1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> |
---|
2 | <HTML> |
---|
3 | <HEAD> |
---|
4 | <META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=utf-8"> |
---|
5 | <TITLE>PALM chapter 4.1</TITLE> |
---|
6 | <META NAME="GENERATOR" CONTENT="OpenOffice.org 3.0 (Unix)"> |
---|
7 | <META NAME="CREATED" CONTENT="0;0"> |
---|
8 | <META NAME="CHANGED" CONTENT="20090624;16094200"> |
---|
9 | </HEAD> |
---|
10 | <BODY LANG="en-US" DIR="LTR"> |
---|
11 | <H3><A NAME="chapter4.1"></A>4.1 Initialization parameters</H3> |
---|
12 | <P STYLE="margin-bottom: 0in"><BR> |
---|
13 | </P> |
---|
14 | <TABLE WIDTH=1643 BORDER=1 CELLPADDING=2 CELLSPACING=3> |
---|
15 | <COL WIDTH=126> |
---|
16 | <COL WIDTH=45> |
---|
17 | <COL WIDTH=159> |
---|
18 | <COL WIDTH=1280> |
---|
19 | <TR> |
---|
20 | <TD WIDTH=126> |
---|
21 | <P><FONT SIZE=4><B>Parameter name</B></FONT></P> |
---|
22 | </TD> |
---|
23 | <TD WIDTH=45> |
---|
24 | <P><FONT SIZE=4><B>Type</B></FONT></P> |
---|
25 | </TD> |
---|
26 | <TD WIDTH=159> |
---|
27 | <P><FONT SIZE=4><B>Default</B></FONT> <BR><FONT SIZE=4><B>value</B></FONT></P> |
---|
28 | </TD> |
---|
29 | <TD WIDTH=1280> |
---|
30 | <P><FONT SIZE=4><B>Explanation</B></FONT></P> |
---|
31 | </TD> |
---|
32 | </TR> |
---|
33 | <TR> |
---|
34 | <TD WIDTH=126> |
---|
35 | <P><A NAME="adjust_mixing_length"></A><B>adjust_mixing_length</B></P> |
---|
36 | </TD> |
---|
37 | <TD WIDTH=45> |
---|
38 | <P>L</P> |
---|
39 | </TD> |
---|
40 | <TD WIDTH=159> |
---|
41 | <P><I>.F.</I></P> |
---|
42 | </TD> |
---|
43 | <TD WIDTH=1280> |
---|
44 | <P STYLE="font-style: normal">Near-surface adjustment of the |
---|
45 | mixing length to the Prandtl-layer law. |
---|
46 | </P> |
---|
47 | <P>Usually the mixing length in LES models l<SUB>LES</SUB> depends |
---|
48 | (as in PALM) on the grid size and is possibly restricted further |
---|
49 | in case of stable stratification and near the lower wall (see |
---|
50 | parameter <A HREF="#wall_adjustment">wall_adjustment</A>). With |
---|
51 | <B>adjust_mixing_length</B> = <I>.T.</I> the Prandtl' mixing |
---|
52 | length l<SUB>PR</SUB> = kappa * z/phi is calculated and the mixing |
---|
53 | length actually used in the model is set l = MIN (l<SUB>LES</SUB>, |
---|
54 | l<SUB>PR</SUB>). This usually gives a decrease of the mixing |
---|
55 | length at the bottom boundary and considers the fact that eddy |
---|
56 | sizes decrease in the vicinity of the wall. |
---|
57 | </P> |
---|
58 | <P STYLE="font-style: normal"><B>Warning:</B> So far, there is no |
---|
59 | good experience with <B>adjust_mixing_length</B> = <I>.T.</I> ! |
---|
60 | </P> |
---|
61 | <P>With <B>adjust_mixing_length</B> = <I>.T.</I> and the |
---|
62 | Prandtl-layer being switched on (see <A HREF="#prandtl_layer">prandtl_layer</A>) |
---|
63 | <I>'(u*)** 2+neumann'</I> should always be set as the lower |
---|
64 | boundary condition for the TKE (see <A HREF="#bc_e_b">bc_e_b</A>), |
---|
65 | otherwise the near-surface value of the TKE is not in agreement |
---|
66 | with the Prandtl-layer law (Prandtl-layer law and |
---|
67 | Prandtl-Kolmogorov-Ansatz should provide the same value for K<SUB>m</SUB>). |
---|
68 | A warning is given, if this is not the case.</P> |
---|
69 | </TD> |
---|
70 | </TR> |
---|
71 | <TR> |
---|
72 | <TD WIDTH=126> |
---|
73 | <P><A NAME="alpha_surface"></A><B>alpha_surface</B></P> |
---|
74 | </TD> |
---|
75 | <TD WIDTH=45> |
---|
76 | <P>R</P> |
---|
77 | </TD> |
---|
78 | <TD WIDTH=159> |
---|
79 | <P><I>0.0</I></P> |
---|
80 | </TD> |
---|
81 | <TD WIDTH=1280> |
---|
82 | <P STYLE="font-style: normal">Inclination of the model domain with |
---|
83 | respect to the horizontal (in degrees). |
---|
84 | </P> |
---|
85 | <P STYLE="font-style: normal">By means of <B>alpha_surface</B> the |
---|
86 | model domain can be inclined in x-direction with respect to the |
---|
87 | horizontal. In this way flows over inclined surfaces (e.g. |
---|
88 | drainage flows, gravity flows) can be simulated. In case of |
---|
89 | <B>alpha_surface </B>/= <I>0</I> the buoyancy term appears both in |
---|
90 | the equation of motion of the u-component and of the w-component.</P> |
---|
91 | <P><SPAN STYLE="font-style: normal">An inclination is only |
---|
92 | possible in case of cyclic horizontal boundary conditions along x |
---|
93 | AND y (see <A HREF="#bc_lr">bc_lr</A> and <A HREF="#bc_ns">bc_ns</A>) |
---|
94 | and <A HREF="#topography">topography</A> = </SPAN><I>'flat'</I><SPAN STYLE="font-style: normal">. |
---|
95 | </SPAN> |
---|
96 | </P> |
---|
97 | <P>Runs with inclined surface still require additional |
---|
98 | user-defined code as well as modifications to the default code. |
---|
99 | Please ask the <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM |
---|
100 | developer group</A>.</P> |
---|
101 | </TD> |
---|
102 | </TR> |
---|
103 | <TR> |
---|
104 | <TD WIDTH=126> |
---|
105 | <P><A NAME="bc_e_b"></A><B>bc_e_b</B></P> |
---|
106 | </TD> |
---|
107 | <TD WIDTH=45> |
---|
108 | <P>C * 20</P> |
---|
109 | </TD> |
---|
110 | <TD WIDTH=159> |
---|
111 | <P><I>'neumann'</I></P> |
---|
112 | </TD> |
---|
113 | <TD WIDTH=1280> |
---|
114 | <P STYLE="font-style: normal">Bottom boundary condition of the |
---|
115 | TKE. |
---|
116 | </P> |
---|
117 | <P><B>bc_e_b</B> may be set to <I>'neumann'</I> or <I>'(u*) |
---|
118 | ** 2+neumann'</I>. <B>bc_e_b</B> = <I>'neumann'</I> yields to |
---|
119 | e(k=0)=e(k=1) (Neumann boundary condition), where e(k=1) is |
---|
120 | calculated via the prognostic TKE equation. Choice of |
---|
121 | <I>'(u*)**2+neumann'</I> also yields to e(k=0)=e(k=1), but the TKE |
---|
122 | at the Prandtl-layer top (k=1) is calculated diagnostically by |
---|
123 | e(k=1)=(us/0.1)**2. However, this is only allowed if a |
---|
124 | Prandtl-layer is used (<A HREF="#prandtl_layer">prandtl_layer</A>). |
---|
125 | If this is not the case, a warning is given and <B>bc_e_b</B> is |
---|
126 | reset to <I>'neumann'</I>. |
---|
127 | </P> |
---|
128 | <P STYLE="font-style: normal">At the top boundary a Neumann |
---|
129 | boundary condition is generally used: (e(nz+1) = e(nz)).</P> |
---|
130 | </TD> |
---|
131 | </TR> |
---|
132 | <TR> |
---|
133 | <TD WIDTH=126> |
---|
134 | <P><A NAME="bc_lr"></A><B>bc_lr</B></P> |
---|
135 | </TD> |
---|
136 | <TD WIDTH=45> |
---|
137 | <P>C * 20</P> |
---|
138 | </TD> |
---|
139 | <TD WIDTH=159> |
---|
140 | <P><I>'cyclic'</I></P> |
---|
141 | </TD> |
---|
142 | <TD WIDTH=1280> |
---|
143 | <P>Boundary condition along x (for all quantities).<BR><BR>By |
---|
144 | default, a cyclic boundary condition is used along x.<BR><BR><B>bc_lr</B> |
---|
145 | may also be assigned the values <I>'dirichlet/radiation'</I> |
---|
146 | (inflow from left, outflow to the right) or <I>'radiation/dirichlet'</I> |
---|
147 | (inflow from right, outflow to the left). This requires the |
---|
148 | multi-grid method to be used for solving the Poisson equation for |
---|
149 | perturbation pressure (see <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</A>) |
---|
150 | and it also requires cyclic boundary conditions along y |
---|
151 | (see <A HREF="#bc_ns">bc_ns</A>).<BR><BR>In case of these |
---|
152 | non-cyclic lateral boundaries, a Dirichlet condition is used at |
---|
153 | the inflow for all quantities (initial vertical profiles - see |
---|
154 | <A HREF="#initializing_actions">initializing_actions</A> - are |
---|
155 | fixed during the run) except u, to which a Neumann (zero gradient) |
---|
156 | condition is applied. At the outflow, a radiation condition is |
---|
157 | used for all velocity components, while a Neumann (zero gradient) |
---|
158 | condition is used for the scalars. For perturbation pressure |
---|
159 | Neumann (zero gradient) conditions are assumed both at the inflow |
---|
160 | and at the outflow.<BR><BR>When using non-cyclic lateral |
---|
161 | boundaries, a filter is applied to the velocity field in the |
---|
162 | vicinity of the outflow in order to suppress any reflections of |
---|
163 | outgoing disturbances (see <A HREF="#km_damp_max">km_damp_max</A> |
---|
164 | and <A HREF="#outflow_damping_width">outflow_damping_width</A>).<BR><BR>In |
---|
165 | order to maintain a turbulent state of the flow, it may be |
---|
166 | neccessary to continuously impose perturbations on the horizontal |
---|
167 | velocity field in the vicinity of the inflow throughout the whole |
---|
168 | run. This can be switched on using <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#create_disturbances">create_disturbances</A>. |
---|
169 | The horizontal range to which these perturbations are applied is |
---|
170 | controlled by the parameters <A HREF="#inflow_disturbance_begin">inflow_disturbance_begin</A> |
---|
171 | and <A HREF="#inflow_disturbance_end">inflow_disturbance_end</A>. |
---|
172 | The vertical range and the perturbation amplitude are given by |
---|
173 | <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</A>, |
---|
174 | <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</A>, |
---|
175 | and <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</A>. |
---|
176 | The time interval at which perturbations are to be imposed is set |
---|
177 | by <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</A>.<BR><BR>In |
---|
178 | case of non-cyclic horizontal boundaries <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver |
---|
179 | at_all_substeps</A> = .T. should be used.<BR><BR><B>Note:</B><BR>Using |
---|
180 | non-cyclic lateral boundaries requires very sensitive adjustments |
---|
181 | of the inflow (vertical profiles) and the bottom boundary |
---|
182 | conditions, e.g. a surface heating should not be applied near the |
---|
183 | inflow boundary because this may significantly disturb the inflow. |
---|
184 | Please check the model results very carefully.</P> |
---|
185 | </TD> |
---|
186 | </TR> |
---|
187 | <TR> |
---|
188 | <TD WIDTH=126> |
---|
189 | <P><A NAME="bc_ns"></A><B>bc_ns</B></P> |
---|
190 | </TD> |
---|
191 | <TD WIDTH=45> |
---|
192 | <P>C * 20</P> |
---|
193 | </TD> |
---|
194 | <TD WIDTH=159> |
---|
195 | <P><I>'cyclic'</I></P> |
---|
196 | </TD> |
---|
197 | <TD WIDTH=1280> |
---|
198 | <P>Boundary condition along y (for all quantities).<BR><BR>By |
---|
199 | default, a cyclic boundary condition is used along y.<BR><BR><B>bc_ns</B> |
---|
200 | may also be assigned the values <I>'dirichlet/radiation'</I> |
---|
201 | (inflow from rear ("north"), outflow to the front |
---|
202 | ("south")) or <I>'radiation/dirichlet'</I> (inflow from |
---|
203 | front ("south"), outflow to the rear ("north")). |
---|
204 | This requires the multi-grid method to be used for solving the |
---|
205 | Poisson equation for perturbation pressure (see <A HREF="chapter_4.2.html#psolver">psolver</A>) |
---|
206 | and it also requires cyclic boundary conditions along x |
---|
207 | (see<BR><A HREF="#bc_lr">bc_lr</A>).<BR><BR>In case of these |
---|
208 | non-cyclic lateral boundaries, a Dirichlet condition is used at |
---|
209 | the inflow for all quantities (initial vertical profiles - see |
---|
210 | <A HREF="#initializing_actions">initializing_actions</A> - are |
---|
211 | fixed during the run) except u, to which a Neumann (zero gradient) |
---|
212 | condition is applied. At the outflow, a radiation condition is |
---|
213 | used for all velocity components, while a Neumann (zero gradient) |
---|
214 | condition is used for the scalars. For perturbation pressure |
---|
215 | Neumann (zero gradient) conditions are assumed both at the inflow |
---|
216 | and at the outflow.<BR><BR>For further details regarding |
---|
217 | non-cyclic lateral boundary conditions see <A HREF="#bc_lr">bc_lr</A>.</P> |
---|
218 | </TD> |
---|
219 | </TR> |
---|
220 | <TR> |
---|
221 | <TD WIDTH=126> |
---|
222 | <P><A NAME="bc_p_b"></A><B>bc_p_b</B></P> |
---|
223 | </TD> |
---|
224 | <TD WIDTH=45> |
---|
225 | <P>C * 20</P> |
---|
226 | </TD> |
---|
227 | <TD WIDTH=159> |
---|
228 | <P><I>'neumann'</I></P> |
---|
229 | </TD> |
---|
230 | <TD WIDTH=1280> |
---|
231 | <P STYLE="font-style: normal">Bottom boundary condition of the |
---|
232 | perturbation pressure. |
---|
233 | </P> |
---|
234 | <P>Allowed values are <I>'dirichlet'</I>, <I>'neumann'</I> and |
---|
235 | <I>'neumann+inhomo'</I>. <I>'dirichlet'</I> sets |
---|
236 | p(k=0)=0.0, <I>'neumann'</I> sets p(k=0)=p(k=1). |
---|
237 | <I>'neumann+inhomo'</I> corresponds to an extended Neumann |
---|
238 | boundary condition where heat flux or temperature inhomogeneities |
---|
239 | near the surface (pt(k=1)) are additionally regarded (see |
---|
240 | Shen and LeClerc (1995, Q.J.R. Meteorol. Soc., 1209)). This |
---|
241 | condition is only permitted with the Prandtl-layer switched on |
---|
242 | (<A HREF="#prandtl_layer">prandtl_layer</A>), otherwise the run is |
---|
243 | terminated. |
---|
244 | </P> |
---|
245 | <P>Since at the bottom boundary of the model the vertical velocity |
---|
246 | disappears (w(k=0) = 0.0), the consistent Neumann condition |
---|
247 | (<I>'neumann'</I> or <I>'neumann+inhomo'</I>) dp/dz = 0 should be |
---|
248 | used, which leaves the vertical component w unchanged when the |
---|
249 | pressure solver is applied. Simultaneous use of the Neumann |
---|
250 | boundary conditions both at the bottom and at the top boundary |
---|
251 | (<A HREF="#bc_p_t">bc_p_t</A>) usually yields no consistent |
---|
252 | solution for the perturbation pressure and should be avoided.</P> |
---|
253 | </TD> |
---|
254 | </TR> |
---|
255 | <TR> |
---|
256 | <TD WIDTH=126> |
---|
257 | <P><A NAME="bc_p_t"></A><B>bc_p_t</B></P> |
---|
258 | </TD> |
---|
259 | <TD WIDTH=45> |
---|
260 | <P>C * 20</P> |
---|
261 | </TD> |
---|
262 | <TD WIDTH=159> |
---|
263 | <P><I>'dirichlet'</I></P> |
---|
264 | </TD> |
---|
265 | <TD WIDTH=1280> |
---|
266 | <P STYLE="font-style: normal">Top boundary condition of the |
---|
267 | perturbation pressure. |
---|
268 | </P> |
---|
269 | <P STYLE="font-style: normal">Allowed values are <I>'dirichlet'</I> |
---|
270 | (p(k=nz+1)= 0.0) or <I>'neumann'</I> (p(k=nz+1)=p(k=nz)). |
---|
271 | </P> |
---|
272 | <P>Simultaneous use of Neumann boundary conditions both at the top |
---|
273 | and bottom boundary (<A HREF="#bc_p_b">bc_p_b</A>) usually yields |
---|
274 | no consistent solution for the perturbation pressure and should be |
---|
275 | avoided. Since at the bottom boundary the Neumann condition |
---|
276 | is a good choice (see <A HREF="#bc_p_b">bc_p_b</A>), a Dirichlet |
---|
277 | condition should be set at the top boundary.</P> |
---|
278 | </TD> |
---|
279 | </TR> |
---|
280 | <TR> |
---|
281 | <TD WIDTH=126> |
---|
282 | <P><A NAME="bc_pt_b"></A><B>bc_pt_b</B></P> |
---|
283 | </TD> |
---|
284 | <TD WIDTH=45> |
---|
285 | <P>C*20</P> |
---|
286 | </TD> |
---|
287 | <TD WIDTH=159> |
---|
288 | <P><I>'dirichlet'</I></P> |
---|
289 | </TD> |
---|
290 | <TD WIDTH=1280> |
---|
291 | <P STYLE="font-style: normal">Bottom boundary condition of the |
---|
292 | potential temperature. |
---|
293 | </P> |
---|
294 | <P>Allowed values are <I>'dirichlet'</I> (pt(k=0) = const. = |
---|
295 | <A HREF="#pt_surface">pt_surface</A> + <A HREF="#pt_surface_initial_change">pt_surface_initial_change</A>; |
---|
296 | the user may change this value during the run using user-defined |
---|
297 | code) and <I>'neumann'</I> (pt(k=0)=pt(k=1)). <BR>When a |
---|
298 | constant surface sensible heat flux is used (<A HREF="#surface_heatflux">surface_heatflux</A>), |
---|
299 | <B>bc_pt_b</B> = <I>'neumann'</I> must be used, because otherwise |
---|
300 | the resolved scale may contribute to the surface flux so that a |
---|
301 | constant value cannot be guaranteed.</P> |
---|
302 | <P>In the <A HREF="chapter_3.8.html">coupled</A> atmosphere |
---|
303 | executable, <A HREF="chapter_4.2.html#bc_pt_b">bc_pt_b</A> is |
---|
304 | internally set and does not need to be prescribed.</P> |
---|
305 | </TD> |
---|
306 | </TR> |
---|
307 | <TR> |
---|
308 | <TD WIDTH=126> |
---|
309 | <P><A NAME="pc_pt_t"></A><B>bc_pt_t</B></P> |
---|
310 | </TD> |
---|
311 | <TD WIDTH=45> |
---|
312 | <P>C * 20</P> |
---|
313 | </TD> |
---|
314 | <TD WIDTH=159> |
---|
315 | <P><I>'initial_ gradient'</I></P> |
---|
316 | </TD> |
---|
317 | <TD WIDTH=1280> |
---|
318 | <P STYLE="font-style: normal">Top boundary condition of the |
---|
319 | potential temperature. |
---|
320 | </P> |
---|
321 | <P>Allowed are the values <I>'dirichlet' </I>(pt(k=nz+1) does not |
---|
322 | change during the run), <I>'neumann'</I> (pt(k=nz+1)=pt(k=nz)), |
---|
323 | and <I>'initial_gradient'</I>. With the |
---|
324 | 'initial_gradient'-condition the value of the temperature gradient |
---|
325 | at the top is calculated from the initial temperature profile (see |
---|
326 | <A HREF="#pt_surface">pt_surface</A>, <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A>) |
---|
327 | by bc_pt_t_val = (pt_init(k=nz+1) - pt_init(k=nz)) / |
---|
328 | dzu(nz+1).<BR>Using this value (assumed constant during the run) |
---|
329 | the temperature boundary values are calculated as |
---|
330 | </P> |
---|
331 | <UL> |
---|
332 | <P STYLE="font-style: normal">pt(k=nz+1) = pt(k=nz) + bc_pt_t_val |
---|
333 | * dzu(nz+1)</P> |
---|
334 | </UL> |
---|
335 | <P><SPAN STYLE="font-style: normal">(up to k=nz the prognostic |
---|
336 | equation for the temperature is solved).<BR>When a constant |
---|
337 | sensible heat flux is used at the top boundary (<A HREF="#top_heatflux">top_heatflux</A>), |
---|
338 | </SPAN><SPAN STYLE="font-style: normal"><B>bc_pt_t</B></SPAN> <SPAN STYLE="font-style: normal">= |
---|
339 | </SPAN><I>'neumann'</I> <SPAN STYLE="font-style: normal">must be |
---|
340 | used, because otherwise the resolved scale may contribute to the |
---|
341 | top flux so that a constant value cannot be guaranteed.</SPAN></P> |
---|
342 | </TD> |
---|
343 | </TR> |
---|
344 | <TR> |
---|
345 | <TD WIDTH=126> |
---|
346 | <P><A NAME="bc_q_b"></A><B>bc_q_b</B></P> |
---|
347 | </TD> |
---|
348 | <TD WIDTH=45> |
---|
349 | <P>C * 20</P> |
---|
350 | </TD> |
---|
351 | <TD WIDTH=159> |
---|
352 | <P><I>'dirichlet'</I></P> |
---|
353 | </TD> |
---|
354 | <TD WIDTH=1280> |
---|
355 | <P STYLE="font-style: normal">Bottom boundary condition of the |
---|
356 | specific humidity / total water content. |
---|
357 | </P> |
---|
358 | <P>Allowed values are <I>'dirichlet'</I> (q(k=0) = const. = |
---|
359 | <A HREF="#q_surface">q_surface</A> + <A HREF="#q_surface_initial_change">q_surface_initial_change</A>; |
---|
360 | the user may change this value during the run using user-defined |
---|
361 | code) and <I>'neumann'</I> (q(k=0)=q(k=1)). <BR>When a |
---|
362 | constant surface latent heat flux is used (<A HREF="#surface_waterflux">surface_waterflux</A>), |
---|
363 | <B>bc_q_b</B> = <I>'neumann'</I> must be used, because otherwise |
---|
364 | the resolved scale may contribute to the surface flux so that a |
---|
365 | constant value cannot be guaranteed.</P> |
---|
366 | </TD> |
---|
367 | </TR> |
---|
368 | <TR> |
---|
369 | <TD WIDTH=126> |
---|
370 | <P><A NAME="bc_q_t"></A><B>bc_q_t</B></P> |
---|
371 | </TD> |
---|
372 | <TD WIDTH=45> |
---|
373 | <P><I>C * 20</I></P> |
---|
374 | </TD> |
---|
375 | <TD WIDTH=159> |
---|
376 | <P><I>'neumann'</I></P> |
---|
377 | </TD> |
---|
378 | <TD WIDTH=1280> |
---|
379 | <P STYLE="font-style: normal">Top boundary condition of the |
---|
380 | specific humidity / total water content. |
---|
381 | </P> |
---|
382 | <P>Allowed are the values <I>'dirichlet'</I> (q(k=nz) and |
---|
383 | q(k=nz+1) do not change during the run) and <I>'neumann'</I>. With |
---|
384 | the Neumann boundary condition the value of the humidity gradient |
---|
385 | at the top is calculated from the initial humidity profile (see |
---|
386 | <A HREF="#q_surface">q_surface</A>, <A HREF="#q_vertical_gradient">q_vertical_gradient</A>) |
---|
387 | by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<BR>Using |
---|
388 | this value (assumed constant during the run) the humidity boundary |
---|
389 | values are calculated as |
---|
390 | </P> |
---|
391 | <UL> |
---|
392 | <P STYLE="font-style: normal">q(k=nz+1) =q(k=nz) + bc_q_t_val * |
---|
393 | dzu(nz+1)</P> |
---|
394 | </UL> |
---|
395 | <P STYLE="font-style: normal">(up tp k=nz the prognostic equation |
---|
396 | for q is solved). |
---|
397 | </P> |
---|
398 | </TD> |
---|
399 | </TR> |
---|
400 | <TR> |
---|
401 | <TD WIDTH=126> |
---|
402 | <P><A NAME="bc_s_b"></A><B>bc_s_b</B></P> |
---|
403 | </TD> |
---|
404 | <TD WIDTH=45> |
---|
405 | <P>C * 20</P> |
---|
406 | </TD> |
---|
407 | <TD WIDTH=159> |
---|
408 | <P><I>'dirichlet'</I></P> |
---|
409 | </TD> |
---|
410 | <TD WIDTH=1280> |
---|
411 | <P STYLE="font-style: normal">Bottom boundary condition of the |
---|
412 | scalar concentration. |
---|
413 | </P> |
---|
414 | <P>Allowed values are <I>'dirichlet'</I> (s(k=0) = const. = |
---|
415 | <A HREF="#s_surface">s_surface</A> + <A HREF="#s_surface_initial_change">s_surface_initial_change</A>; |
---|
416 | the user may change this value during the run using user-defined |
---|
417 | code) and <I>'neumann'</I> (s(k=0) = s(k=1)). <BR>When a |
---|
418 | constant surface concentration flux is used (<A HREF="#surface_scalarflux">surface_scalarflux</A>), |
---|
419 | <B>bc_s_b</B> = <I>'neumann'</I> must be used, because otherwise |
---|
420 | the resolved scale may contribute to the surface flux so that a |
---|
421 | constant value cannot be guaranteed.</P> |
---|
422 | </TD> |
---|
423 | </TR> |
---|
424 | <TR> |
---|
425 | <TD WIDTH=126> |
---|
426 | <P><A NAME="bc_s_t"></A><B>bc_s_t</B></P> |
---|
427 | </TD> |
---|
428 | <TD WIDTH=45> |
---|
429 | <P>C * 20</P> |
---|
430 | </TD> |
---|
431 | <TD WIDTH=159> |
---|
432 | <P><I>'neumann'</I></P> |
---|
433 | </TD> |
---|
434 | <TD WIDTH=1280> |
---|
435 | <P STYLE="font-style: normal">Top boundary condition of the scalar |
---|
436 | concentration. |
---|
437 | </P> |
---|
438 | <P>Allowed are the values <I>'dirichlet'</I> (s(k=nz) and |
---|
439 | s(k=nz+1) do not change during the run) and <I>'neumann'</I>. With |
---|
440 | the Neumann boundary condition the value of the scalar |
---|
441 | concentration gradient at the top is calculated from the initial |
---|
442 | scalar concentration profile (see <A HREF="#s_surface">s_surface</A>, |
---|
443 | <A HREF="#s_vertical_gradient">s_vertical_gradient</A>) by: |
---|
444 | bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<BR>Using |
---|
445 | this value (assumed constant during the run) the concentration |
---|
446 | boundary values are calculated as |
---|
447 | </P> |
---|
448 | <UL> |
---|
449 | <P STYLE="font-style: normal">s(k=nz+1) = s(k=nz) + bc_s_t_val * |
---|
450 | dzu(nz+1)</P> |
---|
451 | </UL> |
---|
452 | <P STYLE="font-style: normal">(up to k=nz the prognostic equation |
---|
453 | for the scalar concentration is solved).</P> |
---|
454 | </TD> |
---|
455 | </TR> |
---|
456 | <TR> |
---|
457 | <TD WIDTH=126> |
---|
458 | <P><A NAME="bc_sa_t"></A><B>bc_sa_t</B></P> |
---|
459 | </TD> |
---|
460 | <TD WIDTH=45> |
---|
461 | <P>C * 20</P> |
---|
462 | </TD> |
---|
463 | <TD WIDTH=159> |
---|
464 | <P><I>'neumann'</I></P> |
---|
465 | </TD> |
---|
466 | <TD WIDTH=1280> |
---|
467 | <P STYLE="font-style: normal">Top boundary condition of the |
---|
468 | salinity. |
---|
469 | </P> |
---|
470 | <P>This parameter only comes into effect for ocean runs (see |
---|
471 | parameter <A HREF="#ocean">ocean</A>).</P> |
---|
472 | <P><SPAN STYLE="font-style: normal">Allowed are the values |
---|
473 | </SPAN><I>'dirichlet' </I><SPAN STYLE="font-style: normal">(sa(k=nz+1) |
---|
474 | does not change during the run) and </SPAN><I>'neumann'</I> |
---|
475 | <SPAN STYLE="font-style: normal">(sa(k=nz+1)=sa(k=nz)). <BR><BR>When |
---|
476 | a constant salinity flux is used at the top boundary |
---|
477 | (<A HREF="#top_salinityflux">top_salinityflux</A>), </SPAN><SPAN STYLE="font-style: normal"><B>bc_sa_t</B></SPAN> |
---|
478 | <SPAN STYLE="font-style: normal">= </SPAN><I>'neumann'</I> <SPAN STYLE="font-style: normal">must |
---|
479 | be used, because otherwise the resolved scale may contribute to |
---|
480 | the top flux so that a constant value cannot be guaranteed.</SPAN></P> |
---|
481 | </TD> |
---|
482 | </TR> |
---|
483 | <TR> |
---|
484 | <TD WIDTH=126> |
---|
485 | <P><A NAME="bc_uv_b"></A><B>bc_uv_b</B></P> |
---|
486 | </TD> |
---|
487 | <TD WIDTH=45> |
---|
488 | <P>C * 20</P> |
---|
489 | </TD> |
---|
490 | <TD WIDTH=159> |
---|
491 | <P><I>'dirichlet'</I></P> |
---|
492 | </TD> |
---|
493 | <TD WIDTH=1280> |
---|
494 | <P STYLE="font-style: normal">Bottom boundary condition of the |
---|
495 | horizontal velocity components u and v. |
---|
496 | </P> |
---|
497 | <P>Allowed values are <I>'dirichlet' </I>and <I>'neumann'</I>. |
---|
498 | <B>bc_uv_b</B> = <I>'dirichlet'</I> yields the no-slip condition |
---|
499 | with u=v=0 at the bottom. Due to the staggered grid u(k=0) and |
---|
500 | v(k=0) are located at z = - 0,5 * <A HREF="#dz">dz</A> (below the |
---|
501 | bottom), while u(k=1) and v(k=1) are located at z = +0,5 * dz. |
---|
502 | u=v=0 at the bottom is guaranteed using mirror boundary |
---|
503 | condition: |
---|
504 | </P> |
---|
505 | <UL> |
---|
506 | <P STYLE="font-style: normal">u(k=0) = - u(k=1) and v(k=0) = - |
---|
507 | v(k=1)</P> |
---|
508 | </UL> |
---|
509 | <P><SPAN STYLE="font-style: normal">The Neumann boundary condition |
---|
510 | yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) = |
---|
511 | v(k=1). With Prandtl - layer switched on (see <A HREF="#prandtl_layer">prandtl_layer</A>), |
---|
512 | the free-slip condition is not allowed (otherwise the run will be |
---|
513 | terminated)</SPAN><FONT COLOR="#000000"><SPAN STYLE="font-style: normal">.</SPAN></FONT></P> |
---|
514 | </TD> |
---|
515 | </TR> |
---|
516 | <TR> |
---|
517 | <TD WIDTH=126> |
---|
518 | <P><A NAME="bc_uv_t"></A><B>bc_uv_t</B></P> |
---|
519 | </TD> |
---|
520 | <TD WIDTH=45> |
---|
521 | <P>C * 20</P> |
---|
522 | </TD> |
---|
523 | <TD WIDTH=159> |
---|
524 | <P><I>'dirichlet'</I></P> |
---|
525 | </TD> |
---|
526 | <TD WIDTH=1280> |
---|
527 | <P STYLE="font-style: normal">Top boundary condition of the |
---|
528 | horizontal velocity components u and v. |
---|
529 | </P> |
---|
530 | <P>Allowed values are <I>'dirichlet'</I>, <I>'dirichlet_0'</I> and |
---|
531 | <I>'neumann'</I>. The Dirichlet condition yields u(k=nz+1) = |
---|
532 | ug(nz+1) and v(k=nz+1) = vg(nz+1), Neumann condition yields the |
---|
533 | free-slip condition with u(k=nz+1) = u(k=nz) and v(k=nz+1) = |
---|
534 | v(k=nz) (up to k=nz the prognostic equations for the velocities |
---|
535 | are solved). The special condition <I>'dirichlet_0'</I> can |
---|
536 | be used for channel flow, it yields the no-slip condition |
---|
537 | u(k=nz+1) = ug(nz+1) = 0 and v(k=nz+1) = vg(nz+1) = 0.</P> |
---|
538 | <P>In the <A HREF="chapter_3.8.html">coupled</A> ocean executable, |
---|
539 | <A HREF="chapter_4.2.html#bc_uv_t">bc_uv_t</A> is internally |
---|
540 | set ('neumann') and does not need to be prescribed.</P> |
---|
541 | </TD> |
---|
542 | </TR> |
---|
543 | <TR> |
---|
544 | <TD WIDTH=126> |
---|
545 | <P><A NAME="bottom_salinityflux"></A><B>bottom_salinityflux</B></P> |
---|
546 | </TD> |
---|
547 | <TD WIDTH=45> |
---|
548 | <P>R</P> |
---|
549 | </TD> |
---|
550 | <TD WIDTH=159> |
---|
551 | <P><I>0.0</I></P> |
---|
552 | </TD> |
---|
553 | <TD WIDTH=1280> |
---|
554 | <P>Kinematic salinity flux near the surface (in psu m/s). </P> |
---|
