waterflux">surface_waterflux</a>
16047and <a href="#surface_scalarflux">surface_scalarflux</a>)
16048      <span style="font-weight: bold;">or</span> the
16049surface fluxes are
16050calculated via the Prandtl layer relation (depends on the bottom
16051boundary conditions, see <a href="#bc_pt_b">bc_pt_b</a>,
16052      <a href="#bc_q_b">bc_q_b</a>
16053and <a href="#bc_s_b">bc_s_b</a>).<br>
16054
16055
16056
16057
16058
16059
16060 </p>
16061
16062
16063
16064
16065
16066
16067
16068     
16069     
16070     
16071     
16072     
16073     
16074      <p><b>use_surface_fluxes</b>
16075is automatically set <i>.TRUE.</i>, if a Prandtl layer is
16076used (see <a href="#prandtl_layer">prandtl_layer</a>).&nbsp;
16077      </p>
16078
16079
16080
16081
16082
16083
16084 
16085     
16086     
16087     
16088     
16089     
16090     
16091      <p>The user may prescribe the surface fluxes at the
16092bottom
16093boundary without using a Prandtl layer by setting <span style="font-weight: bold;">use_surface_fluxes</span> =
16094      <span style="font-style: italic;">.T.</span> and <span style="font-weight: bold;">prandtl_layer</span> = <span style="font-style: italic;">.F.</span>. If , in this
16095case, the
16096momentum flux (u<sub>*</sub><sup>2</sup>)
16097should also be prescribed,
16098the user must assign an appropriate value within the user-defined code.</p>
16099
16100
16101
16102
16103
16104
16105
16106      </td>
16107
16108
16109
16110
16111
16112
16113 </tr>
16114
16115
16116
16117
16118
16119
16120 <tr>
16121
16122
16123
16124
16125
16126
16127      <td style="vertical-align: top;"><a name="use_top_fluxes"></a><span style="font-weight: bold;">use_top_fluxes</span></td>
16128
16129
16130
16131
16132
16133
16134      <td style="vertical-align: top;">L</td>
16135
16136
16137
16138
16139
16140
16141      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
16142
16143
16144
16145
16146
16147
16148      <td style="vertical-align: top;"> 
16149     
16150     
16151     
16152     
16153     
16154     
16155      <p>Parameter to steer
16156the treatment of the subgrid-scale vertical
16157fluxes within the diffusion terms at k=nz (top boundary).</p>
16158
16159
16160
16161
16162
16163
16164     
16165     
16166     
16167     
16168     
16169     
16170      <p>By
16171default, the fluxes at nz are calculated using the gradient approach.
16172If <b>use_top_fluxes</b>
16173= <i>.TRUE.</i>, the user-assigned top fluxes are used
16174instead
16175(see <a href="chapter_4.1.html#top_heatflux">top_heatflux</a>, <a href="#top_momentumflux_u">top_momentumflux_u</a>, <a href="#top_momentumflux_v">top_momentumflux_v</a>, <a href="#top_salinityflux">top_salinityflux</a>).</p>
16176
16177
16178
16179
16180
16181
16182     
16183     
16184     
16185     
16186     
16187     
16188      <p>Currently, no value for the latent heatflux can be assigned. In case of <span style="font-weight: bold;">use_top_fluxes</span> = <span style="font-style: italic;">.TRUE.</span>, the latent
16189heat flux at the top will be automatically set to zero.</p>
16190
16191
16192
16193
16194
16195
16196      </td>
16197
16198
16199
16200
16201
16202
16203    </tr>
16204
16205
16206
16207
16208
16209
16210    <tr>
16211
16212
16213
16214
16215
16216
16217
16218      <td style="vertical-align: top;"> 
16219     
16220     
16221     
16222     
16223     
16224     
16225      <p><a name="use_ug_for_galilei_tr"></a><b>use_ug_for_galilei_tr</b></p>
16226
16227
16228
16229
16230
16231
16232
16233      </td>
16234
16235
16236
16237
16238
16239
16240 <td style="vertical-align: top;">L</td>
16241
16242
16243
16244
16245
16246
16247
16248      <td style="vertical-align: top;"><i>.T.</i></td>
16249
16250
16251
16252
16253
16254
16255
16256      <td style="vertical-align: top;"> 
16257     
16258     
16259     
16260     
16261     
16262     
16263      <p>Switch to
16264determine the translation velocity in case that a
16265Galilean transformation is used.<br>
16266
16267
16268
16269
16270
16271
16272 </p>
16273
16274
16275
16276
16277
16278
16279 
16280     
16281     
16282     
16283     
16284     
16285     
16286      <p>In
