source: palm/trunk/DOC/app/chapter_4.1.html @ 305

Last change on this file since 305 was 305, checked in by raasch, 16 years ago

bugfix in Makefile, default value of grid_matching changed to strict

  • Property svn:keywords set to Id
File size: 227.5 KB
RevLine 
[116]1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
[160]2<html><head>
[116]3
4
5
6
7
[153]8
9
[116]10 
11 
12 
13 
[153]14 
15 
[116]16  <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
17
18
19
20
[153]21
22
[116]23 
24 
25 
26 
[153]27 
28 
[160]29  <title>PALM chapter 4.1</title></head>
[116]30<body>
31
32
33
34
[153]35
36
[116]37<h3><a name="chapter4.1"></a>4.1
38Initialization parameters</h3>
39
40
41
42
43
[153]44
45
[116]46<br>
47
48
49
50
[153]51
52
[116]53<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2">
54
55
56
57
[153]58
59
[116]60 <tbody>
61
62
63
64
65
[153]66
67
[116]68    <tr>
69
70
71
72
[153]73
74
[116]75 <td style="vertical-align: top;"><font size="4"><b>Parameter name</b></font></td>
76
77
78
79
80
[153]81
82
[116]83      <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
84
85
86
87
88
[153]89
90
[116]91      <td style="vertical-align: top;"> 
92     
93     
94     
95     
[153]96     
97     
[116]98      <p><b><font size="4">Default</font></b> <br>
99
100
101
102
[153]103
104
[116]105 <b><font size="4">value</font></b></p>
106
107
108
109
[153]110
111
[116]112 </td>
113
114
115
116
117
[153]118
119
[116]120      <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
121
122
123
124
125
[153]126
127
[116]128    </tr>
129
130
131
132
[153]133
134
[116]135 <tr>
136
137
138
139
[153]140
141
[116]142 <td style="vertical-align: top;">
143     
144     
145     
146     
[153]147     
148     
[116]149      <p><a name="adjust_mixing_length"></a><b>adjust_mixing_length</b></p>
150
151
152
153
154
[153]155
156
[116]157      </td>
158
159
160
161
[153]162
163
[116]164 <td style="vertical-align: top;">L</td>
165
166
167
168
169
[153]170
171
[116]172      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
173
174
175
176
[153]177
178
[116]179 <td style="vertical-align: top;"> 
180     
181     
182     
183     
[153]184     
185     
[116]186      <p style="font-style: normal;">Near-surface adjustment of the
187mixing length to the Prandtl-layer law.&nbsp; </p>
188
189
190
191
[153]192
193
[116]194 
195     
196     
197     
198     
[153]199     
200     
[116]201      <p>Usually
202the mixing length in LES models l<sub>LES</sub>
203depends (as in PALM) on the grid size and is possibly restricted
204further in case of stable stratification and near the lower wall (see
205parameter <a href="#wall_adjustment">wall_adjustment</a>).
206With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span>
207the Prandtl' mixing length l<sub>PR</sub> = kappa * z/phi
208is calculated
209and the mixing length actually used in the model is set l = MIN (l<sub>LES</sub>,
210l<sub>PR</sub>). This usually gives a decrease of the
211mixing length at
212the bottom boundary and considers the fact that eddy sizes
213decrease in the vicinity of the wall.&nbsp; </p>
214
215
216
217
[153]218
219
[116]220 
221     
222     
223     
224     
[153]225     
226     
[116]227      <p style="font-style: normal;"><b>Warning:</b> So
228far, there is
229no good experience with <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> !&nbsp; </p>
230
231
232
233
234
[153]235
236
[116]237     
238     
239     
240     
[153]241     
242     
[116]243      <p>With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> and the
244Prandtl-layer being
245switched on (see <a href="#prandtl_layer">prandtl_layer</a>)
246      <span style="font-style: italic;">'(u*)** 2+neumann'</span>
247should always be set as the lower boundary condition for the TKE (see <a href="#bc_e_b">bc_e_b</a>),
248otherwise the near-surface value of the TKE is not in agreement with
249the Prandtl-layer law (Prandtl-layer law and Prandtl-Kolmogorov-Ansatz
250should provide the same value for K<sub>m</sub>). A warning
251is given,
252if this is not the case.</p>
253
254
255
256
[153]257
258
[116]259 </td>
260
261
262
263
[153]264
265
[116]266 </tr>
267
268
269
270
[153]271
272
[116]273 <tr>
274
275
276
277
278
[153]279
280
[116]281      <td style="vertical-align: top;"> 
282     
283     
284     
285     
[153]286     
287     
[116]288      <p><a name="alpha_surface"></a><b>alpha_surface</b></p>
289
290
291
292
293
[153]294
295
[116]296      </td>
297
298
299
300
[153]301
302
[116]303 <td style="vertical-align: top;">R<br>
304
305
306
307
[153]308
309
[116]310 </td>
311
312
313
314
315
[153]316
317
[116]318      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
319
320
321
322
[153]323
324
[116]325 </td>
326
327
328
329
330
[153]331
332
[116]333      <td style="vertical-align: top;"> 
334     
335     
336     
337     
[153]338     
339     
[116]340      <p style="font-style: normal;">Inclination of the model domain
341with respect to the horizontal (in degrees).&nbsp; </p>
342
343
344
345
[153]346
347
[116]348 
349     
350     
351     
352     
[153]353     
354     
[116]355      <p style="font-style: normal;">By means of <b>alpha_surface</b>
356the model domain can be inclined in x-direction with respect to the
357horizontal. In this way flows over inclined surfaces (e.g. drainage
358flows, gravity flows) can be simulated. In case of <b>alpha_surface
359      </b>/= <span style="font-style: italic;">0</span>
360the buoyancy term
361appears both in
362the equation of motion of the u-component and of the w-component.<br>
363
364
365
366
367
[153]368
369
[116]370      </p>
371
372
373
374
[153]375
376
[116]377 
378     
379     
380     
381     
[153]382     
383     
[116]384      <p style="font-style: normal;">An inclination
385is only possible in
386case of cyclic horizontal boundary conditions along x AND y (see <a href="#bc_lr">bc_lr</a>
387and <a href="#bc_ns">bc_ns</a>) and <a href="#topography">topography</a> = <span style="font-style: italic;">'flat'</span>. </p>
388
389
390
391
392
[153]393
394
[116]395     
396     
397     
398     
[153]399     
400     
[116]401      <p>Runs with inclined surface still require additional
402user-defined code as well as modifications to the default code. Please
403ask the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM
404developer&nbsp; group</a>.</p>
405
406
407
408
[153]409
410
[116]411 </td>
412
413
414
415
[153]416
417
[116]418 </tr>
419
420
421
422
423
[153]424
425
[116]426    <tr>
427
428
429
430
[153]431
432
[116]433 <td style="vertical-align: top;"> 
434     
435     
436     
437     
[153]438     
439     
[116]440      <p><a name="bc_e_b"></a><b>bc_e_b</b></p>
441
442
443
444
[153]445
446
[116]447 </td>
448
449
450
451
452
[153]453
454
[116]455      <td style="vertical-align: top;">C * 20</td>
456
457
458
459
[153]460
461
[116]462 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
463
464
465
466
467
[153]468
469
[116]470      <td style="vertical-align: top;"> 
471     
472     
473     
474     
[153]475     
476     
[116]477      <p style="font-style: normal;">Bottom boundary condition of the
478TKE.&nbsp; </p>
479
480
481
482
[153]483
484
[116]485 
486     
487     
488     
489     
[153]490     
491     
[116]492      <p><b>bc_e_b</b> may be
493set to&nbsp;<span style="font-style: italic;">'neumann'</span>
494or <span style="font-style: italic;">'(u*) ** 2+neumann'</span>.
495      <b>bc_e_b</b>
496= <span style="font-style: italic;">'neumann'</span>
497yields to
498e(k=0)=e(k=1) (Neumann boundary condition), where e(k=1) is calculated
499via the prognostic TKE equation. Choice of <span style="font-style: italic;">'(u*)**2+neumann'</span>
500also yields to
501e(k=0)=e(k=1), but the TKE at the Prandtl-layer top (k=1) is calculated
502diagnostically by e(k=1)=(us/0.1)**2. However, this is only allowed if
503a Prandtl-layer is used (<a href="#prandtl_layer">prandtl_layer</a>).