555 | <P>This parameter only comes into effect for ocean runs (see |
---|
556 | parameter <A HREF="#ocean">ocean</A>). |
---|
557 | </P> |
---|
558 | <P>The respective salinity flux value is used as bottom |
---|
559 | (horizontally homogeneous) boundary condition for the salinity |
---|
560 | equation. This additionally requires that a Neumann condition must |
---|
561 | be used for the salinity, which is currently the only available |
---|
562 | condition.</P> |
---|
563 | </TD> |
---|
564 | </TR> |
---|
565 | <TR> |
---|
566 | <TD WIDTH=126> |
---|
567 | <P><A NAME="building_height"></A><B>building_height</B></P> |
---|
568 | </TD> |
---|
569 | <TD WIDTH=45> |
---|
570 | <P>R</P> |
---|
571 | </TD> |
---|
572 | <TD WIDTH=159> |
---|
573 | <P><I>50.0</I></P> |
---|
574 | </TD> |
---|
575 | <TD WIDTH=1280> |
---|
576 | <P>Height of a single building in m.<BR><BR><B>building_height</B> |
---|
577 | must be less than the height of the model domain. This parameter |
---|
578 | requires the use of <A HREF="#topography">topography</A> = |
---|
579 | <I>'single_building'</I>.</P> |
---|
580 | </TD> |
---|
581 | </TR> |
---|
582 | <TR> |
---|
583 | <TD WIDTH=126> |
---|
584 | <P><A NAME="building_length_x"></A><B>building_length_x</B></P> |
---|
585 | </TD> |
---|
586 | <TD WIDTH=45> |
---|
587 | <P>R</P> |
---|
588 | </TD> |
---|
589 | <TD WIDTH=159> |
---|
590 | <P><I>50.0</I></P> |
---|
591 | </TD> |
---|
592 | <TD WIDTH=1280> |
---|
593 | <P>Width of a single building in m.<BR><BR>Currently, |
---|
594 | <B>building_length_x</B> must be at least <I>3 * <A HREF="#dx">dx</A></I> |
---|
595 | and no more than <I>( <A HREF="#nx">nx</A></I> <I>- 1 ) * <A HREF="#dx">dx</A> |
---|
596 | - <A HREF="#building_wall_left">building_wall_left</A></I>. This |
---|
597 | parameter requires the use of <A HREF="#topography">topography</A> |
---|
598 | = <I>'single_building'</I>.</P> |
---|
599 | </TD> |
---|
600 | </TR> |
---|
601 | <TR> |
---|
602 | <TD WIDTH=126> |
---|
603 | <P><A NAME="building_length_y"></A><B>building_length_y</B></P> |
---|
604 | </TD> |
---|
605 | <TD WIDTH=45> |
---|
606 | <P>R</P> |
---|
607 | </TD> |
---|
608 | <TD WIDTH=159> |
---|
609 | <P><I>50.0</I></P> |
---|
610 | </TD> |
---|
611 | <TD WIDTH=1280> |
---|
612 | <P>Depth of a single building in m.<BR><BR>Currently, |
---|
613 | <B>building_length_y</B> must be at least <I>3 * <A HREF="#dy">dy</A></I> |
---|
614 | and no more than <I>( <A HREF="#ny">ny</A></I> <I>- 1 ) </I> |
---|
615 | <I>* <A HREF="#dy">dy</A></I> <I>- <A HREF="#building_wall_south">building_wall_south</A></I>. |
---|
616 | This parameter requires the use of <A HREF="#topography">topography</A> |
---|
617 | = <I>'single_building'</I>.</P> |
---|
618 | </TD> |
---|
619 | </TR> |
---|
620 | <TR> |
---|
621 | <TD WIDTH=126> |
---|
622 | <P><A NAME="building_wall_left"></A><B>building_wall_left</B></P> |
---|
623 | </TD> |
---|
624 | <TD WIDTH=45> |
---|
625 | <P>R</P> |
---|
626 | </TD> |
---|
627 | <TD WIDTH=159> |
---|
628 | <P><I>building centered in x-direction</I></P> |
---|
629 | </TD> |
---|
630 | <TD WIDTH=1280> |
---|
631 | <P>x-coordinate of the left building wall (distance between the |
---|
632 | left building wall and the left border of the model domain) in |
---|
633 | m.<BR><BR>Currently, <B>building_wall_left</B> must be at least <I>1 |
---|
634 | * <A HREF="#dx">dx</A></I> and less than <I>( <A HREF="#nx">nx</A> |
---|
635 | - 1 ) * <A HREF="#dx">dx</A> - <A HREF="#building_length_x">building_length_x</A></I>. |
---|
636 | This parameter requires the use of <A HREF="#topography">topography</A> |
---|
637 | = <I>'single_building'</I>.<BR><BR>The default |
---|
638 | value <B>building_wall_left</B> = <I>( ( <A HREF="#nx">nx</A> + |
---|
639 | 1 ) * <A HREF="#dx">dx</A> - <A HREF="#building_length_x">building_length_x</A> |
---|
640 | ) / 2</I> centers the building in x-direction. <FONT COLOR="#000000">Due |
---|
641 | to the staggered grid the building will be displaced by -0.5 <A HREF="#dx">dx</A> |
---|
642 | in x-direction and -0.5 <A HREF="#dy">dy</A> in y-direction.</FONT> |
---|
643 | </P> |
---|
644 | </TD> |
---|
645 | </TR> |
---|
646 | <TR> |
---|
647 | <TD WIDTH=126> |
---|
648 | <P><A NAME="building_wall_south"></A><B>building_wall_south</B></P> |
---|
649 | </TD> |
---|
650 | <TD WIDTH=45> |
---|
651 | <P>R</P> |
---|
652 | </TD> |
---|
653 | <TD WIDTH=159> |
---|
654 | <P><I>building centered in y-direction</I></P> |
---|
655 | </TD> |
---|
656 | <TD WIDTH=1280> |
---|
657 | <P>y-coordinate of the South building wall (distance between the |
---|
658 | South building wall and the South border of the model domain) in |
---|
659 | m.<BR><BR>Currently, <B>building_wall_south</B> must be at least <I>1 |
---|
660 | * <A HREF="#dy">dy</A></I> and less than <I>( <A HREF="#ny">ny</A> |
---|
661 | - 1 ) * <A HREF="#dy">dy</A> - <A HREF="#building_length_y">building_length_y</A></I>. |
---|
662 | This parameter requires the use of <A HREF="#topography">topography</A> |
---|
663 | = <I>'single_building'</I>.<BR><BR>The default |
---|
664 | value <B>building_wall_south</B> = <I>( ( <A HREF="#ny">ny</A> + |
---|
665 | 1 ) * <A HREF="#dy">dy</A> - <A HREF="#building_length_y">building_length_y</A> |
---|
666 | ) / 2</I> centers the building in y-direction. <FONT COLOR="#000000">Due |
---|
667 | to the staggered grid the building will be displaced by -0.5 <A HREF="#dx">dx</A> |
---|
668 | in x-direction and -0.5 <A HREF="#dy">dy</A> in y-direction.</FONT> |
---|
669 | </P> |
---|
670 | </TD> |
---|
671 | </TR> |
---|
672 | <TR> |
---|
673 | <TD WIDTH=126> |
---|
674 | <P><A NAME="canopy_mode"></A><B>canopy_mode</B></P> |
---|
675 | </TD> |
---|
676 | <TD WIDTH=45> |
---|
677 | <P>C * 20</P> |
---|
678 | </TD> |
---|
679 | <TD WIDTH=159> |
---|
680 | <P><I>'block'</I></P> |
---|
681 | </TD> |
---|
682 | <TD WIDTH=1280> |
---|
683 | <P>Canopy mode.<BR><BR><FONT COLOR="#000000">Besides using the |
---|
684 | default value, that will create a horizontally homogeneous plant |
---|
685 | canopy that extends over the total horizontal extension of the |
---|
686 | model domain, the user may add code to the user interface |
---|
687 | subroutine <A HREF="chapter_3.5.1.html#user_init_plant_canopy">user_init_plant_canopy</A> |
---|
688 | to allow further canopy modes. <BR><BR>The setting of |
---|
689 | <A HREF="#canopy_mode">canopy_mode</A> becomes only active, |
---|
690 | if <A HREF="#plant_canopy">plant_canopy</A> has been set </FONT><FONT COLOR="#000000"><I>.T.</I></FONT><FONT COLOR="#000000"> |
---|
691 | and a non-zero <A HREF="#drag_coefficient">drag_coefficient</A> |
---|
692 | has been defined.</FONT></P> |
---|
693 | </TD> |
---|
694 | </TR> |
---|
695 | <TR> |
---|
696 | <TD WIDTH=126> |
---|
697 | <P><A NAME="canyon_height"></A><B>canyon_height</B></P> |
---|
698 | </TD> |
---|
699 | <TD WIDTH=45> |
---|
700 | <P>R</P> |
---|
701 | </TD> |
---|
702 | <TD WIDTH=159> |
---|
703 | <P><I>50.0</I></P> |
---|
704 | </TD> |
---|
705 | <TD WIDTH=1280> |
---|
706 | <P>Street canyon height in m.<BR><BR><B>canyon_height</B> must be |
---|
707 | less than the height of the model domain. This parameter |
---|
708 | requires <A HREF="#topography">topography</A> = |
---|
709 | <I>'single_street_canyon'</I>.</P> |
---|
710 | </TD> |
---|
711 | </TR> |
---|
712 | <TR> |
---|
713 | <TD WIDTH=126> |
---|
714 | <P><A NAME="canyon_width_x"></A><B>canyon_width_x</B></P> |
---|
715 | </TD> |
---|
716 | <TD WIDTH=45> |
---|
717 | <P>R</P> |
---|
718 | </TD> |
---|
719 | <TD WIDTH=159> |
---|
720 | <P><I>9999999.9</I></P> |
---|
721 | </TD> |
---|
722 | <TD WIDTH=1280> |
---|
723 | <P>Street canyon width in x-direction in m.<BR><BR>Currently, |
---|
724 | <B>canyon_width_x</B> must be at least <I>3 * <A HREF="#dx">dx</A></I> |
---|
725 | and no more than <I>( <A HREF="#nx">nx</A></I> <I>- 1 ) * <A HREF="#dx">dx</A> |
---|
726 | - <A HREF="#canyon_wall_left">canyon_wall_left</A></I>. This |
---|
727 | parameter requires <A HREF="#topography">topography</A> = |
---|
728 | <I>'single_street_canyon'</I>. A non-default value implies a |
---|
729 | canyon orientation in y-direction.</P> |
---|
730 | </TD> |
---|
731 | </TR> |
---|
732 | <TR> |
---|
733 | <TD WIDTH=126> |
---|
734 | <P><A NAME="canyon_width_y"></A><B>canyon_width_y</B></P> |
---|
735 | </TD> |
---|
736 | <TD WIDTH=45> |
---|
737 | <P>R</P> |
---|
738 | </TD> |
---|
739 | <TD WIDTH=159> |
---|
740 | <P><I>9999999.9</I></P> |
---|
741 | </TD> |
---|
742 | <TD WIDTH=1280> |
---|
743 | <P>Street canyon width in y-direction in m.<BR><BR>Currently, |
---|
744 | <B>canyon_width_y</B> must be at least <I>3 * <A HREF="#dy">dy</A></I> |
---|
745 | and no more than <I>( <A HREF="#ny">ny</A></I> <I>- 1 ) </I> |
---|
746 | <I>* <A HREF="#dy">dy</A></I> <I>- <A HREF="#canyon_wall_south">canyon_wall_south</A></I>. |
---|
747 | This parameter requires <A HREF="#topography">topography</A> |
---|
748 | = <I>'single_street_canyon</I>. A non-default value implies a |
---|
749 | canyon orientation in x-direction.</P> |
---|
750 | </TD> |
---|
751 | </TR> |
---|
752 | <TR> |
---|
753 | <TD WIDTH=126> |
---|
754 | <P><A NAME="canyon_wall_left"></A><B>canyon_wall_left</B></P> |
---|
755 | </TD> |
---|
756 | <TD WIDTH=45> |
---|
757 | <P>R</P> |
---|
758 | </TD> |
---|
759 | <TD WIDTH=159> |
---|
760 | <P><I>canyon centered in x-direction</I></P> |
---|
761 | </TD> |
---|
762 | <TD WIDTH=1280> |
---|
763 | <P>x-coordinate of the left canyon wall (distance between the left |
---|
764 | canyon wall and the left border of the model domain) in |
---|
765 | m.<BR><BR>Currently, <B>canyon_wall_left</B> must be at least <I>1 |
---|
766 | * <A HREF="#dx">dx</A></I> and less than <I>( <A HREF="#nx">nx</A> |
---|
767 | - 1 ) * <A HREF="#dx">dx</A> - <A HREF="#canyon_width_x">canyon_width_x</A></I>. |
---|
768 | This parameter requires <A HREF="#topography">topography</A> |
---|
769 | = <I>'single_street_canyon'</I>.<BR><BR>The default value |
---|
770 | <B>canyon_wall_left</B> = <I>( ( <A HREF="#nx">nx</A> + 1 ) * |
---|
771 | <A HREF="#dx">dx</A> - <A HREF="#canyon_width_x">canyon_width_x</A> |
---|
772 | ) / 2</I> centers the canyon in x-direction.</P> |
---|
773 | </TD> |
---|
774 | </TR> |
---|
775 | <TR> |
---|
776 | <TD WIDTH=126> |
---|
777 | <P><A NAME="canyon_wall_south"></A><B>canyon_wall_south</B></P> |
---|
778 | </TD> |
---|
779 | <TD WIDTH=45> |
---|
780 | <P>R</P> |
---|
781 | </TD> |
---|
782 | <TD WIDTH=159> |
---|
783 | <P><I>canyon centered in y-direction</I></P> |
---|
784 | </TD> |
---|
785 | <TD WIDTH=1280> |
---|
786 | <P>y-coordinate of the South canyon wall (distance between the |
---|
787 | South canyon wall and the South border of the model domain) in |
---|
788 | m.<BR><BR>Currently, <B>canyon_wall_south</B> must be at least <I>1 |
---|
789 | * <A HREF="#dy">dy</A></I> and less than <I>( <A HREF="#ny">ny</A> |
---|
790 | - 1 ) * <A HREF="#dy">dy</A> - <A HREF="#canyon_width_y">canyon_width_y</A></I>. |
---|
791 | This parameter requires <A HREF="#topography">topography</A> |
---|
792 | = <I>'single_street_canyon'</I>.<BR><BR>The default value |
---|
793 | <B>canyon_wall_south</B> = <I>( ( <A HREF="#ny">ny</A> + 1 ) |
---|
794 | * <A HREF="#dy">dy</A> - <A HREF="#canyon_width_y">canyon_wid</A><A HREF="#canyon_width_y">th_y</A> |
---|
795 | ) / 2</I> centers the canyon in y-direction.</P> |
---|
796 | </TD> |
---|
797 | </TR> |
---|
798 | <TR> |
---|
799 | <TD WIDTH=126> |
---|
800 | <P><A NAME="cloud_droplets"></A><B>cloud_droplets</B></P> |
---|
801 | </TD> |
---|
802 | <TD WIDTH=45> |
---|
803 | <P>L</P> |
---|
804 | </TD> |
---|
805 | <TD WIDTH=159> |
---|
806 | <P><I>.F.</I></P> |
---|
807 | </TD> |
---|
808 | <TD WIDTH=1280> |
---|
809 | <P>Parameter to switch on usage of cloud droplets.<BR><BR>Cloud |
---|
810 | droplets require to use particles (i.e. the NAMELIST group |
---|
811 | <FONT FACE="Courier New, Courier, monospace">particles_par</FONT> |
---|
812 | has to be included in the parameter file). Then each particle is a |
---|
813 | representative for a certain number of droplets. The droplet |
---|
814 | features (number of droplets, initial radius, etc.) can be steered |
---|
815 | with the respective particle parameters (see e.g. <A HREF="#chapter_4.2.html#radius">radius</A>). |
---|
816 | The real number of initial droplets in a grid cell is equal to the |
---|
817 | initial number of droplets (defined by the particle source |
---|
818 | parameters <FONT FACE="Thorndale, serif"><SPAN LANG="en-GB"><A HREF="chapter_4.2.html#pst">pst</A>, |
---|
819 | <A HREF="chapter_4.2.html#psl">psl</A>, <A HREF="chapter_4.2.html#psr">psr</A>, |
---|
820 | <A HREF="chapter_4.2.html#pss">pss</A>, <A HREF="chapter_4.2.html#psn">psn</A>, |
---|
821 | <A HREF="chapter_4.2.html#psb">psb</A>, <A HREF="chapter_4.2.html#pdx">pdx</A>, |
---|
822 | <A HREF="chapter_4.2.html#pdy">pdy</A></SPAN></FONT> <FONT FACE="Thorndale, serif"><SPAN LANG="en-GB">and |
---|
823 | <A HREF="chapter_4.2.html#pdz">pdz</A></SPAN></FONT>) times the |
---|
824 | <A HREF="#initial_weighting_factor">initial_weighting_factor</A>.<BR><BR>In |
---|
825 | case of using cloud droplets, the default condensation scheme in |
---|
826 | PALM cannot be used, i.e. <A HREF="#cloud_physics">cloud_physics</A> |
---|
827 | must be set <I>.F.</I>.</P> |
---|
828 | </TD> |
---|
829 | </TR> |
---|
830 | <TR> |
---|
831 | <TD WIDTH=126> |
---|
832 | <P><A NAME="cloud_physics"></A><B>cloud_physics</B></P> |
---|
833 | </TD> |
---|
834 | <TD WIDTH=45> |
---|
835 | <P>L</P> |
---|
836 | </TD> |
---|
837 | <TD WIDTH=159> |
---|
838 | <P><I>.F.</I></P> |
---|
839 | </TD> |
---|
840 | <TD WIDTH=1280> |
---|
841 | <P>Parameter to switch on the condensation scheme. |
---|
842 | </P> |
---|
843 | <P>For <B>cloud_physics =</B> <I>.TRUE.</I>, equations for the |
---|
844 | liquid water content and the liquid water potential |
---|
845 | temperature are solved instead of those for specific humidity and |
---|
846 | potential temperature. Note that a grid volume is assumed to be |
---|
847 | either completely saturated or completely unsaturated |
---|
848 | (0%-or-100%-scheme). A simple precipitation scheme can |
---|
849 | additionally be switched on with parameter <A HREF="#precipitation">precipitation</A>. |
---|
850 | Also cloud-top cooling by longwave radiation can be utilized (see |
---|
851 | <A HREF="#radiation">radiation</A>)<BR><B><BR>cloud_physics =</B> |
---|
852 | <I>.TRUE. </I>requires <A HREF="#humidity">humidity</A> = |
---|
853 | <I>.TRUE.</I> .<BR>Detailed information about the condensation |
---|
854 | scheme is given in the description of the <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud |
---|
855 | physics module</A> (pdf-file, only in German).<BR><BR>This |
---|
856 | condensation scheme is not allowed if cloud droplets are simulated |
---|
857 | explicitly (see <A HREF="#cloud_droplets">cloud_droplets</A>).</P> |
---|
858 | </TD> |
---|
859 | </TR> |
---|
860 | <TR> |
---|
861 | <TD WIDTH=126> |
---|
862 | <P><A NAME="conserve_volume_flow"></A><B>conserve_volume_flow</B></P> |
---|
863 | </TD> |
---|
864 | <TD WIDTH=45> |
---|
865 | <P>L</P> |
---|
866 | </TD> |
---|
867 | <TD WIDTH=159> |
---|
868 | <P><I>.F.</I></P> |
---|
869 | </TD> |
---|
870 | <TD WIDTH=1280> |
---|
871 | <P>Conservation of volume flow in x- and |
---|
872 | y-direction.<BR><BR><B>conserve_volume_flow</B> = <I>.T.</I> |
---|
873 | guarantees that the volume flow through the xz- and |
---|
874 | yz-cross-sections of the total model domain remains constant |
---|
875 | throughout the run depending on the chosen |
---|
876 | <A HREF="#conserve_volume_flow_mode">conserve_volume_flow_mode</A>.<BR><BR>Note |
---|
877 | that <B>conserve_volume_flow</B> = <I>.T.</I> requires |
---|
878 | <A HREF="#dp_external">dp_external</A> = <I>.F.</I> .</P> |
---|
879 | </TD> |
---|
880 | </TR> |
---|
881 | <TR> |
---|
882 | <TD WIDTH=126> |
---|
883 | <P><A NAME="conserve_volume_flow_mode"></A><B>conserve_volume_flow_mode</B></P> |
---|
884 | </TD> |
---|
885 | <TD WIDTH=45> |
---|
886 | <P>C * 16</P> |
---|
887 | </TD> |
---|
888 | <TD WIDTH=159> |
---|
889 | <P><I>'default'</I></P> |
---|
890 | </TD> |
---|
891 | <TD WIDTH=1280> |
---|
892 | <P>Modus of volume flow conservation.<BR><BR>The following values |
---|
893 | are allowed:</P> |
---|
894 | <P STYLE="font-style: normal"><I>'default'</I> |
---|
895 | </P> |
---|
896 | <UL> |
---|
897 | <P>Per default, PALM uses <I>'initial_profiles'</I> for |
---|
898 | cyclic lateral boundary conditions (<A HREF="#bc_lr">bc_lr</A> = |
---|
899 | <I>'cyclic'</I> and <A HREF="#bc_ns">bc_ns</A> = <I>'cyclic'</I>) |
---|
900 | and <I>'inflow_profile'</I> for non-cyclic lateral boundary |
---|
901 | conditions (<A HREF="#bc_lr">bc_lr</A> /= <I>'cyclic'</I> or |
---|
902 | <A HREF="#bc_ns">bc_ns</A> /= <I>'cyclic'</I>).</P> |
---|
903 | </UL> |
---|
904 | <P><I>'initial_profiles' </I> |
---|
905 | </P> |
---|
906 | <UL> |
---|
907 | <P>The target volume flow is calculated at t=0 from the |
---|
908 | initial profiles of u and v. This setting is only allowed |
---|
909 | for cyclic lateral boundary conditions (<A HREF="#bc_lr">bc_lr</A> |
---|
910 | = <I>'cyclic'</I> and <A HREF="#bc_ns">bc_ns</A> = <I>'cyclic'</I>).</P> |
---|
911 | </UL> |
---|
912 | <P STYLE="font-style: normal"><I>'inflow_profile'</I> |
---|
913 | </P> |
---|
914 | <UL> |
---|
915 | <P>The target volume flow is calculated at every |
---|
916 | timestep from the inflow profile of u or v, respectively. |
---|
917 | This setting is only allowed for non-cyclic lateral |
---|
918 | boundary conditions (<A HREF="#bc_lr">bc_lr</A> /= <I>'cyclic'</I> |
---|
919 | or <A HREF="#bc_ns">bc_ns</A> /= <I>'cyclic'</I>).</P> |
---|
920 | </UL> |
---|
921 | <P><I>'bulk_velocity' </I> |
---|
922 | </P> |
---|
923 | <UL> |
---|
924 | <P>The target volume flow is calculated from a predefined bulk |
---|
925 | velocity (see <A HREF="#u_bulk">u_bulk</A> and <A HREF="#v_bulk">v_bulk</A>). |
---|
926 | This setting is only allowed for cyclic lateral boundary |
---|
927 | conditions (<A HREF="#bc_lr">bc_lr</A> = <I>'cyclic'</I> and |
---|
928 | <A HREF="#bc_ns">bc_ns</A> = <I>'cyclic'</I>).</P> |
---|
929 | </UL> |
---|
930 | <P>Note that <B>conserve_volume_flow_mode</B> only comes into |
---|
931 | effect if <A HREF="#conserve_volume_flow">conserve_volume_flow</A> |
---|
932 | = <I>.T. .</I> |
---|
933 | </P> |
---|
934 | </TD> |
---|
935 | </TR> |
---|
936 | <TR> |
---|
937 | <TD WIDTH=126> |
---|
938 | <P><A NAME="coupling_start_time"></A><B>coupling_start_time</B></P> |
---|
939 | </TD> |
---|
940 | <TD WIDTH=45> |
---|
941 | <P>R</P> |
---|
942 | </TD> |
---|
943 | <TD WIDTH=159> |
---|
944 | <P><I>0.0</I></P> |
---|
945 | </TD> |
---|
946 | <TD WIDTH=1280> |
---|
947 | <P>Simulation time of precursor run.</P> |
---|
948 | <P>Sets the time period a precursor run shall run uncoupled. This |
---|
949 | parameter is used to set up the precursor run control for |
---|
950 | atmosphere-ocean-<A HREF="chapter_3.8.html">coupled runs</A>. It |
---|
951 | has to be set individually to the atmospheric / oceanic precursor |
---|
952 | run. The time in the data output will show negative values during |
---|
953 | the precursor run. See <A HREF="../misc/precursor_run_control.pdf">documentation</A> |
---|
954 | for further information.</P> |
---|
955 | </TD> |
---|
956 | </TR> |
---|
957 | <TR> |
---|
958 | <TD WIDTH=126> |
---|
959 | <P><A NAME="cthf"></A><B>cthf</B></P> |
---|
960 | </TD> |
---|
961 | <TD WIDTH=45> |
---|
962 | <P>R</P> |
---|
963 | </TD> |
---|
964 | <TD WIDTH=159> |
---|
965 | <P><I>0.0</I></P> |
---|
966 | </TD> |
---|
967 | <TD WIDTH=1280> |
---|
968 | <P>Average heat flux that is prescribed at the top of the plant |
---|
969 | canopy.<BR><BR>If <A HREF="#plant_canopy">plant_canopy</A> is set |
---|
970 | <I>.T.</I>, the user can prescribe a heat flux at the top of the |
---|
971 | plant canopy.<BR>It is assumed that solar radiation penetrates the |
---|
972 | canopy and warms the foliage which, in turn, warms the air in |
---|
973 | contact with it. <BR>Note: Instead of using the value prescribed |
---|
974 | by <A HREF="#surface_heatflux">surface_heatflux</A>, the near |
---|
975 | surface heat flux is determined from an exponential function that |
---|
976 | is dependent on the cumulative leaf_area_index (Shaw and Schumann |
---|
977 | (1992, Boundary Layer Meteorol., 61, 47-64)).</P> |
---|
978 | </TD> |
---|
979 | </TR> |
---|
980 | <TR> |
---|
981 | <TD WIDTH=126> |
---|
982 | <P><A NAME="cut_spline_overshoot"></A><B>cut_spline_overshoot</B></P> |
---|
983 | </TD> |
---|
984 | <TD WIDTH=45> |
---|
985 | <P>L</P> |
---|
986 | </TD> |
---|
987 | <TD WIDTH=159> |
---|
988 | <P><I>.T.</I></P> |
---|
989 | </TD> |
---|
990 | <TD WIDTH=1280> |
---|
991 | <P>Cuts off of so-called overshoots, which can occur with the |
---|
992 | upstream-spline scheme. |
---|
993 | </P> |
---|
994 | <P><FONT COLOR="#000000">The cubic splines tend to overshoot in |
---|
995 | case of discontinuous changes of variables between neighbouring |
---|
996 | grid points.</FONT><FONT COLOR="#ff0000"> </FONT><FONT COLOR="#000000">This |
---|
997 | may lead to errors in calculating the advection tendency.</FONT> |
---|
998 | Choice of <B>cut_spline_overshoot</B> = <I>.TRUE.</I> (switched on |
---|
999 | by default) allows variable values not to exceed an interval |
---|
1000 | defined by the respective adjacent grid points. This interval can |
---|
1001 | be adjusted seperately for every prognostic variable (see |
---|
1002 | initialization parameters <A HREF="#overshoot_limit_e">overshoot_limit_e</A>, |
---|
1003 | <A HREF="#overshoot_limit_pt">overshoot_limit_pt</A>, |
---|
1004 | <A HREF="#overshoot_limit_u">overshoot_limit_u</A>, etc.). This |
---|
1005 | might be necessary in case that the default interval has a |
---|
1006 | non-tolerable effect on the model results. |
---|
1007 | </P> |
---|
1008 | <P>Overshoots may also be removed using the parameters |
---|
1009 | <A HREF="#ups_limit_e">ups_limit_e</A>, <A HREF="#ups_limit_pt">ups_limit_pt</A>, |
---|
1010 | etc. as well as by applying a long-filter (see |
---|
1011 | <A HREF="#long_filter_factor">long_filter_factor</A>).</P> |
---|
1012 | </TD> |
---|
1013 | </TR> |
---|
1014 | <TR> |
---|
1015 | <TD WIDTH=126> |
---|
1016 | <P><A NAME="damp_level_1d"></A><B>damp_level_1d</B></P> |
---|
1017 | </TD> |
---|
1018 | <TD WIDTH=45> |
---|
1019 | <P>R</P> |
---|
1020 | </TD> |
---|
1021 | <TD WIDTH=159> |
---|
1022 | <P><I>zu(nz+1)</I></P> |
---|
1023 | </TD> |
---|
1024 | <TD WIDTH=1280> |
---|
1025 | <P>Height where the damping layer begins in the 1d-model (in m). |
---|
1026 | </P> |
---|
1027 | <P>This parameter is used to switch on a damping layer for the |
---|
1028 | 1d-model, which is generally needed for the damping of inertia |
---|
1029 | oscillations. Damping is done by gradually increasing the value of |
---|
1030 | the eddy diffusivities about 10% per vertical grid level (starting |
---|
1031 | with the value at the height given by <B>damp_level_1d</B>, or |
---|
1032 | possibly from the next grid pint above), i.e. K<SUB>m</SUB>(k+1) = |
---|
1033 | 1.1 * K<SUB>m</SUB>(k). The values of K<SUB>m</SUB> are limited to |
---|
1034 | 10 m**2/s at maximum. <BR>This parameter only comes into |
---|
1035 | effect if the 1d-model is switched on for the initialization of |
---|
1036 | the 3d-model using <A HREF="#initializing_actions">initializing_actions</A> |
---|
1037 | = <I>'set_1d-model_profiles'</I>. |
---|
1038 | </P> |
---|
1039 | </TD> |
---|
1040 | </TR> |
---|
1041 | <TR> |
---|
1042 | <TD WIDTH=126> |
---|
1043 | <P><A NAME="dissipation_1d"></A><B>dissipation_1d</B></P> |
---|
1044 | </TD> |
---|
1045 | <TD WIDTH=45> |
---|
1046 | <P>C*20</P> |
---|
1047 | </TD> |
---|
1048 | <TD WIDTH=159> |
---|
1049 | <P><I>'as_in_3d_</I><BR><I>model'</I></P> |
---|
1050 | </TD> |
---|
1051 | <TD WIDTH=1280> |
---|
1052 | <P>Calculation method for the energy dissipation term in the TKE |
---|
1053 | equation of the 1d-model.<BR><BR>By default the dissipation is |
---|
1054 | calculated as in the 3d-model using diss = (0.19 + 0.74 * l / |
---|
1055 | l_grid) * e**1.5 / l.<BR><BR>Setting <B>dissipation_1d</B> = |
---|
1056 | <I>'detering'</I> forces the dissipation to be calculated as diss |
---|
1057 | = 0.064 * e**1.5 / l.</P> |
---|
1058 | </TD> |
---|
1059 | </TR> |
---|
1060 | <TR> |
---|
1061 | <TD WIDTH=126> |
---|
1062 | <P><A NAME="dp_external"></A><B>dp_external</B></P> |
---|
1063 | </TD> |
---|
1064 | <TD WIDTH=45> |
---|
1065 | <P>L</P> |
---|
1066 | </TD> |
---|
1067 | <TD WIDTH=159> |
---|
1068 | <P><I>.F.</I></P> |
---|
1069 | </TD> |
---|
1070 | <TD WIDTH=1280> |
---|
1071 | <P>External pressure gradient switch.<BR><BR>This parameter is |
---|
1072 | used to switch on/off an external pressure gradient as driving |
---|
1073 | force. The external pressure gradient is controlled by the |
---|
1074 | parameters <A HREF="#dp_smooth">dp_smooth</A>, <A HREF="#dp_level_b">dp_level_b</A> |
---|
1075 | and <A HREF="#dpdxy">dpdxy</A>.<BR><BR>Note that <B>dp_external</B> |
---|
1076 | = <I>.T.</I> requires <A HREF="#conserve_volume_flow">conserve_volume_flow</A> |
---|
1077 | = <I>.F. </I>It is normally recommended to disable the Coriolis |
---|
1078 | force by setting <A HREF="l#omega">omega</A> = 0.0.</P> |
---|
1079 | </TD> |
---|
1080 | </TR> |
---|
1081 | <TR> |
---|
1082 | <TD WIDTH=126> |
---|
1083 | <P><A NAME="dp_smooth"></A><B>dp_smooth</B></P> |
---|
1084 | </TD> |
---|
1085 | <TD WIDTH=45> |
---|
1086 | <P>L</P> |
---|
1087 | </TD> |
---|
1088 | <TD WIDTH=159> |
---|
1089 | <P><I>.F.</I></P> |
---|
1090 | </TD> |
---|
1091 | <TD WIDTH=1280> |
---|
1092 | <P>Vertically smooth the external pressure gradient using a |
---|
1093 | sinusoidal smoothing function.<BR><BR>This parameter only applies |
---|
1094 | if <A HREF="#dp_external">dp_external</A> = <I>.T. </I>. It is |
---|
1095 | useful in combination with <A HREF="#dp_level_b">dp_level_b</A> |
---|
1096 | >> 0 to generate a non-accelerated boundary layer well |
---|
1097 | below <A HREF="#dp_level_b">dp_level_b</A>.</P> |
---|
1098 | </TD> |
---|
1099 | </TR> |
---|
1100 | <TR> |
---|
1101 | <TD WIDTH=126> |
---|
1102 | <P><A NAME="dp_level_b"></A><B>dp_level_b</B></P> |
---|
1103 | </TD> |
---|
1104 | <TD WIDTH=45> |
---|
1105 | <P>R</P> |
---|
1106 | </TD> |
---|
1107 | <TD WIDTH=159> |
---|
1108 | <P><I>0.0</I></P> |
---|
1109 | </TD> |
---|
1110 | <TD WIDTH=1280> |
---|
1111 | <P><FONT SIZE=3>Lower limit of the vertical range for which the |
---|
1112 | external pressure gradient is applied (</FONT>in <FONT SIZE=3>m).</FONT><BR><BR>This |
---|
1113 | parameter only applies if <A HREF="#dp_external">dp_external</A> = |
---|
1114 | <I>.T. </I><SPAN LANG="en-GB">It must hold the condition zu(0) <= |
---|
1115 | </SPAN><SPAN LANG="en-GB"><B>dp_level_b</B></SPAN> <SPAN LANG="en-GB"><= |
---|
1116 | zu(<A HREF="#nz">nz</A>). </SPAN>It can be used in |
---|
1117 | combination with <A HREF="#dp_smooth">dp_smooth</A> = <I>.T.</I> |
---|
1118 | to generate a non-accelerated boundary layer well below <B>dp_level_b</B> |
---|
1119 | if <B>dp_level_b</B> >> 0.<BR><BR>Note that there is no |
---|
1120 | upper limit of the vertical range because the external pressure |
---|
1121 | gradient is always applied up to the top of the model domain.</P> |
---|
1122 | </TD> |
---|
1123 | </TR> |
---|
1124 | <TR> |
---|
1125 | <TD WIDTH=126> |
---|
1126 | <P><A NAME="dpdxy"></A><B>dpdxy</B></P> |
---|
1127 | </TD> |
---|
1128 | <TD WIDTH=45> |
---|
1129 | <P>R(2)</P> |
---|
1130 | </TD> |
---|
1131 | <TD WIDTH=159> |