16287case of a Galilean transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
16288      <b>use_ug_for_galilei_tr</b>
16289= <i>.T.</i>&nbsp; ensures
16290that the coordinate system is translated with the geostrophic windspeed.<br>
16291
16292
16293
16294
16295
16296
16297
16298      </p>
16299
16300
16301
16302
16303
16304
16305 
16306     
16307     
16308     
16309     
16310     
16311     
16312      <p>Alternatively, with <b>use_ug_for_galilei_tr</b>
16313= <i>.F</i>.,
16314the
16315geostrophic wind can be replaced as translation speed by the (volume)
16316averaged velocity. However, in this case the user must be aware of fast
16317growing gravity waves, so this
16318choice is usually not recommended!</p>
16319
16320
16321
16322
16323
16324
16325 </td>
16326
16327
16328
16329
16330
16331
16332 </tr>
16333
16334
16335
16336
16337
16338
16339 <tr>
16340
16341
16342
16343
16344
16345
16346      <td align="left" valign="top"><a name="use_upstream_for_tke"></a><span style="font-weight: bold;">use_upstream_for_tke</span></td>
16347
16348
16349
16350
16351
16352
16353      <td align="left" valign="top">L</td>
16354
16355
16356
16357
16358
16359
16360      <td align="left" valign="top"><span style="font-style: italic;">.F.</span></td>
16361
16362
16363
16364
16365
16366
16367      <td align="left" valign="top">Parameter to choose the
16368advection/timestep scheme to be used for the subgrid-scale TKE.<br>
16369
16370
16371
16372
16373
16374
16375      <br>
16376
16377
16378
16379
16380
16381
16382By
16383default, the advection scheme and the timestep scheme to be used for
16384the subgrid-scale TKE are set by the initialization parameters <a href="#scalar_advec">scalar_advec</a> and <a href="#timestep_scheme">timestep_scheme</a>,
16385respectively. <span style="font-weight: bold;">use_upstream_for_tke</span>
16386= <span style="font-style: italic;">.T.</span>
16387forces the Euler-scheme and the upstream-scheme to be used as timestep
16388scheme and advection scheme, respectively. By these methods, the strong
16389(artificial) near-surface vertical gradients of the subgrid-scale TKE
16390are significantly reduced. This is required when subgrid-scale
16391velocities are used for advection of particles (see particle package
16392parameter <a href="chapter_4.2.html#use_sgs_for_particles">use_sgs_for_particles</a>).</td>
16393
16394
16395
16396
16397
16398
16399    </tr>
16400
16401
16402
16403
16404
16405
16406    <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="v_bulk"></a>v_bulk</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td>v-component of the predefined bulk velocity (in m/s).<br><br>This parameter comes into effect if <a href="chapter_4.1.html#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T.</span> and <a href="chapter_4.1.html#conserve_volume_flow_mode">conserve_volume_flow_mode</a> = <span style="font-style: italic;">'bulk_velocity'</span>.</td></tr><tr>
16407
16408
16409
16410
16411
16412
16413
16414      <td style="vertical-align: top;"> 
16415     
16416     
16417     
16418     
16419     
16420     
16421      <p><a name="vg_surface"></a><span style="font-weight: bold;">vg_surface</span></p>
16422
16423
16424
16425
16426
16427
16428
16429      </td>
16430
16431
16432
16433
16434
16435
16436 <td style="vertical-align: top;">R<br>
16437
16438
16439
16440
16441
16442
16443 </td>
16444
16445
16446
16447
16448
16449
16450
16451      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
16452
16453
16454
16455
16456
16457
16458 </td>
16459
16460
16461
16462
16463
16464
16465
16466      <td style="vertical-align: top;">v-component of the
16467geostrophic
16468wind at the surface (in m/s).<br>
16469
16470
16471
16472
16473
16474
16475 <br>
16476
16477
16478
16479
16480
16481
16482
16483This parameter assigns the value of the v-component of the geostrophic
16484wind (vg) at the surface (k=0). Starting from this value, the initial
16485vertical profile of the <br>
16486
16487
16488
16489
16490
16491
16492
16493v-component of the geostrophic wind is constructed with <a href="#vg_vertical_gradient">vg_vertical_gradient</a>
16494and <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>.