504If this is not the case, a warning is given and <b>bc_e_b</b>
505is reset
506to <span style="font-style: italic;">'neumann'</span>.&nbsp;
507      </p>
508
509
510
511
[153]512
513
[116]514 
515     
516     
517     
518     
[153]519     
520     
[116]521      <p style="font-style: normal;">At the top
522boundary a Neumann
523boundary condition is generally used: (e(nz+1) = e(nz)).</p>
524
525
526
527
[153]528
529
[116]530 </td>
531
532
533
534
535
[153]536
537
[116]538    </tr>
539
540
541
542
[153]543
544
[116]545 <tr>
546
547
548
549
[153]550
551
[116]552 <td style="vertical-align: top;">
553     
554     
555     
556     
[153]557     
558     
[116]559      <p><a name="bc_lr"></a><b>bc_lr</b></p>
560
561
562
563
564
[153]565
566
[116]567      </td>
568
569
570
571
[153]572
573
[116]574 <td style="vertical-align: top;">C * 20</td>
575
576
577
578
579
[153]580
581
[116]582      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
583
584
585
586
587
[153]588
589
[116]590      <td style="vertical-align: top;">Boundary
591condition along x (for all quantities).<br>
592
593
594
595
[153]596
597
[116]598 <br>
599
600
601
602
603
[153]604
605
[116]606By default, a cyclic boundary condition is used along x.<br>
607
608
609
610
[153]611
612
[116]613 <br>
614
615
616
617
618
[153]619
620
[116]621      <span style="font-weight: bold;">bc_lr</span> may
622also be
623assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
624(inflow from left, outflow to the right) or <span style="font-style: italic;">'radiation/dirichlet'</span>
625(inflow from
626right, outflow to the left). This requires the multi-grid method to be
627used for solving the Poisson equation for perturbation pressure (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
628and it also requires cyclic boundary conditions along y (see&nbsp;<a href="#bc_ns">bc_ns</a>).<br>
629
630
631
632
[153]633
634
[116]635 <br>
636
637
638
639
640
[153]641
642
[116]643In case of these non-cyclic lateral boundaries, a Dirichlet condition
644is used at the inflow for all quantities (initial vertical profiles -
645see <a href="#initializing_actions">initializing_actions</a>
646- are fixed during the run) except u, to which a Neumann (zero
647gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
648gradient) condition is used for the scalars. For perturbation
649pressure Neumann (zero gradient) conditions are assumed both at the
650inflow and at the outflow.<br>
651
652
653
654
[153]655
656
[116]657 <br>
658
659
660
661
662
[153]663
664
[116]665When using non-cyclic lateral boundaries, a filter is applied to the
666velocity field in the vicinity of the outflow in order to suppress any
667reflections of outgoing disturbances (see <a href="#km_damp_max">km_damp_max</a>
668and <a href="#outflow_damping_width">outflow_damping_width</a>).<br>
669
670
671
672
673
[153]674
675
[116]676      <br>
677
678
679
680
681
[153]682
683
[116]684In order to maintain a turbulent state of the flow, it may be
685neccessary to continuously impose perturbations on the horizontal
686velocity field in the vicinity of the inflow throughout the whole run.
687This can be switched on using <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#create_disturbances">create_disturbances</a>.
688The horizontal range to which these perturbations are applied is
689controlled by the parameters <a href="#inflow_disturbance_begin">inflow_disturbance_begin</a>
690and <a href="#inflow_disturbance_end">inflow_disturbance_end</a>.
691The vertical range and the perturbation amplitude are given by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</a>,
692      <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</a>,
693and <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</a>.
694The time interval at which perturbations are to be imposed is set by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</a>.<br>
695
696
697
698
699
[153]700
701
[116]702      <br>
703
704
705
706
707
[153]708
709
[116]710In case of non-cyclic horizontal boundaries <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver
711at_all_substeps</a> = .T. should be used.<br>
712
713
714
715
[153]716
717
[116]718 <br>
719
720
721
722
[153]723
724
[116]725 <span style="font-weight: bold;">Note:</span><br>
726
727
728
729
730
[153]731
732
[116]733Using non-cyclic lateral boundaries requires very sensitive adjustments
734of the inflow (vertical profiles) and the bottom boundary conditions,
735e.g. a surface heating should not be applied near the inflow boundary
736because this may significantly disturb the inflow. Please check the
737model results very carefully.</td>
738
739
740
741
[153]742
743
[116]744 </tr>
745
746
747
748
[153]749
750
[116]751 <tr>
752
753
754
755
[153]756
757
[116]758 <td style="vertical-align: top;"> 
759     
760     
761     
762     
[153]763     
764     
[116]765      <p><a name="bc_ns"></a><b>bc_ns</b></p>
766
767
768
769
770
[153]771
772
[116]773      </td>
774
775
776
777
[153]778
779
[116]780 <td style="vertical-align: top;">C * 20</td>
781
782
783
784
785
[153]786
787
[116]788      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
789
790
791
792
793
[153]794
795
[116]796      <td style="vertical-align: top;">Boundary
797condition along y (for all quantities).<br>
798
799
800
801
[153]802
803
[116]804 <br>
805
806
807
808
809
[153]810
811
[116]812By default, a cyclic boundary condition is used along y.<br>
813
814
815
816
[153]817
818
[116]819 <br>
820
821
822
823
824
[153]825
826
[116]827      <span style="font-weight: bold;">bc_ns</span> may
828also be
829assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
830(inflow from rear ("north"), outflow to the front ("south")) or <span style="font-style: italic;">'radiation/dirichlet'</span>
831(inflow from front ("south"), outflow to the rear ("north")). This
832requires the multi-grid
833method to be used for solving the Poisson equation for perturbation
834pressure (see <a href="chapter_4.2.html#psolver">psolver</a>)
835and it also requires cyclic boundary conditions along x (see<br>
836
837
838
839
[153]840
841
[116]842 <a href="#bc_lr">bc_lr</a>).<br>
843
844
845
846
[153]847
848
[116]849 <br>
850
851
852
853
854
[153]855
856
[116]857In case of these non-cyclic lateral boundaries, a Dirichlet condition
858is used at the inflow for all quantities (initial vertical profiles -
859see <a href="chapter_4.1.html#initializing_actions">initializing_actions</a>
860- are fixed during the run) except u, to which a Neumann (zero
861gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
862gradient) condition is used for the scalars. For perturbation
863pressure Neumann (zero gradient) conditions are assumed both at the
864inflow and at the outflow.<br>
865
866
867
868
[153]869
870
[116]871 <br>
872
873
874
875
876
[153]877
878
[116]879For further details regarding non-cyclic lateral boundary conditions
880see <a href="#bc_lr">bc_lr</a>.</td>
881
882
883
884
[153]885
886
[116]887 </tr>
888
889
890
891
892
[153]893
894
[116]895    <tr>
896
897
898
899
[153]900
901
[116]902 <td style="vertical-align: top;"> 
903     
904     
905     
906     
[153]907     
908     
[116]909      <p><a name="bc_p_b"></a><b>bc_p_b</b></p>
910
911
912
913
[153]914
915
[116]916 </td>
917
918
919
920
921
[153]922
923
[116]924      <td style="vertical-align: top;">C * 20</td>
925
926
927
928
[153]929
930
[116]931 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
932
933
934
935
936
[153]937
938
[116]939      <td style="vertical-align: top;"> 
940     
941     
942     
943     
[153]944     
945     
[116]946      <p style="font-style: normal;">Bottom boundary condition of the
947perturbation pressure.&nbsp; </p>
948
949
950
951
[153]952
953
[116]954 
955     
956     
957     
958     
[153]959     
960     
[116]961      <p>Allowed values
962are <span style="font-style: italic;">'dirichlet'</span>,
963      <span style="font-style: italic;">'neumann'</span>
964and <span style="font-style: italic;">'neumann+inhomo'</span>.&nbsp;
965      <span style="font-style: italic;">'dirichlet'</span>
966sets
967p(k=0)=0.0,&nbsp; <span style="font-style: italic;">'neumann'</span>
968sets p(k=0)=p(k=1). <span style="font-style: italic;">'neumann+inhomo'</span>
969corresponds to an extended Neumann boundary condition where heat flux
970or temperature inhomogeneities near the
971surface (pt(k=1))&nbsp; are additionally regarded (see Shen and
972LeClerc
973(1995, Q.J.R. Meteorol. Soc.,
9741209)). This condition is only permitted with the Prandtl-layer