---|
1132 | <P><I>2 * 0.0</I></P> |
---|
1133 | </TD> |
---|
1134 | <TD WIDTH=1280> |
---|
1135 | <P>Values of the external pressure gradient applied in x- and |
---|
1136 | y-direction, respectively (in Pa/m).<BR><BR>This parameter only |
---|
1137 | applies if <A HREF="#dp_external">dp_external</A> = <I>.T. </I>It |
---|
1138 | sets the pressure gradient values. Negative values mean an |
---|
1139 | acceleration, positive values mean deceleration. For example, |
---|
1140 | <B>dpdxy</B> = -0.0002, 0.0, drives the flow in positive |
---|
1141 | x-direction, |
---|
1142 | </P> |
---|
1143 | </TD> |
---|
1144 | </TR> |
---|
1145 | <TR> |
---|
1146 | <TD WIDTH=126> |
---|
1147 | <P><A NAME="drag_coefficient"></A><B>drag_coefficient</B></P> |
---|
1148 | </TD> |
---|
1149 | <TD WIDTH=45> |
---|
1150 | <P>R</P> |
---|
1151 | </TD> |
---|
1152 | <TD WIDTH=159> |
---|
1153 | <P><I>0.0</I></P> |
---|
1154 | </TD> |
---|
1155 | <TD WIDTH=1280> |
---|
1156 | <P>Drag coefficient used in the plant canopy model.<BR><BR>This |
---|
1157 | parameter has to be non-zero, if the parameter <A HREF="#plant_canopy">plant_canopy</A> |
---|
1158 | is set <I>.T.</I>.</P> |
---|
1159 | </TD> |
---|
1160 | </TR> |
---|
1161 | <TR> |
---|
1162 | <TD WIDTH=126> |
---|
1163 | <P><A NAME="dt"></A><B>dt</B></P> |
---|
1164 | </TD> |
---|
1165 | <TD WIDTH=45> |
---|
1166 | <P>R</P> |
---|
1167 | </TD> |
---|
1168 | <TD WIDTH=159> |
---|
1169 | <P><I>variable</I></P> |
---|
1170 | </TD> |
---|
1171 | <TD WIDTH=1280> |
---|
1172 | <P>Time step for the 3d-model (in s). |
---|
1173 | </P> |
---|
1174 | <P>By default, (i.e. if a Runge-Kutta scheme is used, see |
---|
1175 | <A HREF="#timestep_scheme">timestep_scheme</A>) the value of the |
---|
1176 | time step is calculating after each time step (following the time |
---|
1177 | step criteria) and used for the next step.</P> |
---|
1178 | <P>If the user assigns <B>dt</B> a value, then the time step is |
---|
1179 | fixed to this value throughout the whole run (whether it fulfills |
---|
1180 | the time step criteria or not). However, changes are allowed for |
---|
1181 | restart runs, because <B>dt</B> can also be used as a <A HREF="chapter_4.2.html#dt_laufparameter">run |
---|
1182 | parameter</A>. |
---|
1183 | </P> |
---|
1184 | <P>In case that the calculated time step meets the condition</P> |
---|
1185 | <UL> |
---|
1186 | <P><B>dt</B> < 0.00001 * <A HREF="chapter_4.2.html#dt_max">dt_max</A> |
---|
1187 | (with dt_max = 20.0)</P> |
---|
1188 | </UL> |
---|
1189 | <P>the simulation will be aborted. Such situations usually arise |
---|
1190 | in case of any numerical problem / instability which causes a |
---|
1191 | non-realistic increase of the wind speed. |
---|
1192 | </P> |
---|
1193 | <P>A small time step due to a large mean horizontal windspeed |
---|
1194 | speed may be enlarged by using a coordinate transformation (see |
---|
1195 | <A HREF="#galilei_transformation">galilei_transformation</A>), in |
---|
1196 | order to spare CPU time.</P> |
---|
1197 | <P>If the leapfrog timestep scheme is used (see <A HREF="#timestep_scheme">timestep_scheme</A>) |
---|
1198 | a temporary time step value dt_new is calculated first, with |
---|
1199 | dt_new = <A HREF="chapter_4.2.html#fcl_factor">cfl_factor</A> * |
---|
1200 | dt_crit where dt_crit is the maximum timestep allowed by the CFL |
---|
1201 | and diffusion condition. Next it is examined whether dt_new |
---|
1202 | exceeds or falls below the value of the previous timestep by at |
---|
1203 | least +5 % / -2%. If it is smaller, <B>dt</B> = dt_new is |
---|
1204 | immediately used for the next timestep. If it is larger, then <B>dt |
---|
1205 | </B>= 1.02 * dt_prev (previous timestep) is used as the new |
---|
1206 | timestep, however the time step is only increased if the last |
---|
1207 | change of the time step is dated back at least 30 iterations. If |
---|
1208 | dt_new is located in the interval mentioned above, then dt does |
---|
1209 | not change at all. By doing so, permanent time step changes as |
---|
1210 | well as large sudden changes (increases) in the time step are |
---|
1211 | avoided.</P> |
---|
1212 | </TD> |
---|
1213 | </TR> |
---|
1214 | <TR> |
---|
1215 | <TD WIDTH=126> |
---|
1216 | <P><A NAME="dt_pr_1d"></A><B>dt_pr_1d</B></P> |
---|
1217 | </TD> |
---|
1218 | <TD WIDTH=45> |
---|
1219 | <P>R</P> |
---|
1220 | </TD> |
---|
1221 | <TD WIDTH=159> |
---|
1222 | <P><I>9999999.9</I></P> |
---|
1223 | </TD> |
---|
1224 | <TD WIDTH=1280> |
---|
1225 | <P>Temporal interval of vertical profile output of the 1D-model |
---|
1226 | (in s). |
---|
1227 | </P> |
---|
1228 | <P>Data are written in ASCII format to file <A HREF="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</A>. |
---|
1229 | This parameter is only in effect if the 1d-model has been switched |
---|
1230 | on for the initialization of the 3d-model with |
---|
1231 | <A HREF="#initializing_actions">initializing_actions</A> = |
---|
1232 | <I>'set_1d-model_profiles'</I>.</P> |
---|
1233 | </TD> |
---|
1234 | </TR> |
---|
1235 | <TR> |
---|
1236 | <TD WIDTH=126> |
---|
1237 | <P><A NAME="dt_run_control_1d"></A><B>dt_run_control_1d</B></P> |
---|
1238 | </TD> |
---|
1239 | <TD WIDTH=45> |
---|
1240 | <P>R</P> |
---|
1241 | </TD> |
---|
1242 | <TD WIDTH=159> |
---|
1243 | <P><I>60.0</I></P> |
---|
1244 | </TD> |
---|
1245 | <TD WIDTH=1280> |
---|
1246 | <P>Temporal interval of runtime control output of the 1d-model (in |
---|
1247 | s). |
---|
1248 | </P> |
---|
1249 | <P>Data are written in ASCII format to file <A HREF="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</A>. |
---|
1250 | This parameter is only in effect if the 1d-model is switched on |
---|
1251 | for the initialization of the 3d-model with <A HREF="#initializing_actions">initializing_actions</A> |
---|
1252 | = <I>'set_1d-model_profiles'</I>.</P> |
---|
1253 | </TD> |
---|
1254 | </TR> |
---|
1255 | <TR> |
---|
1256 | <TD WIDTH=126> |
---|
1257 | <P><A NAME="dx"></A><B>dx</B></P> |
---|
1258 | </TD> |
---|
1259 | <TD WIDTH=45> |
---|
1260 | <P>R</P> |
---|
1261 | </TD> |
---|
1262 | <TD WIDTH=159> |
---|
1263 | <P><I>1.0</I></P> |
---|
1264 | </TD> |
---|
1265 | <TD WIDTH=1280> |
---|
1266 | <P>Horizontal grid spacing along the x-direction (in m). |
---|
1267 | </P> |
---|
1268 | <P>Along x-direction only a constant grid spacing is allowed.</P> |
---|
1269 | <P>For <A HREF="chapter_3.8.html">coupled runs</A> this parameter |
---|
1270 | must be equal in both parameter files <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN</FONT></A> |
---|
1271 | and <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A>.</P> |
---|
1272 | </TD> |
---|
1273 | </TR> |
---|
1274 | <TR> |
---|
1275 | <TD WIDTH=126> |
---|
1276 | <P><A NAME="dy"></A><B>dy</B></P> |
---|
1277 | </TD> |
---|
1278 | <TD WIDTH=45> |
---|
1279 | <P>R</P> |
---|
1280 | </TD> |
---|
1281 | <TD WIDTH=159> |
---|
1282 | <P><I>1.0</I></P> |
---|
1283 | </TD> |
---|
1284 | <TD WIDTH=1280> |
---|
1285 | <P>Horizontal grid spacing along the y-direction (in m). |
---|
1286 | </P> |
---|
1287 | <P>Along y-direction only a constant grid spacing is allowed.</P> |
---|
1288 | <P>For <A HREF="chapter_3.8.html">coupled runs</A> this parameter |
---|
1289 | must be equal in both parameter files <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN</FONT></A> |
---|
1290 | and <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A>.</P> |
---|
1291 | </TD> |
---|
1292 | </TR> |
---|
1293 | <TR> |
---|
1294 | <TD WIDTH=126> |
---|
1295 | <P><A NAME="dz"></A><B>dz</B></P> |
---|
1296 | </TD> |
---|
1297 | <TD WIDTH=45> |
---|
1298 | <P>R</P> |
---|
1299 | </TD> |
---|
1300 | <TD WIDTH=159> |
---|
1301 | <P><BR> |
---|
1302 | </P> |
---|
1303 | </TD> |
---|
1304 | <TD WIDTH=1280> |
---|
1305 | <P>Vertical grid spacing (in m). |
---|
1306 | </P> |
---|
1307 | <P>This parameter must be assigned by the user, because no default |
---|
1308 | value is given.</P> |
---|
1309 | <P>By default, the model uses constant grid spacing along |
---|
1310 | z-direction, but it can be stretched using the parameters |
---|
1311 | <A HREF="#dz_stretch_level">dz_stretch_level</A> and |
---|
1312 | <A HREF="#dz_stretch_factor">dz_stretch_factor</A>. In case of |
---|
1313 | stretching, a maximum allowed grid spacing can be given by <A HREF="#dz_max">dz_max</A>.</P> |
---|
1314 | <P>Assuming a constant <B>dz</B>, the scalar levels (zu) are |
---|
1315 | calculated directly by: |
---|
1316 | </P> |
---|
1317 | <UL> |
---|
1318 | <P>zu(0) = - dz * 0.5 <BR>zu(1) = dz * 0.5</P> |
---|
1319 | </UL> |
---|
1320 | <P>The w-levels lie half between them: |
---|
1321 | </P> |
---|
1322 | <UL> |
---|
1323 | <P>zw(k) = ( zu(k) + zu(k+1) ) * 0.5</P> |
---|
1324 | </UL> |
---|
1325 | </TD> |
---|
1326 | </TR> |
---|
1327 | <TR> |
---|
1328 | <TD WIDTH=126> |
---|
1329 | <P><A NAME="dz_max"></A><B>dz_max</B></P> |
---|
1330 | </TD> |
---|
1331 | <TD WIDTH=45> |
---|
1332 | <P>R</P> |
---|
1333 | </TD> |
---|
1334 | <TD WIDTH=159> |
---|
1335 | <P><I>9999999.9</I></P> |
---|
1336 | </TD> |
---|
1337 | <TD WIDTH=1280> |
---|
1338 | <P>Allowed maximum vertical grid spacing (in m).<BR><BR>If the |
---|
1339 | vertical grid is stretched (see <A HREF="#dz_stretch_factor">dz_stretch_factor</A> |
---|
1340 | and <A HREF="#dz_stretch_level">dz_stretch_level</A>), <B>dz_max</B> |
---|
1341 | can be used to limit the vertical grid spacing.</P> |
---|
1342 | </TD> |
---|
1343 | </TR> |
---|
1344 | <TR> |
---|
1345 | <TD WIDTH=126> |
---|
1346 | <P><A NAME="dz_stretch_factor"></A><B>dz_stretch_factor</B></P> |
---|
1347 | </TD> |
---|
1348 | <TD WIDTH=45> |
---|
1349 | <P>R</P> |
---|
1350 | </TD> |
---|
1351 | <TD WIDTH=159> |
---|
1352 | <P><I>1.08</I></P> |
---|
1353 | </TD> |
---|
1354 | <TD WIDTH=1280> |
---|
1355 | <P>Stretch factor for a vertically stretched grid (see |
---|
1356 | <A HREF="#dz_stretch_level">dz_stretch_level</A>). |
---|
1357 | </P> |
---|
1358 | <P>The stretch factor should not exceed a value of approx. 1.10 - |
---|
1359 | 1.12, otherwise the discretization errors due to the stretched |
---|
1360 | grid not negligible any more. (refer Kalnay de Rivas)</P> |
---|
1361 | </TD> |
---|
1362 | </TR> |
---|
1363 | <TR> |
---|
1364 | <TD WIDTH=126> |
---|
1365 | <P><A NAME="dz_stretch_level"></A><B>dz_stretch_level</B></P> |
---|
1366 | </TD> |
---|
1367 | <TD WIDTH=45> |
---|
1368 | <P>R</P> |
---|
1369 | </TD> |
---|
1370 | <TD WIDTH=159> |
---|
1371 | <P><I>100000.0</I></P> |
---|
1372 | </TD> |
---|
1373 | <TD WIDTH=1280> |
---|
1374 | <P>Height level above/below which the grid is to be stretched |
---|
1375 | vertically (in m). |
---|
1376 | </P> |
---|
1377 | <P>For <A HREF="#ocean">ocean</A> = .F., <B>dz_stretch_level </B>is |
---|
1378 | the height level (in m) <B>above </B>which the grid is to be |
---|
1379 | stretched vertically. The vertical grid spacings <A HREF="#dz">dz</A> |
---|
1380 | above this level are calculated as |
---|
1381 | </P> |
---|
1382 | <UL> |
---|
1383 | <P><B>dz</B>(k+1) = <B>dz</B>(k) * <A HREF="#dz_stretch_factor">dz_stretch_factor</A></P> |
---|
1384 | </UL> |
---|
1385 | <P>and used as spacings for the scalar levels (zu). The w-levels |
---|
1386 | are then defined as: |
---|
1387 | </P> |
---|
1388 | <UL> |
---|
1389 | <P>zw(k) = ( zu(k) + zu(k+1) ) * 0.5. |
---|
1390 | </P> |
---|
1391 | </UL> |
---|
1392 | <P>For <A HREF="#ocean">ocean</A> = .T., <B>dz_stretch_level </B>is |
---|
1393 | the height level (in m, negative) <B>below</B> which the grid is |
---|
1394 | to be stretched vertically. The vertical grid spacings <A HREF="#dz">dz</A> |
---|
1395 | below this level are calculated correspondingly as |
---|
1396 | </P> |
---|
1397 | <UL> |
---|
1398 | <P><B>dz</B>(k-1) = <B>dz</B>(k) * <A HREF="#dz_stretch_factor">dz_stretch_factor</A>.</P> |
---|
1399 | </UL> |
---|
1400 | </TD> |
---|
1401 | </TR> |
---|
1402 | <TR> |
---|
1403 | <TD WIDTH=126> |
---|
1404 | <P><A NAME="e_init"></A><B>e_init</B></P> |
---|
1405 | </TD> |
---|
1406 | <TD WIDTH=45> |
---|
1407 | <P>R</P> |
---|
1408 | </TD> |
---|
1409 | <TD WIDTH=159> |
---|
1410 | <P><I>0.0</I></P> |
---|
1411 | </TD> |
---|
1412 | <TD WIDTH=1280> |
---|
1413 | <P>Initial subgrid-scale TKE in m<SUP>2</SUP>s<SUP>-2</SUP>.<BR><BR>This |
---|
1414 | option prescribes an initial subgrid-scale TKE from which the |
---|
1415 | initial diffusion coefficients K<SUB>m</SUB> and K<SUB>h</SUB> |
---|
1416 | will be calculated if <B>e_init</B> is positive. This option only |
---|
1417 | has an effect if <A HREF="#km_constant">km_constant</A> is |
---|
1418 | not set.</P> |
---|
1419 | </TD> |
---|
1420 | </TR> |
---|
1421 | <TR> |
---|
1422 | <TD WIDTH=126> |
---|
1423 | <P><A NAME="e_min"></A><B>e_min</B></P> |
---|
1424 | </TD> |
---|
1425 | <TD WIDTH=45> |
---|
1426 | <P>R</P> |
---|
1427 | </TD> |
---|
1428 | <TD WIDTH=159> |
---|
1429 | <P><I>0.0</I></P> |
---|
1430 | </TD> |
---|
1431 | <TD WIDTH=1280> |
---|
1432 | <P>Minimum subgrid-scale TKE in m<SUP>2</SUP>s<SUP>-2</SUP>.<BR><BR>This |
---|
1433 | option adds artificial viscosity to the flow by ensuring that |
---|
1434 | the subgrid-scale TKE does not fall below the minimum threshold |
---|
1435 | <B>e_min</B>.</P> |
---|
1436 | </TD> |
---|
1437 | </TR> |
---|
1438 | <TR> |
---|
1439 | <TD WIDTH=126> |
---|
1440 | <P><A NAME="end_time_1d"></A><B>end_time_1d</B></P> |
---|
1441 | </TD> |
---|
1442 | <TD WIDTH=45> |
---|
1443 | <P>R</P> |
---|
1444 | </TD> |
---|
1445 | <TD WIDTH=159> |
---|
1446 | <P><I>864000.0</I></P> |
---|
1447 | </TD> |
---|
1448 | <TD WIDTH=1280> |
---|
1449 | <P>Time to be simulated for the 1d-model (in s). |
---|
1450 | </P> |
---|
1451 | <P>The default value corresponds to a simulated time of 10 days. |
---|
1452 | Usually, after such a period the inertia oscillations have |
---|
1453 | completely decayed and the solution of the 1d-model can be |
---|
1454 | regarded as stationary (see <A HREF="#damp_level_1d">damp_level_1d</A>). |
---|
1455 | This parameter is only in effect if the 1d-model is switched on |
---|
1456 | for the initialization of the 3d-model with <A HREF="#initializing_actions">initializing_actions</A> |
---|
1457 | = <I>'set_1d-model_profiles'</I>.</P> |
---|
1458 | </TD> |
---|
1459 | </TR> |
---|
1460 | <TR> |
---|
1461 | <TD WIDTH=126> |
---|
1462 | <P><A NAME="fft_method"></A><B>fft_method</B></P> |
---|
1463 | </TD> |
---|
1464 | <TD WIDTH=45> |
---|
1465 | <P>C * 20</P> |
---|
1466 | </TD> |
---|
1467 | <TD WIDTH=159> |
---|
1468 | <P><I>'system-</I><BR><I>specific'</I></P> |
---|
1469 | </TD> |
---|
1470 | <TD WIDTH=1280> |
---|
1471 | <P>FFT-method to be used.</P> |
---|
1472 | <P><BR>The fast fourier transformation (FFT) is used for solving |
---|
1473 | the perturbation pressure equation with a direct method (see |
---|
1474 | <A HREF="chapter_4.2.html#psolver">psolver</A>) and for |
---|
1475 | calculating power spectra (see optional software packages, section |
---|
1476 | <A HREF="chapter_4.2.html#spectra_package">4.2</A>).</P> |
---|
1477 | <P><BR>By default, system-specific, optimized routines from |
---|
1478 | external vendor libraries are used. However, these are available |
---|
1479 | only on certain computers and there are more or less severe |
---|
1480 | restrictions concerning the number of gridpoints to be used with |
---|
1481 | them.</P> |
---|
1482 | <P>There are two other PALM internal methods available on every |
---|
1483 | machine (their respective source code is part of the PALM source |
---|
1484 | code):</P> |
---|
1485 | <P>1.: The <B>Temperton</B>-method from Clive Temperton (ECWMF) |
---|
1486 | which is computationally very fast and switched on with <B>fft_method</B> |
---|
1487 | = <I>'temperton-algorithm'</I>. The number of horizontal |
---|
1488 | gridpoints (nx+1, ny+1) to be used with this method must be |
---|
1489 | composed of prime factors 2, 3 and 5.</P> |
---|
1490 | <P>2.: The <B>Singleton</B>-method which is very slow but has no |
---|
1491 | restrictions concerning the number of gridpoints to be used with, |
---|
1492 | switched on with <B>fft_method</B> = <I>'singleton-algorithm'</I>. |
---|
1493 | </P> |
---|
1494 | </TD> |
---|
1495 | </TR> |
---|
1496 | <TR> |
---|
1497 | <TD WIDTH=126> |
---|
1498 | <P><A NAME="galilei_transformation"></A><B>galilei_transformation</B></P> |
---|
1499 | </TD> |
---|
1500 | <TD WIDTH=45> |
---|
1501 | <P>L</P> |
---|
1502 | </TD> |
---|
1503 | <TD WIDTH=159> |
---|
1504 | <P><I>.F.</I></P> |
---|
1505 | </TD> |
---|
1506 | <TD WIDTH=1280> |
---|
1507 | <P>Application of a Galilei-transformation to the coordinate |
---|
1508 | system of the model.</P> |
---|
1509 | <P>With <B>galilei_transformation</B> = <I>.T.,</I> a so-called |
---|
1510 | Galilei-transformation is switched on which ensures that the |
---|
1511 | coordinate system of the model is moved along with the |
---|
1512 | geostrophical wind. Alternatively, the model domain can be moved |
---|
1513 | along with the averaged horizontal wind (see |
---|
1514 | <A HREF="#use_ug_for_galilei_tr">use_ug_for_galilei_tr</A>, this |
---|
1515 | can and will naturally change in time). With this method, |
---|
1516 | numerical inaccuracies of the Piascek - Williams - scheme |
---|
1517 | (concerns in particular the momentum advection) are minimized. |
---|
1518 | Beyond that, in the majority of cases the lower relative |
---|
1519 | velocities in the moved system permit a larger time step (<A HREF="#dt">dt</A>). |
---|
1520 | Switching the transformation on is only worthwhile if the |
---|
1521 | geostrophical wind (ug, vg) and the averaged horizontal wind |
---|
1522 | clearly deviate from the value 0. In each case, the distance the |
---|
1523 | coordinate system has been moved is written to the file |
---|
1524 | <A HREF="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</A>. |
---|
1525 | </P> |
---|
1526 | <P>Non-cyclic lateral boundary conditions (see <A HREF="#bc_lr">bc_lr</A> |
---|
1527 | and <A HREF="#bc_ns">bc_ns</A>), the specification of a gestrophic |
---|
1528 | wind that is not constant with height as well as e.g. stationary |
---|
1529 | inhomogeneities at the bottom boundary do not allow the use of |
---|
1530 | this transformation.</P> |
---|
1531 | </TD> |
---|
1532 | </TR> |
---|
1533 | <TR> |
---|
1534 | <TD WIDTH=126> |
---|
1535 | <P><A NAME="grid_matching"></A><B>grid_matching</B></P> |
---|
1536 | </TD> |
---|
1537 | <TD WIDTH=45> |
---|
1538 | <P>C * 6</P> |
---|
1539 | </TD> |
---|
1540 | <TD WIDTH=159> |
---|
1541 | <P><I>'strict'</I></P> |
---|
1542 | </TD> |
---|
1543 | <TD WIDTH=1280> |
---|
1544 | <P>Variable to adjust the subdomain sizes in parallel runs.<BR><BR>For |
---|
1545 | <B>grid_matching</B> = <I>'strict'</I>, the subdomains are forced |
---|
1546 | to have an identical size on all processors. In this case the |
---|
1547 | processor numbers in the respective directions of the virtual |
---|
1548 | processor net must fulfill certain divisor conditions concerning |
---|
1549 | the grid point numbers in the three directions (see <A HREF="#nx">nx</A>, |
---|
1550 | <A HREF="#ny">ny</A> and <A HREF="#nz">nz</A>). Advantage of this |
---|
1551 | method is that all PEs bear the same computational load.<BR><BR>There |
---|
1552 | is no such restriction by default, because then smaller subdomains |
---|
1553 | are allowed on those processors which form the right and/or north |
---|
1554 | boundary of the virtual processor grid. On all other processors |
---|
1555 | the subdomains are of same size. Whether smaller subdomains are |
---|
1556 | actually used, depends on the number of processors and the grid |
---|
1557 | point numbers used. Information about the respective settings are |
---|
1558 | given in file <A HREF="../../../../../../raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</A>.<BR><BR>When |
---|
1559 | using a multi-grid method for solving the Poisson equation (see |
---|
1560 | <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</A>) |
---|
1561 | only <B>grid_matching</B> = <I>'strict'</I> is allowed.<BR><BR><B>Note:</B><BR>In |
---|
1562 | some cases for small processor numbers there may be a very bad |
---|
1563 | load balancing among the processors which may reduce the |
---|
1564 | performance of the code.</P> |
---|
1565 | </TD> |
---|
1566 | </TR> |
---|
1567 | <TR> |
---|
1568 | <TD WIDTH=126> |
---|
1569 | <P><A NAME="humidity"></A><B>humidity</B></P> |
---|
1570 | </TD> |
---|
1571 | <TD WIDTH=45> |
---|
1572 | <P>L</P> |
---|
1573 | </TD> |
---|
1574 | <TD WIDTH=159> |
---|
1575 | <P><I>.F.</I></P> |
---|
1576 | </TD> |
---|
1577 | <TD WIDTH=1280> |
---|
1578 | <P>Parameter to switch on the prognostic equation for specific |
---|
1579 | humidity q.</P> |
---|
1580 | <P>The initial vertical profile of q can be set via parameters |
---|
1581 | <A HREF="#q_surface">q_surface</A>, <A HREF="#q_vertical_gradient">q_vertical_gradient</A> |
---|
1582 | and <A HREF="#q_vertical_gradient_level">q_vertical_gradient_level</A>. |
---|
1583 | Boundary conditions can be set via <A HREF="#q_surface_initial_change">q_surface_initial_change</A> |
---|
1584 | and <A HREF="#surface_waterflux">surface_waterflux</A>.</P> |
---|
1585 | <P>If the condensation scheme is switched on (<A HREF="#cloud_physics">cloud_physics</A> |
---|
1586 | = .TRUE.), q becomes the total liquid water content (sum of |
---|
1587 | specific humidity and liquid water content).</P> |
---|
1588 | </TD> |
---|
1589 | </TR> |
---|
1590 | <TR> |
---|
1591 | <TD WIDTH=126> |
---|
1592 | <P><A NAME="inflow_damping_height"></A><B>inflow_damping_height</B></P> |
---|
1593 | </TD> |
---|
1594 | <TD WIDTH=45> |
---|
1595 | <P>R</P> |
---|
1596 | </TD> |
---|
1597 | <TD WIDTH=159> |
---|
1598 | <P><I>from precursor run</I></P> |
---|
1599 | </TD> |
---|
1600 | <TD WIDTH=1280> |
---|
1601 | <P>Height below which the turbulence signal is used for turbulence |
---|
1602 | recycling (in m).<BR><BR>In case of a turbulent inflow (see |
---|
1603 | <A HREF="#turbulent_inflow">turbulent_inflow</A>), this parameter |
---|
1604 | defines the vertical thickness of the turbulent layer up to which |
---|
1605 | the turbulence extracted at the recycling plane (see |
---|
1606 | <A HREF="#recycling_width">recycling_width</A>) shall be imposed |
---|
1607 | to the inflow. Above this level the turbulence signal is linearly |
---|
1608 | damped to zero. The transition range within which the signal falls |
---|
1609 | to zero is given by the parameter <A HREF="#inflow_damping_width">inflow_damping_width</A>.<BR><BR>By |
---|
1610 | default, this height is set as the height of the convective |
---|
1611 | boundary layer as calculated from a precursor run. See <A HREF="chapter_3.9.html">chapter |
---|
1612 | 3.9</A> about proper settings for getting this CBL height from a |
---|
1613 | precursor run. |
---|
1614 | </P> |
---|
1615 | </TD> |
---|
1616 | </TR> |
---|
1617 | <TR> |
---|
1618 | <TD WIDTH=126> |
---|
1619 | <P><A NAME="inflow_damping_width"></A><B>inflow_damping_width</B></P> |
---|
1620 | </TD> |
---|
1621 | <TD WIDTH=45> |
---|
1622 | <P>R</P> |
---|
1623 | </TD> |
---|
1624 | <TD WIDTH=159> |
---|
1625 | <P><I>0.1 * <A HREF="#inflow_damping_height">inflow_damping</A></I><A HREF="#inflow_damping_height"><BR><I>_height</I></A></P> |
---|
1626 | </TD> |
---|
1627 | <TD WIDTH=1280> |
---|
1628 | <P>Transition range within which the turbulance signal is damped |
---|
1629 | to zero (in m).<BR><BR>See <A HREF="#inflow_damping_height">inflow_damping_height</A> |
---|
1630 | for explanation.</P> |
---|
1631 | </TD> |
---|
1632 | </TR> |
---|
1633 | <TR> |
---|
1634 | <TD WIDTH=126> |
---|
1635 | <P><A NAME="inflow_disturbance_begin"></A><B>inflow_disturbance_<BR>begin</B></P> |
---|
1636 | </TD> |
---|
1637 | <TD WIDTH=45> |
---|
1638 | <P>I</P> |
---|
1639 | </TD> |
---|
1640 | <TD WIDTH=159> |
---|
1641 | <P><I>MIN(10,</I><BR><I>nx/2 or ny/2)</I></P> |
---|
1642 | </TD> |
---|
1643 | <TD WIDTH=1280> |
---|
1644 | <P>Lower limit of the horizontal range for which random |
---|
1645 | perturbations are to be imposed on the horizontal velocity field |
---|
1646 | (gridpoints).<BR><BR>If non-cyclic lateral boundary conditions are |
---|
1647 | used (see <A HREF="#bc_lr">bc_lr</A> or <A HREF="#bc_ns">bc_ns</A>), |
---|
1648 | this parameter gives the gridpoint number (counted horizontally |
---|
1649 | from the inflow) from which on perturbations are imposed on |
---|
1650 | the horizontal velocity field. Perturbations must be switched on |
---|
1651 | with parameter <A HREF="chapter_4.2.html#create_disturbances">create_disturbances</A>.</P> |
---|
1652 | </TD> |
---|
1653 | </TR> |
---|
1654 | <TR> |
---|
1655 | <TD WIDTH=126> |
---|
1656 | <P><A NAME="inflow_disturbance_end"></A><B>inflow_disturbance_<BR>end</B></P> |
---|
1657 | </TD> |
---|
1658 | <TD WIDTH=45> |
---|
1659 | <P>I</P> |
---|
1660 | </TD> |
---|
1661 | <TD WIDTH=159> |
---|
1662 | <P><I>MIN(100,</I><BR><I>3/4*nx or</I><BR><I>3/4*ny)</I></P> |
---|
1663 | </TD> |
---|
1664 | <TD WIDTH=1280> |
---|
1665 | <P>Upper limit of the horizontal range for which random |
---|
1666 | perturbations are to be imposed on the horizontal velocity field |
---|
1667 | (gridpoints).<BR><BR>If non-cyclic lateral boundary conditions are |
---|
1668 | used (see <A HREF="#bc_lr">bc_lr</A> or <A HREF="#bc_ns">bc_ns</A>), |
---|
1669 | this parameter gives the gridpoint number (counted horizontally |
---|
1670 | from the inflow) unto which perturbations are imposed on the |
---|
1671 | horizontal velocity field. Perturbations must be switched on with |
---|
1672 | parameter <A HREF="chapter_4.2.html#create_disturbances">create_disturbances</A>.</P> |
---|
1673 | </TD> |
---|
1674 | </TR> |
---|
1675 | <TR> |
---|
1676 | <TD WIDTH=126> |
---|
1677 | <P><A NAME="initializing_actions"></A><B>initializing_actions</B></P> |
---|
1678 | </TD> |
---|
1679 | <TD WIDTH=45> |
---|
1680 | <P>C * 100</P> |
---|
1681 | </TD> |
---|
1682 | <TD WIDTH=159> |
---|
1683 | <P><BR> |
---|
1684 | </P> |
---|
1685 | </TD> |
---|
1686 | <TD WIDTH=1280> |
---|
1687 | <P STYLE="font-style: normal">Initialization actions to be carried |
---|
1688 | out. |
---|
1689 | </P> |
---|
1690 | <P STYLE="font-style: normal">This parameter does not have a |
---|
1691 | default value and therefore must be assigned with each model run. |
---|
1692 | For restart runs <B>initializing_actions</B> = <I>'read_restart_data'</I> |
---|
1693 | must be set. For the initial run of a job chain the following |
---|
1694 | values are allowed: |
---|
1695 | </P> |
---|
1696 | <P STYLE="font-style: normal"><I>'set_constant_profiles'</I> |
---|
1697 | </P> |
---|
1698 | <UL> |
---|
1699 | <P>A horizontal wind profile consisting of linear sections (see |
---|
1700 | <A HREF="#ug_surface">ug_surface</A>, <A HREF="#ug_vertical_gradient">ug_vertical_gradient</A>, |
---|
1701 | <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A> |
---|
1702 | and <A HREF="#vg_surface">vg_surface</A>, <A HREF="#vg_vertical_gradient">vg_vertical_gradient</A>, |
---|
1703 | <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A>, |
---|
1704 | respectively) as well as a vertical temperature (humidity) |
---|
1705 | profile consisting of linear sections (see <A HREF="#pt_surface">pt_surface</A>, |
---|
1706 | <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A>, |
---|
1707 | <A HREF="#q_surface">q_surface</A> and <A HREF="#q_vertical_gradient">q_vertical_gradient</A>) |
---|
1708 | are assumed as initial profiles. The subgrid-scale TKE is set to |
---|
1709 | 0 but K<SUB>m</SUB> and K<SUB>h</SUB> are set to very small |