16495The
16496profile
16497constructed in that way is used for creating the initial vertical
16498velocity profile of the 3d-model. Either it is applied, as it has been
16499specified by the user (<a href="#initializing_actions">initializing_actions</a>
16500= 'set_constant_profiles')
16501or it is used for calculating a stationary boundary layer wind profile
16502(<a href="#initializing_actions">initializing_actions</a>
16503=
16504'set_1d-model_profiles'). If vg is constant
16505with height (i.e. vg(k)=<span style="font-weight: bold;">vg_surface</span>)
16506and&nbsp; has a large value, it is
16507recommended to use a Galilei-transformation of the coordinate system,
16508if possible (see <a href="#galilei_transformation">galilei_transformation</a>),
16509in order to obtain larger
16510time steps.<br>
16511
16512
16513
16514
16515
16516
16517      <br>
16518
16519
16520
16521
16522
16523
16524      <span style="font-weight: bold;">Attention:</span><br>
16525
16526
16527
16528
16529
16530
16531In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
16532this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is
16533at k=nzt. The profile is then constructed from the surface down to the
16534bottom of the model.</td>
16535
16536
16537
16538
16539
16540
16541 </tr>
16542
16543
16544
16545
16546
16547
16548 <tr>
16549
16550
16551
16552
16553
16554
16555 <td style="vertical-align: top;"> 
16556     
16557     
16558     
16559     
16560     
16561     
16562      <p><a name="vg_vertical_gradient"></a><span style="font-weight: bold;">vg_vertical_gradient</span></p>
16563
16564
16565
16566
16567
16568
16569
16570      </td>
16571
16572
16573
16574
16575
16576
16577 <td style="vertical-align: top;">R(10)<br>
16578
16579
16580
16581
16582
16583
16584
16585      </td>
16586
16587
16588
16589
16590
16591
16592 <td style="vertical-align: top;"><span style="font-style: italic;">10
16593* 0.0</span><br>
16594
16595
16596
16597
16598
16599
16600 </td>
16601
16602
16603
16604
16605
16606
16607 <td style="vertical-align: top;">Gradient(s) of the initial
16608profile of the&nbsp; v-component of the geostrophic wind (in
166091/100s).<br>
16610
16611
16612
16613
16614
16615
16616 <br>
16617
16618
16619
16620
16621
16622
16623
16624The gradient holds starting from the height level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>
16625(precisely: for all uv levels k where zu(k)
16626&gt; <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
16627vg(k) is set: vg(k) = vg(k-1) + dzu(k)
16628* <span style="font-weight: bold;">vg_vertical_gradient</span>)
16629up to
16630the top boundary or up to the next height
16631level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>.
16632A total of 10 different
16633gradients for 11 height intervals (10 intervals&nbsp; if <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>(1)
16634=
166350.0) can be assigned. The surface
16636geostrophic wind is assigned by <a href="#vg_surface">vg_surface</a>.<br>
16637
16638
16639
16640
16641
16642
16643      <br>
16644
16645
16646
16647
16648
16649
16650      <span style="font-weight: bold;">Attention:</span><br>
16651
16652
16653
16654
16655
16656
16657In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
16658the profile is constructed like described above, but starting from the
16659sea surface (k=nzt) down to the bottom boundary of the model. Height
16660levels have then to be given as negative values, e.g. <span style="font-weight: bold;">vg_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</td>
16661
16662
16663
16664
16665
16666
16667
16668    </tr>
16669
16670
16671
16672
16673
16674
16675 <tr>
16676
16677
16678
16679
16680
16681
16682 <td style="vertical-align: top;">
16683     
16684     
16685     
16686     
16687     
16688     
16689      <p><a name="vg_vertical_gradient_level"></a><span style="font-weight: bold;">vg_vertical_gradient_level</span></p>
16690
16691
16692
16693
16694
16695
16696
16697      </td>
16698
16699
16700
16701
16702
16703
16704 <td style="vertical-align: top;">R(10)<br>
16705
16706
16707
16708
16709
16710
16711
16712      </td>
16713
16714
16715
16716
16717
16718
16719 <td style="vertical-align: top;"><span style="font-style: italic;">10
16720* 0.0</span><br>
16721
16722
16723
16724
16725
16726
16727 </td>
16728
16729
16730
16731
16732
16733
16734 <td style="vertical-align: top;">Height level from which on the
16735gradient defined by <a href="#vg_vertical_gradient">vg_vertical_gradient</a>
16736is effective (in m).<br>
16737
16738
16739
16740
16741
16742
16743 <br>
16744
16745
16746
16747
16748
16749
16750
16751The height levels have to be assigned in ascending order. For the
16752piecewise construction of a profile of the v-component of the
16753geostrophic wind component (vg) see <a href="#vg_vertical_gradient">vg_vertical_gradient</a>.<br>
16754
16755
16756
16757
16758
16759
16760      <br>
16761
16762
16763
16764
16765
16766