975switched on (<a href="#prandtl_layer">prandtl_layer</a>),
976otherwise the run is terminated.&nbsp; </p>
977
978
979
980
[153]981
982
[116]983 
984     
985     
986     
987     
[153]988     
989     
[116]990      <p>Since
991at the bottom boundary of the model the vertical
992velocity
993disappears (w(k=0) = 0.0), the consistent Neumann condition (<span style="font-style: italic;">'neumann'</span> or <span style="font-style: italic;">'neumann+inhomo'</span>)
994dp/dz = 0 should
995be used, which leaves the vertical component w unchanged when the
996pressure solver is applied. Simultaneous use of the Neumann boundary
997conditions both at the bottom and at the top boundary (<a href="#bc_p_t">bc_p_t</a>)
998usually yields no consistent solution for the perturbation pressure and
999should be avoided.</p>
1000
1001
1002
1003
[153]1004
1005
[116]1006 </td>
1007
1008
1009
1010
[153]1011
1012
[116]1013 </tr>
1014
1015
1016
1017
[153]1018
1019
[116]1020 <tr>
1021
1022
1023
1024
[153]1025
1026
[116]1027 <td style="vertical-align: top;"> 
1028     
1029     
1030     
1031     
[153]1032     
1033     
[116]1034      <p><a name="bc_p_t"></a><b>bc_p_t</b></p>
1035
1036
1037
1038
1039
[153]1040
1041
[116]1042      </td>
1043
1044
1045
1046
[153]1047
1048
[116]1049 <td style="vertical-align: top;">C * 20</td>
1050
1051
1052
1053
1054
[153]1055
1056
[116]1057      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1058
1059
1060
1061
1062
[153]1063
1064
[116]1065      <td style="vertical-align: top;"> 
1066     
1067     
1068     
1069     
[153]1070     
1071     
[116]1072      <p style="font-style: normal;">Top boundary condition of the
1073perturbation pressure.&nbsp; </p>
1074
1075
1076
1077
[153]1078
1079
[116]1080 
1081     
1082     
1083     
1084     
[153]1085     
1086     
[116]1087      <p style="font-style: normal;">Allowed values are <span style="font-style: italic;">'dirichlet'</span>
1088(p(k=nz+1)= 0.0) or <span style="font-style: italic;">'neumann'</span>
1089(p(k=nz+1)=p(k=nz)).&nbsp; </p>
1090
1091
1092
1093
[153]1094
1095
[116]1096 
1097     
1098     
1099     
1100     
[153]1101     
1102     
[116]1103      <p>Simultaneous use
1104of Neumann boundary conditions both at the
1105top and bottom boundary (<a href="#bc_p_b">bc_p_b</a>)
1106usually yields no consistent solution for the perturbation pressure and
1107should be avoided. Since at the bottom boundary the Neumann
1108condition&nbsp; is a good choice (see <a href="#bc_p_b">bc_p_b</a>),
1109a Dirichlet condition should be set at the top boundary.</p>
1110
1111
1112
1113
[153]1114
1115
[116]1116 </td>
1117
1118
1119
1120
1121
[153]1122
1123
[116]1124    </tr>
1125
1126
1127
1128
[153]1129
1130
[116]1131 <tr>
1132
1133
1134
1135
[153]1136
1137
[116]1138 <td style="vertical-align: top;">
1139     
1140     
1141     
1142     
[153]1143     
1144     
[116]1145      <p><a name="bc_pt_b"></a><b>bc_pt_b</b></p>
1146
1147
1148
1149
1150
[153]1151
1152
[116]1153      </td>
1154
1155
1156
1157
[153]1158
1159
[116]1160 <td style="vertical-align: top;">C*20</td>
1161
1162
1163
1164
1165
[153]1166
1167
[116]1168      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1169
1170
1171
1172
1173
[153]1174
1175
[116]1176      <td style="vertical-align: top;"> 
1177     
1178     
1179     
1180     
[153]1181     
1182     
[116]1183      <p style="font-style: normal;">Bottom boundary condition of the
1184potential temperature.&nbsp; </p>
1185
1186
1187
1188
[153]1189
1190
[116]1191 
1192     
1193     
1194     
1195     
[153]1196     
1197     
[116]1198      <p>Allowed values
1199are <span style="font-style: italic;">'dirichlet'</span>
1200(pt(k=0) = const. = <a href="#pt_surface">pt_surface</a>
1201+ <a href="#pt_surface_initial_change">pt_surface_initial_change</a>;
1202the user may change this value during the run using user-defined code)
1203and <span style="font-style: italic;">'neumann'</span>
1204(pt(k=0)=pt(k=1)).&nbsp; <br>
1205
1206
1207
1208
1209
[153]1210
1211
[116]1212When a constant surface sensible heat flux is used (<a href="#surface_heatflux">surface_heatflux</a>), <b>bc_pt_b</b>
1213= <span style="font-style: italic;">'neumann'</span>
1214must be used, because otherwise the resolved scale may contribute to
1215the surface flux so that a constant value cannot be guaranteed.</p>
1216
1217
1218
1219
[153]1220
1221
[116]1222     
1223     
1224     
1225     
[153]1226     
1227     
[116]1228      <p>In the <a href="chapter_3.8.html">coupled</a> atmosphere executable,&nbsp;<a href="chapter_4.2.html#bc_pt_b">bc_pt_b</a> is internally set and does not need to be prescribed.</p>
1229
1230
1231
1232
1233
[153]1234
1235
[116]1236      </td>
1237
1238
1239
1240
[153]1241
1242
[116]1243 </tr>
1244
1245
1246
1247
[153]1248
1249
[116]1250 <tr>
1251
1252
1253
1254
[153]1255
1256
[116]1257 <td style="vertical-align: top;"> 
1258     
1259     
1260     
1261     
[153]1262     
1263     
[116]1264      <p><a name="pc_pt_t"></a><b>bc_pt_t</b></p>
1265
1266
1267
1268
1269
[153]1270
1271
[116]1272      </td>
1273
1274
1275
1276
[153]1277
1278
[116]1279 <td style="vertical-align: top;">C * 20</td>
1280
1281
1282
1283
1284
[153]1285
1286
[116]1287      <td style="vertical-align: top;"><span style="font-style: italic;">'initial_ gradient'</span></td>
1288
1289
1290
1291
1292
[153]1293
1294
[116]1295      <td style="vertical-align: top;"> 
1296     
1297     
1298     
1299     
[153]1300     
1301     
[116]1302      <p style="font-style: normal;">Top boundary condition of the
1303potential temperature.&nbsp; </p>
1304
1305
1306
1307
[153]1308
1309
[116]1310 
1311     
1312     
1313     
1314     
[153]1315     
1316     
[116]1317      <p>Allowed are the
1318values <span style="font-style: italic;">'dirichlet' </span>(pt(k=nz+1)
1319does not change during the run), <span style="font-style: italic;">'neumann'</span>
1320(pt(k=nz+1)=pt(k=nz)), and <span style="font-style: italic;">'initial_gradient'</span>.
1321With the 'initial_gradient'-condition the value of the temperature
1322gradient at the top is
1323calculated from the initial
1324temperature profile (see <a href="#pt_surface">pt_surface</a>,
1325      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>)
1326by bc_pt_t_val = (pt_init(k=nz+1) -
1327pt_init(k=nz)) / dzu(nz+1).<br>
1328
1329
1330
1331
1332
[153]1333
1334
[116]1335Using this value (assumed constant during the
1336run) the temperature boundary values are calculated as&nbsp; </p>
1337
1338
1339
1340
1341
[153]1342
1343
[116]1344     
1345     
1346     
1347     
[153]1348     
1349     
[116]1350      <ul>
1351
1352
1353
1354
[153]1355
1356
[116]1357 
1358       
1359       
1360       
1361       
[153]1362       
1363       
[116]1364        <p style="font-style: normal;">pt(k=nz+1) =
1365pt(k=nz) +
1366bc_pt_t_val * dzu(nz+1)</p>
1367
1368
1369
1370
[153]1371
1372
[116]1373 
1374     
1375     
1376     
1377     
[153]1378     
1379     
[116]1380      </ul>
1381
1382
1383
1384
[153]1385
1386
[116]1387 
1388     
1389     
1390     
1391     
[153]1392     
1393     
[116]1394      <p style="font-style: normal;">(up to k=nz the prognostic
1395equation for the temperature is solved).<br>
1396
1397
1398
1399
1400
[153]1401
1402
[116]1403When a constant sensible heat flux is used at the top boundary (<a href="chapter_4.1.html#top_heatflux">top_heatflux</a>),
1404      <b>bc_pt_t</b> = <span style="font-style: italic;">'neumann'</span>
1405must be used, because otherwise the resolved scale may contribute to
1406the top flux so that a constant value cannot be guaranteed.</p>
1407
1408
1409
1410
[153]1411
1412
[116]1413 </td>
1414
1415
1416
1417
1418
[153]1419
1420
[116]1421    </tr>
1422
1423
1424
1425
[153]1426
1427
[116]1428 <tr>
1429
1430
1431
1432
[153]1433
1434
[116]1435 <td style="vertical-align: top;">
1436     
1437     
1438     
1439     
[153]1440     
1441     
[116]1442      <p><a name="bc_q_b"></a><b>bc_q_b</b></p>
1443
1444
1445
1446
1447
[153]1448
1449
[116]1450      </td>
1451
1452
1453
1454
[153]1455
1456
[116]1457 <td style="vertical-align: top;">C * 20</td>
1458
1459
1460
1461
1462
[153]1463
1464
[116]1465      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1466
1467
1468
1469
1470
[153]1471
1472
[116]1473      <td style="vertical-align: top;"> 
1474     
1475     
1476     
1477     
[153]1478     
1479     
[116]1480      <p style="font-style: normal;">Bottom boundary condition of the
1481specific humidity / total water content.&nbsp; </p>