---|
1710 | values because otherwise no TKE would be generated.</P> |
---|
1711 | </UL> |
---|
1712 | <P><I>'set_1d-model_profiles' </I> |
---|
1713 | </P> |
---|
1714 | <UL> |
---|
1715 | <P>The arrays of the 3d-model are initialized with the |
---|
1716 | (stationary) solution of the 1d-model. These are the variables e, |
---|
1717 | kh, km, u, v and with Prandtl layer switched on rif, us, usws, |
---|
1718 | vsws. The temperature (humidity) profile consisting of linear |
---|
1719 | sections is set as for 'set_constant_profiles' and assumed as |
---|
1720 | constant in time within the 1d-model. For steering of the |
---|
1721 | 1d-model a set of parameters with suffix "_1d" (e.g. |
---|
1722 | <A HREF="#end_time_1d">end_time_1d</A>, <A HREF="#damp_level_1d">damp_level_1d</A>) |
---|
1723 | is available.</P> |
---|
1724 | </UL> |
---|
1725 | <P><I>'by_user'</I></P> |
---|
1726 | <P STYLE="margin-left: 0.42in">The initialization of the arrays of |
---|
1727 | the 3d-model is under complete control of the user and has to be |
---|
1728 | done in routine <A HREF="chapter_3.5.1.html#user_init_3d_model">user_init_3d_model</A> |
---|
1729 | of the user-interface.</P> |
---|
1730 | <P><I>'initialize_vortex'</I> |
---|
1731 | </P> |
---|
1732 | <P STYLE="margin-left: 0.42in">The initial velocity field of the |
---|
1733 | 3d-model corresponds to a Rankine-vortex with vertical axis. This |
---|
1734 | setting may be used to test advection schemes. Free-slip boundary |
---|
1735 | conditions for u and v (see <A HREF="#bc_uv_b">bc_uv_b</A>, |
---|
1736 | <A HREF="#bc_uv_t">bc_uv_t</A>) are necessary. In order not to |
---|
1737 | distort the vortex, an initial horizontal wind profile constant |
---|
1738 | with height is necessary (to be set by <B>initializing_actions</B> |
---|
1739 | = <I>'set_constant_profiles'</I>) and some other conditions have |
---|
1740 | to be met (neutral stratification, diffusion must be switched off, |
---|
1741 | see <A HREF="#km_constant">km_constant</A>). The center of the |
---|
1742 | vortex is located at jc = (nx+1)/2. It extends from k = 0 to k = |
---|
1743 | nz+1. Its radius is 8 * <A HREF="#dx">dx</A> and the exponentially |
---|
1744 | decaying part ranges to 32 * <A HREF="#dx">dx</A> (see |
---|
1745 | init_rankine.f90). |
---|
1746 | </P> |
---|
1747 | <P><I>'initialize_ptanom'</I> |
---|
1748 | </P> |
---|
1749 | <UL> |
---|
1750 | <P>A 2d-Gauss-like shape disturbance (x,y) is added to the |
---|
1751 | initial temperature field with radius 10.0 * <A HREF="#dx">dx</A> |
---|
1752 | and center at jc = (nx+1)/2. This may be used for tests of scalar |
---|
1753 | advection schemes (see <A HREF="#scalar_advec">scalar_advec</A>). |
---|
1754 | Such tests require a horizontal wind profile constant with hight |
---|
1755 | and diffusion switched off (see <I>'initialize_vortex'</I>). |
---|
1756 | Additionally, the buoyancy term must be switched of in the |
---|
1757 | equation of motion for w (this requires the user to comment |
---|
1758 | out the call of <FONT FACE="monospace">buoyancy</FONT> in the |
---|
1759 | source code of <FONT FACE="monospace">prognostic_equations.f90</FONT>).</P> |
---|
1760 | </UL> |
---|
1761 | <P><I>'cyclic_fill'</I></P> |
---|
1762 | <P STYLE="margin-left: 0.42in"><SPAN STYLE="font-style: normal">Here, |
---|
1763 | 3d-data from a precursor run are read by the initial (main) run. |
---|
1764 | The precursor run is allowed to have a smaller domain along x and |
---|
1765 | y compared with the main run. Also, different numbers of |
---|
1766 | processors can be used for these two runs. Limitations are that |
---|
1767 | the precursor run must use cyclic horizontal boundary conditions |
---|
1768 | and that the number of vertical grid points, <A HREF="#nz">nz</A>, |
---|
1769 | must be same for the precursor run and the main run. If the total |
---|
1770 | domain of the main run is larger than that of the precursor run, |
---|
1771 | the domain is filled by cyclic repetition of the (cyclic) |
---|
1772 | precursor data. This initialization method is recommended if a |
---|
1773 | turbulent inflow is used (see <A HREF="#turbulent_inflow">turbulent_inflow</A>). |
---|
1774 | 3d-data must be made available to the run by activating an |
---|
1775 | appropriate file connection statement for local file BININ. See |
---|
1776 | <A HREF="chapter_3.9.html">chapter 3.9</A> for more details, where |
---|
1777 | usage of a turbulent inflow is explained. </SPAN> |
---|
1778 | </P> |
---|
1779 | <P STYLE="font-style: normal">Values may be combined, e.g. |
---|
1780 | <B>initializing_actions</B> = <I>'set_constant_profiles |
---|
1781 | initialize_vortex'</I>, but the values of <I>'set_constant_profiles'</I>, |
---|
1782 | <I>'set_1d-model_profiles'</I> , and <I>'by_user'</I> must not be |
---|
1783 | given at the same time.</P> |
---|
1784 | </TD> |
---|
1785 | </TR> |
---|
1786 | <TR> |
---|
1787 | <TD WIDTH=126> |
---|
1788 | <P><A NAME="km_constant"></A><B>km_constant</B></P> |
---|
1789 | </TD> |
---|
1790 | <TD WIDTH=45> |
---|
1791 | <P>R</P> |
---|
1792 | </TD> |
---|
1793 | <TD WIDTH=159> |
---|
1794 | <P><I>variable<BR>(computed from TKE)</I></P> |
---|
1795 | </TD> |
---|
1796 | <TD WIDTH=1280> |
---|
1797 | <P>Constant eddy diffusivities are used (laminar simulations). |
---|
1798 | </P> |
---|
1799 | <P>If this parameter is specified, both in the 1d and in the |
---|
1800 | 3d-model constant values for the eddy diffusivities are used in |
---|
1801 | space and time with K<SUB>m</SUB> = <B>km_constant</B> and K<SUB>h</SUB> |
---|
1802 | = K<SUB>m</SUB> / <A HREF="chapter_4.2.html#prandtl_number">prandtl_number</A>. |
---|
1803 | The prognostic equation for the subgrid-scale TKE is switched off. |
---|
1804 | Constant eddy diffusivities are only allowed with the Prandtl |
---|
1805 | layer (<A HREF="#prandtl_layer">prandtl_layer</A>) switched off.</P> |
---|
1806 | </TD> |
---|
1807 | </TR> |
---|
1808 | <TR> |
---|
1809 | <TD WIDTH=126> |
---|
1810 | <P><A NAME="km_damp_max"></A><B>km_damp_max</B></P> |
---|
1811 | </TD> |
---|
1812 | <TD WIDTH=45> |
---|
1813 | <P>R</P> |
---|
1814 | </TD> |
---|
1815 | <TD WIDTH=159> |
---|
1816 | <P><I>0.5*(dx or dy)</I></P> |
---|
1817 | </TD> |
---|
1818 | <TD WIDTH=1280> |
---|
1819 | <P>Maximum diffusivity used for filtering the velocity field in |
---|
1820 | the vicinity of the outflow (in m<SUP>2</SUP>/s).<BR><BR>When |
---|
1821 | using non-cyclic lateral boundaries (see <A HREF="#bc_lr">bc_lr</A> |
---|
1822 | or <A HREF="#bc_ns">bc_ns</A>), a smoothing has to be applied to |
---|
1823 | the velocity field in the vicinity of the outflow in order to |
---|
1824 | suppress any reflections of outgoing disturbances. Smoothing is |
---|
1825 | done by increasing the eddy diffusivity along the horizontal |
---|
1826 | direction which is perpendicular to the outflow boundary. Only |
---|
1827 | velocity components parallel to the outflow boundary are filtered |
---|
1828 | (e.g. v and w, if the outflow is along x). Damping is applied from |
---|
1829 | the bottom to the top of the domain.<BR><BR>The horizontal range |
---|
1830 | of the smoothing is controlled by <A HREF="#outflow_damping_width">outflow_damping_width</A> |
---|
1831 | which defines the number of gridpoints (counted from the outflow |
---|
1832 | boundary) from where on the smoothing is applied. Starting from |
---|
1833 | that point, the eddy diffusivity is linearly increased (from zero |
---|
1834 | to its maximum value given by <B>km_damp_max</B>) until half of |
---|
1835 | the damping range width, from where it remains constant up to the |
---|
1836 | outflow boundary. If at a certain grid point the eddy diffusivity |
---|
1837 | calculated from the flow field is larger than as described above, |
---|
1838 | it is used instead.<BR><BR>The default value of <B>km_damp_max</B> |
---|
1839 | has been empirically proven to be sufficient.</P> |
---|
1840 | </TD> |
---|
1841 | </TR> |
---|
1842 | <TR> |
---|
1843 | <TD WIDTH=126> |
---|
1844 | <P><A NAME="lad_surface"></A><B>lad_surface</B></P> |
---|
1845 | </TD> |
---|
1846 | <TD WIDTH=45> |
---|
1847 | <P>R</P> |
---|
1848 | </TD> |
---|
1849 | <TD WIDTH=159> |
---|
1850 | <P><I>0.0</I></P> |
---|
1851 | </TD> |
---|
1852 | <TD WIDTH=1280> |
---|
1853 | <P>Surface value of the leaf area density (in m<SUP>2</SUP>/m<SUP>3</SUP>).<BR><BR>This |
---|
1854 | parameter assigns the value of the leaf area density <B>lad</B> at |
---|
1855 | the surface (k=0)<B>.</B> Starting from this value, the leaf area |
---|
1856 | density profile is constructed with <A HREF="#lad_vertical_gradient">lad_vertical_gradient</A> |
---|
1857 | and <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level |
---|
1858 | </A>.</P> |
---|
1859 | </TD> |
---|
1860 | </TR> |
---|
1861 | <TR> |
---|
1862 | <TD WIDTH=126> |
---|
1863 | <P><A NAME="lad_vertical_gradient"></A><B>lad_vertical_gradient</B></P> |
---|
1864 | </TD> |
---|
1865 | <TD WIDTH=45> |
---|
1866 | <P>R (10)</P> |
---|
1867 | </TD> |
---|
1868 | <TD WIDTH=159> |
---|
1869 | <P><I>10 * 0.0</I></P> |
---|
1870 | </TD> |
---|
1871 | <TD WIDTH=1280> |
---|
1872 | <P>Gradient(s) of the leaf area density (in m<SUP>2</SUP>/m<SUP>4</SUP>).</P> |
---|
1873 | <P>This leaf area density gradient holds starting from the height |
---|
1874 | level defined by <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level</A> |
---|
1875 | (precisely: for all uv levels k where zu(k) > |
---|
1876 | lad_vertical_gradient_level, lad(k) is set: lad(k) = lad(k-1) + |
---|
1877 | dzu(k) * <B>lad_vertical_gradient</B>) up to the level defined by |
---|
1878 | <A HREF="#pch_index">pch_index</A>. Above that level lad(k) will |
---|
1879 | automatically set to 0.0. A total of 10 different gradients for 11 |
---|
1880 | height intervals (10 intervals if <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level</A>(1) |
---|
1881 | = <I>0.0</I>) can be assigned. The leaf area density at the |
---|
1882 | surface is assigned via <A HREF="#lad_surface">lad_surface</A>. |
---|
1883 | </P> |
---|
1884 | </TD> |
---|
1885 | </TR> |
---|
1886 | <TR> |
---|
1887 | <TD WIDTH=126> |
---|
1888 | <P><A NAME="lad_vertical_gradient_level"></A><B>lad_vertical_gradient_level</B></P> |
---|
1889 | </TD> |
---|
1890 | <TD WIDTH=45> |
---|
1891 | <P>R (10)</P> |
---|
1892 | </TD> |
---|
1893 | <TD WIDTH=159> |
---|
1894 | <P><I>10 * 0.0</I></P> |
---|
1895 | </TD> |
---|
1896 | <TD WIDTH=1280> |
---|
1897 | <P>Height level from which on the gradient of the leaf area |
---|
1898 | density defined by <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level</A> |
---|
1899 | is effective (in m).<BR><BR>The height levels have to be assigned |
---|
1900 | in ascending order. The default values result in a leaf area |
---|
1901 | density that is constant with height uup to the top of the plant |
---|
1902 | canopy layer defined by <A HREF="#pch_index">pch_index</A>. For |
---|
1903 | the piecewise construction of temperature profiles see |
---|
1904 | <A HREF="#lad_vertical_gradient">lad_vertical_gradient</A>.</P> |
---|
1905 | </TD> |
---|
1906 | </TR> |
---|
1907 | <TR> |
---|
1908 | <TD WIDTH=126> |
---|
1909 | <P><A NAME="leaf_surface_concentration"></A><B>leaf_surface_concentration</B></P> |
---|
1910 | </TD> |
---|
1911 | <TD WIDTH=45> |
---|
1912 | <P>R</P> |
---|
1913 | </TD> |
---|
1914 | <TD WIDTH=159> |
---|
1915 | <P><I>0.0</I></P> |
---|
1916 | </TD> |
---|
1917 | <TD WIDTH=1280> |
---|
1918 | <P>Concentration of a passive scalar at the surface of a leaf (in |
---|
1919 | K m/s).<BR><BR>This parameter is only of importance in cases in |
---|
1920 | that both, <A HREF="#plant_canopy">plant_canopy</A> and |
---|
1921 | <A HREF="#passive_scalar">passive_scalar</A>, are set <I>.T.</I>. |
---|
1922 | The value of the concentration of a passive scalar at the surface |
---|
1923 | of a leaf is required for the parametrisation of the sources and |
---|
1924 | sinks of scalar concentration due to the canopy.</P> |
---|
1925 | </TD> |
---|
1926 | </TR> |
---|
1927 | <TR> |
---|
1928 | <TD WIDTH=126> |
---|
1929 | <P><A NAME="long_filter_factor"></A><B>long_filter_factor</B></P> |
---|
1930 | </TD> |
---|
1931 | <TD WIDTH=45> |
---|
1932 | <P>R</P> |
---|
1933 | </TD> |
---|
1934 | <TD WIDTH=159> |
---|
1935 | <P><I>0.0</I></P> |
---|
1936 | </TD> |
---|
1937 | <TD WIDTH=1280> |
---|
1938 | <P>Filter factor for the so-called Long-filter.</P> |
---|
1939 | <P><BR>This filter very efficiently eliminates 2-delta-waves |
---|
1940 | sometimes cauesed by the upstream-spline scheme (see Mahrer and |
---|
1941 | Pielke, 1978: Mon. Wea. Rev., 106, 818-830). It works in all three |
---|
1942 | directions in space. A value of <B>long_filter_factor</B> = <I>0.01</I> |
---|
1943 | sufficiently removes the small-scale waves without affecting the |
---|
1944 | longer waves.</P> |
---|
1945 | <P>By default, the filter is switched off (= <I>0.0</I>). It is |
---|
1946 | exclusively applied to the tendencies calculated by the |
---|
1947 | upstream-spline scheme (see <A HREF="#momentum_advec">momentum_advec</A> |
---|
1948 | and <A HREF="#scalar_advec">scalar_advec</A>), not to the |
---|
1949 | prognostic variables themselves. At the bottom and top boundary of |
---|
1950 | the model domain the filter effect for vertical 2-delta-waves is |
---|
1951 | reduced. There, the amplitude of these waves is only reduced by |
---|
1952 | approx. 50%, otherwise by nearly 100%. <BR>Filter factors |
---|
1953 | with values > <I>0.01</I> also reduce the amplitudes of waves |
---|
1954 | with wavelengths longer than 2-delta (see the paper by Mahrer and |
---|
1955 | Pielke, quoted above). |
---|
1956 | </P> |
---|
1957 | </TD> |
---|
1958 | </TR> |
---|
1959 | <TR> |
---|
1960 | <TD WIDTH=126> |
---|
1961 | <P><A NAME="loop_optimization"></A><B>loop_optimization</B></P> |
---|
1962 | </TD> |
---|
1963 | <TD WIDTH=45> |
---|
1964 | <P>C*16</P> |
---|
1965 | </TD> |
---|
1966 | <TD WIDTH=159> |
---|
1967 | <P><I>see right</I></P> |
---|
1968 | </TD> |
---|
1969 | <TD WIDTH=1280> |
---|
1970 | <P>Method used to optimize loops for solving the prognostic |
---|
1971 | equations .<BR><BR>By default, the optimization method depends on |
---|
1972 | the host on which PALM is running. On machines with vector-type |
---|
1973 | CPUs, single 3d-loops are used to calculate each tendency term of |
---|
1974 | each prognostic equation, while on all other machines, all |
---|
1975 | prognostic equations are solved within one big loop over the two |
---|
1976 | horizontal indices <FONT FACE="Courier New, Courier, monospace">i |
---|
1977 | </FONT>and <FONT FACE="Courier New, Courier, monospace">j </FONT>(giving |
---|
1978 | a good cache uitilization).<BR><BR>The default behaviour can be |
---|
1979 | changed by setting either <B>loop_optimization</B> = <I>'vector'</I> |
---|
1980 | or <B>loop_optimization</B> = <I>'cache'</I>.</P> |
---|
1981 | </TD> |
---|
1982 | </TR> |
---|
1983 | <TR> |
---|
1984 | <TD WIDTH=126> |
---|
1985 | <P><A NAME="mixing_length_1d"></A><B>mixing_length_1d</B></P> |
---|
1986 | </TD> |
---|
1987 | <TD WIDTH=45> |
---|
1988 | <P>C*20</P> |
---|
1989 | </TD> |
---|
1990 | <TD WIDTH=159> |
---|
1991 | <P><I>'as_in_3d_</I><BR><I>model'</I></P> |
---|
1992 | </TD> |
---|
1993 | <TD WIDTH=1280> |
---|
1994 | <P>Mixing length used in the 1d-model.<BR><BR>By default the |
---|
1995 | mixing length is calculated as in the 3d-model (i.e. it depends on |
---|
1996 | the grid spacing).<BR><BR>By setting <B>mixing_length_1d</B> = |
---|
1997 | <I>'blackadar'</I>, the so-called Blackadar mixing length is used |
---|
1998 | (l = kappa * z / ( 1 + kappa * z / lambda ) with the limiting |
---|
1999 | value lambda = 2.7E-4 * u_g / f).</P> |
---|
2000 | </TD> |
---|
2001 | </TR> |
---|
2002 | <TR> |
---|
2003 | <TD WIDTH=126> |
---|
2004 | <P><A NAME="momentum_advec"></A><B>momentum_advec</B></P> |
---|
2005 | </TD> |
---|
2006 | <TD WIDTH=45> |
---|
2007 | <P>C * 10</P> |
---|
2008 | </TD> |
---|
2009 | <TD WIDTH=159> |
---|
2010 | <P><I>'pw-scheme'</I></P> |
---|
2011 | </TD> |
---|
2012 | <TD WIDTH=1280> |
---|
2013 | <P>Advection scheme to be used for the momentum equations.<BR><BR>The |
---|
2014 | user can choose between the following schemes:<BR> <BR><BR><I>'pw-scheme'</I></P> |
---|
2015 | <P STYLE="margin-left: 0.42in">The scheme of Piascek and Williams |
---|
2016 | (1970, J. Comp. Phys., 6, 392-405) with central differences in the |
---|
2017 | form C3 is used.<BR>If intermediate Euler-timesteps are carried |
---|
2018 | out in case of <A HREF="#timestep_scheme">timestep_scheme</A> = |
---|
2019 | <I>'leapfrog+euler'</I> the advection scheme is - for the |
---|
2020 | Euler-timestep - automatically switched to an upstream-scheme.</P> |
---|
2021 | <P><I>'ups-scheme'</I></P> |
---|
2022 | <P STYLE="margin-left: 0.42in">The upstream-spline scheme is used |
---|
2023 | (see Mahrer and Pielke, 1978: Mon. Wea. Rev., 106, 818-830). In |
---|
2024 | opposite to the Piascek-Williams scheme, this is characterized by |
---|
2025 | much better numerical features (less numerical diffusion, better |
---|
2026 | preservation of flow structures, e.g. vortices), but |
---|
2027 | computationally it is much more expensive. In addition, the use of |
---|
2028 | the Euler-timestep scheme is mandatory (<A HREF="#timestep_scheme">timestep_scheme</A> |
---|
2029 | = <I>'euler'</I>), i.e. the timestep accuracy is only of first |
---|
2030 | order. For this reason the advection of scalar variables (see |
---|
2031 | <A HREF="#scalar_advec">scalar_advec</A>) should then also be |
---|
2032 | carried out with the upstream-spline scheme, because otherwise the |
---|
2033 | scalar variables would be subject to large numerical diffusion due |
---|
2034 | to the upstream scheme. |
---|
2035 | </P> |
---|
2036 | <P STYLE="margin-left: 0.42in">Since the cubic splines used tend |
---|
2037 | to overshoot under certain circumstances, this effect must be |
---|
2038 | adjusted by suitable filtering and smoothing (see |
---|
2039 | <A HREF="#cut_spline_overshoot">cut_spline_overshoot</A>, |
---|
2040 | <A HREF="#long_filter_factor">long_filter_factor</A>, |
---|
2041 | <A HREF="#ups_limit_pt">ups_limit_pt</A>, <A HREF="#ups_limit_u">ups_limit_u</A>, |
---|
2042 | <A HREF="#ups_limit_v">ups_limit_v</A>, <A HREF="#ups_limit_w">ups_limit_w</A>). |
---|
2043 | This is always neccessary for runs with stable stratification, |
---|
2044 | even if this stratification appears only in parts of the model |
---|
2045 | domain.</P> |
---|
2046 | <P STYLE="margin-left: 0.42in">With stable stratification the |
---|
2047 | upstream-spline scheme also produces gravity waves with large |
---|
2048 | amplitude, which must be suitably damped (see |
---|
2049 | <A HREF="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</A>).<BR><BR><B>Important: |
---|
2050 | </B>The upstream-spline scheme is not implemented for |
---|
2051 | humidity and passive scalars (see <A HREF="#humidity">humidity</A> |
---|
2052 | and <A HREF="#passive_scalar">passive_scalar</A>) and requires the |
---|
2053 | use of a 2d-domain-decomposition. The last conditions severely |
---|
2054 | restricts code optimization on several machines leading to very |
---|
2055 | long execution times! The scheme is also not allowed for |
---|
2056 | non-cyclic lateral boundary conditions (see <A HREF="#bc_lr">bc_lr</A> |
---|
2057 | and <A HREF="#bc_ns">bc_ns</A>).</P> |
---|
2058 | </TD> |
---|
2059 | </TR> |
---|
2060 | <TR> |
---|
2061 | <TD WIDTH=126> |
---|
2062 | <P><A NAME="netcdf_precision"></A><B>netcdf_precision</B></P> |
---|
2063 | </TD> |
---|
2064 | <TD WIDTH=45> |
---|
2065 | <P>C*20<BR>(10)</P> |
---|
2066 | </TD> |
---|
2067 | <TD WIDTH=159> |
---|
2068 | <P><I>single preci-</I><BR><I>sion for all</I><BR><I>output |
---|
2069 | quan-</I><BR><I>tities</I></P> |
---|
2070 | </TD> |
---|
2071 | <TD WIDTH=1280> |
---|
2072 | <P>Defines the accuracy of the NetCDF output.<BR><BR>By default, |
---|
2073 | all NetCDF output data (see <A HREF="chapter_4.2.html#data_output_format">data_output_format</A>) |
---|
2074 | have single precision (4 byte) accuracy. Double precision (8 |
---|
2075 | byte) can be choosen alternatively.<BR>Accuracy for the different |
---|
2076 | output data (cross sections, 3d-volume data, spectra, etc.) can be |
---|
2077 | set independently.<BR><I>'<out>_NF90_REAL4'</I> (single |
---|
2078 | precision) or <I>'<out>_NF90_REAL8'</I> (double precision) |
---|
2079 | are the two principally allowed values for <B>netcdf_precision</B>, |
---|
2080 | where the string <I>'<out>' </I>can be chosen out of the |
---|
2081 | following list:</P> |
---|
2082 | <TABLE BORDER=1 CELLPADDING=2 CELLSPACING=2> |
---|
2083 | <TR> |
---|
2084 | <TD> |
---|
2085 | <P><I>'xy'</I></P> |
---|
2086 | </TD> |
---|
2087 | <TD> |
---|
2088 | <P>horizontal cross section</P> |
---|
2089 | </TD> |
---|
2090 | </TR> |
---|
2091 | <TR> |
---|
2092 | <TD> |
---|
2093 | <P><I>'xz'</I></P> |
---|
2094 | </TD> |
---|
2095 | <TD> |
---|
2096 | <P>vertical (xz) cross section</P> |
---|
2097 | </TD> |
---|
2098 | </TR> |
---|
2099 | <TR> |
---|
2100 | <TD> |
---|
2101 | <P><I>'yz'</I></P> |
---|
2102 | </TD> |
---|
2103 | <TD> |
---|
2104 | <P>vertical (yz) cross section</P> |
---|
2105 | </TD> |
---|
2106 | </TR> |
---|
2107 | <TR> |
---|
2108 | <TD> |
---|
2109 | <P><I>'2d'</I></P> |
---|
2110 | </TD> |
---|
2111 | <TD> |
---|
2112 | <P>all cross sections</P> |
---|
2113 | </TD> |
---|
2114 | </TR> |
---|
2115 | <TR> |
---|
2116 | <TD> |
---|
2117 | <P><I>'3d'</I></P> |
---|
2118 | </TD> |
---|
2119 | <TD> |
---|
2120 | <P>volume data</P> |
---|
2121 | </TD> |
---|
2122 | </TR> |
---|
2123 | <TR> |
---|
2124 | <TD> |
---|
2125 | <P><I>'pr'</I></P> |
---|
2126 | </TD> |
---|
2127 | <TD> |
---|
2128 | <P>vertical profiles</P> |
---|
2129 | </TD> |
---|
2130 | </TR> |
---|
2131 | <TR> |
---|
2132 | <TD> |
---|
2133 | <P><I>'ts'</I></P> |
---|
2134 | </TD> |
---|
2135 | <TD> |
---|
2136 | <P>time series, particle time series</P> |
---|
2137 | </TD> |
---|
2138 | </TR> |
---|
2139 | <TR> |
---|
2140 | <TD> |
---|
2141 | <P><I>'sp'</I></P> |
---|
2142 | </TD> |
---|
2143 | <TD> |
---|
2144 | <P>spectra</P> |
---|
2145 | </TD> |
---|
2146 | </TR> |
---|
2147 | <TR> |
---|
2148 | <TD> |
---|
2149 | <P><I>'prt'</I></P> |
---|
2150 | </TD> |
---|
2151 | <TD> |
---|
2152 | <P>particles</P> |
---|
2153 | </TD> |
---|
2154 | </TR> |
---|
2155 | <TR> |
---|
2156 | <TD> |
---|
2157 | <P><I>'all'</I></P> |
---|
2158 | </TD> |
---|
2159 | <TD> |
---|
2160 | <P>all output quantities</P> |
---|
2161 | </TD> |
---|
2162 | </TR> |
---|
2163 | </TABLE> |
---|
2164 | <P><BR><B>Example:</B><BR>If all cross section data and the |
---|
2165 | particle data shall be output in double precision and all other |
---|
2166 | quantities in single precision, then <B>netcdf_precision</B> = |
---|
2167 | <I>'2d_NF90_REAL8'</I>, <I>'prt_NF90_REAL8'</I> has to be |
---|
2168 | assigned.</P> |
---|
2169 | </TD> |
---|
2170 | </TR> |
---|
2171 | <TR> |
---|
2172 | <TD WIDTH=126> |
---|
2173 | <P><A NAME="nsor_ini"></A><B>nsor_ini</B></P> |
---|
2174 | </TD> |
---|
2175 | <TD WIDTH=45> |
---|
2176 | <P>I</P> |
---|
2177 | </TD> |
---|
2178 | <TD WIDTH=159> |
---|
2179 | <P><I>100</I></P> |
---|
2180 | </TD> |
---|
2181 | <TD WIDTH=1280> |
---|
2182 | <P>Initial number of iterations with the SOR algorithm. |
---|
2183 | </P> |
---|
2184 | <P>This parameter is only effective if the SOR algorithm was |
---|
2185 | selected as the pressure solver scheme (<A HREF="chapter_4.2.html#psolver">psolver</A> |
---|
2186 | = <I>'sor'</I>) and specifies the number of initial iterations of |
---|
2187 | the SOR scheme (at t = 0). The number of subsequent iterations at |
---|
2188 | the following timesteps is determined with the parameter <A HREF="#nsor">nsor</A>. |
---|
2189 | Usually <B>nsor</B> < <B>nsor_ini</B>, since in each case |
---|
2190 | subsequent calls to <A HREF="chapter_4.2.html#psolver">psolver</A> |
---|
2191 | use the solution of the previous call as initial value. Suitable |
---|
2192 | test runs should determine whether sufficient convergence of the |
---|
2193 | solution is obtained with the default value and if necessary the |
---|
2194 | value of <B>nsor_ini</B> should be changed.</P> |
---|
2195 | </TD> |
---|
2196 | </TR> |
---|
2197 | <TR> |
---|
2198 | <TD WIDTH=126> |
---|
2199 | <P><A NAME="nx"></A><B>nx</B></P> |
---|
2200 | </TD> |
---|
2201 | <TD WIDTH=45> |
---|
2202 | <P>I</P> |
---|
2203 | </TD> |
---|
2204 | <TD WIDTH=159> |
---|
2205 | <P><BR><BR> |
---|
2206 | </P> |
---|
2207 | </TD> |
---|
2208 | <TD WIDTH=1280> |
---|
2209 | <P>Number of grid points in x-direction. |
---|
2210 | </P> |
---|
2211 | <P>A value for this parameter must be assigned. Since the lower |
---|
2212 | array bound in PALM starts with i = 0, the actual number of grid |
---|
2213 | points is equal to <B>nx+1</B>. In case of cyclic boundary |
---|
2214 | conditions along x, the domain size is (<B>nx+1</B>)* <A HREF="#dx">dx</A>.</P> |
---|
2215 | <P>For parallel runs, in case of <A HREF="#grid_matching">grid_matching</A> |
---|
2216 | = <I>'strict'</I>, <B>nx+1</B> must be an integral multiple of the |
---|
2217 | processor numbers (see <A HREF="#npex">npex</A> and <A HREF="#npey">npey</A>) |
---|
2218 | along x- as well as along y-direction (due to data transposition |
---|
2219 | restrictions).</P> |
---|
2220 | <P>For <A HREF="chapter_3.8.html">coupled runs</A> this parameter |
---|
2221 | must be equal in both parameter files <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN</FONT></A> |
---|
2222 | and <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A>.</P> |
---|
2223 | </TD> |
---|
2224 | </TR> |
---|
2225 | <TR> |
---|
2226 | <TD WIDTH=126> |
---|
2227 | <P><A NAME="ny"></A><B>ny</B></P> |
---|
2228 | </TD> |
---|
2229 | <TD WIDTH=45> |
---|
2230 | <P>I</P> |
---|
2231 | </TD> |
---|
2232 | <TD WIDTH=159> |
---|
2233 | <P><BR><BR> |
---|
2234 | </P> |
---|
2235 | </TD> |
---|
2236 | <TD WIDTH=1280> |
---|
2237 | <P>Number of grid points in y-direction. |
---|
2238 | </P> |
---|
2239 | <P>A value for this parameter must be assigned. Since the lower |
---|
2240 | array bound in PALM starts with j = 0, the actual number of grid |
---|
2241 | points is equal to <B>ny+1</B>. In case of cyclic boundary |
---|
2242 | conditions along y, the domain size is (<B>ny+1</B>) * <A HREF="#dy">dy</A>.</P> |
---|
2243 | <P>For parallel runs, in case of <A HREF="#grid_matching">grid_matching</A> |
---|
2244 | = <I>'strict'</I>, <B>ny+1</B> must be an integral multiple of the |
---|
2245 | processor numbers (see <A HREF="#npex">npex</A> and <A HREF="#npey">npey</A>) |
---|
2246 | along y- as well as along x-direction (due to data transposition |
---|
2247 | restrictions).</P> |
---|
2248 | <P>For <A HREF="chapter_3.8.html">coupled runs</A> this parameter |
---|
2249 | must be equal in both parameter files <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN</FONT></A> |
---|
2250 | and <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A>.</P> |
---|
2251 | </TD> |
---|
2252 | </TR> |
---|
2253 | <TR> |
---|
2254 | <TD WIDTH=126> |
---|
2255 | <P><A NAME="nz"></A><B>nz</B></P> |
---|
2256 | </TD> |
---|
2257 | <TD WIDTH=45> |
---|
2258 | <P>I</P> |
---|
2259 | </TD> |
---|
2260 | <TD WIDTH=159> |
---|
2261 | <P><BR><BR> |
---|
2262 | </P> |
---|
2263 | </TD> |
---|
2264 | <TD WIDTH=1280> |
---|
2265 | <P>Number of grid points in z-direction. |
---|
2266 | </P> |
---|
2267 | <P>A value for this parameter must be assigned. Since the lower |