16767      <span style="font-weight: bold;">Attention:</span><br>
16768
16769
16770
16771
16772
16773
16774In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td>
16775
16776
16777
16778
16779
16780
16781
16782    </tr>
16783
16784
16785
16786
16787
16788
16789 <tr>
16790
16791
16792
16793
16794
16795
16796 <td style="vertical-align: top;">
16797     
16798     
16799     
16800     
16801     
16802     
16803      <p><a name="wall_adjustment"></a><b>wall_adjustment</b></p>
16804
16805
16806
16807
16808
16809
16810
16811      </td>
16812
16813
16814
16815
16816
16817
16818 <td style="vertical-align: top;">L</td>
16819
16820
16821
16822
16823
16824
16825
16826      <td style="vertical-align: top;"><i>.T.</i></td>
16827
16828
16829
16830
16831
16832
16833
16834      <td style="vertical-align: top;"> 
16835     
16836     
16837     
16838     
16839     
16840     
16841      <p>Parameter to
16842restrict the mixing length in the vicinity of the
16843bottom
16844boundary (and near vertical walls of a non-flat <a href="chapter_4.1.html#topography">topography</a>).&nbsp; </p>
16845
16846
16847
16848
16849
16850
16851 
16852     
16853     
16854     
16855     
16856     
16857     
16858      <p>With <b>wall_adjustment</b>
16859= <i>.TRUE., </i>the mixing
16860length is limited to a maximum of&nbsp; 1.8 * z. This condition
16861typically affects only the
16862first grid points above the bottom boundary.</p>
16863
16864
16865     
16866     
16867      <p>In case of&nbsp; a non-flat <a href="chapter_4.1.html#topography">topography</a> the respective horizontal distance from vertical walls is used.</p>
16868
16869
16870
16871
16872
16873
16874 </td>
16875
16876
16877
16878
16879
16880
16881 </tr>
16882
16883
16884
16885
16886
16887
16888
16889    <tr>
16890
16891
16892
16893
16894
16895
16896 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="wall_heatflux"></a>wall_heatflux</span></td>
16897
16898
16899
16900
16901
16902
16903
16904      <td style="vertical-align: top;">R(5)</td>
16905
16906
16907
16908
16909
16910
16911 <td style="vertical-align: top;"><span style="font-style: italic;">5 * 0.0</span></td>
16912
16913
16914
16915
16916
16917
16918 <td>Prescribed
16919kinematic sensible heat flux in K m/s
16920at the five topography faces:<br>
16921
16922
16923
16924
16925
16926
16927 <br>
16928
16929
16930
16931
16932
16933
16934 
16935     
16936     
16937     
16938     
16939     
16940     
16941      <div style="margin-left: 40px;"><span style="font-weight: bold;">wall_heatflux(0)&nbsp;&nbsp;
16942&nbsp;</span>top face<br>
16943
16944
16945
16946
16947
16948
16949 <span style="font-weight: bold;">wall_heatflux(1)&nbsp;&nbsp;&nbsp;
16950      </span>left face<br>
16951
16952
16953
16954
16955
16956
16957 <span style="font-weight: bold;">wall_heatflux(2)&nbsp;&nbsp;&nbsp;
16958      </span>right face<br>
16959
16960
16961
16962
16963
16964
16965 <span style="font-weight: bold;">wall_heatflux(3)&nbsp;&nbsp;&nbsp;
16966      </span>south face<br>
16967
16968
16969
16970
16971
16972
16973 <span style="font-weight: bold;">wall_heatflux(4)&nbsp;&nbsp;&nbsp;
16974      </span>north face</div>
16975
16976
16977
16978
16979
16980
16981 <br>
16982
16983
16984
16985
16986
16987
16988
16989This parameter applies only in case of a non-flat <a href="#topography">topography</a>.&nbsp;The
16990parameter <a href="#random_heatflux">random_heatflux</a>
16991can be used to impose random perturbations on the internal
16992two-dimensional surface heat
16993flux field <span style="font-style: italic;">shf</span>
16994that is composed of <a href="#surface_heatflux">surface_heatflux</a>
16995at the bottom surface and <span style="font-weight: bold;">wall_heatflux(0)</span>
16996at the topography top face.&nbsp;</td>
16997
16998
16999
17000
17001
17002
17003 </tr>
17004
17005
17006
17007
17008
17009
17010 
17011 
17012 
17013 
17014 
17015 
17016 
17017  </tbody>
17018</table>
17019
17020
17021
17022
17023
17024
17025<br>
17026
17027
17028
17029
17030
17031
17032
17033<p style="line-height: 100%;"><br>
17034
17035
17036
17037
17038
17039
17040<font color="#000080"><font color="#000080"><a href="chapter_4.0.html"><font color="#000080"><img name="Grafik1" src="left.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="index.html"><font color="#000080"><img name="Grafik2" src="up.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="chapter_4.2.html"><font color="#000080"><img name="Grafik3" src="right.gif" align="bottom" border="2" height="32" width="32"></font></a></font></font></p>
17041
17042
17043
17044
17045
17046
17047
17048<p style="line-height: 100%;"><i>Last
17049change:&nbsp;</i> $Id: chapter_4.1.html 246 2009-02-27 11:42:39Z letzel $ </p>
17050
17051
17052
17053
17054
17055
17056
17057<br>
17058
17059
17060
17061
17062
17063
17064<br>
17065
17066
17067
17068
17069
17070
17071
17072</body></html>
Note: See TracBrowser for help on using the repository browser.