1482
1483
1484
1485
[153]1486
1487
[116]1488 
1489     
1490     
1491     
1492     
[153]1493     
1494     
[116]1495      <p>Allowed
1496values are <span style="font-style: italic;">'dirichlet'</span>
1497(q(k=0) = const. = <a href="#q_surface">q_surface</a>
1498+ <a href="#q_surface_initial_change">q_surface_initial_change</a>;
1499the user may change this value during the run using user-defined code)
1500and <span style="font-style: italic;">'neumann'</span>
1501(q(k=0)=q(k=1)).&nbsp; <br>
1502
1503
1504
1505
1506
[153]1507
1508
[116]1509When a constant surface latent heat flux is used (<a href="#surface_waterflux">surface_waterflux</a>), <b>bc_q_b</b>
1510= <span style="font-style: italic;">'neumann'</span>
1511must be used, because otherwise the resolved scale may contribute to
1512the surface flux so that a constant value cannot be guaranteed.</p>
1513
1514
1515
1516
1517
[153]1518
1519
[116]1520      </td>
1521
1522
1523
1524
[153]1525
1526
[116]1527 </tr>
1528
1529
1530
1531
[153]1532
1533
[116]1534 <tr>
1535
1536
1537
1538
[153]1539
1540
[116]1541 <td style="vertical-align: top;"> 
1542     
1543     
1544     
1545     
[153]1546     
1547     
[116]1548      <p><a name="bc_q_t"></a><b>bc_q_t</b></p>
1549
1550
1551
1552
1553
[153]1554
1555
[116]1556      </td>
1557
1558
1559
1560
[153]1561
1562
[116]1563 <td style="vertical-align: top;"><span style="font-style: italic;">C
1564* 20</span></td>
1565
1566
1567
1568
[153]1569
1570
[116]1571 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1572
1573
1574
1575
1576
[153]1577
1578
[116]1579      <td style="vertical-align: top;"> 
1580     
1581     
1582     
1583     
[153]1584     
1585     
[116]1586      <p style="font-style: normal;">Top boundary condition of the
1587specific humidity / total water content.&nbsp; </p>
1588
1589
1590
1591
[153]1592
1593
[116]1594 
1595     
1596     
1597     
1598     
[153]1599     
1600     
[116]1601      <p>Allowed
1602are the values <span style="font-style: italic;">'dirichlet'</span>
1603(q(k=nz) and q(k=nz+1) do
1604not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1605With the Neumann boundary
1606condition the value of the humidity gradient at the top is calculated
1607from the
1608initial humidity profile (see <a href="#q_surface">q_surface</a>,
1609      <a href="#q_vertical_gradient">q_vertical_gradient</a>)
1610by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<br>
1611
1612
1613
1614
1615
[153]1616
1617
[116]1618Using this value (assumed constant during the run) the humidity
1619boundary values
1620are calculated as&nbsp; </p>
1621
1622
1623
1624
[153]1625
1626
[116]1627 
1628     
1629     
1630     
1631     
[153]1632     
1633     
[116]1634      <ul>
1635
1636
1637
1638
[153]1639
1640
[116]1641 
1642       
1643       
1644       
1645       
[153]1646       
1647       
[116]1648        <p style="font-style: normal;">q(k=nz+1) =q(k=nz) +
1649bc_q_t_val * dzu(nz+1)</p>
1650
1651
1652
1653
[153]1654
1655
[116]1656 
1657     
1658     
1659     
1660     
[153]1661     
1662     
[116]1663      </ul>
1664
1665
1666
1667
[153]1668
1669
[116]1670 
1671     
1672     
1673     
1674     
[153]1675     
1676     
[116]1677      <p style="font-style: normal;">(up tp k=nz the prognostic
1678equation for q is solved). </p>
1679
1680
1681
1682
[153]1683
1684
[116]1685 </td>
1686
1687
1688
1689
[153]1690
1691
[116]1692 </tr>
1693
1694
1695
1696
[153]1697
1698
[116]1699 <tr>
1700
1701
1702
1703
1704
[153]1705
1706
[116]1707      <td style="vertical-align: top;"> 
1708     
1709     
1710     
1711     
[153]1712     
1713     
[116]1714      <p><a name="bc_s_b"></a><b>bc_s_b</b></p>
1715
1716
1717
1718
[153]1719
1720
[116]1721 </td>
1722
1723
1724
1725
1726
[153]1727
1728
[116]1729      <td style="vertical-align: top;">C * 20</td>
1730
1731
1732
1733
[153]1734
1735
[116]1736 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1737
1738
1739
1740
1741
[153]1742
1743
[116]1744      <td style="vertical-align: top;"> 
1745     
1746     
1747     
1748     
[153]1749     
1750     
[116]1751      <p style="font-style: normal;">Bottom boundary condition of the
1752scalar concentration.&nbsp; </p>
1753
1754
1755
1756
[153]1757
1758
[116]1759 
1760     
1761     
1762     
1763     
[153]1764     
1765     
[116]1766      <p>Allowed values
1767are <span style="font-style: italic;">'dirichlet'</span>
1768(s(k=0) = const. = <a href="#s_surface">s_surface</a>
1769+ <a href="#s_surface_initial_change">s_surface_initial_change</a>;
1770the user may change this value during the run using user-defined code)
1771and <span style="font-style: italic;">'neumann'</span>
1772(s(k=0) =
1773s(k=1)).&nbsp; <br>
1774
1775
1776
1777
1778
[153]1779
1780
[116]1781When a constant surface concentration flux is used (<a href="#surface_scalarflux">surface_scalarflux</a>), <b>bc_s_b</b>
1782= <span style="font-style: italic;">'neumann'</span>
1783must be used, because otherwise the resolved scale may contribute to
1784the surface flux so that a constant value cannot be guaranteed.</p>
1785
1786
1787
1788
1789
[153]1790
1791
[116]1792      </td>
1793
1794
1795
1796
[153]1797
1798
[116]1799 </tr>
1800
1801
1802
1803
[153]1804
1805
[116]1806 <tr>
1807
1808
1809
1810
[153]1811
1812
[116]1813 <td style="vertical-align: top;"> 
1814     
1815     
1816     
1817     
[153]1818     
1819     
[116]1820      <p><a name="bc_s_t"></a><b>bc_s_t</b></p>
1821
1822
1823
1824
1825
[153]1826
1827
[116]1828      </td>
1829
1830
1831
1832
[153]1833
1834
[116]1835 <td style="vertical-align: top;">C * 20</td>
1836
1837
1838
1839
1840
[153]1841
1842
[116]1843      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1844
1845
1846
1847
1848
[153]1849
1850
[116]1851      <td style="vertical-align: top;"> 
1852     
1853     
1854     
1855     
[153]1856     
1857     
[116]1858      <p style="font-style: normal;">Top boundary condition of the
1859scalar concentration.&nbsp; </p>
1860
1861
1862
1863
[153]1864
1865
[116]1866 
1867     
1868     
1869     
1870     
[153]1871     
1872     
[116]1873      <p>Allowed are the
1874values <span style="font-style: italic;">'dirichlet'</span>
1875(s(k=nz) and s(k=nz+1) do
1876not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1877With the Neumann boundary
1878condition the value of the scalar concentration gradient at the top is
1879calculated
1880from the initial scalar concentration profile (see <a href="#s_surface">s_surface</a>, <a href="#s_vertical_gradient">s_vertical_gradient</a>)
1881by: bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<br>
1882
1883
1884
1885
1886
[153]1887
1888
[116]1889Using this value (assumed constant during the run) the concentration
1890boundary values
1891are calculated as </p>
1892
1893
1894
1895
[153]1896
1897
[116]1898 
1899     
1900     
1901     
1902     
[153]1903     
1904     
[116]1905      <ul>
1906
1907
1908
1909
[153]1910
1911
[116]1912 
1913       
1914       
1915       
1916       
[153]1917       
1918       
[116]1919        <p style="font-style: normal;">s(k=nz+1) = s(k=nz) +
1920bc_s_t_val * dzu(nz+1)</p>
1921
1922
1923
1924
[153]1925
1926
[116]1927 
1928     
1929     
1930     
1931     
[153]1932     
1933     
[116]1934      </ul>
1935
1936
1937
1938
[153]1939
1940
[116]1941 
1942     
1943     
1944     
1945     
[153]1946     
1947     
[116]1948      <p style="font-style: normal;">(up to k=nz the prognostic
1949equation for the scalar concentration is
1950solved).</p>
1951
1952
1953
1954
[153]1955
1956
[116]1957 </td>
1958
1959
1960
1961
[153]1962
1963
[116]1964 </tr>
1965
1966
1967
1968
[153]1969
1970
[116]1971 <tr>
1972
1973
1974
1975
[153]1976
1977
[116]1978      <td style="vertical-align: top;"><a name="bc_sa_t"></a><span style="font-weight: bold;">bc_sa_t</span></td>
1979
1980
1981
1982
[153]1983
1984
[116]1985      <td style="vertical-align: top;">C * 20</td>
1986
1987
1988
1989
[153]1990
1991
[116]1992      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1993
1994
1995
1996
[153]1997
1998
[116]1999      <td style="vertical-align: top;">
2000     
2001     
2002     
2003     
[153]2004     
2005     
[116]2006      <p style="font-style: normal;">Top boundary condition of the salinity.&nbsp; </p>
2007
2008
2009
2010
[153]2011
2012
[116]2013 
2014     
2015     
2016     
2017     
[153]2018     
2019     
[116]2020      <p>This parameter only comes into effect for ocean runs (see parameter <a href="#ocean">ocean</a>).</p>
2021
2022
2023
2024
[153]2025
2026
[116]2027     