---|
2268 | array bound in PALM starts with k = 0 and since one additional |
---|
2269 | grid point is added at the top boundary (k = <B>nz+1</B>), the |
---|
2270 | actual number of grid points is <B>nz+2</B>. However, the |
---|
2271 | prognostic equations are only solved up to <B>nz</B> (u, v) or up |
---|
2272 | to <B>nz-1</B> (w, scalar quantities). The top boundary for u and |
---|
2273 | v is at k = <B>nz+1</B> (u, v) while at k = <B>nz</B> for all |
---|
2274 | other quantities. |
---|
2275 | </P> |
---|
2276 | <P>For parallel runs, in case of <A HREF="#grid_matching">grid_matching</A> |
---|
2277 | = <I>'strict'</I>, <B>nz</B> must be an integral multiple of the |
---|
2278 | number of processors in x-direction (due to data transposition |
---|
2279 | restrictions).</P> |
---|
2280 | </TD> |
---|
2281 | </TR> |
---|
2282 | <TR> |
---|
2283 | <TD WIDTH=126> |
---|
2284 | <P><A NAME="ocean"></A><B>ocean</B></P> |
---|
2285 | </TD> |
---|
2286 | <TD WIDTH=45> |
---|
2287 | <P>L</P> |
---|
2288 | </TD> |
---|
2289 | <TD WIDTH=159> |
---|
2290 | <P><I>.F.</I></P> |
---|
2291 | </TD> |
---|
2292 | <TD WIDTH=1280> |
---|
2293 | <P>Parameter to switch on ocean runs.<BR><BR>By default PALM |
---|
2294 | is configured to simulate atmospheric flows. However, |
---|
2295 | starting from version 3.3, <B>ocean</B> = <I>.T.</I> |
---|
2296 | allows simulation of ocean turbulent flows. Setting this |
---|
2297 | switch has several effects:</P> |
---|
2298 | <UL> |
---|
2299 | <LI><P STYLE="margin-bottom: 0in">An additional prognostic |
---|
2300 | equation for salinity is solved. |
---|
2301 | </P> |
---|
2302 | <LI><P STYLE="margin-bottom: 0in">Potential temperature in |
---|
2303 | buoyancy and stability-related terms is replaced by potential |
---|
2304 | density. |
---|
2305 | </P> |
---|
2306 | <LI><P STYLE="margin-bottom: 0in">Potential density is calculated |
---|
2307 | from the equation of state for seawater after each timestep, |
---|
2308 | using the algorithm proposed by Jackett et al. (2006, J. Atmos. |
---|
2309 | Oceanic Technol., <B>23</B>, 1709-1728).<BR>So far, only the |
---|
2310 | initial hydrostatic pressure is entered into this equation. |
---|
2311 | </P> |
---|
2312 | <LI><P STYLE="margin-bottom: 0in">z=0 (sea surface) is assumed at |
---|
2313 | the model top (vertical grid index <FONT FACE="Courier New, Courier, monospace">k=nzt</FONT> |
---|
2314 | on the w-grid), with negative values of z indicating the depth. |
---|
2315 | </P> |
---|
2316 | <LI><P STYLE="margin-bottom: 0in">Initial profiles are |
---|
2317 | constructed (e.g. from <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A> |
---|
2318 | / <A HREF="#pt_vertical_gradient_level">pt_vertical_gradient_level</A>) |
---|
2319 | starting from the sea surface, using surface values given by |
---|
2320 | <A HREF="#pt_surface">pt_surface</A>, <A HREF="#sa_surface">sa_surface</A>, |
---|
2321 | <A HREF="#ug_surface">ug_surface</A>, and <A HREF="#vg_surface">vg_surface</A>. |
---|
2322 | </P> |
---|
2323 | <LI><P STYLE="margin-bottom: 0in">Zero salinity flux is used as |
---|
2324 | default boundary condition at the bottom of the sea. |
---|
2325 | </P> |
---|
2326 | <LI><P>If switched on, random perturbations are by default |
---|
2327 | imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3). |
---|
2328 | </P> |
---|
2329 | </UL> |
---|
2330 | <P><BR>Relevant parameters to be exclusively used for steering |
---|
2331 | ocean runs are <A HREF="#bc_sa_t">bc_sa_t</A>, |
---|
2332 | <A HREF="#bottom_salinityflux">bottom_salinityflux</A>, |
---|
2333 | <A HREF="#sa_surface">sa_surface</A>, <A HREF="#sa_vertical_gradient">sa_vertical_gradient</A>, |
---|
2334 | <A HREF="#sa_vertical_gradient_level">sa_vertical_gradient_level</A>, |
---|
2335 | and <A HREF="#top_salinityflux">top_salinityflux</A>.<BR><BR>Section |
---|
2336 | <A HREF="chapter_4.2.2.html">4.4.2</A> gives an example for |
---|
2337 | appropriate settings of these and other parameters neccessary for |
---|
2338 | ocean runs.<BR><BR><B>ocean</B> = <I>.T.</I> does not allow |
---|
2339 | settings of <A HREF="#timestep_scheme">timestep_scheme</A> = |
---|
2340 | <I>'leapfrog'</I> or <I>'leapfrog+euler'</I> as well as |
---|
2341 | <A HREF="#scalar_advec">scalar_advec</A> = <I>'ups-scheme'</I>.</P> |
---|
2342 | </TD> |
---|
2343 | </TR> |
---|
2344 | <TR> |
---|
2345 | <TD WIDTH=126> |
---|
2346 | <P><A NAME="omega"></A><B>omega</B></P> |
---|
2347 | </TD> |
---|
2348 | <TD WIDTH=45> |
---|
2349 | <P>R</P> |
---|
2350 | </TD> |
---|
2351 | <TD WIDTH=159> |
---|
2352 | <P><I>7.29212E-5</I></P> |
---|
2353 | </TD> |
---|
2354 | <TD WIDTH=1280> |
---|
2355 | <P>Angular velocity of the rotating system (in rad s<SUP>-1</SUP>). |
---|
2356 | </P> |
---|
2357 | <P>The angular velocity of the earth is set by default. The values |
---|
2358 | of the Coriolis parameters are calculated as: |
---|
2359 | </P> |
---|
2360 | <UL> |
---|
2361 | <P>f = 2.0 * <B>omega</B> * sin(<A HREF="#phi">phi</A>) <BR>f* |
---|
2362 | = 2.0 * <B>omega</B> * cos(<A HREF="#phi">phi</A>)</P> |
---|
2363 | </UL> |
---|
2364 | </TD> |
---|
2365 | </TR> |
---|
2366 | <TR> |
---|
2367 | <TD WIDTH=126> |
---|
2368 | <P><A NAME="outflow_damping_width"></A><B>outflow_damping_width</B></P> |
---|
2369 | </TD> |
---|
2370 | <TD WIDTH=45> |
---|
2371 | <P>I</P> |
---|
2372 | </TD> |
---|
2373 | <TD WIDTH=159> |
---|
2374 | <P><I>MIN(20, nx/2</I> or <I>ny/2)</I></P> |
---|
2375 | </TD> |
---|
2376 | <TD WIDTH=1280> |
---|
2377 | <P>Width of the damping range in the vicinity of the outflow |
---|
2378 | (gridpoints).<BR><BR>When using non-cyclic lateral boundaries (see |
---|
2379 | <A HREF="#bc_lr">bc_lr</A> or <A HREF="#bc_ns">bc_ns</A>), a |
---|
2380 | smoothing has to be applied to the velocity field in the vicinity |
---|
2381 | of the outflow in order to suppress any reflections of outgoing |
---|
2382 | disturbances. This parameter controlls the horizontal range to |
---|
2383 | which the smoothing is applied. The range is given in gridpoints |
---|
2384 | counted from the respective outflow boundary. For further details |
---|
2385 | about the smoothing see parameter <A HREF="#km_damp_max">km_damp_max</A>, |
---|
2386 | which defines the magnitude of the damping.</P> |
---|
2387 | </TD> |
---|
2388 | </TR> |
---|
2389 | <TR> |
---|
2390 | <TD WIDTH=126> |
---|
2391 | <P><A NAME="overshoot_limit_e"></A><B>overshoot_limit_e</B></P> |
---|
2392 | </TD> |
---|
2393 | <TD WIDTH=45> |
---|
2394 | <P>R</P> |
---|
2395 | </TD> |
---|
2396 | <TD WIDTH=159> |
---|
2397 | <P><I>0.0</I></P> |
---|
2398 | </TD> |
---|
2399 | <TD WIDTH=1280> |
---|
2400 | <P>Allowed limit for the overshooting of subgrid-scale TKE in case |
---|
2401 | that the upstream-spline scheme is switched on (in m<SUP>2</SUP>/s<SUP>2</SUP>). |
---|
2402 | </P> |
---|
2403 | <P>By deafult, if cut-off of overshoots is switched on for the |
---|
2404 | upstream-spline scheme (see <A HREF="#cut_spline_overshoot">cut_spline_overshoot</A>), |
---|
2405 | no overshoots are permitted at all. If <B>overshoot_limit_e</B> is |
---|
2406 | given a non-zero value, overshoots with the respective amplitude |
---|
2407 | (both upward and downward) are allowed. |
---|
2408 | </P> |
---|
2409 | <P>Only positive values are allowed for <B>overshoot_limit_e</B>.</P> |
---|
2410 | </TD> |
---|
2411 | </TR> |
---|
2412 | <TR> |
---|
2413 | <TD WIDTH=126> |
---|
2414 | <P><A NAME="overshoot_limit_pt"></A><B>overshoot_limit_pt</B></P> |
---|
2415 | </TD> |
---|
2416 | <TD WIDTH=45> |
---|
2417 | <P>R</P> |
---|
2418 | </TD> |
---|
2419 | <TD WIDTH=159> |
---|
2420 | <P><I>0.0</I></P> |
---|
2421 | </TD> |
---|
2422 | <TD WIDTH=1280> |
---|
2423 | <P>Allowed limit for the overshooting of potential temperature in |
---|
2424 | case that the upstream-spline scheme is switched on (in K). |
---|
2425 | </P> |
---|
2426 | <P>For further information see <A HREF="#overshoot_limit_e">overshoot_limit_e</A>. |
---|
2427 | </P> |
---|
2428 | <P>Only positive values are allowed for <B>overshoot_limit_pt</B>.</P> |
---|
2429 | </TD> |
---|
2430 | </TR> |
---|
2431 | <TR> |
---|
2432 | <TD WIDTH=126> |
---|
2433 | <P><A NAME="overshoot_limit_u"></A><B>overshoot_limit_u</B></P> |
---|
2434 | </TD> |
---|
2435 | <TD WIDTH=45> |
---|
2436 | <P>R</P> |
---|
2437 | </TD> |
---|
2438 | <TD WIDTH=159> |
---|
2439 | <P><I>0.0</I></P> |
---|
2440 | </TD> |
---|
2441 | <TD WIDTH=1280> |
---|
2442 | <P>Allowed limit for the overshooting of the u-component of |
---|
2443 | velocity in case that the upstream-spline scheme is switched on |
---|
2444 | (in m/s). |
---|
2445 | </P> |
---|
2446 | <P>For further information see <A HREF="#overshoot_limit_e">overshoot_limit_e</A>. |
---|
2447 | </P> |
---|
2448 | <P>Only positive values are allowed for <B>overshoot_limit_u</B>.</P> |
---|
2449 | </TD> |
---|
2450 | </TR> |
---|
2451 | <TR> |
---|
2452 | <TD WIDTH=126> |
---|
2453 | <P><A NAME="overshoot_limit_v"></A><B>overshoot_limit_v</B></P> |
---|
2454 | </TD> |
---|
2455 | <TD WIDTH=45> |
---|
2456 | <P>R</P> |
---|
2457 | </TD> |
---|
2458 | <TD WIDTH=159> |
---|
2459 | <P><I>0.0</I></P> |
---|
2460 | </TD> |
---|
2461 | <TD WIDTH=1280> |
---|
2462 | <P>Allowed limit for the overshooting of the v-component of |
---|
2463 | velocity in case that the upstream-spline scheme is switched on |
---|
2464 | (in m/s). |
---|
2465 | </P> |
---|
2466 | <P>For further information see <A HREF="#overshoot_limit_e">overshoot_limit_e</A>. |
---|
2467 | </P> |
---|
2468 | <P>Only positive values are allowed for <B>overshoot_limit_v</B>.</P> |
---|
2469 | </TD> |
---|
2470 | </TR> |
---|
2471 | <TR> |
---|
2472 | <TD WIDTH=126> |
---|
2473 | <P><A NAME="overshoot_limit_w"></A><B>overshoot_limit_w</B></P> |
---|
2474 | </TD> |
---|
2475 | <TD WIDTH=45> |
---|
2476 | <P>R</P> |
---|
2477 | </TD> |
---|
2478 | <TD WIDTH=159> |
---|
2479 | <P><I>0.0</I></P> |
---|
2480 | </TD> |
---|
2481 | <TD WIDTH=1280> |
---|
2482 | <P>Allowed limit for the overshooting of the w-component of |
---|
2483 | velocity in case that the upstream-spline scheme is switched on |
---|
2484 | (in m/s). |
---|
2485 | </P> |
---|
2486 | <P>For further information see <A HREF="#overshoot_limit_e">overshoot_limit_e</A>. |
---|
2487 | </P> |
---|
2488 | <P>Only positive values are permitted for <B>overshoot_limit_w</B>.</P> |
---|
2489 | </TD> |
---|
2490 | </TR> |
---|
2491 | <TR> |
---|
2492 | <TD WIDTH=126> |
---|
2493 | <P><A NAME="passive_scalar"></A><B>passive_scalar</B></P> |
---|
2494 | </TD> |
---|
2495 | <TD WIDTH=45> |
---|
2496 | <P>L</P> |
---|
2497 | </TD> |
---|
2498 | <TD WIDTH=159> |
---|
2499 | <P><I>.F.</I></P> |
---|
2500 | </TD> |
---|
2501 | <TD WIDTH=1280> |
---|
2502 | <P>Parameter to switch on the prognostic equation for a passive |
---|
2503 | scalar. |
---|
2504 | </P> |
---|
2505 | <P>The initial vertical profile of s can be set via parameters |
---|
2506 | <A HREF="#s_surface">s_surface</A>, <A HREF="#s_vertical_gradient">s_vertical_gradient</A> |
---|
2507 | and <A HREF="#s_vertical_gradient_level">s_vertical_gradient_level</A>. |
---|
2508 | Boundary conditions can be set via <A HREF="#s_surface_initial_change">s_surface_initial_change</A> |
---|
2509 | and <A HREF="#surface_scalarflux">surface_scalarflux</A>. |
---|
2510 | </P> |
---|
2511 | <P><B>Note:</B> <BR>With <B>passive_scalar</B> switched on, the |
---|
2512 | simultaneous use of humidity (see <A HREF="#humidity">humidity</A>) |
---|
2513 | is impossible.</P> |
---|
2514 | </TD> |
---|
2515 | </TR> |
---|
2516 | <TR> |
---|
2517 | <TD WIDTH=126> |
---|
2518 | <P><A NAME="pch_index"></A><B>pch_index</B></P> |
---|
2519 | </TD> |
---|
2520 | <TD WIDTH=45> |
---|
2521 | <P>I</P> |
---|
2522 | </TD> |
---|
2523 | <TD WIDTH=159> |
---|
2524 | <P><I>0</I></P> |
---|
2525 | </TD> |
---|
2526 | <TD WIDTH=1280> |
---|
2527 | <P>Grid point index (scalar) of the upper boundary of the plant |
---|
2528 | canopy layer.<BR><BR>Above <B>pch_index</B> the arrays of leaf |
---|
2529 | area density and drag_coeffient are automatically set to zero in |
---|
2530 | case of <A HREF="#plant_canopy">plant_canopy</A> = .T.. Up to |
---|
2531 | <B>pch_index</B> a leaf area density profile can be prescribed by |
---|
2532 | using the parameters <A HREF="#lad_surface">lad_surface</A>, |
---|
2533 | <A HREF="#lad_vertical_gradient">lad_vertical_gradient</A> and |
---|
2534 | <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level</A>.</P> |
---|
2535 | </TD> |
---|
2536 | </TR> |
---|
2537 | <TR> |
---|
2538 | <TD WIDTH=126> |
---|
2539 | <P><A NAME="phi"></A><B>phi</B></P> |
---|
2540 | </TD> |
---|
2541 | <TD WIDTH=45> |
---|
2542 | <P>R</P> |
---|
2543 | </TD> |
---|
2544 | <TD WIDTH=159> |
---|
2545 | <P><I>55.0</I></P> |
---|
2546 | </TD> |
---|
2547 | <TD WIDTH=1280> |
---|
2548 | <P>Geographical latitude (in degrees). |
---|
2549 | </P> |
---|
2550 | <P>The value of this parameter determines the value of the |
---|
2551 | Coriolis parameters f and f*, provided that the angular velocity |
---|
2552 | (see <A HREF="#omega">omega</A>) is non-zero.</P> |
---|
2553 | </TD> |
---|
2554 | </TR> |
---|
2555 | <TR> |
---|
2556 | <TD WIDTH=126> |
---|
2557 | <P><A NAME="plant_canopy"></A><B>plant_canopy</B></P> |
---|
2558 | </TD> |
---|
2559 | <TD WIDTH=45> |
---|
2560 | <P>L</P> |
---|
2561 | </TD> |
---|
2562 | <TD WIDTH=159> |
---|
2563 | <P><I>.F.</I></P> |
---|
2564 | </TD> |
---|
2565 | <TD WIDTH=1280> |
---|
2566 | <P>Switch for the plant_canopy_model.<BR><BR>If <B>plant_canopy</B> |
---|
2567 | is set <I>.T.</I>, the plant canopy model of Watanabe (2004, BLM |
---|
2568 | 112, 307-341) is used. <BR>The impact of a plant canopy on a |
---|
2569 | turbulent flow is considered by an additional drag term in the |
---|
2570 | momentum equations and an additional sink term in the prognostic |
---|
2571 | equation for the subgrid-scale TKE. These additional terms are |
---|
2572 | dependent on the leaf drag coefficient (see <A HREF="#drag_coefficient">drag_coefficient</A>) |
---|
2573 | and the leaf area density (see <A HREF="#lad_surface">lad_surface</A>, |
---|
2574 | <A HREF="#lad_vertical_gradient">lad_vertical_gradient</A>, |
---|
2575 | <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level</A>). |
---|
2576 | The top boundary of the plant canopy is determined by the |
---|
2577 | parameter <A HREF="#pch_index">pch_index</A>. For all heights |
---|
2578 | equal to or larger than zw(k=<B>pch_index</B>) the leaf area |
---|
2579 | density is 0 (i.e. there is no canopy at these heights!). <BR>By |
---|
2580 | default, a horizontally homogeneous plant canopy is prescribed, |
---|
2581 | if <B>plant_canopy</B> is set <I>.T.</I>. However, the user |
---|
2582 | can define other types of plant canopies (see <A HREF="#canopy_mode">canopy_mode</A>).<BR><BR>If |
---|
2583 | <B>plant_canopy</B> and <B>passive_scalar</B> are set <I>.T.</I>, |
---|
2584 | the canopy acts as an additional source or sink, respectively, of |
---|
2585 | scalar concentration. The source/sink strength is dependent on the |
---|
2586 | scalar concentration at the leaf surface, which is generally |
---|
2587 | constant with time in PALM and which can be specified by |
---|
2588 | specifying the parameter <A HREF="#leaf_surface_concentration">leaf_surface_concentration</A>. |
---|
2589 | <BR><BR>Additional heating of the air by the plant canopy is taken |
---|
2590 | into account, when the default value of the parameter <A HREF="#cthf">cthf</A> |
---|
2591 | is altered in the parameter file. In that case the value of |
---|
2592 | <A HREF="#surface_heatflux">surface_heatflux</A> specified in the |
---|
2593 | parameter file is not used in the model. Instead the near-surface |
---|
2594 | heat flux is derived from an expontial function that is dependent |
---|
2595 | on the cumulative leaf area index. <BR><BR><B>plant_canopy</B> = |
---|
2596 | <I>.T. </I>is only allowed together with a non-zero |
---|
2597 | <A HREF="#drag_coefficient">drag_coefficient</A>.</P> |
---|
2598 | </TD> |
---|
2599 | </TR> |
---|
2600 | <TR> |
---|
2601 | <TD WIDTH=126> |
---|
2602 | <P><A NAME="prandtl_layer"></A><B>prandtl_layer</B></P> |
---|
2603 | </TD> |
---|
2604 | <TD WIDTH=45> |
---|
2605 | <P>L</P> |
---|
2606 | </TD> |
---|
2607 | <TD WIDTH=159> |
---|
2608 | <P><I>.T.</I></P> |
---|
2609 | </TD> |
---|
2610 | <TD WIDTH=1280> |
---|
2611 | <P>Parameter to switch on a Prandtl layer. |
---|
2612 | </P> |
---|
2613 | <P>By default, a Prandtl layer is switched on at the bottom |
---|
2614 | boundary between z = 0 and z = 0.5 * <A HREF="#dz">dz</A> (the |
---|
2615 | first computational grid point above ground for u, v and the |
---|
2616 | scalar quantities). In this case, at the bottom boundary, |
---|
2617 | free-slip conditions for u and v (see <A HREF="#bc_uv_b">bc_uv_b</A>) |
---|
2618 | are not allowed. Likewise, laminar simulations with constant eddy |
---|
2619 | diffusivities (<A HREF="#km_constant">km_constant</A>) are |
---|
2620 | forbidden. |
---|
2621 | </P> |
---|
2622 | <P>With Prandtl-layer switched off, the TKE boundary condition |
---|
2623 | <A HREF="#bc_e_b">bc_e_b</A> = '<I>(u*)**2+neumann'</I> must not |
---|
2624 | be used and is automatically changed to <I>'neumann'</I> if |
---|
2625 | necessary. Also, the pressure boundary condition <A HREF="#bc_p_b">bc_p_b</A> |
---|
2626 | = <I>'neumann+inhomo'</I> is not allowed. |
---|
2627 | </P> |
---|
2628 | <P>The roughness length is declared via the parameter |
---|
2629 | <A HREF="#roughness_length">roughness_length</A>.</P> |
---|
2630 | </TD> |
---|
2631 | </TR> |
---|
2632 | <TR> |
---|
2633 | <TD WIDTH=126> |
---|
2634 | <P><A NAME="precipitation"></A><B>precipitation</B></P> |
---|
2635 | </TD> |
---|
2636 | <TD WIDTH=45> |
---|
2637 | <P>L</P> |
---|
2638 | </TD> |
---|
2639 | <TD WIDTH=159> |
---|
2640 | <P><I>.F.</I></P> |
---|
2641 | </TD> |
---|
2642 | <TD WIDTH=1280> |
---|
2643 | <P>Parameter to switch on the precipitation scheme.</P> |
---|
2644 | <P>For precipitation processes PALM uses a simplified Kessler |
---|
2645 | scheme. This scheme only considers the so-called autoconversion, |
---|
2646 | that means the generation of rain water by coagulation of cloud |
---|
2647 | drops among themselves. Precipitation begins and is immediately |
---|
2648 | removed from the flow as soon as the liquid water content exceeds |
---|
2649 | the critical value of 0.5 g/kg.</P> |
---|
2650 | <P>The precipitation rate and amount can be output by assigning |
---|
2651 | the runtime parameter <A HREF="chapter_4.2.html#data_output">data_output</A> |
---|
2652 | = <I>'prr*'</I> or <I>'pra*'</I>, respectively. The time interval |
---|
2653 | on which the precipitation amount is defined can be controlled via |
---|
2654 | runtime parameter <A HREF="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</A>.</P> |
---|
2655 | </TD> |
---|
2656 | </TR> |
---|
2657 | <TR> |
---|
2658 | <TD WIDTH=126> |
---|
2659 | <P><A NAME="pt_reference"></A><B>pt_reference</B></P> |
---|
2660 | </TD> |
---|
2661 | <TD WIDTH=45> |
---|
2662 | <P>R</P> |
---|
2663 | </TD> |
---|
2664 | <TD WIDTH=159> |
---|
2665 | <P><I>use horizontal average as refrence</I></P> |
---|
2666 | </TD> |
---|
2667 | <TD WIDTH=1280> |
---|
2668 | <P>Reference temperature to be used in all buoyancy terms (in |
---|
2669 | K).<BR><BR>By default, the instantaneous horizontal average over |
---|
2670 | the total model domain is used.<BR><BR><B>Attention:</B><BR>In |
---|
2671 | case of ocean runs (see <A HREF="#ocean">ocean</A>), always a |
---|
2672 | reference temperature is used in the buoyancy terms with a default |
---|
2673 | value of <B>pt_reference</B> = <A HREF="#pt_surface">pt_surface</A>.</P> |
---|
2674 | </TD> |
---|
2675 | </TR> |
---|
2676 | <TR> |
---|
2677 | <TD WIDTH=126> |
---|
2678 | <P><A NAME="pt_surface"></A><B>pt_surface</B></P> |
---|
2679 | </TD> |
---|
2680 | <TD WIDTH=45> |
---|
2681 | <P>R</P> |
---|
2682 | </TD> |
---|
2683 | <TD WIDTH=159> |
---|
2684 | <P><I>300.0</I></P> |
---|
2685 | </TD> |
---|
2686 | <TD WIDTH=1280> |
---|
2687 | <P>Surface potential temperature (in K). |
---|
2688 | </P> |
---|
2689 | <P>This parameter assigns the value of the potential temperature |
---|
2690 | <B>pt</B> at the surface (k=0)<B>.</B> Starting from this value, |
---|
2691 | the initial vertical temperature profile is constructed with |
---|
2692 | <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A> and |
---|
2693 | <A HREF="#pt_vertical_gradient_level">pt_vertical_gradient_level </A>. |
---|
2694 | This profile is also used for the 1d-model as a stationary |
---|
2695 | profile.</P> |
---|
2696 | <P><B>Attention:</B><BR>In case of ocean runs (see <A HREF="#ocean">ocean</A>), |
---|
2697 | this parameter gives the temperature value at the sea surface, |
---|
2698 | which is at k=nzt. The profile is then constructed from the |
---|
2699 | surface down to the bottom of the model.</P> |
---|
2700 | </TD> |
---|
2701 | </TR> |
---|
2702 | <TR> |
---|
2703 | <TD WIDTH=126> |
---|
2704 | <P><A NAME="pt_surface_initial_change"></A><B>pt_surface_initial</B> |
---|
2705 | <BR><B>_change</B></P> |
---|
2706 | </TD> |
---|
2707 | <TD WIDTH=45> |
---|
2708 | <P>R</P> |
---|
2709 | </TD> |
---|
2710 | <TD WIDTH=159> |
---|
2711 | <P><I>0.0</I></P> |
---|
2712 | </TD> |
---|
2713 | <TD WIDTH=1280> |
---|
2714 | <P>Change in surface temperature to be made at the beginning of |
---|
2715 | the 3d run (in K). |
---|
2716 | </P> |
---|
2717 | <P>If <B>pt_surface_initial_change</B> is set to a non-zero value, |
---|
2718 | the near surface sensible heat flux is not allowed to be given |
---|
2719 | simultaneously (see <A HREF="#surface_heatflux">surface_heatflux</A>).</P> |
---|
2720 | </TD> |
---|
2721 | </TR> |
---|
2722 | <TR> |
---|
2723 | <TD WIDTH=126> |
---|
2724 | <P><A NAME="pt_vertical_gradient"></A><B>pt_vertical_gradient</B></P> |
---|
2725 | </TD> |
---|
2726 | <TD WIDTH=45> |
---|
2727 | <P>R (10)</P> |
---|
2728 | </TD> |
---|
2729 | <TD WIDTH=159> |
---|
2730 | <P><I>10 * 0.0</I></P> |
---|
2731 | </TD> |
---|
2732 | <TD WIDTH=1280> |
---|
2733 | <P>Temperature gradient(s) of the initial temperature profile (in |
---|
2734 | K / 100 m). |
---|
2735 | </P> |
---|
2736 | <P>This temperature gradient holds starting from the height |
---|
2737 | level defined by <A HREF="#pt_vertical_gradient_level">pt_vertical_gradient_level</A> |
---|
2738 | (precisely: for all uv levels k where zu(k) > |
---|
2739 | pt_vertical_gradient_level, pt_init(k) is set: pt_init(k) = |
---|
2740 | pt_init(k-1) + dzu(k) * <B>pt_vertical_gradient</B>) up to the top |
---|
2741 | boundary or up to the next height level defined by |
---|
2742 | <A HREF="#pt_vertical_gradient_level">pt_vertical_gradient_level</A>. |
---|
2743 | A total of 10 different gradients for 11 height intervals (10 |
---|
2744 | intervals if <A HREF="#pt_vertical_gradient_level">pt_vertical_gradient_level</A>(1) |
---|
2745 | = <I>0.0</I>) can be assigned. The surface temperature is assigned |
---|
2746 | via <A HREF="#pt_surface">pt_surface</A>. |
---|
2747 | </P> |
---|
2748 | <P>Example: |
---|
2749 | </P> |
---|
2750 | <UL> |
---|
2751 | <P><B>pt_vertical_gradient</B> = <I>1.0</I>, <I>0.5</I>, |
---|
2752 | <BR><B>pt_vertical_gradient_level</B> = <I>500.0</I>, <I>1000.0</I>,</P> |
---|
2753 | </UL> |
---|
2754 | <P>That defines the temperature profile to be neutrally stratified |
---|
2755 | up to z = 500.0 m with a temperature given by <A HREF="#pt_surface">pt_surface</A>. |
---|
2756 | For 500.0 m < z <= 1000.0 m the temperature gradient is 1.0 |
---|
2757 | K / 100 m and for z > 1000.0 m up to the top boundary it is 0.5 |
---|
2758 | K / 100 m (it is assumed that the assigned height levels |
---|
2759 | correspond with uv levels).</P> |
---|
2760 | <P><B>Attention:</B><BR>In case of ocean runs (see <A HREF="#ocean">ocean</A>), |
---|
2761 | the profile is constructed like described above, but starting from |
---|
2762 | the sea surface (k=nzt) down to the bottom boundary of the model. |
---|
2763 | Height levels have then to be given as negative values, e.g. |
---|
2764 | <B>pt_vertical_gradient_level</B> = <I>-500.0</I>, <I>-1000.0</I>.</P> |
---|
2765 | </TD> |
---|
2766 | </TR> |
---|
2767 | <TR> |
---|
2768 | <TD WIDTH=126> |
---|
2769 | <P><A NAME="pt_vertical_gradient_level"></A><B>pt_vertical_gradient</B> |
---|
2770 | <BR><B>_level</B></P> |
---|
2771 | </TD> |
---|
2772 | <TD WIDTH=45> |
---|
2773 | <P>R (10)</P> |
---|
2774 | </TD> |
---|
2775 | <TD WIDTH=159> |
---|
2776 | <P><I>10 *</I> <I>0.0</I></P> |
---|
2777 | </TD> |
---|
2778 | <TD WIDTH=1280> |
---|
2779 | <P>Height level from which on the temperature gradient defined by |
---|
2780 | <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A> is |
---|
2781 | effective (in m). |
---|
2782 | </P> |
---|
2783 | <P>The height levels have to be assigned in ascending order. The |
---|
2784 | default values result in a neutral stratification regardless of |
---|
2785 | the values of <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A> |
---|
2786 | (unless the top boundary of the model is higher than 100000.0 m). |
---|
2787 | For the piecewise construction of temperature profiles see |
---|
2788 | <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A>.</P> |
---|
2789 | <P><B>Attention:</B><BR>In case of ocean runs (see <A HREF="#ocean">ocean</A>), |
---|
2790 | the (negative) height levels have to be assigned in descending |
---|
2791 | order. |
---|
2792 | </P> |
---|
2793 | </TD> |
---|
2794 | </TR> |
---|
2795 | <TR> |
---|
2796 | <TD WIDTH=126> |
---|
2797 | <P><A NAME="q_surface"></A><B>q_surface</B></P> |
---|
2798 | </TD> |
---|
2799 | <TD WIDTH=45> |
---|
2800 | <P>R</P> |
---|
2801 | </TD> |
---|
2802 | <TD WIDTH=159> |
---|
2803 | <P><I>0.0</I></P> |
---|
2804 | </TD> |
---|
2805 | <TD WIDTH=1280> |
---|
2806 | <P>Surface specific humidity / total water content (kg/kg). |
---|
2807 | </P> |
---|
2808 | <P>This parameter assigns the value of the specific humidity q at |
---|
2809 | the surface (k=0). Starting from this value, the initial |
---|
2810 | humidity profile is constructed with <A HREF="#q_vertical_gradient">q_vertical_gradient</A> |
---|
2811 | and <A HREF="#q_vertical_gradient_level">q_vertical_gradient_level</A>. |
---|
2812 | This profile is also used for the 1d-model as a stationary |
---|
2813 | profile.</P> |
---|
2814 | </TD> |
---|
2815 | </TR> |
---|
2816 | <TR> |
---|
2817 | <TD WIDTH=126> |
---|
2818 | <P><A NAME="q_surface_initial_change"></A><B>q_surface_initial</B> |
---|
2819 | <BR><B>_change</B></P> |
---|
2820 | </TD> |
---|
2821 | <TD WIDTH=45> |
---|
2822 | <P>R</P> |
---|
2823 | </TD> |
---|
2824 | <TD WIDTH=159> |
---|
2825 | <P><I>0.0</I></P> |
---|
2826 | </TD> |
---|
2827 | <TD WIDTH=1280> |
---|
2828 | <P>Change in surface specific humidity / total water content to be |
---|
2829 | made at the beginning of the 3d run (kg/kg). |
---|
2830 | </P> |
---|
2831 | <P>If <B>q_surface_initial_change</B> is set to a non-zero value |
---|
2832 | the near surface latent heat flux (water flux) is not allowed to |
---|
2833 | be given simultaneously (see <A HREF="#surface_waterflux">surface_waterflux</A>).</P> |
---|
2834 | </TD> |
---|
2835 | </TR> |
---|
2836 | <TR> |
---|
2837 | <TD WIDTH=126> |
---|
2838 | <P><A NAME="q_vertical_gradient"></A><B>q_vertical_gradient</B></P> |
---|
2839 | </TD> |
---|
2840 | <TD WIDTH=45> |
---|
2841 | <P>R (10)</P> |
---|
2842 | </TD> |
---|
2843 | <TD WIDTH=159> |
---|
2844 | <P><I>10 * 0.0</I></P> |
---|
2845 | </TD> |
---|
2846 | <TD WIDTH=1280> |
---|
2847 | <P>Humidity gradient(s) of the initial humidity profile (in 1/100 |
---|
2848 | m). |
---|
2849 | </P> |
---|
2850 | <P>This humidity gradient holds starting from the height level |
---|
2851 | defined by <A HREF="#q_vertical_gradient_level">q_vertical_gradient_level</A> |
---|
2852 | (precisely: for all uv levels k, where zu(k) > |
---|
2853 | q_vertical_gradient_level, q_init(k) is set: q_init(k) = |
---|
2854 | q_init(k-1) + dzu(k) * <B>q_vertical_gradient</B>) up to the top |
---|
2855 | boundary or up to the next height level defined by |
---|
2856 | <A HREF="#q_vertical_gradient_level">q_vertical_gradient_level</A>. |
---|
2857 | A total of 10 different gradients for 11 height intervals (10 |
---|
2858 | intervals if <A HREF="#q_vertical_gradient_level">q_vertical_gradient_level</A>(1) |
---|
2859 | = <I>0.0</I>) can be asigned. The surface humidity is assigned via |
---|
2860 | <A HREF="#q_surface">q_surface</A>. |
---|
2861 | </P> |
---|
2862 | <P>Example: |
---|
2863 | </P> |
---|
2864 | <UL> |
---|
2865 | <P><B>q_vertical_gradient</B> = <I>0.001</I>, <I>0.0005</I>, |
---|
2866 | <BR><B>q_vertical_gradient_level</B> = <I>500.0</I>, <I>1000.0</I>,</P> |
---|
2867 | </UL> |
---|
2868 | <P>That defines the humidity to be constant with height up to z = |
---|
2869 | 500.0 m with a value given by <A HREF="#q_surface">q_surface</A>. |
---|
2870 | For 500.0 m < z <= 1000.0 m the humidity gradient is 0.001 / |
---|
2871 | 100 m and for z > 1000.0 m up to the top boundary it is 0.0005 |
---|
2872 | / 100 m (it is assumed that the assigned height levels correspond |
---|
2873 | with uv levels). |
---|
2874 | </P> |
---|
2875 | </TD> |
---|
2876 | </TR> |
---|
2877 | <TR> |
---|
2878 | <TD WIDTH=126> |
---|
2879 | <P><A NAME="q_vertical_gradient_level"></A><B>q_vertical_gradient</B> |
---|
2880 | <BR><B>_level</B></P> |
---|
2881 | </TD> |
---|
2882 | <TD WIDTH=45> |
---|
2883 | <P>R (10)</P> |
---|
2884 | </TD> |
---|
2885 | <TD WIDTH=159> |
---|
2886 | <P><I>10 *</I> <I>0.0</I></P> |
---|
2887 | </TD> |
---|
2888 | <TD WIDTH=1280> |
---|
2889 | <P>Height level from which on the humidity gradient defined by |
---|
2890 | <A HREF="#q_vertical_gradient">q_vertical_gradient</A> is |
---|
2891 | effective (in m). |
---|
2892 | </P> |
---|
2893 | <P>The height levels are to be assigned in ascending order. The |
---|
2894 | default values result in a humidity constant with height |
---|
2895 | regardless of the values of <A HREF="#q_vertical_gradient">q_vertical_gradient</A> |
---|
2896 | (unless the top boundary of the model is higher than 100000.0 m). |
---|
2897 | For the piecewise construction of humidity profiles see |
---|
2898 | <A HREF="#q_vertical_gradient">q_vertical_gradient</A>.</P> |
---|
2899 | </TD> |
---|
2900 | </TR> |
---|
2901 | <TR> |
---|
2902 | <TD WIDTH=126> |
---|
2903 | <P><A NAME="radiation"></A><B>radiation</B></P> |
---|
2904 | </TD> |
---|
2905 | <TD WIDTH=45> |
---|
2906 | <P>L</P> |
---|
2907 | </TD> |
---|
2908 | <TD WIDTH=159> |
---|
2909 | <P><I>.F.</I></P> |
---|
2910 | </TD> |
---|
2911 | <TD WIDTH=1280> |
---|
2912 | <P>Parameter to switch on longwave radiation cooling at |
---|
2913 | cloud-tops. |
---|
2914 | </P> |
---|
2915 | <P>Long-wave radiation processes are parameterized by the |
---|
2916 | effective emissivity, which considers only the absorption and |
---|
2917 | emission of long-wave radiation at cloud droplets. The radiation |
---|
2918 | scheme can be used only with <A HREF="#cloud_physics">cloud_physics</A> |
---|
2919 | = .TRUE. .</P> |
---|
2920 | </TD> |
---|
2921 | </TR> |
---|
2922 | <TR> |
---|
2923 | <TD WIDTH=126> |
---|
2924 | <P><A NAME="random_generator"></A><B>random_generator</B></P> |
---|
2925 | </TD> |
---|
2926 | <TD WIDTH=45> |
---|
2927 | <P>C * 20</P> |
---|
2928 | </TD> |
---|
2929 | <TD WIDTH=159> |
---|
2930 | <P><I>'numerical</I><BR><I>recipes'</I></P> |
---|
2931 | </TD> |
---|
2932 | <TD WIDTH=1280> |
---|
2933 | <P>Random number generator to be used for creating uniformly |
---|
2934 | distributed random numbers. |
---|
2935 | </P> |
---|
2936 | <P>It is used if random perturbations are to be imposed on the |
---|
2937 | velocity field or on the surface heat flux field (see |
---|
2938 | <A HREF="chapter_4.2.html#create_disturbances">create_disturbances</A> |
---|
2939 | and <A HREF="chapter_4.2.html#random_heatflux">random_heatflux</A>). |
---|
2940 | By default, the "Numerical Recipes" random number |
---|
2941 | generator is used. This one provides exactly the same order of |
---|
2942 | random numbers on all different machines and should be used in |
---|
2943 | particular for comparison runs.<BR><BR>Besides, a system-specific |
---|
2944 | generator is available ( <B>random_generator</B> = |
---|
2945 | <I>'system-specific')</I> which should particularly be used for |
---|
2946 | runs on vector parallel computers (NEC), because the default |
---|
2947 | generator cannot be vectorized and therefore significantly drops |
---|
2948 | down the code performance on these machines.</P> |
---|
2949 | <P><B>Note:</B><BR>Results from two otherwise identical model runs |
---|
2950 | will not be comparable one-to-one if they used different random |
---|
2951 | number generators.</P> |
---|
2952 | </TD> |
---|
2953 | </TR> |
---|
2954 | <TR> |
---|
2955 | <TD WIDTH=126> |
---|
2956 | <P><A NAME="random_heatflux"></A><B>random_heatflux</B></P> |
---|
2957 | </TD> |
---|
2958 | <TD WIDTH=45> |
---|
2959 | <P>L</P> |
---|
2960 | </TD> |
---|
2961 | <TD WIDTH=159> |
---|
2962 | <P><I>.F.</I></P> |
---|
2963 | </TD> |
---|
2964 | <TD WIDTH=1280> |
---|
2965 | <P>Parameter to impose random perturbations on the internal |
---|
2966 | two-dimensional near surface heat flux field <I>shf</I>. |
---|
2967 | </P> |
---|
2968 | <P>If a near surface heat flux is used as bottom boundary |
---|
2969 | condition (see <A HREF="#surface_heatflux">surface_heatflux</A>), |
---|
2970 | it is by default assumed to be horizontally homogeneous. Random |
---|
2971 | perturbations can be imposed on the internal two-dimensional heat |
---|
2972 | flux field <I>shf</I> by assigning <B>random_heatflux</B> = <I>.T.</I>. |
---|
2973 | The disturbed heat flux field is calculated by multiplying the |
---|
2974 | values at each mesh point with a normally distributed random |
---|
2975 | number with a mean value and standard deviation of 1. This is |
---|
2976 | repeated after every timestep.<BR><BR>In case of a non-flat |
---|
2977 | <A HREF="#topography">topography</A>, assigning |
---|
2978 | <B>random_heatflux</B> = <I>.T.</I> imposes random perturbations |
---|
2979 | on the combined heat flux field <I>shf</I> composed of |
---|
2980 | <A HREF="#surface_heatflux">surface_heatflux</A> at the bottom |
---|
2981 | surface and <A HREF="#wall_heatflux">wall_heatflux(0)</A> at the |
---|
2982 | topography top face.</P> |
---|
2983 | </TD> |
---|
2984 | </TR> |
---|
2985 | <TR> |
---|
2986 | <TD WIDTH=126> |
---|
2987 | <P><A NAME="recycling_width"></A><B>recycling_width</B></P> |
---|
2988 | </TD> |
---|
2989 | <TD WIDTH=45> |
---|
2990 | <P>R</P> |
---|
2991 | </TD> |
---|
2992 | <TD WIDTH=159> |
---|
2993 | <P><I>0.1 * <A HREF="#nx">nx</A> * <A HREF="#dx">dx</A></I></P> |
---|
2994 | </TD> |
---|
2995 | <TD WIDTH=1280> |
---|
2996 | <P>Distance of the recycling plane from the inflow boundary (in |
---|
2997 | m).<BR><BR>This parameter sets the horizontal extension (along the |
---|
2998 | direction of the main flow) of the so-called recycling domain |
---|
2999 | which is used to generate a turbulent inflow (see |
---|
3000 | <A HREF="#turbulent_inflow">turbulent_inflow</A>). <B>recycling_width</B> |
---|
3001 | must be larger than the grid spacing (dx) and smaller than the |
---|
3002 | length of the total domain (nx * dx).</P> |
---|
3003 | </TD> |
---|
3004 | </TR> |
---|
3005 | <TR> |
---|
3006 | <TD WIDTH=126> |
---|
3007 | <P><A NAME="rif_max"></A><B>rif_max</B></P> |
---|
3008 | </TD> |
---|
3009 | <TD WIDTH=45> |
---|
3010 | <P>R</P> |
---|
3011 | </TD> |
---|
3012 | <TD WIDTH=159> |
---|
3013 | <P><I>1.0</I></P> |
---|
3014 | </TD> |
---|
3015 | <TD WIDTH=1280> |
---|
3016 | <P>Upper limit of the flux-Richardson number. |
---|
3017 | </P> |
---|
3018 | <P>With the Prandtl layer switched on (see <A HREF="#prandtl_layer">prandtl_layer</A>), |
---|
3019 | flux-Richardson numbers (rif) are calculated for z=z<SUB>p</SUB> |
---|
3020 | (k=1) in the 3d-model (in the 1d model for all heights). Their |
---|
3021 | values in particular determine the values of the friction velocity |
---|
3022 | (1d- and 3d-model) and the values of the eddy diffusivity |
---|
3023 | (1d-model). With small wind velocities at the Prandtl layer top or |
---|
3024 | small vertical wind shears in the 1d-model, rif can take up |
---|
3025 | unrealistic large values. They are limited by an upper (<B>rif_max</B>) |
---|
3026 | and lower limit (see <A HREF="#rif_min">rif_min</A>) for the |
---|
3027 | flux-Richardson number. The condition <B>rif_max</B> > <B>rif_min</B> |
---|
3028 | must be met.</P> |
---|
3029 | </TD> |
---|
3030 | </TR> |
---|
3031 | <TR> |
---|
3032 | <TD WIDTH=126> |
---|
3033 | <P><A NAME="rif_min"></A><B>rif_min</B></P> |
---|
3034 | </TD> |
---|
3035 | <TD WIDTH=45> |
---|
3036 | <P>R</P> |
---|
3037 | </TD> |
---|
3038 | <TD WIDTH=159> |
---|
3039 | <P><I>- 5.0</I></P> |
---|
3040 | </TD> |
---|
3041 | <TD WIDTH=1280> |
---|
3042 | <P>Lower limit of the flux-Richardson number. |
---|
3043 | </P> |
---|
3044 | <P>For further explanations see <A HREF="#rif_max">rif_max</A>. |
---|
3045 | The condition <B>rif_max</B> > <B>rif_min </B>must be met.</P> |
---|
3046 | </TD> |
---|
3047 | </TR> |
---|
3048 | <TR> |
---|
3049 | <TD WIDTH=126> |
---|
3050 | <P><A NAME="roughness_length"></A><B>roughness_length</B></P> |
---|
3051 | </TD> |
---|
3052 | <TD WIDTH=45> |
---|
3053 | <P>R</P> |
---|
3054 | </TD> |
---|
3055 | <TD WIDTH=159> |
---|
3056 | <P><I>0.1</I></P> |
---|
3057 | </TD> |
---|
3058 | <TD WIDTH=1280> |
---|
3059 | <P>Roughness length (in m). |
---|
3060 | </P> |
---|
3061 | <P>This parameter is effective only in case that a Prandtl layer |
---|
3062 | is switched on (see <A HREF="#prandtl_layer">prandtl_layer</A>).</P> |
---|
3063 | </TD> |
---|
3064 | </TR> |
---|
3065 | <TR> |
---|
3066 | <TD WIDTH=126> |
---|
3067 | <P><A NAME="sa_surface"></A><B>sa_surface</B></P> |
---|
3068 | </TD> |
---|
3069 | <TD WIDTH=45> |
---|
3070 | <P>R</P> |
---|
3071 | </TD> |
---|
3072 | <TD WIDTH=159> |
---|
3073 | <P><I>35.0</I></P> |
---|
3074 | </TD> |
---|
3075 | <TD WIDTH=1280> |
---|
3076 | <P>Surface salinity (in psu). </P> |
---|
3077 | <P>This parameter only comes into effect for ocean runs (see |
---|
3078 | parameter <A HREF="#ocean">ocean</A>). |
---|
3079 | </P> |
---|
3080 | <P>This parameter assigns the value of the salinity <B>sa</B> at |
---|
3081 | the sea surface (k=nzt)<B>.</B> Starting from this value, the |
---|
3082 | initial vertical salinity profile is constructed from the surface |
---|
3083 | down to the bottom of the model (k=0) by |
---|
3084 | using <A HREF="#sa_vertical_gradient">sa_vertical_gradient</A> |
---|
3085 | and <A HREF="#sa_vertical_gradient_level">sa_vertical_gradient_level |
---|
3086 | </A>.</P> |
---|
3087 | </TD> |
---|
3088 | </TR> |
---|
3089 | <TR> |
---|
3090 | <TD WIDTH=126> |
---|
3091 | <P><A NAME="sa_vertical_gradient"></A><B>sa_vertical_gradient</B></P> |
---|
3092 | </TD> |
---|
3093 | <TD WIDTH=45> |
---|
3094 | <P>R(10)</P> |
---|
3095 | </TD> |
---|
3096 | <TD WIDTH=159> |
---|
3097 | <P><I>10 * 0.0</I></P> |
---|
3098 | </TD> |
---|
3099 | <TD WIDTH=1280> |
---|
3100 | <P>Salinity gradient(s) of the initial salinity profile (in psu / |
---|
3101 | 100 m). |
---|
3102 | </P> |
---|
3103 | <P>This parameter only comes into effect for ocean runs (see |
---|
3104 | parameter <A HREF="#ocean">ocean</A>).</P> |
---|
3105 | <P>This salinity gradient holds starting from the height |
---|
3106 | level defined by <A HREF="#sa_vertical_gradient_level">sa_vertical_gradient_level</A> |
---|
3107 | (precisely: for all uv levels k where zu(k) < |
---|
3108 | sa_vertical_gradient_level, sa_init(k) is set: sa_init(k) = |
---|
3109 | sa_init(k+1) - dzu(k+1) * <B>sa_vertical_gradient</B>) down to the |
---|
3110 | bottom boundary or down to the next height level defined by |
---|
3111 | <A HREF="#sa_vertical_gradient_level">sa_vertical_gradient_level</A>. |
---|
3112 | A total of 10 different gradients for 11 height intervals (10 |
---|
3113 | intervals if <A HREF="#sa_vertical_gradient_level">sa_vertical_gradient_level</A>(1) |
---|
3114 | = <I>0.0</I>) can be assigned. The surface salinity at k=nzt is |
---|
3115 | assigned via <A HREF="#sa_surface">sa_surface</A>. |
---|
3116 | </P> |
---|
3117 | <P>Example: |
---|
3118 | </P> |
---|
3119 | <UL> |
---|
3120 | <P><B>sa_vertical_gradient</B> = <I>1.0</I>, <I>0.5</I>, |
---|
3121 | <BR><B>sa_vertical_gradient_level</B> = <I>-500.0</I>, -<I>1000.0</I>,</P> |
---|
3122 | </UL> |
---|
3123 | <P>That defines the salinity to be constant down to z = -500.0 m |
---|
3124 | with a salinity given by <A HREF="#sa_surface">sa_surface</A>. For |
---|
3125 | -500.0 m < z <= -1000.0 m the salinity gradient is 1.0 psu / |
---|
3126 | 100 m and for z < -1000.0 m down to the bottom boundary it is |
---|
3127 | 0.5 psu / 100 m (it is assumed that the assigned height levels |
---|
3128 | correspond with uv levels).</P> |
---|
3129 | </TD> |
---|
3130 | </TR> |
---|
3131 | <TR> |
---|
3132 | <TD WIDTH=126> |
---|
3133 | <P><A NAME="sa_vertical_gradient_level"></A><B>sa_vertical_gradient_level</B></P> |
---|
3134 | </TD> |
---|
3135 | <TD WIDTH=45> |
---|
3136 | <P>R(10)</P> |
---|
3137 | </TD> |
---|
3138 | <TD WIDTH=159> |
---|
3139 | <P><I>10 * 0.0</I></P> |
---|
3140 | </TD> |
---|
3141 | <TD WIDTH=1280> |
---|
3142 | <P>Height level from which on the salinity gradient defined by |
---|
3143 | <A HREF="#sa_vertical_gradient">sa_vertical_gradient</A> is |
---|
3144 | effective (in m). |
---|
3145 | </P> |
---|
3146 | <P>This parameter only comes into effect for ocean runs (see |
---|
3147 | parameter <A HREF="#ocean">ocean</A>).</P> |
---|
3148 | <P>The height levels have to be assigned in descending order. The |
---|
3149 | default values result in a constant salinity profile regardless of |
---|
3150 | the values of <A HREF="#sa_vertical_gradient">sa_vertical_gradient</A> |
---|
3151 | (unless the bottom boundary of the model is lower than -100000.0 |
---|
3152 | m). For the piecewise construction of salinity profiles see |
---|
3153 | <A HREF="#sa_vertical_gradient">sa_vertical_gradient</A>.</P> |
---|
3154 | </TD> |
---|
3155 | </TR> |
---|
3156 | <TR> |
---|
3157 | <TD WIDTH=126> |
---|
3158 | <P><A NAME="scalar_advec"></A><B>scalar_advec</B></P> |
---|
3159 | </TD> |
---|
3160 | <TD WIDTH=45> |
---|
3161 | <P>C * 10</P> |
---|
3162 | </TD> |
---|
3163 | <TD WIDTH=159> |
---|
3164 | <P><I>'pw-scheme'</I></P> |
---|
3165 | </TD> |
---|
3166 | <TD WIDTH=1280> |
---|
3167 | <P>Advection scheme to be used for the scalar quantities. |
---|
3168 | </P> |
---|
3169 | <P>The user can choose between the following schemes:</P> |
---|
3170 | <P><I>'pw-scheme'</I></P> |
---|
3171 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">The scheme of |
---|
3172 | Piascek and Williams (1970, J. Comp. Phys., 6, 392-405) with |
---|
3173 | central differences in the form C3 is used.<BR>If intermediate |
---|
3174 | Euler-timesteps are carried out in case of <A HREF="#timestep_scheme">timestep_scheme</A> |
---|
3175 | = <I>'leapfrog+euler'</I> the advection scheme is - for the |
---|
3176 | Euler-timestep - automatically switched to an upstream-scheme. |
---|
3177 | </P> |
---|
3178 | <P><BR><BR> |
---|
3179 | </P> |
---|
3180 | <P><I>'bc-scheme'</I></P> |
---|
3181 | <P STYLE="margin-left: 0.42in">The Bott scheme modified by Chlond |
---|
3182 | (1994, Mon. Wea. Rev., 122, 111-125). This is a conservative |
---|
3183 | monotonous scheme with very small numerical diffusion and |
---|
3184 | therefore very good conservation of scalar flow features. The |
---|
3185 | scheme however, is computationally very expensive both because it |
---|
3186 | is expensive itself and because it does (so far) not allow |
---|
3187 | specific code optimizations (e.g. cache optimization). Choice of |
---|
3188 | this scheme forces the Euler timestep scheme to be used for the |
---|
3189 | scalar quantities. For output of horizontally averaged profiles of |
---|
3190 | the resolved / total heat flux, <A HREF="chapter_4.2.html#data_output_pr">data_output_pr</A> |
---|
3191 | = <I>'w*pt*BC'</I> / <I>'wptBC' </I>should be used, instead of the |
---|
3192 | standard profiles (<I>'w*pt*'</I> and <I>'wpt'</I>) because these |
---|
3193 | are too inaccurate with this scheme. However, for subdomain |
---|
3194 | analysis (see <A HREF="#statistic_regions">statistic_regions</A>) |
---|
3195 | exactly the reverse holds: here <I>'w*pt*BC'</I> and <I>'wptBC'</I> |
---|
3196 | show very large errors and should not be used.<BR><BR>This scheme |
---|
3197 | is not allowed for non-cyclic lateral boundary conditions (see |
---|
3198 | <A HREF="#bc_lr">bc_lr</A> and <A HREF="#bc_ns">bc_ns</A>).</P> |
---|
3199 | <P><I>'ups-scheme'</I></P> |
---|
3200 | <P STYLE="margin-left: 0.42in">The upstream-spline-scheme is used |
---|
3201 | (see Mahrer and Pielke, 1978: Mon. Wea. Rev., 106, 818-830). In |
---|
3202 | opposite to the Piascek Williams scheme, this is characterized by |
---|
3203 | much better numerical features (less numerical diffusion, better |
---|
3204 | preservation of flux structures, e.g. vortices), but |
---|
3205 | computationally it is much more expensive. In addition, the use of |
---|
3206 | the Euler-timestep scheme is mandatory (<A HREF="#timestep_scheme">timestep_scheme</A> |
---|
3207 | = <I>'euler'</I>), i.e. the timestep accuracy is only first order. |
---|
3208 | For this reason the advection of momentum (see <A HREF="#momentum_advec">momentum_advec</A>) |
---|
3209 | should then also be carried out with the upstream-spline scheme, |
---|
3210 | because otherwise the momentum would be subject to large numerical |
---|
3211 | diffusion due to the upstream scheme. |
---|
3212 | </P> |
---|
3213 | <P STYLE="margin-left: 0.42in">Since the cubic splines used tend |
---|
3214 | to overshoot under certain circumstances, this effect must be |
---|
3215 | adjusted by suitable filtering and smoothing (see |
---|
3216 | <A HREF="#cut_spline_overshoot">cut_spline_overshoot</A>, |
---|
3217 | <A HREF="#long_filter_factor">long_filter_factor</A>, |
---|
3218 | <A HREF="#ups_limit_pt">ups_limit_pt</A>, <A HREF="#ups_limit_u">ups_limit_u</A>, |
---|
3219 | <A HREF="#ups_limit_v">ups_limit_v</A>, <A HREF="#ups_limit_w">ups_limit_w</A>). |
---|
3220 | This is always neccesssary for runs with stable stratification, |
---|
3221 | even if this stratification appears only in parts of the model |
---|
3222 | domain. |
---|
3223 | </P> |
---|
3224 | <P STYLE="margin-left: 0.42in">With stable stratification the |
---|
3225 | upstream-upline scheme also produces gravity waves with large |
---|
3226 | amplitude, which must be suitably damped (see |
---|
3227 | <A HREF="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</A>).</P> |
---|
3228 | <P STYLE="margin-left: 0.42in"><B>Important: </B>The |
---|
3229 | upstream-spline scheme is not implemented for humidity and passive |
---|
3230 | scalars (see <A HREF="#humidity">humidity</A> and |
---|
3231 | <A HREF="#passive_scalar">passive_scalar</A>) and requires the use |
---|
3232 | of a 2d-domain-decomposition. The last conditions severely |
---|
3233 | restricts code optimization on several machines leading to very |
---|
3234 | long execution times! This scheme is also not allowed for |
---|
3235 | non-cyclic lateral boundary conditions (see <A HREF="#bc_lr">bc_lr</A> |
---|
3236 | and <A HREF="#bc_ns">bc_ns</A>).</P> |
---|
3237 | <P><BR>A differing advection scheme can be choosed for the |
---|
3238 | subgrid-scale TKE using parameter <A HREF="#use_upstream_for_tke">use_upstream_for_tke</A>.</P> |
---|
3239 | </TD> |
---|
3240 | </TR> |
---|
3241 | <TR> |
---|
3242 | <TD WIDTH=126> |
---|
3243 | <P><A NAME="scalar_exchange_coefficient"></A><B>scalar_exchange_coefficient</B></P> |
---|
3244 | </TD> |
---|
3245 | <TD WIDTH=45> |
---|
3246 | <P>R</P> |
---|
3247 | </TD> |
---|
3248 | <TD WIDTH=159> |
---|
3249 | <P><I>0.0</I></P> |
---|
3250 | </TD> |
---|
3251 | <TD WIDTH=1280> |
---|
3252 | <P>Scalar exchange coefficient for a leaf (dimensionless).<BR><BR>This |
---|
3253 | parameter is only of importance in cases in that both, |
---|
3254 | <A HREF="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</A> |
---|
3255 | and <A HREF="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#passive_scalar">passive_scalar</A>, |
---|
3256 | are set <I>.T.</I>. The value of the scalar exchange coefficient |
---|
3257 | is required for the parametrisation of the sources and sinks of |
---|
3258 | scalar concentration due to the canopy.</P> |
---|
3259 | </TD> |
---|
3260 | </TR> |
---|
3261 | <TR> |
---|
3262 | <TD WIDTH=126> |
---|
3263 | <P><A NAME="statistic_regions"></A><B>statistic_regions</B></P> |
---|
3264 | </TD> |
---|
3265 | <TD WIDTH=45> |
---|
3266 | <P>I</P> |
---|
3267 | </TD> |
---|
3268 | <TD WIDTH=159> |
---|
3269 | <P><I>0</I></P> |
---|
3270 | </TD> |
---|
3271 | <TD WIDTH=1280> |
---|
3272 | <P>Number of additional user-defined subdomains for which |
---|
3273 | statistical analysis and corresponding output (profiles, time |
---|
3274 | series) shall be made. |
---|
3275 | </P> |
---|
3276 | <P>By default, vertical profiles and other statistical quantities |
---|
3277 | are calculated as horizontal and/or volume average of the total |
---|
3278 | model domain. Beyond that, these calculations can also be carried |
---|
3279 | out for subdomains which can be defined using the field <A HREF="chapter_3.5.3.html">rmask |
---|
3280 | </A>within the user-defined software (see <A HREF="chapter_3.5.3.html">chapter |
---|
3281 | 3.5.3</A>). The number of these subdomains is determined with the |
---|
3282 | parameter <B>statistic_regions</B>. Maximum 9 additional |
---|
3283 | subdomains are allowed. The parameter <A HREF="chapter_4.3.html#region">region</A> |
---|
3284 | can be used to assigned names (identifier) to these subdomains |
---|
3285 | which are then used in the headers of the output files and plots.</P> |
---|
3286 | <P>If the default NetCDF output format is selected (see parameter |
---|
3287 | <A HREF="chapter_4.2.html#data_output_format">data_output_format</A>), |
---|
3288 | data for the total domain and all defined subdomains are output to |
---|
3289 | the same file(s) (<A HREF="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</A>, |
---|
3290 | <A HREF="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</A>). |
---|
3291 | In case of <B>statistic_regions</B> > <I>0</I>, data on the |
---|
3292 | file for the different domains can be distinguished by a suffix |
---|
3293 | which is appended to the quantity names. Suffix 0 means data for |
---|
3294 | the total domain, suffix 1 means data for subdomain 1, etc.</P> |
---|
3295 | <P>In case of <B>data_output_format</B> = <I>'profil'</I>, |
---|
3296 | individual local files for profiles (<A HREF="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</A>) are |
---|
3297 | created for each subdomain. The individual subdomain files differ |
---|
3298 | by their name (the number of the respective subdomain is attached, |
---|
3299 | e.g. PLOT1D_DATA_1). In this case the name of the file with the |
---|
3300 | data of the total domain is PLOT1D_DATA_0. If no subdomains are |
---|
3301 | declared (<B>statistic_regions</B> = <I>0</I>), the name |
---|
3302 | PLOT1D_DATA is used (this must be considered in the respective |
---|
3303 | file connection statements of the <B>mrun</B> configuration file).</P> |
---|
3304 | </TD> |
---|
3305 | </TR> |
---|
3306 | <TR> |
---|
3307 | <TD WIDTH=126> |
---|
3308 | <P><A NAME="surface_heatflux"></A><B>surface_heatflux</B></P> |
---|
3309 | </TD> |
---|
3310 | <TD WIDTH=45> |
---|
3311 | <P>R</P> |
---|
3312 | </TD> |
---|
3313 | <TD WIDTH=159> |
---|
3314 | <P><I>no prescribed<BR>heatflux</I></P> |
---|
3315 | </TD> |
---|
3316 | <TD WIDTH=1280> |
---|
3317 | <P>Kinematic sensible heat flux at the bottom surface (in K m/s). |
---|
3318 | </P> |
---|
3319 | <P>If a value is assigned to this parameter, the internal |
---|
3320 | two-dimensional surface heat flux field <I>shf</I> is initialized |
---|
3321 | with the value of <B>surface_heatflux</B> as bottom |
---|
3322 | (horizontally homogeneous) boundary condition for the temperature |
---|
3323 | equation. This additionally requires that a Neumann condition must |
---|
3324 | be used for the potential temperature (see <A HREF="#bc_pt_b">bc_pt_b</A>), |
---|
3325 | because otherwise the resolved scale may contribute to the surface |
---|
3326 | flux so that a constant value cannot be guaranteed. Also, changes |
---|
3327 | of the surface temperature (see <A HREF="#pt_surface_initial_change">pt_surface_initial_change</A>) |
---|
3328 | are not allowed. The parameter <A HREF="#random_heatflux">random_heatflux</A> |
---|
3329 | can be used to impose random perturbations on the (homogeneous) |
---|
3330 | surface heat flux field <I>shf</I>. </P> |
---|
3331 | <P>In case of a non-flat <A HREF="#topography">topography</A>, the |
---|
3332 | internal two-dimensional surface heat flux field <I>shf</I> |
---|
3333 | is initialized with the value of <B>surface_heatflux</B> at the |
---|
3334 | bottom surface and <A HREF="#wall_heatflux">wall_heatflux(0)</A> |
---|
3335 | at the topography top face. The parameter<A HREF="#random_heatflux"> |
---|
3336 | random_heatflux</A> can be used to impose random perturbations on |
---|
3337 | this combined surface heat flux field <I>shf</I>. |
---|
3338 | </P> |
---|
3339 | <P>If no surface heat flux is assigned, <I>shf</I> is calculated |
---|
3340 | at each timestep by u<SUB>*</SUB> * theta<SUB>*</SUB> (of course |
---|
3341 | only with <A HREF="#prandtl_layer">prandtl_layer</A> switched on). |
---|
3342 | Here, u<SUB>*</SUB> and theta<SUB>*</SUB> are calculated from the |
---|
3343 | Prandtl law assuming logarithmic wind and temperature profiles |
---|
3344 | between k=0 and k=1. In this case a Dirichlet condition (see |
---|
3345 | <A HREF="#bc_pt_b">bc_pt_b</A>) must be used as bottom boundary |
---|
3346 | condition for the potential temperature.</P> |
---|
3347 | <P>See also <A HREF="#top_heatflux">top_heatflux</A>.</P> |
---|
3348 | </TD> |
---|
3349 | </TR> |
---|
3350 | <TR> |
---|
3351 | <TD WIDTH=126> |
---|
3352 | <P><A NAME="surface_pressure"></A><B>surface_pressure</B></P> |
---|
3353 | </TD> |
---|
3354 | <TD WIDTH=45> |
---|
3355 | <P>R</P> |
---|
3356 | </TD> |
---|
3357 | <TD WIDTH=159> |
---|
3358 | <P><I>1013.25</I></P> |
---|
3359 | </TD> |
---|
3360 | <TD WIDTH=1280> |
---|
3361 | <P>Atmospheric pressure at the surface (in hPa). |
---|
3362 | </P> |
---|
3363 | <P>Starting from this surface value, the vertical pressure profile |
---|
3364 | is calculated once at the beginning of the run assuming a |
---|
3365 | neutrally stratified atmosphere. This is needed for converting |
---|
3366 | between the liquid water potential temperature and the potential |
---|
3367 | temperature (see <A HREF="#cloud_physics">cloud_physics</A>).</P> |
---|
3368 | </TD> |
---|
3369 | </TR> |
---|
3370 | <TR> |
---|
3371 | <TD WIDTH=126> |
---|