2028     
2029     
2030     
[153]2031     
2032     
[116]2033      <p style="font-style: normal;">Allowed are the
2034values <span style="font-style: italic;">'dirichlet' </span>(sa(k=nz+1)
2035does not change during the run) and <span style="font-style: italic;">'neumann'</span>
2036(sa(k=nz+1)=sa(k=nz))<span style="font-style: italic;"></span>.&nbsp;<br>
2037
2038
2039
2040
[153]2041
2042
[116]2043      <br>
2044
2045
2046
2047
2048
[153]2049
2050
[116]2051When a constant salinity flux is used at the top boundary (<a href="chapter_4.1.html#top_salinityflux">top_salinityflux</a>),
2052      <b>bc_sa_t</b> = <span style="font-style: italic;">'neumann'</span>
2053must be used, because otherwise the resolved scale may contribute to
2054the top flux so that a constant value cannot be guaranteed.</p>
2055
2056
2057
2058
[153]2059
2060
[116]2061      </td>
2062
2063
2064
2065
[153]2066
2067
[116]2068    </tr>
2069
2070
2071
2072
[153]2073
2074
[116]2075    <tr>
2076
2077
2078
2079
[153]2080
2081
[116]2082 <td style="vertical-align: top;"> 
2083     
2084     
2085     
2086     
[153]2087     
2088     
[116]2089      <p><a name="bc_uv_b"></a><b>bc_uv_b</b></p>
2090
2091
2092
2093
2094
[153]2095
2096
[116]2097      </td>
2098
2099
2100
2101
[153]2102
2103
[116]2104 <td style="vertical-align: top;">C * 20</td>
2105
2106
2107
2108
2109
[153]2110
2111
[116]2112      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2113
2114
2115
2116
2117
[153]2118
2119
[116]2120      <td style="vertical-align: top;"> 
2121     
2122     
2123     
2124     
[153]2125     
2126     
[116]2127      <p style="font-style: normal;">Bottom boundary condition of the
2128horizontal velocity components u and v.&nbsp; </p>
2129
2130
2131
2132
[153]2133
2134
[116]2135 
2136     
2137     
2138     
2139     
[153]2140     
2141     
[116]2142      <p>Allowed
2143values are <span style="font-style: italic;">'dirichlet' </span>and
2144      <span style="font-style: italic;">'neumann'</span>. <b>bc_uv_b</b>
2145= <span style="font-style: italic;">'dirichlet'</span>
2146yields the
2147no-slip condition with u=v=0 at the bottom. Due to the staggered grid
2148u(k=0) and v(k=0) are located at z = - 0,5 * <a href="#dz">dz</a>
2149(below the bottom), while u(k=1) and v(k=1) are located at z = +0,5 *
2150dz. u=v=0 at the bottom is guaranteed using mirror boundary
2151condition:&nbsp; </p>
2152
2153
2154
2155
[153]2156
2157
[116]2158 
2159     
2160     
2161     
2162     
[153]2163     
2164     
[116]2165      <ul>
2166
2167
2168
2169
[153]2170
2171
[116]2172 
2173       
2174       
2175       
2176       
[153]2177       
2178       
[116]2179        <p style="font-style: normal;">u(k=0) = - u(k=1) and v(k=0) = -
2180v(k=1)</p>
2181
2182
2183
2184
[153]2185
2186
[116]2187 
2188     
2189     
2190     
2191     
[153]2192     
2193     
[116]2194      </ul>
2195
2196
2197
2198
[153]2199
2200
[116]2201 
2202     
2203     
2204     
2205     
[153]2206     
2207     
[116]2208      <p style="font-style: normal;">The
2209Neumann boundary condition
2210yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) =
2211v(k=1).
[246]2212With Prandtl - layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>), the free-slip condition is not
[116]2213allowed (otherwise the run will be terminated)<font color="#000000">.</font></p>
2214
2215
2216
2217
2218
[153]2219
2220
[116]2221      </td>
2222
2223
2224
2225
[153]2226
2227
[116]2228 </tr>
2229
2230
2231
2232
[153]2233
2234
[116]2235 <tr>
2236
2237
2238
2239
[153]2240
2241
[116]2242 <td style="vertical-align: top;"> 
2243     
2244     
2245     
2246     
[153]2247     
2248     
[116]2249      <p><a name="bc_uv_t"></a><b>bc_uv_t</b></p>
2250
2251
2252
2253
2254
[153]2255
2256
[116]2257      </td>
2258
2259
2260
2261
[153]2262
2263
[116]2264 <td style="vertical-align: top;">C * 20</td>
2265
2266
2267
2268
2269
[153]2270
2271
[116]2272      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2273
2274
2275
2276
2277
[153]2278
2279
[116]2280      <td style="vertical-align: top;"> 
2281     
2282     
2283     
2284     
[153]2285     
2286     
[116]2287      <p style="font-style: normal;">Top boundary condition of the
2288horizontal velocity components u and v.&nbsp; </p>
2289
2290
2291
2292
[153]2293
2294
[116]2295 
2296     
2297     
2298     
2299     
[153]2300     
2301     
[116]2302      <p>Allowed
[132]2303values are <span style="font-style: italic;">'dirichlet'</span>, <span style="font-style: italic;">'dirichlet_0'</span>
[116]2304and <span style="font-style: italic;">'neumann'</span>.
2305The
2306Dirichlet condition yields u(k=nz+1) = ug(nz+1) and v(k=nz+1) =
2307vg(nz+1),
2308Neumann condition yields the free-slip condition with u(k=nz+1) =
2309u(k=nz) and v(k=nz+1) = v(k=nz) (up to k=nz the prognostic equations
[132]2310for the velocities are solved). The special condition&nbsp;<span style="font-style: italic;">'dirichlet_0'</span> can be used for channel flow, it yields the no-slip condition u(k=nz+1) = ug(nz+1) = 0 and v(k=nz+1) =
2311vg(nz+1) = 0.</p>
[116]2312
2313
2314
2315
[153]2316
2317
[116]2318     
2319     
2320     
2321     
[153]2322     
2323     
[116]2324      <p>In the <a href="chapter_3.8.html">coupled</a> ocean executable, <a href="chapter_4.2.html#bc_uv_t">bc_uv_t</a>&nbsp;is internally set ('neumann') and does not need to be prescribed.</p>
2325
2326
2327
2328
[153]2329
2330
[116]2331 </td>
2332
2333
2334
2335
[153]2336
2337
[116]2338 </tr>
2339
2340
2341
2342
[153]2343
2344
[116]2345 <tr>
2346
2347
2348
2349
[153]2350
2351
[116]2352      <td style="vertical-align: top;"><a name="bottom_salinityflux"></a><span style="font-weight: bold;">bottom_salinityflux</span></td>
2353
2354
2355
2356
[153]2357
2358
[116]2359      <td style="vertical-align: top;">R</td>
2360
2361
2362
2363
[153]2364
2365
[116]2366      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
2367
2368
2369
2370
[153]2371
2372
[116]2373      <td style="vertical-align: top;">
2374     
2375     
2376     
2377     
[153]2378     
2379     
[116]2380      <p>Kinematic salinity flux near the surface (in psu m/s).&nbsp;</p>
2381
2382
2383
2384
[153]2385
2386
[116]2387This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
2388     
2389     
2390     
2391     
[153]2392     
2393     
[116]2394      <p>The
2395respective salinity flux value is used
2396as bottom (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
2397condition must be used for the salinity, which is currently the only available condition.<br>
2398
2399
2400
2401
[153]2402
2403
[116]2404 </p>
2405
2406
2407
2408
[153]2409
2410
[116]2411 </td>
2412
2413
2414
2415
[153]2416
2417
[116]2418    </tr>
2419
2420
2421
2422
[153]2423
2424
[116]2425    <tr>
2426
2427
2428
2429
2430
[153]2431
2432
[116]2433      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_height"></a>building_height</span></td>
2434
2435
2436
2437
2438
[153]2439
2440
[116]2441      <td style="vertical-align: top;">R</td>
2442
2443
2444
2445
[153]2446
2447
[116]2448 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2449
2450
2451
2452
[153]2453
2454
[116]2455 <td>Height
2456of a single building in m.<br>
2457
2458
2459
2460
[153]2461
2462
[116]2463 <br>
2464
2465
2466
2467
[153]2468
2469
[116]2470 <span style="font-weight: bold;">building_height</span> must
2471be less than the height of the model domain. This parameter requires
2472the use of&nbsp;<a href="#topography">topography</a>
2473= <span style="font-style: italic;">'single_building'</span>.</td>
2474
2475
2476
2477
2478
[153]2479
2480
[116]2481    </tr>
2482
2483
2484
2485
[153]2486
2487
[116]2488 <tr>
2489
2490
2491
2492
[153]2493
2494
[116]2495 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_x"></a>building_length_x</span></td>
2496
2497
2498
2499
2500
[153]2501
2502
[116]2503      <td style="vertical-align: top;">R</td>
2504
2505
2506
2507
[153]2508
2509
[116]2510 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2511
2512
2513
2514
[153]2515
2516
[116]2517 <td><span style="font-style: italic;"></span>Width of a single
2518building in m.<br>
2519
2520
2521
2522
[153]2523
2524
[116]2525 <br>
2526
2527
2528
2529
2530
[153]2531
2532
[116]2533Currently, <span style="font-weight: bold;">building_length_x</span>
2534must be at least <span style="font-style: italic;">3
2535*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="#dx">dx</a>
2536      </span><span style="font-style: italic;">- <a href="#building_wall_left">building_wall_left</a></span>.