3372 | <P><A NAME="surface_scalarflux"></A><B>surface_scalarflux</B></P> |
---|
3373 | </TD> |
---|
3374 | <TD WIDTH=45> |
---|
3375 | <P>R</P> |
---|
3376 | </TD> |
---|
3377 | <TD WIDTH=159> |
---|
3378 | <P><I>0.0</I></P> |
---|
3379 | </TD> |
---|
3380 | <TD WIDTH=1280> |
---|
3381 | <P>Scalar flux at the surface (in kg/(m<SUP>2</SUP> s)). |
---|
3382 | </P> |
---|
3383 | <P>If a non-zero value is assigned to this parameter, the |
---|
3384 | respective scalar flux value is used as bottom (horizontally |
---|
3385 | homogeneous) boundary condition for the scalar concentration |
---|
3386 | equation. This additionally requires that a Neumann condition |
---|
3387 | must be used for the scalar concentration (see <A HREF="#bc_s_b">bc_s_b</A>), |
---|
3388 | because otherwise the resolved scale may contribute to the surface |
---|
3389 | flux so that a constant value cannot be guaranteed. Also, changes |
---|
3390 | of the surface scalar concentration (see <A HREF="#s_surface_initial_change">s_surface_initial_change</A>) |
---|
3391 | are not allowed. |
---|
3392 | </P> |
---|
3393 | <P>If no surface scalar flux is assigned (<B>surface_scalarflux</B> |
---|
3394 | = <I>0.0</I>), it is calculated at each timestep by u<SUB>*</SUB> |
---|
3395 | * s<SUB>*</SUB> (of course only with Prandtl layer switched on). |
---|
3396 | Here, s<SUB>*</SUB> is calculated from the Prandtl law assuming a |
---|
3397 | logarithmic scalar concentration profile between k=0 and k=1. In |
---|
3398 | this case a Dirichlet condition (see <A HREF="#bc_s_b">bc_s_b</A>) |
---|
3399 | must be used as bottom boundary condition for the scalar |
---|
3400 | concentration.</P> |
---|
3401 | </TD> |
---|
3402 | </TR> |
---|
3403 | <TR> |
---|
3404 | <TD WIDTH=126> |
---|
3405 | <P><A NAME="surface_waterflux"></A><B>surface_waterflux</B></P> |
---|
3406 | </TD> |
---|
3407 | <TD WIDTH=45> |
---|
3408 | <P>R</P> |
---|
3409 | </TD> |
---|
3410 | <TD WIDTH=159> |
---|
3411 | <P><I>0.0</I></P> |
---|
3412 | </TD> |
---|
3413 | <TD WIDTH=1280> |
---|
3414 | <P>Kinematic water flux near the surface (in m/s). |
---|
3415 | </P> |
---|
3416 | <P>If a non-zero value is assigned to this parameter, the |
---|
3417 | respective water flux value is used as bottom (horizontally |
---|
3418 | homogeneous) boundary condition for the humidity equation. This |
---|
3419 | additionally requires that a Neumann condition must be used for |
---|
3420 | the specific humidity / total water content (see <A HREF="#bc_q_b">bc_q_b</A>), |
---|
3421 | because otherwise the resolved scale may contribute to the surface |
---|
3422 | flux so that a constant value cannot be guaranteed. Also, changes |
---|
3423 | of the surface humidity (see <A HREF="#q_surface_initial_change">q_surface_initial_change</A>) |
---|
3424 | are not allowed.</P> |
---|
3425 | <P>If no surface water flux is assigned (<B>surface_waterflux</B> |
---|
3426 | = <I>0.0</I>), it is calculated at each timestep by u<SUB>*</SUB> |
---|
3427 | * q<SUB>*</SUB> (of course only with Prandtl layer switched on). |
---|
3428 | Here, q<SUB>*</SUB> is calculated from the Prandtl law assuming a |
---|
3429 | logarithmic temperature profile between k=0 and k=1. In this case |
---|
3430 | a Dirichlet condition (see <A HREF="#bc_q_b">bc_q_b</A>) must be |
---|
3431 | used as the bottom boundary condition for the humidity.</P> |
---|
3432 | </TD> |
---|
3433 | </TR> |
---|
3434 | <TR> |
---|
3435 | <TD WIDTH=126> |
---|
3436 | <P><A NAME="s_surface"></A><B>s_surface</B></P> |
---|
3437 | </TD> |
---|
3438 | <TD WIDTH=45> |
---|
3439 | <P>R</P> |
---|
3440 | </TD> |
---|
3441 | <TD WIDTH=159> |
---|
3442 | <P><I>0.0</I></P> |
---|
3443 | </TD> |
---|
3444 | <TD WIDTH=1280> |
---|
3445 | <P>Surface value of the passive scalar (in kg/m<SUP>3</SUP>). </P> |
---|
3446 | <P>This parameter assigns the value of the passive scalar s at the |
---|
3447 | surface (k=0)<B>.</B> Starting from this value, the initial |
---|
3448 | vertical scalar concentration profile is constructed with<A HREF="#s_vertical_gradient"> |
---|
3449 | s_vertical_gradient</A> and <A HREF="#s_vertical_gradient_level">s_vertical_gradient_level</A>.</P> |
---|
3450 | </TD> |
---|
3451 | </TR> |
---|
3452 | <TR> |
---|
3453 | <TD WIDTH=126> |
---|
3454 | <P><A NAME="s_surface_initial_change"></A><B>s_surface_initial</B> |
---|
3455 | <BR><B>_change</B></P> |
---|
3456 | </TD> |
---|
3457 | <TD WIDTH=45> |
---|
3458 | <P>R</P> |
---|
3459 | </TD> |
---|
3460 | <TD WIDTH=159> |
---|
3461 | <P><I>0.0</I></P> |
---|
3462 | </TD> |
---|
3463 | <TD WIDTH=1280> |
---|
3464 | <P>Change in surface scalar concentration to be made at the |
---|
3465 | beginning of the 3d run (in kg/m<SUP>3</SUP>). |
---|
3466 | </P> |
---|
3467 | <P>If <B>s_surface_initial_change</B> is set to a non-zero |
---|
3468 | value, the near surface scalar flux is not allowed to be given |
---|
3469 | simultaneously (see <A HREF="#surface_scalarflux">surface_scalarflux</A>).</P> |
---|
3470 | </TD> |
---|
3471 | </TR> |
---|
3472 | <TR> |
---|
3473 | <TD WIDTH=126> |
---|
3474 | <P><A NAME="s_vertical_gradient"></A><B>s_vertical_gradient</B></P> |
---|
3475 | </TD> |
---|
3476 | <TD WIDTH=45> |
---|
3477 | <P>R (10)</P> |
---|
3478 | </TD> |
---|
3479 | <TD WIDTH=159> |
---|
3480 | <P><I>10 * 0.0</I></P> |
---|
3481 | </TD> |
---|
3482 | <TD WIDTH=1280> |
---|
3483 | <P>Scalar concentration gradient(s) of the initial scalar |
---|
3484 | concentration profile (in kg/m<SUP>3 </SUP>/ 100 m). |
---|
3485 | </P> |
---|
3486 | <P>The scalar gradient holds starting from the height level |
---|
3487 | defined by <A HREF="#s_vertical_gradient_level">s_vertical_gradient_level |
---|
3488 | </A>(precisely: for all uv levels k, where zu(k) > |
---|
3489 | s_vertical_gradient_level, s_init(k) is set: s_init(k) = |
---|
3490 | s_init(k-1) + dzu(k) * <B>s_vertical_gradient</B>) up to the top |
---|
3491 | boundary or up to the next height level defined by |
---|
3492 | <A HREF="#s_vertical_gradient_level">s_vertical_gradient_level</A>. |
---|
3493 | A total of 10 different gradients for 11 height intervals (10 |
---|
3494 | intervals if <A HREF="#s_vertical_gradient_level">s_vertical_gradient_level</A>(1) |
---|
3495 | = <I>0.0</I>) can be assigned. The surface scalar value is |
---|
3496 | assigned via <A HREF="#s_surface">s_surface</A>.</P> |
---|
3497 | <P>Example: |
---|
3498 | </P> |
---|
3499 | <UL> |
---|
3500 | <P><B>s_vertical_gradient</B> = <I>0.1</I>, <I>0.05</I>, |
---|
3501 | <BR><B>s_vertical_gradient_level</B> = <I>500.0</I>, <I>1000.0</I>,</P> |
---|
3502 | </UL> |
---|
3503 | <P>That defines the scalar concentration to be constant with |
---|
3504 | height up to z = 500.0 m with a value given by <A HREF="#s_surface">s_surface</A>. |
---|
3505 | For 500.0 m < z <= 1000.0 m the scalar gradient is 0.1 kg/m<SUP>3 |
---|
3506 | </SUP>/ 100 m and for z > 1000.0 m up to the top boundary it is |
---|
3507 | 0.05 kg/m<SUP>3 </SUP>/ 100 m (it is assumed that the assigned |
---|
3508 | height levels correspond with uv levels).</P> |
---|
3509 | </TD> |
---|
3510 | </TR> |
---|
3511 | <TR> |
---|
3512 | <TD WIDTH=126> |
---|
3513 | <P><A NAME="s_vertical_gradient_level"></A><B>s_vertical_gradient_</B> |
---|
3514 | <BR><B>level</B></P> |
---|
3515 | </TD> |
---|
3516 | <TD WIDTH=45> |
---|
3517 | <P>R (10)</P> |
---|
3518 | </TD> |
---|
3519 | <TD WIDTH=159> |
---|
3520 | <P><I>10 *</I> <I>0.0</I></P> |
---|
3521 | </TD> |
---|
3522 | <TD WIDTH=1280> |
---|
3523 | <P>Height level from which on the scalar gradient defined by |
---|
3524 | <A HREF="#s_vertical_gradient">s_vertical_gradient</A> is |
---|
3525 | effective (in m). |
---|
3526 | </P> |
---|
3527 | <P>The height levels are to be assigned in ascending order. The |
---|
3528 | default values result in a scalar concentration constant with |
---|
3529 | height regardless of the values of <A HREF="#s_vertical_gradient">s_vertical_gradient</A> |
---|
3530 | (unless the top boundary of the model is higher than 100000.0 m). |
---|
3531 | For the piecewise construction of scalar concentration profiles |
---|
3532 | see <A HREF="#s_vertical_gradient">s_vertical_gradient</A>.</P> |
---|
3533 | </TD> |
---|
3534 | </TR> |
---|
3535 | <TR> |
---|
3536 | <TD WIDTH=126> |
---|
3537 | <P><A NAME="timestep_scheme"></A><B>timestep_scheme</B></P> |
---|
3538 | </TD> |
---|
3539 | <TD WIDTH=45> |
---|
3540 | <P>C * 20</P> |
---|
3541 | </TD> |
---|
3542 | <TD WIDTH=159> |
---|
3543 | <P><I>'runge</I><BR><I>kutta-3'</I></P> |
---|
3544 | </TD> |
---|
3545 | <TD WIDTH=1280> |
---|
3546 | <P>Time step scheme to be used for the integration of the |
---|
3547 | prognostic variables. |
---|
3548 | </P> |
---|
3549 | <P>The user can choose between the following schemes:</P> |
---|
3550 | <P><I>'runge-kutta-3'</I></P> |
---|
3551 | <P STYLE="margin-left: 0.42in">Third order Runge-Kutta |
---|
3552 | scheme.<BR>This scheme requires the use of <A HREF="#momentum_advec">momentum_advec</A> |
---|
3553 | = <A HREF="#scalar_advec">scalar_advec</A> = '<I>pw-scheme'</I>. |
---|
3554 | Please refer to the <A HREF="../tec/numerik.heiko/zeitschrittverfahren.pdf">documentation |
---|
3555 | on PALM's time integration schemes (28p., in German)</A> fur |
---|
3556 | further details.</P> |
---|
3557 | <P><I>'runge-kutta-2'</I></P> |
---|
3558 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">Second order |
---|
3559 | Runge-Kutta scheme.<BR>For special features see <B>timestep_scheme</B> |
---|
3560 | = '<I>runge-kutta-3'</I>.</P> |
---|
3561 | <P><BR><I>'leapfrog'</I></P> |
---|
3562 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">Second order |
---|
3563 | leapfrog scheme.<BR>Although this scheme requires a constant |
---|
3564 | timestep (because it is centered in time), is even applied |
---|
3565 | in case of changes in timestep. Therefore, only small changes of |
---|
3566 | the timestep are allowed (see <A HREF="#dt">dt</A>). However, an |
---|
3567 | Euler timestep is always used as the first timestep of an initiali |
---|
3568 | run. When using the Bott-Chlond scheme for scalar advection (see |
---|
3569 | <A HREF="#scalar_advec">scalar_advec</A>), the prognostic equation |
---|
3570 | for potential temperature will be calculated with the Euler |
---|
3571 | scheme, although the leapfrog scheme is switched on. <BR>The |
---|
3572 | leapfrog scheme must not be used together with the upstream-spline |
---|
3573 | scheme for calculating the advection (see <A HREF="#scalar_advec">scalar_advec</A> |
---|
3574 | = '<I>ups-scheme'</I> and <A HREF="#momentum_advec">momentum_advec</A> |
---|
3575 | = '<I>ups-scheme'</I>).</P> |
---|
3576 | <P><BR><I>'leapfrog+euler'</I></P> |
---|
3577 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">The leapfrog |
---|
3578 | scheme is used, but after each change of a timestep an Euler |
---|
3579 | timestep is carried out. Although this method is theoretically |
---|
3580 | correct (because the pure leapfrog method does not allow timestep |
---|
3581 | changes), the divergence of the velocity field (after applying the |
---|
3582 | pressure solver) may be significantly larger than with <I>'leapfrog'</I>.</P> |
---|
3583 | <P><BR><I>'euler'</I></P> |
---|
3584 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">First order |
---|
3585 | Euler scheme. <BR>The Euler scheme must be used when |
---|
3586 | treating the advection terms with the upstream-spline scheme (see |
---|
3587 | <A HREF="#scalar_advec">scalar_advec</A> = <I>'ups-scheme'</I> and |
---|
3588 | <A HREF="#momentum_advec">momentum_advec</A> = <I>'ups-scheme'</I>).</P> |
---|
3589 | <P STYLE="margin-bottom: 0in"><BR><BR>A differing timestep scheme |
---|
3590 | can be choosed for the subgrid-scale TKE using parameter |
---|
3591 | <A HREF="#use_upstream_for_tke">use_upstream_for_tke</A>.</P> |
---|
3592 | </TD> |
---|
3593 | </TR> |
---|
3594 | <TR> |
---|
3595 | <TD WIDTH=126> |
---|
3596 | <P ALIGN=LEFT><A NAME="topography"></A><B>topography</B></P> |
---|
3597 | </TD> |
---|
3598 | <TD WIDTH=45> |
---|
3599 | <P>C * 40</P> |
---|
3600 | </TD> |
---|
3601 | <TD WIDTH=159> |
---|
3602 | <P><I>'flat'</I></P> |
---|
3603 | </TD> |
---|
3604 | <TD WIDTH=1280> |
---|
3605 | <P>Topography mode. |
---|
3606 | </P> |
---|
3607 | <P>The user can choose between the following modes:</P> |
---|
3608 | <P><I>'flat'</I></P> |
---|
3609 | <P STYLE="margin-left: 0.42in">Flat surface.</P> |
---|
3610 | <P><I>'single_building'</I></P> |
---|
3611 | <P STYLE="margin-left: 0.42in">Flow around a single |
---|
3612 | rectangular building mounted on a flat surface.<BR>The building |
---|
3613 | size and location can be specified by the parameters |
---|
3614 | <A HREF="#building_height">building_height</A>, <A HREF="#building_length_x">building_length_x</A>, |
---|
3615 | <A HREF="#building_length_y">building_length_y</A>, |
---|
3616 | <A HREF="#building_wall_left">building_wall_left</A> and |
---|
3617 | <A HREF="#building_wall_south">building_wall_south</A>.</P> |
---|
3618 | <P><I>'single_street_canyon'</I></P> |
---|
3619 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">Flow over a |
---|
3620 | single, quasi-2D street canyon of infinite length oriented either |
---|
3621 | in x- or in y-direction.<BR>The canyon size, orientation and |
---|
3622 | location can be specified by the parameters <A HREF="#canyon_height">canyon_height</A> |
---|
3623 | plus <B>either</B> <A HREF="#canyon_width_x">canyon_width_x</A> |
---|
3624 | and <A HREF="#canyon_wall_left">canyon_wall_left</A> <B>or</B> |
---|
3625 | <A HREF="#canyon_width_y">canyon_width_y</A> and |
---|
3626 | <A HREF="#canyon_wall_south">canyon_wall_south</A>.</P> |
---|
3627 | <P> </P> |
---|
3628 | <P><I>'read_from_file'</I></P> |
---|
3629 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">Flow around |
---|
3630 | arbitrary topography.<BR>This mode requires the input file |
---|
3631 | <A HREF="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</A><FONT COLOR="#000000">. |
---|
3632 | This file contains the arbitrary topography height |
---|
3633 | information in m. These data must exactly match the |
---|
3634 | horizontal grid.</FONT></P> |
---|
3635 | <P STYLE="margin-bottom: 0in"><I><BR></I><FONT COLOR="#000000">Alternatively, |
---|
3636 | the user may add code to the user interface subroutine |
---|
3637 | <A HREF="chapter_3.5.1.html#user_init_grid">user_init_grid</A> to |
---|
3638 | allow further topography modes. </FONT>These require to explicitly |
---|
3639 | set the <A HREF="#topography_grid_convention">topography_grid_convention</A> to |
---|
3640 | either <I>'cell_edge'</I> or <I>'cell_center'</I>.<BR><FONT COLOR="#000000"><BR>Non-flat |
---|
3641 | </FONT><FONT COLOR="#000000"><B>topography</B></FONT><FONT COLOR="#000000"> |
---|
3642 | modes may assign a</FONT> kinematic sensible<FONT COLOR="#000000"> |
---|
3643 | <A HREF="#wall_heatflux">wall_heatflux</A> at the five topography |
---|
3644 | faces.</FONT><BR><FONT COLOR="#000000"><BR>All non-flat </FONT><FONT COLOR="#000000"><B>topography</B></FONT><FONT COLOR="#000000"> |
---|
3645 | modes </FONT>require the use of <A HREF="#momentum_advec">momentum_advec</A> |
---|
3646 | = <A HREF="#scalar_advec">scalar_advec</A> = '<I>pw-scheme'</I>, |
---|
3647 | <A HREF="chapter_4.2.html#psolver">psolver</A> /= <I>'sor'</I>, |
---|
3648 | <A HREF="#alpha_surface">alpha_surface</A> = |
---|
3649 | 0.0, <A HREF="#galilei_transformation">galilei_transformation</A> |
---|
3650 | = <I>.F.</I>, <A HREF="#cloud_physics">cloud_physics </A> |
---|
3651 | = <I>.F.</I>, <A HREF="#cloud_droplets">cloud_droplets</A> = |
---|
3652 | <I>.F.</I>, <A HREF="#humidity">humidity</A> = <I>.F.</I>, |
---|
3653 | and <A HREF="#prandtl_layer">prandtl_layer</A> = .T..<BR><FONT COLOR="#000000"><BR>Note |
---|
3654 | that an inclined model domain requires the use of </FONT><FONT COLOR="#000000"><B>topography</B></FONT><FONT COLOR="#000000"> |
---|
3655 | = </FONT><FONT COLOR="#000000"><I>'flat'</I></FONT><FONT COLOR="#000000"> |
---|
3656 | and a nonzero </FONT><A HREF="#alpha_surface">alpha_surface</A>.</P> |
---|
3657 | </TD> |
---|
3658 | </TR> |
---|
3659 | <TR> |
---|
3660 | <TD WIDTH=126> |
---|
3661 | <P><A NAME="topography_grid_convention"></A><B>topography_grid_</B><BR><B>convention</B></P> |
---|
3662 | </TD> |
---|
3663 | <TD WIDTH=45> |
---|
3664 | <P>C*11</P> |
---|
3665 | </TD> |
---|
3666 | <TD WIDTH=159> |
---|
3667 | <P><I>default depends on value of <A HREF="#topography">topography</A>; |
---|
3668 | see text for details</I></P> |
---|
3669 | </TD> |
---|
3670 | <TD WIDTH=1280> |
---|
3671 | <P>Convention for defining the topography grid.<BR><BR>Possible |
---|
3672 | values are</P> |
---|
3673 | <UL> |
---|
3674 | <LI><P STYLE="margin-bottom: 0in"><I>'cell_edge': </I>the |
---|
3675 | distance between cell edges defines the extent of topography. |
---|
3676 | This setting is normally for <I>generic topographies</I>, i.e. |
---|
3677 | topographies that are constructed using length parameters. For |
---|
3678 | example, <A HREF="#topography">topography</A> = <I>'single_building'</I> |
---|
3679 | is constructed using <A HREF="#building_length_x">building_length_x</A> |
---|
3680 | and <A HREF="#building_length_y">building_length_y</A>. The |
---|
3681 | advantage of this setting is that the actual size of generic |
---|
3682 | topography is independent of the grid size, provided that the |
---|
3683 | length parameters are an integer multiple of the grid lengths <A HREF="#dx">dx</A> |
---|
3684 | and <A HREF="#dy">dy</A>. This is convenient for |
---|
3685 | resolution parameter studies.</P> |
---|
3686 | <LI><P><I>'cell_center': </I>the number of topography cells |
---|
3687 | define the extent of topography. This setting is normally for |
---|
3688 | <I>rastered real topographies</I> derived from digital elevation |
---|
3689 | models. For example, <A HREF="#topography">topography</A> = |
---|
3690 | <I>'read_from_file'</I> is constructed using the input file |
---|
3691 | <A HREF="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</A><FONT COLOR="#000000">. </FONT>The |
---|
3692 | advantage of this setting is that the rastered topography |
---|
3693 | cells of the input file are directly mapped to topography grid |
---|
3694 | boxes in PALM. |
---|
3695 | </P> |
---|
3696 | </UL> |
---|
3697 | <P>The example files <CODE><FONT SIZE=4>example_topo_file</FONT></CODE> |
---|
3698 | and <CODE><FONT SIZE=4>example_building</FONT></CODE> in |
---|
3699 | <CODE><FONT SIZE=4>trunk/EXAMPLES/</FONT></CODE> illustrate the |
---|
3700 | difference between both approaches. Both examples simulate a |
---|
3701 | single building and yield the same results. The former uses a |
---|
3702 | rastered topography input file with <I>'cell_center'</I> |
---|
3703 | convention, the latter applies a generic topography with |
---|
3704 | <I>'cell_edge'</I> convention.<BR><BR>The default value is</P> |
---|
3705 | <UL> |
---|
3706 | <LI><P STYLE="margin-bottom: 0in"><I>'cell_edge' </I>if |
---|
3707 | <A HREF="#topography">topography</A> = <I>'single_building'</I> |
---|
3708 | or <I>'single_street_canyon'</I>,</P> |
---|
3709 | <LI><P STYLE="margin-bottom: 0in"><I>'cell_center'</I> if |
---|
3710 | <A HREF="#topography">topography</A> = <I>'read_from_file'</I>,</P> |
---|
3711 | <LI><P><I>none (' '</I> ) otherwise, leading to an abort |
---|
3712 | if <B>topography_grid_convention</B> is not set.</P> |
---|
3713 | </UL> |
---|
3714 | <P>This means that |
---|
3715 | </P> |
---|
3716 | <UL> |
---|
3717 | <LI><P STYLE="margin-bottom: 0in">For PALM simulations using a |
---|
3718 | <I>user-defined topography</I>, the <B>topography_grid_convention</B> |
---|
3719 | must be explicitly set to either <I>'cell_edge'</I> or |
---|
3720 | <I>'cell_center'</I>.</P> |
---|
3721 | <LI><P>For PALM simulations using a <I>standard topography</I> |
---|
3722 | <I>('single_building'</I>, <I>'single_street_canyon'</I> or |
---|
3723 | <I>'read_from_file')</I>, it is possible but not required to set |
---|
3724 | the <B>topography_grid_convention</B> because appropriate |
---|
3725 | default values apply.</P> |
---|
3726 | </UL> |
---|
3727 | </TD> |
---|
3728 | </TR> |
---|
3729 | <TR> |
---|
3730 | <TD WIDTH=126> |
---|
3731 | <P><A NAME="top_heatflux"></A><B>top_heatflux</B></P> |
---|
3732 | </TD> |
---|
3733 | <TD WIDTH=45> |
---|
3734 | <P>R</P> |
---|
3735 | </TD> |
---|
3736 | <TD WIDTH=159> |
---|
3737 | <P><I>no prescribed<BR>heatflux</I></P> |
---|
3738 | </TD> |
---|
3739 | <TD WIDTH=1280> |
---|
3740 | <P>Kinematic sensible heat flux at the top boundary (in K m/s). |
---|
3741 | </P> |
---|
3742 | <P>If a value is assigned to this parameter, the internal |
---|
3743 | two-dimensional surface heat flux field <FONT FACE="monospace">tswst</FONT> |
---|
3744 | is initialized with the value of <B>top_heatflux</B> as top |
---|
3745 | (horizontally homogeneous) boundary condition for the temperature |
---|
3746 | equation. This additionally requires that a Neumann condition must |
---|
3747 | be used for the potential temperature (see <A HREF="#bc_pt_t">bc_pt_t</A>), |
---|
3748 | because otherwise the resolved scale may contribute to the top |
---|
3749 | flux so that a constant flux value cannot be guaranteed. </P> |
---|
3750 | <P><B>Note:</B><BR>The application of a top heat flux additionally |
---|
3751 | requires the setting of initial parameter <A HREF="#use_top_fluxes">use_top_fluxes</A> |
---|
3752 | = .T.. |
---|
3753 | </P> |
---|
3754 | <P>No Prandtl-layer is available at the top boundary so far.</P> |
---|
3755 | <P>See also <A HREF="#surface_heatflux">surface_heatflux</A>.</P> |
---|
3756 | </TD> |
---|
3757 | </TR> |
---|
3758 | <TR> |
---|
3759 | <TD WIDTH=126> |
---|
3760 | <P><A NAME="top_momentumflux_u"></A><B>top_momentumflux_u</B></P> |
---|
3761 | </TD> |
---|
3762 | <TD WIDTH=45> |
---|
3763 | <P>R</P> |
---|
3764 | </TD> |
---|
3765 | <TD WIDTH=159> |
---|
3766 | <P><I>no prescribed momentumflux</I></P> |
---|
3767 | </TD> |
---|
3768 | <TD WIDTH=1280> |
---|
3769 | <P>Momentum flux along x at the top boundary (in m2/s2).</P> |
---|
3770 | <P>If a value is assigned to this parameter, the internal |
---|
3771 | two-dimensional u-momentum flux field <FONT FACE="monospace">uswst</FONT> |
---|
3772 | is initialized with the value of <B>top_momentumflux_u</B> as top |
---|
3773 | (horizontally homogeneous) boundary condition for the u-momentum |
---|
3774 | equation.</P> |
---|
3775 | <P><B>Notes:</B><BR>The application of a top momentum flux |
---|
3776 | additionally requires the setting of initial parameter |
---|
3777 | <A HREF="#use_top_fluxes">use_top_fluxes</A> = .T.. Setting of |
---|
3778 | <B>top_momentumflux_u</B> requires setting of <A HREF="#top_momentumflux_v">top_momentumflux_v</A> |
---|
3779 | also.</P> |
---|
3780 | <P>A Neumann condition should be used for the u velocity |
---|
3781 | component (see <A HREF="#bc_uv_t">bc_uv_t</A>), because otherwise |
---|
3782 | the resolved scale may contribute to the top flux so that a |
---|
3783 | constant flux value cannot be guaranteed. </P> |
---|
3784 | <P>No Prandtl-layer is available at the top boundary so far.</P> |
---|
3785 | <P>The <A HREF="chapter_3.8.html">coupled</A> ocean parameter |
---|
3786 | file <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A> |
---|
3787 | should include dummy REAL value assignments to both |
---|
3788 | <A HREF="#top_momentumflux_u">top_momentumflux_u</A> |
---|
3789 | and <A HREF="#top_momentumflux_v">top_momentumflux_v</A> |
---|
3790 | (e.g. top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to |
---|
3791 | enable the momentum flux coupling.</P> |
---|
3792 | </TD> |
---|
3793 | </TR> |
---|
3794 | <TR> |
---|
3795 | <TD WIDTH=126> |
---|
3796 | <P><A NAME="top_momentumflux_v"></A><B>top_momentumflux_v</B></P> |
---|
3797 | </TD> |
---|
3798 | <TD WIDTH=45> |
---|
3799 | <P>R</P> |
---|
3800 | </TD> |
---|
3801 | <TD WIDTH=159> |
---|
3802 | <P><I>no prescribed momentumflux</I></P> |
---|
3803 | </TD> |
---|
3804 | <TD WIDTH=1280> |
---|
3805 | <P>Momentum flux along y at the top boundary (in m2/s2).</P> |
---|
3806 | <P>If a value is assigned to this parameter, the internal |
---|
3807 | two-dimensional v-momentum flux field <FONT FACE="monospace">vswst</FONT> |
---|
3808 | is initialized with the value of <B>top_momentumflux_v</B> as top |
---|
3809 | (horizontally homogeneous) boundary condition for the v-momentum |
---|
3810 | equation.</P> |
---|
3811 | <P><B>Notes:</B><BR>The application of a top momentum flux |
---|
3812 | additionally requires the setting of initial parameter |
---|
3813 | <A HREF="#use_top_fluxes">use_top_fluxes</A> = .T.. Setting of |
---|
3814 | <B>top_momentumflux_v</B> requires setting of <A HREF="#top_momentumflux_u">top_momentumflux_u</A> |
---|
3815 | also.</P> |
---|
3816 | <P>A Neumann condition should be used for the v velocity |
---|
3817 | component (see <A HREF="#bc_uv_t">bc_uv_t</A>), because otherwise |
---|
3818 | the resolved scale may contribute to the top flux so that a |
---|
3819 | constant flux value cannot be guaranteed. </P> |
---|
3820 | <P>No Prandtl-layer is available at the top boundary so far.</P> |
---|
3821 | <P>The <A HREF="chapter_3.8.html">coupled</A> ocean parameter |
---|
3822 | file <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A> |
---|
3823 | should include dummy REAL value assignments to both |
---|
3824 | <A HREF="#top_momentumflux_u">top_momentumflux_u</A> |
---|
3825 | and <A HREF="#top_momentumflux_v">top_momentumflux_v</A> |
---|
3826 | (e.g. top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to |
---|
3827 | enable the momentum flux coupling.</P> |
---|
3828 | </TD> |
---|
3829 | </TR> |
---|
3830 | <TR> |
---|
3831 | <TD WIDTH=126> |
---|
3832 | <P><A NAME="top_salinityflux"></A><B>top_salinityflux</B></P> |
---|
3833 | </TD> |
---|
3834 | <TD WIDTH=45> |
---|
3835 | <P>R</P> |
---|
3836 | </TD> |
---|
3837 | <TD WIDTH=159> |
---|
3838 | <P><I>no prescribed<BR>salinityflux</I></P> |
---|
3839 | </TD> |
---|
3840 | <TD WIDTH=1280> |
---|
3841 | <P>Kinematic salinity flux at the top boundary, i.e. the sea |
---|
3842 | surface (in psu m/s). |
---|
3843 | </P> |
---|
3844 | <P>This parameter only comes into effect for ocean runs (see |
---|
3845 | parameter <A HREF="#ocean">ocean</A>).</P> |
---|
3846 | <P>If a value is assigned to this parameter, the internal |
---|
3847 | two-dimensional surface heat flux field <FONT FACE="monospace">saswst</FONT> |
---|
3848 | is initialized with the value of <B>top_salinityflux</B> as |
---|
3849 | top (horizontally homogeneous) boundary condition for the salinity |
---|
3850 | equation. This additionally requires that a Neumann condition must |
---|
3851 | be used for the salinity (see <A HREF="#bc_sa_t">bc_sa_t</A>), |
---|
3852 | because otherwise the resolved scale may contribute to the top |
---|
3853 | flux so that a constant flux value cannot be guaranteed. </P> |
---|
3854 | <P><B>Note:</B><BR>The application of a salinity flux at the model |
---|
3855 | top additionally requires the setting of initial parameter |
---|
3856 | <A HREF="#use_top_fluxes">use_top_fluxes</A> = .T.. |
---|
3857 | </P> |
---|
3858 | <P>See also <A HREF="#bottom_salinityflux">bottom_salinityflux</A>.</P> |
---|
3859 | </TD> |
---|
3860 | </TR> |
---|
3861 | <TR> |
---|
3862 | <TD WIDTH=126> |
---|
3863 | <P><A NAME="turbulent_inflow"></A><B>turbulent_inflow</B></P> |
---|
3864 | </TD> |
---|
3865 | <TD WIDTH=45> |
---|
3866 | <P>L</P> |
---|
3867 | </TD> |
---|
3868 | <TD WIDTH=159> |
---|
3869 | <P><I>.F.</I></P> |
---|
3870 | </TD> |
---|