2537This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2538= <span style="font-style: italic;">'single_building'</span>.</td>
2539
2540
2541
2542
2543
[153]2544
2545
[116]2546    </tr>
2547
2548
2549
2550
[153]2551
2552
[116]2553 <tr>
2554
2555
2556
2557
[153]2558
2559
[116]2560 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_y"></a>building_length_y</span></td>
2561
2562
2563
2564
2565
[153]2566
2567
[116]2568      <td style="vertical-align: top;">R</td>
2569
2570
2571
2572
[153]2573
2574
[116]2575 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2576
2577
2578
2579
[153]2580
2581
[116]2582 <td>Depth
2583of a single building in m.<br>
2584
2585
2586
2587
[153]2588
2589
[116]2590 <br>
2591
2592
2593
2594
2595
[153]2596
2597
[116]2598Currently, <span style="font-weight: bold;">building_length_y</span>
2599must be at least <span style="font-style: italic;">3
2600*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="#dy">dy</a></span><span style="font-style: italic;"> - <a href="#building_wall_south">building_wall_south</a></span>. This parameter requires
2601the use of&nbsp;<a href="#topography">topography</a>
2602= <span style="font-style: italic;">'single_building'</span>.</td>
2603
2604
2605
2606
2607
[153]2608
2609
[116]2610    </tr>
2611
2612
2613
2614
[153]2615
2616
[116]2617 <tr>
2618
2619
2620
2621
[153]2622
2623
[116]2624 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_left"></a>building_wall_left</span></td>
2625
2626
2627
2628
2629
[153]2630
2631
[116]2632      <td style="vertical-align: top;">R</td>
2633
2634
2635
2636
[153]2637
2638
[116]2639 <td style="vertical-align: top;"><span style="font-style: italic;">building centered in x-direction</span></td>
2640
2641
2642
2643
2644
[153]2645
2646
[116]2647      <td>x-coordinate of the left building wall (distance between the
2648left building wall and the left border of the model domain) in m.<br>
2649
2650
2651
2652
2653
[153]2654
2655
[116]2656      <br>
2657
2658
2659
2660
2661
[153]2662
2663
[116]2664Currently, <span style="font-weight: bold;">building_wall_left</span>
2665must be at least <span style="font-style: italic;">1
2666*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and less than <span style="font-style: italic;">( <a href="#nx">nx</a>&nbsp;
2667- 1 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a></span>.
2668This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2669= <span style="font-style: italic;">'single_building'</span>.<br>
2670
2671
2672
2673
2674
[153]2675
2676
[116]2677      <br>
2678
2679
2680
2681
2682
[153]2683
2684
[116]2685The default value&nbsp;<span style="font-weight: bold;">building_wall_left</span>
2686= <span style="font-style: italic;">( ( <a href="#nx">nx</a>&nbsp;+
26871 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a> ) / 2</span>
[134]2688centers the building in x-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
[116]2689
2690
2691
2692
[153]2693
2694
[116]2695 </tr>
2696
2697
2698
2699
[153]2700
2701
[116]2702 <tr>
2703
2704
2705
2706
2707
[153]2708
2709
[116]2710      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_south"></a>building_wall_south</span></td>
2711
2712
2713
2714
2715
[153]2716
2717
[116]2718      <td style="vertical-align: top;">R</td>
2719
2720
2721
2722
[153]2723
2724
[116]2725 <td style="vertical-align: top;"><span style="font-style: italic;"></span><span style="font-style: italic;">building centered in y-direction</span></td>
2726
2727
2728
2729
2730
[153]2731
2732
[116]2733      <td>y-coordinate of the South building wall (distance between the
2734South building wall and the South border of the model domain) in m.<br>
2735
2736
2737
2738
2739
[153]2740
2741
[116]2742      <br>
2743
2744
2745
2746
2747
[153]2748
2749
[116]2750Currently, <span style="font-weight: bold;">building_wall_south</span>
2751must be at least <span style="font-style: italic;">1
2752*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and less than <span style="font-style: italic;">( <a href="#ny">ny</a>&nbsp;
2753- 1 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a></span>.
2754This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2755= <span style="font-style: italic;">'single_building'</span>.<br>
2756
2757
2758
2759
2760
[153]2761
2762
[116]2763      <br>
2764
2765
2766
2767
2768
[153]2769
2770
[116]2771The default value&nbsp;<span style="font-weight: bold;">building_wall_south</span>
2772= <span style="font-style: italic;">( ( <a href="#ny">ny</a>&nbsp;+
27731 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a> ) / 2</span>
[134]2774centers the building in y-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
[116]2775
2776
2777
2778
[153]2779
2780
[116]2781 </tr>
2782
2783
2784
2785
[153]2786
2787
2788 <tr>
2789
[160]2790      <td style="vertical-align: top;"><a name="canopy_mode"></a><span style="font-weight: bold;">canopy_mode</span></td>
[153]2791
[160]2792      <td style="vertical-align: top;">C * 20</td>
[153]2793
[160]2794      <td style="vertical-align: top;"><span style="font-style: italic;">'block'</span></td>
[153]2795
[160]2796      <td style="vertical-align: top;">Canopy mode.<br>
[153]2797
2798      <br>
2799
2800      <font color="#000000">
[138]2801Besides using the default value, that will create a horizontally
2802homogeneous plant canopy that extends over the total horizontal
2803extension of the model domain, the user may add code to the user
2804interface subroutine <a href="chapter_3.5.1.html#user_init_plant_canopy">user_init_plant_canopy</a>
[153]2805to allow further canopy&nbsp;modes. <br>
[116]2806
[153]2807      <br>
[116]2808
[153]2809The setting of <a href="#canopy_mode">canopy_mode</a> becomes only active, if&nbsp;<a href="#plant_canopy">plant_canopy</a> has been set <span style="font-style: italic;">.T.</span> and a non-zero <a href="#drag_coefficient">drag_coefficient</a> has been defined.</font></td>
[116]2810
[153]2811    </tr>
[116]2812
[240]2813    <tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_height"></a>canyon_height</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">50.0</td><td>Street canyon height
2814in m.<br>
[116]2815
[153]2816
2817
2818
2819
2820
[240]2821 <br>
[153]2822
[240]2823
2824
2825
2826
2827
2828 <span style="font-weight: bold;">canyon_height</span> must
2829be less than the height of the model domain. This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2830= <span style="font-style: italic;">'single_street_canyon'</span>.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_width_x"></a>canyon_width_x</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">9999999.9</td><td>Street canyon width in x-direction in m.<br>
2831
2832
2833
2834
2835
2836
2837 <br>
2838
2839
2840
2841
2842
2843
2844
2845Currently, <span style="font-weight: bold;">canyon_width_x</span>
2846must be at least <span style="font-style: italic;">3
2847*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="chapter_4.1.html#dx">dx</a>
2848      </span><span style="font-style: italic;">- <a href="chapter_4.1.html#canyon_wall_left">canyon_wall_left</a></span>.
2849This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2850= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>. A non-default value implies a canyon orientation in y-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_width_y"></a>canyon_width_y</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">9999999.9</td><td>Street canyon width in y-direction in m.<br>
2851
2852
2853
2854
2855
2856
2857 <br>
2858
2859
2860
2861
2862
2863
2864
2865Currently, <span style="font-weight: bold;">canyon_width_y</span>
2866must be at least <span style="font-style: italic;">3
2867*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="chapter_4.1.html#dy">dy</a></span><span style="font-style: italic;"> - <a href="chapter_4.1.html#canyon_wall_south">canyon_wall_south</a></span>. This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2868= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span>.&nbsp;A non-default value implies a canyon orientation in x-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_wall_left"></a>canyon_wall_left</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;"><span style="font-style: italic;">canyon centered in x-direction</span></td><td>x-coordinate of the left canyon wall (distance between the
2869left canyon wall and the left border of the model domain) in m.<br>
2870
2871
2872
2873
2874
2875
2876
2877      <br>
2878
2879
2880
2881
2882
2883
2884
2885Currently, <span style="font-weight: bold;">canyon_wall_left</span>
2886must be at least <span style="font-style: italic;">1
2887*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dx">dx</a> and less than <span style="font-style: italic;">( <a href="chapter_4.1.html#nx">nx</a>&nbsp;
2888- 1 ) * <a href="chapter_4.1.html#dx">dx</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a></span>.
2889This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2890= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>.<br>
2891
2892
2893
2894
2895
2896
2897
2898      <br>
2899
2900
2901
2902
2903
2904
2905
2906The default value <span style="font-weight: bold;">canyon_wall_left</span>
2907= <span style="font-style: italic;">( ( <a href="chapter_4.1.html#nx">nx</a>&nbsp;+
29081 ) * <a href="chapter_4.1.html#dx">dx</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a> ) / 2</span>
2909centers the canyon in x-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_wall_south"></a>canyon_wall_south</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;"><span style="font-style: italic;">canyon centered in y-direction</span></td><td>y-coordinate of the South canyon wall (distance between the
2910South canyon wall and the South border of the model domain) in m.<br>
2911
2912
2913
2914
2915
2916
2917
2918      <br>
2919
2920
2921
2922
2923
2924
2925
2926Currently, <span style="font-weight: bold;">canyon_wall_south</span>
2927must be at least <span style="font-style: italic;">1
2928*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dy">dy</a> and less than <span style="font-style: italic;">( <a href="chapter_4.1.html#ny">ny</a>&nbsp;
2929- 1 ) * <a href="chapter_4.1.html#dy">dy</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_y">canyon_width_y</a></span>.
2930This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2931= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>.<br>
2932
2933
2934
2935
2936
2937
2938
2939      <br>
2940
2941
2942
2943
2944
2945
2946
2947The default value <span style="font-weight: bold;">canyon_wall_south</span>
2948= <span style="font-style: italic;">( ( <a href="chapter_4.1.html#ny">ny</a>&nbsp;+
29491 ) * <a href="chapter_4.1.html#dy">dy</a> -&nbsp;&nbsp;</span><a href="chapter_4.1.html#building_length_y"><span style="font-style: italic;"></span></a><a style="font-style: italic;" href="chapter_4.1.html#canyon_width_y">canyon_wid</a><span style="font-style: italic;"><a style="font-style: italic;" href="chapter_4.1.html#canyon_width_y">th_y</a> ) / 2</span>
2950centers the canyon in y-direction.</td></tr><tr>
2951
2952
2953
2954
2955
2956
2957
[116]2958      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="cloud_droplets"></a>cloud_droplets</span><br>
2959
2960
2961
2962
2963
[153]2964
2965
[116]2966      </td>
2967
2968
2969
2970
[153]2971
2972
[116]2973 <td style="vertical-align: top;">L<br>
2974
2975
2976
2977
[153]2978
2979
[116]2980 </td>
2981
2982
2983
2984
2985
[153]2986
2987
[116]2988      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br>
2989
2990
2991
2992
[153]2993
2994
[116]2995 </td>
2996
2997
2998
2999
3000
[153]3001
3002
[116]3003      <td style="vertical-align: top;">Parameter to switch on
3004usage of cloud droplets.<br>
3005
3006
3007
3008
[153]3009
3010
[116]3011 <br>
3012
3013
3014
3015
3016
3017
3018
[153]3019      <span style="font-weight: bold;"></span><span style="font-family: monospace;"></span>
[116]3020
3021
[153]3022
3023
[116]3024Cloud droplets require to use&nbsp;particles (i.e. the NAMELIST group <span style="font-family: Courier New,Courier,monospace;">particles_par</span> has to be included in the parameter file<span style="font-family: monospace;"></span>). Then each particle is a representative for a certain number of droplets. The droplet
3025features (number of droplets, initial radius, etc.) can be steered with
3026the&nbsp; respective particle parameters (see e.g. <a href="#chapter_4.2.html#radius">radius</a>).
3027The real number of initial droplets in a grid cell is equal to the
3028initial number of droplets (defined by the particle source parameters <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a>
3029      <span lang="en-GB"><font face="Thorndale, serif">and
3030      </font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>)
3031times the <a href="#initial_weighting_factor">initial_weighting_factor</a>.<br>
3032
3033
3034
3035
3036
[153]3037
3038
[116]3039      <br>
3040
3041
3042
3043
3044
[153]3045
3046
[116]3047In case of using cloud droplets, the default condensation scheme in
3048PALM cannot be used, i.e. <a href="#cloud_physics">cloud_physics</a>
3049must be set <span style="font-style: italic;">.F.</span>.<br>
3050
3051
3052
3053
3054
[153]3055
3056
[116]3057      </td>
3058
3059
3060
3061
[153]3062
3063
[116]3064 </tr>
3065
3066
3067
3068
[153]3069
3070
[116]3071 <tr>
3072
3073
3074
3075
[153]3076
3077
[116]3078 <td style="vertical-align: top;"> 
3079     
3080     
3081     
3082     
[153]3083     
3084     
[116]3085      <p><a name="cloud_physics"></a><b>cloud_physics</b></p>
3086
3087
3088
3089
3090
[153]3091
3092
[116]3093      </td>
3094
3095
3096
3097
[153]3098
3099
[116]3100 <td style="vertical-align: top;">L<br>
3101
3102
3103
3104
[153]3105
3106
[116]3107 </td>
3108
3109
3110
3111
3112
[153]3113
3114
[116]3115      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3116
3117
3118
3119
[153]3120
3121
[116]3122 <td style="vertical-align: top;"> 
3123     
3124     
3125     
3126     
[153]3127     
3128     
[116]3129      <p>Parameter to switch
3130on the condensation scheme.&nbsp; </p>
3131
3132
3133
3134
3135
[153]3136
3137
[116]3138For <b>cloud_physics =</b> <span style="font-style: italic;">.TRUE.</span>, equations
3139for the
3140liquid water&nbsp;
3141content and the liquid water potential temperature are solved instead
3142of those for specific humidity and potential temperature. Note
3143that a grid volume is assumed to be either completely saturated or
3144completely
3145unsaturated (0%-or-100%-scheme). A simple precipitation scheme can
3146additionally be switched on with parameter <a href="#precipitation">precipitation</a>.
3147Also cloud-top cooling by longwave radiation can be utilized (see <a href="#radiation">radiation</a>)<br>
3148
3149
3150
3151
[153]3152
3153
[116]3154 <b><br>
3155
3156
3157
3158
3159
[153]3160
3161
[116]3162cloud_physics =</b> <span style="font-style: italic;">.TRUE.
3163      </span>requires&nbsp;<a href="#humidity">humidity</a>
3164=<span style="font-style: italic;"> .TRUE.</span> .<br>
3165
3166
3167
3168
3169
[153]3170
3171
[116]3172Detailed information about the condensation scheme is given in the
3173description of the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud
3174physics module</a> (pdf-file, only in German).<br>
3175
3176
3177
3178
[153]3179
3180
[116]3181 <br>
3182
3183
3184
3185
3186
[153]3187
3188
[116]3189This condensation scheme is not allowed if cloud droplets are simulated
3190explicitly (see <a href="#cloud_droplets">cloud_droplets</a>).<br>
3191
3192
3193
3194
3195
[153]3196
3197
[116]3198      </td>
3199
3200
3201
3202
[153]3203
3204
[116]3205 </tr>
3206
3207
3208
3209
[153]3210
3211
[116]3212 <tr>
3213
3214
3215
3216
[153]3217
3218
[116]3219 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow"></a>conserve_volume_flow</span></td>
3220
3221
3222
3223
3224
[153]3225
3226
[116]3227      <td style="vertical-align: top;">L</td>
3228
3229
3230
3231
[153]3232
3233
[116]3234 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3235
3236
3237
3238
[153]3239
3240
[116]3241 <td>Conservation
3242of volume flow in x- and y-direction.<br>
3243
3244
3245
3246
[153]3247
3248
[116]3249 <br>
3250
3251
3252
3253
[153]3254
3255
[116]3256 <span style="font-weight: bold;">conserve_volume_flow</span>
[240]3257= <span style="font-style: italic;">.T.</span>
[241]3258guarantees that the volume flow through the xz- and yz-cross-sections of
3259the total model domain remains constant throughout the run depending on the chosen <a href="#conserve_volume_flow_mode">conserve_volume_flow_mode</a>.<br><br>Note that&nbsp;<span style="font-weight: bold;">conserve_volume_flow</span>
[240]3260= <span style="font-style: italic;">.T.</span> requires <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.F.</span> .<br>
[116]3261
3262
3263
3264
3265
[153]3266
3267
[116]3268      </td>
3269
3270
3271
3272
[153]3273
3274
[116]3275 </tr>
3276
3277
3278
3279
[153]3280
3281
[241]3282 <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow_mode"></a>conserve_volume_flow_mode</span></td><td style="vertical-align: top;">C * 16</td><td style="vertical-align: top;"><span style="font-style: italic;">'default'</span></td><td>Modus of volume flow conservation.<br><br>The following values are allowed:<br><p style="font-style: normal;"><span style="font-style: italic;">'default'</span>
3283      </p>
[116]3284
[241]3285
3286
3287
3288
3289
3290 
3291     
3292     
3293     
3294     
3295     
3296     
3297      <ul><p>Per default, PALM uses&nbsp;<span style="font-style: italic;">'initial_profiles'</span> for cyclic lateral boundary conditions (<a href="#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>) and&nbsp;<span style="font-style: italic;">'inflow_profile'</span> for non-cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> /= <span style="font-style: italic;">'cyclic'</span> or <a href="chapter_4.1.html#bc_ns">bc_ns</a> /= <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3298
3299
3300
3301
3302
3303
3304 
3305     
3306     
3307     
3308     
3309     
3310     
3311      <p style="font-style: italic;">'initial_profiles' </p>
3312
3313
3314
3315
3316
3317
3318
3319     
3320     
3321     
3322     
3323     
3324     
[246]3325      <ul><p>The
3326target volume flow&nbsp;is calculated at t=0 from the initial profiles
3327of u and v.&nbsp;This setting is only allowed for&nbsp;cyclic lateral
3328boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="chapter_4.1.html#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>).</p></ul>