3871 | <TD WIDTH=1280> |
---|
3872 | <P>Generates a turbulent inflow at side boundaries using a |
---|
3873 | turbulence recycling method.<BR><BR>Turbulent inflow is realized |
---|
3874 | using the turbulence recycling method from Lund et al. (1998, J. |
---|
3875 | Comp. Phys., <B>140</B>, 233-258) modified by Kataoka and Mizuno |
---|
3876 | (2002, Wind and Structures, <B>5</B>, 379-392).<BR><BR>A turbulent |
---|
3877 | inflow requires Dirichlet conditions at the respective inflow |
---|
3878 | boundary. <B>So far, a turbulent inflow is realized from the left |
---|
3879 | (west) side only, i.e. <A HREF="#bc_lr">bc_lr</A></B> <B>=</B> |
---|
3880 | <I><B>'dirichlet/radiation'</B></I> <B>is required!</B><BR><BR>The |
---|
3881 | initial (quasi-stationary) turbulence field should be generated by |
---|
3882 | a precursor run and used by setting <A HREF="#initializing_actions">initializing_actions</A> |
---|
3883 | = <I>'cyclic_fill'</I>.<BR><BR>The distance of the recycling plane |
---|
3884 | from the inflow boundary can be set with parameter |
---|
3885 | <A HREF="#recycling_width">recycling_width</A>. The heigth above |
---|
3886 | ground above which the turbulence signal is not used for recycling |
---|
3887 | and the width of the layer within the magnitude of the |
---|
3888 | turbulence signal is damped from 100% to 0% can be set with |
---|
3889 | parameters <A HREF="#inflow_damping_height">inflow_damping_height</A> |
---|
3890 | and <A HREF="#inflow_damping_width">inflow_damping_width</A>.<BR><BR>The |
---|
3891 | detailed setup for a turbulent inflow is described in <A HREF="chapter_3.9.html">chapter |
---|
3892 | 3.9</A>.</P> |
---|
3893 | </TD> |
---|
3894 | </TR> |
---|
3895 | <TR> |
---|
3896 | <TD WIDTH=126> |
---|
3897 | <P><A NAME="u_bulk"></A><B>u_bulk</B></P> |
---|
3898 | </TD> |
---|
3899 | <TD WIDTH=45> |
---|
3900 | <P>R</P> |
---|
3901 | </TD> |
---|
3902 | <TD WIDTH=159> |
---|
3903 | <P><I>0.0</I></P> |
---|
3904 | </TD> |
---|
3905 | <TD WIDTH=1280> |
---|
3906 | <P>u-component of the predefined bulk velocity (in m/s).<BR><BR>This |
---|
3907 | parameter comes into effect if <A HREF="#conserve_volume_flow">conserve_volume_flow</A> |
---|
3908 | = <I>.T.</I> and <A HREF="#conserve_volume_flow_mode">conserve_volume_flow_mode</A> |
---|
3909 | = <I>'bulk_velocity'</I>.</P> |
---|
3910 | </TD> |
---|
3911 | </TR> |
---|
3912 | <TR> |
---|
3913 | <TD WIDTH=126> |
---|
3914 | <P><A NAME="ug_surface"></A><B>ug_surface</B></P> |
---|
3915 | </TD> |
---|
3916 | <TD WIDTH=45> |
---|
3917 | <P>R</P> |
---|
3918 | </TD> |
---|
3919 | <TD WIDTH=159> |
---|
3920 | <P><I>0.0</I></P> |
---|
3921 | </TD> |
---|
3922 | <TD WIDTH=1280> |
---|
3923 | <P>u-component of the geostrophic wind at the surface (in |
---|
3924 | m/s).<BR><BR>This parameter assigns the value of the u-component |
---|
3925 | of the geostrophic wind (ug) at the surface (k=0). Starting from |
---|
3926 | this value, the initial vertical profile of the <BR>u-component of |
---|
3927 | the geostrophic wind is constructed with <A HREF="#ug_vertical_gradient">ug_vertical_gradient</A> |
---|
3928 | and <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A>. |
---|
3929 | The profile constructed in that way is used for creating the |
---|
3930 | initial vertical velocity profile of the 3d-model. Either it is |
---|
3931 | applied, as it has been specified by the user |
---|
3932 | (<A HREF="#initializing_actions">initializing_actions</A> = |
---|
3933 | 'set_constant_profiles') or it is used for calculating a |
---|
3934 | stationary boundary layer wind profile (<A HREF="#initializing_actions">initializing_actions</A> |
---|
3935 | = 'set_1d-model_profiles'). If ug is constant with height (i.e. |
---|
3936 | ug(k)=<B>ug_surface</B>) and has a large value, it is |
---|
3937 | recommended to use a Galilei-transformation of the coordinate |
---|
3938 | system, if possible (see <A HREF="#galilei_transformation">galilei_transformation</A>), |
---|
3939 | in order to obtain larger time steps.<BR><BR><B>Attention:</B><BR>In |
---|
3940 | case of ocean runs (see <A HREF="#ocean">ocean</A>), this |
---|
3941 | parameter gives the geostrophic velocity value (i.e. the pressure |
---|
3942 | gradient) at the sea surface, which is at k=nzt. The profile is |
---|
3943 | then constructed from the surface down to the bottom of the model.</P> |
---|
3944 | </TD> |
---|
3945 | </TR> |
---|
3946 | <TR> |
---|
3947 | <TD WIDTH=126> |
---|
3948 | <P><A NAME="ug_vertical_gradient"></A><B>ug_vertical_gradient</B></P> |
---|
3949 | </TD> |
---|
3950 | <TD WIDTH=45> |
---|
3951 | <P>R(10)</P> |
---|
3952 | </TD> |
---|
3953 | <TD WIDTH=159> |
---|
3954 | <P><I>10 * 0.0</I></P> |
---|
3955 | </TD> |
---|
3956 | <TD WIDTH=1280> |
---|
3957 | <P>Gradient(s) of the initial profile of the u-component of |
---|
3958 | the geostrophic wind (in 1/100s).<BR><BR>The gradient holds |
---|
3959 | starting from the height level defined by |
---|
3960 | <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A> |
---|
3961 | (precisely: for all uv levels k where zu(k) > |
---|
3962 | <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A>, |
---|
3963 | ug(k) is set: ug(k) = ug(k-1) + dzu(k) * <B>ug_vertical_gradient</B>) |
---|
3964 | up to the top boundary or up to the next height level defined by |
---|
3965 | <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A>. |
---|
3966 | A total of 10 different gradients for 11 height intervals (10 |
---|
3967 | intervals if <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A>(1) |
---|
3968 | = 0.0) can be assigned. The surface geostrophic wind is assigned |
---|
3969 | by <A HREF="#ug_surface">ug_surface</A>.<BR><BR><B>Attention:</B><BR>In |
---|
3970 | case of ocean runs (see <A HREF="#ocean">ocean</A>), the profile |
---|
3971 | is constructed like described above, but starting from the sea |
---|
3972 | surface (k=nzt) down to the bottom boundary of the model. Height |
---|
3973 | levels have then to be given as negative values, e.g. |
---|
3974 | <B>ug_vertical_gradient_level</B> = <I>-500.0</I>, <I>-1000.0</I>.</P> |
---|
3975 | </TD> |
---|
3976 | </TR> |
---|
3977 | <TR> |
---|
3978 | <TD WIDTH=126> |
---|
3979 | <P><A NAME="ug_vertical_gradient_level"></A><B>ug_vertical_gradient_level</B></P> |
---|
3980 | </TD> |
---|
3981 | <TD WIDTH=45> |
---|
3982 | <P>R(10)</P> |
---|
3983 | </TD> |
---|
3984 | <TD WIDTH=159> |
---|
3985 | <P><I>10 * 0.0</I></P> |
---|
3986 | </TD> |
---|
3987 | <TD WIDTH=1280> |
---|
3988 | <P>Height level from which on the gradient defined by |
---|
3989 | <A HREF="#ug_vertical_gradient">ug_vertical_gradient</A> is |
---|
3990 | effective (in m).<BR><BR>The height levels have to be assigned in |
---|
3991 | ascending order. For the piecewise construction of a profile of |
---|
3992 | the u-component of the geostrophic wind component (ug) see |
---|
3993 | <A HREF="#ug_vertical_gradient">ug_vertical_gradient</A>.<BR><BR><B>Attention:</B><BR>In |
---|
3994 | case of ocean runs (see <A HREF="#ocean">ocean</A>), the |
---|
3995 | (negative) height levels have to be assigned in descending order.</P> |
---|
3996 | </TD> |
---|
3997 | </TR> |
---|
3998 | <TR> |
---|
3999 | <TD WIDTH=126> |
---|
4000 | <P><A NAME="ups_limit_e"></A><B>ups_limit_e</B></P> |
---|
4001 | </TD> |
---|
4002 | <TD WIDTH=45> |
---|
4003 | <P>R</P> |
---|
4004 | </TD> |
---|
4005 | <TD WIDTH=159> |
---|
4006 | <P><I>0.0</I></P> |
---|
4007 | </TD> |
---|
4008 | <TD WIDTH=1280> |
---|
4009 | <P>Subgrid-scale turbulent kinetic energy difference used as |
---|
4010 | criterion for applying the upstream scheme when upstream-spline |
---|
4011 | advection is switched on (in m<SUP>2</SUP>/s<SUP>2</SUP>). |
---|
4012 | </P> |
---|
4013 | <P>This variable steers the appropriate treatment of the advection |
---|
4014 | of the subgrid-scale turbulent kinetic energy in case that the |
---|
4015 | uptream-spline scheme is used . For further information see |
---|
4016 | <A HREF="#ups_limit_pt">ups_limit_pt</A>. |
---|
4017 | </P> |
---|
4018 | <P>Only positive values are allowed for <B>ups_limit_e</B>. |
---|
4019 | </P> |
---|
4020 | </TD> |
---|
4021 | </TR> |
---|
4022 | <TR> |
---|
4023 | <TD WIDTH=126> |
---|
4024 | <P><A NAME="ups_limit_pt"></A><B>ups_limit_pt</B></P> |
---|
4025 | </TD> |
---|
4026 | <TD WIDTH=45> |
---|
4027 | <P>R</P> |
---|
4028 | </TD> |
---|
4029 | <TD WIDTH=159> |
---|
4030 | <P><I>0.0</I></P> |
---|
4031 | </TD> |
---|
4032 | <TD WIDTH=1280> |
---|
4033 | <P>Temperature difference used as criterion for applying the |
---|
4034 | upstream scheme when upstream-spline advection is switched |
---|
4035 | on (in K). |
---|
4036 | </P> |
---|
4037 | <P>This criterion is used if the upstream-spline scheme is |
---|
4038 | switched on (see <A HREF="#scalar_advec">scalar_advec</A>).<BR>If, |
---|
4039 | for a given gridpoint, the absolute temperature difference with |
---|
4040 | respect to the upstream grid point is smaller than the value given |
---|
4041 | for <B>ups_limit_pt</B>, the upstream scheme is used for this |
---|
4042 | gridpoint (by default, the upstream-spline scheme is always used). |
---|
4043 | Reason: in case of a very small upstream gradient, the advection |
---|
4044 | should cause only a very small tendency. However, in such |
---|
4045 | situations the upstream-spline scheme may give wrong tendencies at |
---|
4046 | a grid point due to spline overshooting, if simultaneously the |
---|
4047 | downstream gradient is very large. In such cases it may be more |
---|
4048 | reasonable to use the upstream scheme. The numerical diffusion |
---|
4049 | caused by the upstream schme remains small as long as the upstream |
---|
4050 | gradients are small.</P> |
---|
4051 | <P>The percentage of grid points for which the upstream scheme is |
---|
4052 | actually used, can be output as a time series with respect to the |
---|
4053 | three directions in space with run parameter (see <A HREF="chapter_4.2.html#dt_dots">dt_dots</A>, |
---|
4054 | the timeseries names in the NetCDF file are <I>'splptx'</I>, |
---|
4055 | <I>'splpty'</I>, <I>'splptz'</I>). The percentage of gridpoints |
---|
4056 | should stay below a certain limit, however, it is not possible to |
---|
4057 | give a general limit, since it depends on the respective flow. |
---|
4058 | </P> |
---|
4059 | <P>Only positive values are permitted for <B>ups_limit_pt</B>.</P> |
---|
4060 | <P>A more effective control of the âovershootsâ can be |
---|
4061 | achieved with parameter <A HREF="#cut_spline_overshoot">cut_spline_overshoot</A>. |
---|
4062 | </P> |
---|
4063 | </TD> |
---|
4064 | </TR> |
---|
4065 | <TR> |
---|
4066 | <TD WIDTH=126> |
---|
4067 | <P><A NAME="ups_limit_u"></A><B>ups_limit_u</B></P> |
---|
4068 | </TD> |
---|
4069 | <TD WIDTH=45> |
---|
4070 | <P>R</P> |
---|
4071 | </TD> |
---|
4072 | <TD WIDTH=159> |
---|
4073 | <P><I>0.0</I></P> |
---|
4074 | </TD> |
---|
4075 | <TD WIDTH=1280> |
---|
4076 | <P>Velocity difference (u-component) used as criterion for |
---|
4077 | applying the upstream scheme when upstream-spline advection is |
---|
4078 | switched on (in m/s). |
---|
4079 | </P> |
---|
4080 | <P>This variable steers the appropriate treatment of the advection |
---|
4081 | of the u-velocity-component in case that the upstream-spline |
---|
4082 | scheme is used. For further information see <A HREF="#ups_limit_pt">ups_limit_pt</A>. |
---|
4083 | </P> |
---|
4084 | <P>Only positive values are permitted for <B>ups_limit_u</B>.</P> |
---|
4085 | </TD> |
---|
4086 | </TR> |
---|
4087 | <TR> |
---|
4088 | <TD WIDTH=126> |
---|
4089 | <P><A NAME="ups_limit_v"></A><B>ups_limit_v</B></P> |
---|
4090 | </TD> |
---|
4091 | <TD WIDTH=45> |
---|
4092 | <P>R</P> |
---|
4093 | </TD> |
---|
4094 | <TD WIDTH=159> |
---|
4095 | <P><I>0.0</I></P> |
---|
4096 | </TD> |
---|
4097 | <TD WIDTH=1280> |
---|
4098 | <P>Velocity difference (v-component) used as criterion for |
---|
4099 | applying the upstream scheme when upstream-spline advection is |
---|
4100 | switched on (in m/s). |
---|
4101 | </P> |
---|
4102 | <P>This variable steers the appropriate treatment of the advection |
---|
4103 | of the v-velocity-component in case that the upstream-spline |
---|
4104 | scheme is used. For further information see <A HREF="#ups_limit_pt">ups_limit_pt</A>. |
---|
4105 | </P> |
---|
4106 | <P>Only positive values are permitted for <B>ups_limit_v</B>.</P> |
---|
4107 | </TD> |
---|
4108 | </TR> |
---|
4109 | <TR> |
---|
4110 | <TD WIDTH=126> |
---|
4111 | <P><A NAME="ups_limit_w"></A><B>ups_limit_w</B></P> |
---|
4112 | </TD> |
---|
4113 | <TD WIDTH=45> |
---|
4114 | <P>R</P> |
---|
4115 | </TD> |
---|
4116 | <TD WIDTH=159> |
---|
4117 | <P><I>0.0</I></P> |
---|
4118 | </TD> |
---|
4119 | <TD WIDTH=1280> |
---|
4120 | <P>Velocity difference (w-component) used as criterion for |
---|
4121 | applying the upstream scheme when upstream-spline advection is |
---|
4122 | switched on (in m/s). |
---|
4123 | </P> |
---|
4124 | <P>This variable steers the appropriate treatment of the advection |
---|
4125 | of the w-velocity-component in case that the upstream-spline |
---|
4126 | scheme is used. For further information see <A HREF="#ups_limit_pt">ups_limit_pt</A>. |
---|
4127 | </P> |
---|
4128 | <P>Only positive values are permitted for <B>ups_limit_w</B>.</P> |
---|
4129 | </TD> |
---|
4130 | </TR> |
---|
4131 | <TR> |
---|
4132 | <TD WIDTH=126> |
---|
4133 | <P><A NAME="use_surface_fluxes"></A><B>use_surface_fluxes</B></P> |
---|
4134 | </TD> |
---|
4135 | <TD WIDTH=45> |
---|
4136 | <P>L</P> |
---|
4137 | </TD> |
---|
4138 | <TD WIDTH=159> |
---|
4139 | <P><I>.F.</I></P> |
---|
4140 | </TD> |
---|
4141 | <TD WIDTH=1280> |
---|
4142 | <P>Parameter to steer the treatment of the subgrid-scale vertical |
---|
4143 | fluxes within the diffusion terms at k=1 (bottom boundary).</P> |
---|
4144 | <P>By default, the near-surface subgrid-scale fluxes are |
---|
4145 | parameterized (like in the remaining model domain) using the |
---|
4146 | gradient approach. If <B>use_surface_fluxes</B> = <I>.TRUE.</I>, |
---|
4147 | the user-assigned surface fluxes are used instead (see |
---|
4148 | <A HREF="#surface_heatflux">surface_heatflux</A>, |
---|
4149 | <A HREF="#surface_waterflux">surface_waterflux</A> and |
---|
4150 | <A HREF="#surface_scalarflux">surface_scalarflux</A>) <B>or</B> |
---|
4151 | the surface fluxes are calculated via the Prandtl layer relation |
---|
4152 | (depends on the bottom boundary conditions, see <A HREF="#bc_pt_b">bc_pt_b</A>, |
---|
4153 | <A HREF="#bc_q_b">bc_q_b</A> and <A HREF="#bc_s_b">bc_s_b</A>).</P> |
---|
4154 | <P><B>use_surface_fluxes</B> is automatically set <I>.TRUE.</I>, |
---|
4155 | if a Prandtl layer is used (see <A HREF="#prandtl_layer">prandtl_layer</A>). |
---|
4156 | </P> |
---|
4157 | <P>The user may prescribe the surface fluxes at the bottom |
---|
4158 | boundary without using a Prandtl layer by setting |
---|
4159 | <B>use_surface_fluxes</B> = <I>.T.</I> and <B>prandtl_layer</B> = |
---|
4160 | <I>.F.</I>. If , in this case, the momentum flux (u<SUB>*</SUB><SUP>2</SUP>) |
---|
4161 | should also be prescribed, the user must assign an appropriate |
---|
4162 | value within the user-defined code.</P> |
---|
4163 | </TD> |
---|
4164 | </TR> |
---|
4165 | <TR> |
---|
4166 | <TD WIDTH=126> |
---|
4167 | <P><A NAME="use_top_fluxes"></A><B>use_top_fluxes</B></P> |
---|
4168 | </TD> |
---|
4169 | <TD WIDTH=45> |
---|
4170 | <P>L</P> |
---|
4171 | </TD> |
---|
4172 | <TD WIDTH=159> |
---|
4173 | <P><I>.F.</I></P> |
---|
4174 | </TD> |
---|
4175 | <TD WIDTH=1280> |
---|
4176 | <P>Parameter to steer the treatment of the subgrid-scale vertical |
---|
4177 | fluxes within the diffusion terms at k=nz (top boundary).</P> |
---|
4178 | <P>By default, the fluxes at nz are calculated using the gradient |
---|
4179 | approach. If <B>use_top_fluxes</B> = <I>.TRUE.</I>, the |
---|
4180 | user-assigned top fluxes are used instead (see <A HREF="#top_heatflux">top_heatflux</A>, |
---|
4181 | <A HREF="#top_momentumflux_u">top_momentumflux_u</A>, |
---|
4182 | <A HREF="#top_momentumflux_v">top_momentumflux_v</A>, |
---|
4183 | <A HREF="#top_salinityflux">top_salinityflux</A>).</P> |
---|
4184 | <P>Currently, no value for the latent heatflux can be assigned. In |
---|
4185 | case of <B>use_top_fluxes</B> = <I>.TRUE.</I>, the latent heat |
---|
4186 | flux at the top will be automatically set to zero.</P> |
---|
4187 | </TD> |
---|
4188 | </TR> |
---|
4189 | <TR> |
---|
4190 | <TD WIDTH=126> |
---|
4191 | <P><A NAME="use_ug_for_galilei_tr"></A><B>use_ug_for_galilei_tr</B></P> |
---|
4192 | </TD> |
---|
4193 | <TD WIDTH=45> |
---|
4194 | <P>L</P> |
---|
4195 | </TD> |
---|
4196 | <TD WIDTH=159> |
---|
4197 | <P><I>.T.</I></P> |
---|
4198 | </TD> |
---|
4199 | <TD WIDTH=1280> |
---|
4200 | <P>Switch to determine the translation velocity in case that a |
---|
4201 | Galilean transformation is used.</P> |
---|
4202 | <P>In case of a Galilean transformation (see |
---|
4203 | <A HREF="#galilei_transformation">galilei_transformation</A>), |
---|
4204 | <B>use_ug_for_galilei_tr</B> = <I>.T.</I> ensures that the |
---|
4205 | coordinate system is translated with the geostrophic windspeed.</P> |
---|
4206 | <P>Alternatively, with <B>use_ug_for_galilei_tr</B> = <I>.F</I>., |
---|
4207 | the geostrophic wind can be replaced as translation speed by the |
---|
4208 | (volume) averaged velocity. However, in this case the user must be |
---|
4209 | aware of fast growing gravity waves, so this choice is usually not |
---|
4210 | recommended!</P> |
---|
4211 | </TD> |
---|
4212 | </TR> |
---|
4213 | <TR VALIGN=TOP> |
---|
4214 | <TD WIDTH=126> |
---|
4215 | <P ALIGN=LEFT><A NAME="use_upstream_for_tke"></A><B>use_upstream_for_tke</B></P> |
---|
4216 | </TD> |
---|
4217 | <TD WIDTH=45> |
---|
4218 | <P ALIGN=LEFT>L</P> |
---|
4219 | </TD> |
---|
4220 | <TD WIDTH=159> |
---|
4221 | <P ALIGN=LEFT><I>.F.</I></P> |
---|
4222 | </TD> |
---|
4223 | <TD WIDTH=1280> |
---|
4224 | <P ALIGN=LEFT>Parameter to choose the advection/timestep scheme to |
---|
4225 | be used for the subgrid-scale TKE.<BR><BR>By default, the |
---|
4226 | advection scheme and the timestep scheme to be used for the |
---|
4227 | subgrid-scale TKE are set by the initialization parameters |
---|
4228 | <A HREF="#scalar_advec">scalar_advec</A> and <A HREF="#timestep_scheme">timestep_scheme</A>, |
---|
4229 | respectively. <B>use_upstream_for_tke</B> = <I>.T.</I> forces the |
---|
4230 | Euler-scheme and the upstream-scheme to be used as timestep scheme |
---|
4231 | and advection scheme, respectively. By these methods, the strong |
---|
4232 | (artificial) near-surface vertical gradients of the subgrid-scale |
---|
4233 | TKE are significantly reduced. This is required when subgrid-scale |
---|
4234 | velocities are used for advection of particles (see particle |
---|
4235 | package parameter <A HREF="chapter_4.2.html#use_sgs_for_particles">use_sgs_for_particles</A>).</P> |
---|
4236 | </TD> |
---|
4237 | </TR> |
---|
4238 | <TR> |
---|
4239 | <TD WIDTH=126> |
---|
4240 | <P><A NAME="v_bulk"></A><B>v_bulk</B></P> |
---|
4241 | </TD> |
---|
4242 | <TD WIDTH=45> |
---|
4243 | <P>R</P> |
---|
4244 | </TD> |
---|
4245 | <TD WIDTH=159> |
---|
4246 | <P><I>0.0</I></P> |
---|
4247 | </TD> |
---|
4248 | <TD WIDTH=1280> |
---|
4249 | <P>v-component of the predefined bulk velocity (in m/s).<BR><BR>This |
---|
4250 | parameter comes into effect if <A HREF="#conserve_volume_flow">conserve_volume_flow</A> |
---|
4251 | = <I>.T.</I> and <A HREF="#conserve_volume_flow_mode">conserve_volume_flow_mode</A> |
---|
4252 | = <I>'bulk_velocity'</I>.</P> |
---|
4253 | </TD> |
---|
4254 | </TR> |
---|
4255 | <TR> |
---|
4256 | <TD WIDTH=126> |
---|
4257 | <P><A NAME="vg_surface"></A><B>vg_surface</B></P> |
---|
4258 | </TD> |
---|
4259 | <TD WIDTH=45> |
---|
4260 | <P>R</P> |
---|
4261 | </TD> |
---|
4262 | <TD WIDTH=159> |
---|
4263 | <P><I>0.0</I></P> |
---|
4264 | </TD> |
---|
4265 | <TD WIDTH=1280> |
---|
4266 | <P>v-component of the geostrophic wind at the surface (in |
---|
4267 | m/s).<BR><BR>This parameter assigns the value of the v-component |
---|
4268 | of the geostrophic wind (vg) at the surface (k=0). Starting from |
---|
4269 | this value, the initial vertical profile of the <BR>v-component of |
---|
4270 | the geostrophic wind is constructed with <A HREF="#vg_vertical_gradient">vg_vertical_gradient</A> |
---|
4271 | and <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A>. |
---|
4272 | The profile constructed in that way is used for creating the |
---|
4273 | initial vertical velocity profile of the 3d-model. Either it is |
---|
4274 | applied, as it has been specified by the user |
---|
4275 | (<A HREF="#initializing_actions">initializing_actions</A> = |
---|
4276 | 'set_constant_profiles') or it is used for calculating a |
---|
4277 | stationary boundary layer wind profile (<A HREF="#initializing_actions">initializing_actions</A> |
---|
4278 | = 'set_1d-model_profiles'). If vg is constant with height (i.e. |
---|
4279 | vg(k)=<B>vg_surface</B>) and has a large value, it is |
---|
4280 | recommended to use a Galilei-transformation of the coordinate |
---|
4281 | system, if possible (see <A HREF="#galilei_transformation">galilei_transformation</A>), |
---|
4282 | in order to obtain larger time steps.<BR><BR><B>Attention:</B><BR>In |
---|
4283 | case of ocean runs (see <A HREF="#ocean">ocean</A>), this |
---|
4284 | parameter gives the geostrophic velocity value (i.e. the pressure |
---|
4285 | gradient) at the sea surface, which is at k=nzt. The profile is |
---|
4286 | then constructed from the surface down to the bottom of the model.</P> |
---|
4287 | </TD> |
---|
4288 | </TR> |
---|
4289 | <TR> |
---|
4290 | <TD WIDTH=126> |
---|
4291 | <P><A NAME="vg_vertical_gradient"></A><B>vg_vertical_gradient</B></P> |
---|
4292 | </TD> |
---|
4293 | <TD WIDTH=45> |
---|
4294 | <P>R(10)</P> |
---|
4295 | </TD> |
---|
4296 | <TD WIDTH=159> |
---|
4297 | <P><I>10 * 0.0</I></P> |
---|
4298 | </TD> |
---|
4299 | <TD WIDTH=1280> |
---|
4300 | <P>Gradient(s) of the initial profile of the v-component of |
---|
4301 | the geostrophic wind (in 1/100s).<BR><BR>The gradient holds |
---|
4302 | starting from the height level defined by |
---|
4303 | <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A> |
---|
4304 | (precisely: for all uv levels k where zu(k) > |
---|
4305 | <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A>, |
---|
4306 | vg(k) is set: vg(k) = vg(k-1) + dzu(k) * <B>vg_vertical_gradient</B>) |
---|
4307 | up to the top boundary or up to the next height level defined by |
---|
4308 | <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A>. |
---|
4309 | A total of 10 different gradients for 11 height intervals (10 |
---|
4310 | intervals if <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A>(1) |
---|
4311 | = 0.0) can be assigned. The surface geostrophic wind is assigned |
---|
4312 | by <A HREF="#vg_surface">vg_surface</A>.<BR><BR><B>Attention:</B><BR>In |
---|
4313 | case of ocean runs (see <A HREF="#ocean">ocean</A>), the profile |
---|
4314 | is constructed like described above, but starting from the sea |
---|
4315 | surface (k=nzt) down to the bottom boundary of the model. Height |
---|
4316 | levels have then to be given as negative values, e.g. |
---|
4317 | <B>vg_vertical_gradient_level</B> = <I>-500.0</I>, <I>-1000.0</I>.</P> |
---|
4318 | </TD> |
---|
4319 | </TR> |
---|
4320 | <TR> |
---|
4321 | <TD WIDTH=126> |
---|
4322 | <P><A NAME="vg_vertical_gradient_level"></A><B>vg_vertical_gradient_level</B></P> |
---|
4323 | </TD> |
---|
4324 | <TD WIDTH=45> |
---|
4325 | <P>R(10)</P> |
---|
4326 | </TD> |
---|
4327 | <TD WIDTH=159> |
---|
4328 | <P><I>10 * 0.0</I></P> |
---|
4329 | </TD> |
---|
4330 | <TD WIDTH=1280> |
---|
4331 | <P>Height level from which on the gradient defined by |
---|
4332 | <A HREF="#vg_vertical_gradient">vg_vertical_gradient</A> is |
---|
4333 | effective (in m).<BR><BR>The height levels have to be assigned in |
---|
4334 | ascending order. For the piecewise construction of a profile of |
---|
4335 | the v-component of the geostrophic wind component (vg) see |
---|
4336 | <A HREF="#vg_vertical_gradient">vg_vertical_gradient</A>.<BR><BR><B>Attention:</B><BR>In |
---|
4337 | case of ocean runs (see <A HREF="#ocean">ocean</A>), the |
---|
4338 | (negative) height levels have to be assigned in descending order.</P> |
---|
4339 | </TD> |
---|
4340 | </TR> |
---|
4341 | <TR> |
---|
4342 | <TD WIDTH=126> |
---|
4343 | <P><A NAME="wall_adjustment"></A><B>wall_adjustment</B></P> |
---|
4344 | </TD> |
---|
4345 | <TD WIDTH=45> |
---|
4346 | <P>L</P> |
---|
4347 | </TD> |
---|
4348 | <TD WIDTH=159> |
---|
4349 | <P><I>.T.</I></P> |
---|
4350 | </TD> |
---|
4351 | <TD WIDTH=1280> |
---|
4352 | <P>Parameter to restrict the mixing length in the vicinity of the |
---|
4353 | bottom boundary (and near vertical walls of a non-flat |
---|
4354 | <A HREF="#topography">topography</A>). |
---|
4355 | </P> |
---|
4356 | <P>With <B>wall_adjustment</B> = <I>.TRUE., </I>the mixing length |
---|
4357 | is limited to a maximum of 1.8 * z. This condition typically |
---|
4358 | affects only the first grid points above the bottom boundary.</P> |
---|
4359 | <P>In case of a non-flat <A HREF="#topography">topography</A> |
---|
4360 | the respective horizontal distance from vertical walls is used.</P> |
---|
4361 | </TD> |
---|
4362 | </TR> |
---|
4363 | <TR> |
---|
4364 | <TD WIDTH=126> |
---|
4365 | <P><A NAME="wall_heatflux"></A><B>wall_heatflux</B></P> |
---|
4366 | </TD> |
---|
4367 | <TD WIDTH=45> |
---|
4368 | <P>R(5)</P> |
---|
4369 | </TD> |
---|
4370 | <TD WIDTH=159> |
---|
4371 | <P><I>5 * 0.0</I></P> |
---|
4372 | </TD> |
---|
4373 | <TD WIDTH=1280> |
---|
4374 | <P>Prescribed kinematic sensible heat flux in K m/s at the five |
---|
4375 | topography faces:</P> |
---|
4376 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in"><B>wall_heatflux(0) |
---|
4377 | </B>top face<BR><B>wall_heatflux(1) </B>left |
---|
4378 | face<BR><B>wall_heatflux(2) </B>right |
---|
4379 | face<BR><B>wall_heatflux(3) </B>south |
---|
4380 | face<BR><B>wall_heatflux(4) </B>north face</P> |
---|
4381 | <P STYLE="margin-bottom: 0in"><BR>This parameter applies only in |
---|
4382 | case of a non-flat <A HREF="#topography">topography</A>. The |
---|
4383 | parameter <A HREF="#random_heatflux">random_heatflux</A> can be |
---|
4384 | used to impose random perturbations on the internal |
---|
4385 | two-dimensional surface heat flux field <I>shf</I> that is |
---|
4386 | composed of <A HREF="#surface_heatflux">surface_heatflux</A> at |
---|
4387 | the bottom surface and <B>wall_heatflux(0)</B> at the topography |
---|
4388 | top face. </P> |
---|
4389 | </TD> |
---|
4390 | </TR> |
---|
4391 | </TABLE> |
---|
4392 | <P><BR><BR> |
---|
4393 | </P> |
---|
4394 | <P STYLE="line-height: 100%"><BR><FONT COLOR="#000080"><A HREF="chapter_4.0.html"><FONT COLOR="#000080"><IMG SRC="left.gif" NAME="Grafik1" ALIGN=BOTTOM WIDTH=32 HEIGHT=32 BORDER=1></FONT></A><A HREF="index.html"><FONT COLOR="#000080"><IMG SRC="up.gif" NAME="Grafik2" ALIGN=BOTTOM WIDTH=32 HEIGHT=32 BORDER=1></FONT></A><A HREF="chapter_4.2.html"><FONT COLOR="#000080"><IMG SRC="right.gif" NAME="Grafik3" ALIGN=BOTTOM WIDTH=32 HEIGHT=32 BORDER=1></FONT></A></FONT></P> |
---|
4395 | <P STYLE="line-height: 100%"><I>Last change: </I> $Id: |
---|
4396 | chapter_4.1.html 328 2009-05-28 12:13:56Z letzel $ |
---|
4397 | </P> |
---|
4398 | <P><BR><BR> |
---|
4399 | </P> |
---|
4400 | </BODY> |
---|
4401 | </HTML> |
---|