[241]3329
3330
3331
3332
3333
3334
3335 
3336     
3337     
3338     
3339     
3340     
3341     
3342      <p style="font-style: normal;"><span style="font-style: italic;">'inflow_profile'</span>
3343      </p>
3344
3345
3346
3347
3348
3349
3350 
3351     
3352     
3353     
3354     
3355     
3356     
[246]3357      <ul><p>The
3358target volume flow&nbsp;is&nbsp;calculated at every timestep from the
3359inflow profile of&nbsp;u or v, respectively. This setting&nbsp;is only
3360allowed for&nbsp;non-cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> /= <span style="font-style: italic;">'cyclic'</span> or <a href="chapter_4.1.html#bc_ns">bc_ns</a> /= <span style="font-style: italic;">'cyclic'</span>).</p></ul>
[241]3361
3362
3363
3364
3365
3366
3367 
3368     
3369     
3370     
3371     
3372     
3373     
3374      <p style="font-style: italic;">'bulk_velocity' </p>
3375
3376
3377
3378
3379
3380
3381
3382     
3383     
3384     
3385     
3386     
3387     
3388      <ul><p>The target volume flow is calculated from a predefined bulk velocity (see <a href="#u_bulk">u_bulk</a> and <a href="#v_bulk">v_bulk</a>). This setting is only allowed for&nbsp;cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="chapter_4.1.html#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3389
3390
3391
3392
3393
3394
3395 
3396     
3397     
3398     
3399     
3400     
3401     
3402      <span style="font-style: italic;"></span>Note that&nbsp;<span style="font-weight: bold;">conserve_volume_flow_mode</span>
3403only comes into effect if <a href="#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T. .</span> </td></tr><tr>
3404
[160]3405      <td style="vertical-align: top;"><a name="cthf"></a><span style="font-weight: bold;">cthf</span></td>
[116]3406
[160]3407      <td style="vertical-align: top;">R</td>
[116]3408
[160]3409      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
[116]3410
[160]3411      <td style="vertical-align: top;">Average heat flux that is prescribed at the top of the plant canopy.<br>
[153]3412
3413
3414      <br>
3415
3416
[166]3417If <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>, the user can prescribe a heat flux at the top of the plant canopy.<br>
[153]3418
3419
3420It is assumed that solar radiation penetrates the canopy and warms the
3421foliage which, in turn, warms the air in contact with it. <br>
3422
3423
[166]3424Note: Instead of using the value prescribed by <a href="#surface_heatflux">surface_heatflux</a>,
[153]3425the near surface heat flux is determined from an exponential function
3426that is dependent on the cumulative leaf_area_index (Shaw and Schumann
3427(1992, Boundary Layer Meteorol., 61, 47-64)).</td>
3428
3429    </tr>
3430
3431    <tr>
3432
3433
3434
3435
3436
3437
[116]3438 <td style="vertical-align: top;"> 
3439     
3440     
3441     
3442     
[153]3443     
3444     
[116]3445      <p><a name="cut_spline_overshoot"></a><b>cut_spline_overshoot</b></p>
3446
3447
3448
3449
3450
[153]3451
3452
[116]3453      </td>
3454
3455
3456
3457
[153]3458
3459
[116]3460 <td style="vertical-align: top;">L</td>
3461
3462
3463
3464
3465
[153]3466
3467
[116]3468      <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span></td>
3469
3470
3471
3472
[153]3473
3474
[116]3475 <td style="vertical-align: top;"> 
3476     
3477     
3478     
3479     
[153]3480     
3481     
[116]3482      <p>Cuts off of
3483so-called overshoots, which can occur with the
3484upstream-spline scheme.&nbsp; </p>
3485
3486
3487
3488
[153]3489
3490
[116]3491 
3492     
3493     
3494     
3495     
[153]3496     
3497     
[116]3498      <p><font color="#000000">The cubic splines tend to overshoot in
3499case of discontinuous changes of variables between neighbouring grid
3500points.</font><font color="#ff0000"> </font><font color="#000000">This
3501may lead to errors in calculating the advection tendency.</font>
3502Choice
3503of <b>cut_spline_overshoot</b> = <i>.TRUE.</i>
3504(switched on by
3505default)
3506allows variable values not to exceed an interval defined by the
3507respective adjacent grid points. This interval can be adjusted
3508seperately for every prognostic variable (see initialization parameters
3509      <a href="#overshoot_limit_e">overshoot_limit_e</a>, <a href="#overshoot_limit_pt">overshoot_limit_pt</a>, <a href="#overshoot_limit_u">overshoot_limit_u</a>,
3510etc.). This might be necessary in case that the
3511default interval has a non-tolerable effect on the model
3512results.&nbsp; </p>
3513
3514
3515
3516
[153]3517
3518
[116]3519 
3520     
3521     
3522     
3523     
[153]3524     
3525     
[116]3526      <p>Overshoots may also be removed
3527using the parameters <a href="#ups_limit_e">ups_limit_e</a>,
3528      <a href="#ups_limit_pt">ups_limit_pt</a>,
3529etc. as well as by applying a long-filter (see <a href="#long_filter_factor">long_filter_factor</a>).</p>
3530
3531
3532
3533
3534
[153]3535
3536
[116]3537      </td>
3538
3539
3540
3541
[153]3542
3543
[116]3544 </tr>
3545
3546
3547
3548
[153]3549
3550
[116]3551 <tr>
3552
3553
3554
3555
[153]3556
3557
[116]3558 <td style="vertical-align: top;"> 
3559     
3560     
3561     
3562     
[153]3563     
3564     
[116]3565      <p><a name="damp_level_1d"></a><b>damp_level_1d</b></p>
3566
3567
3568
3569
3570
[153]3571
3572
[116]3573      </td>
3574
3575
3576
3577
[153]3578
3579
[116]3580 <td style="vertical-align: top;">R</td>
3581
3582
3583
3584
3585
[153]3586
3587
[116]3588      <td style="vertical-align: top;"><span style="font-style: italic;">zu(nz+1)</span></td>
3589
3590
3591
3592
3593
[153]3594
3595
[116]3596      <td style="vertical-align: top;"> 
3597     
3598     
3599     
3600     
[153]3601     
3602     
[116]3603      <p>Height where
3604the damping layer begins in the 1d-model
3605(in m).&nbsp; </p>
3606
3607
3608
3609
[153]3610
3611
[116]3612 
3613     
3614     
3615     
3616     
[153]3617     
3618     
[116]3619      <p>This parameter is used to
3620switch on a damping layer for the
36211d-model, which is generally needed for the damping of inertia
3622oscillations. Damping is done by gradually increasing the value
3623of the eddy diffusivities about 10% per vertical grid level
3624(starting with the value at the height given by <b>damp_level_1d</b>,
3625or possibly from the next grid pint above), i.e. K<sub>m</sub>(k+1)
3626=
36271.1 * K<sub>m</sub>(k).
3628The values of K<sub>m</sub> are limited to 10 m**2/s at
3629maximum.&nbsp; <br>
3630
3631
3632
3633
3634
[153]3635
3636
[116]3637This parameter only comes into effect if the 1d-model is switched on
3638for
3639the initialization of the 3d-model using <a href="#initializing_actions">initializing_actions</a>
3640= <span style="font-style: italic;">'set_1d-model_profiles'</span>.
3641      <br>
3642
3643
3644
3645
[153]3646
3647
[116]3648 </p>
3649
3650
3651
3652
[153]3653
3654
[116]3655 </td>
3656
3657
3658
3659
[153]3660
3661
[116]3662 </tr>
3663
3664
3665
3666
[153]3667
3668
[116]3669 <tr>
3670
3671
3672
3673
[153]3674
3675
[116]3676 <td style="vertical-align: top;"><a name="dissipation_1d"></a><span style="font-weight: bold;">dissipation_1d</span><br>
3677
3678
3679
3680
3681
[153]3682
3683
[116]3684      </td>
3685
3686
3687
3688
[153]3689
3690
[116]3691 <td style="vertical-align: top;">C*20<br>
3692
3693
3694
3695
3696
[153]3697
3698
[116]3699      </td>
3700
3701
3702
3703
[153]3704
3705
[116]3706 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
3707
3708
3709
3710
[153]3711
3712
[116]3713 <span style="font-style: italic;">model'</span><br>
3714
3715
3716
3717
[153]3718
3719
[116]3720 </td>
3721
3722
3723
3724
3725
[153]3726
3727
[116]3728      <td style="vertical-align: top;">Calculation method for
3729the energy dissipation term in the TKE equation of the 1d-model.<br>
3730
3731
3732
3733
3734
[153]3735
3736
[116]3737      <br>
3738
3739
3740
3741
3742
[153]3743
3744
[116]3745By default the dissipation is calculated as in the 3d-model using diss
3746= (0.19 + 0.74 * l / l_grid) * e**1.5 / l.<br>
3747
3748
3749
3750
[153]3751
3752
[116]3753 <br>
3754
3755
3756
3757
3758
[153]3759
3760
[116]3761Setting <span style="font-weight: bold;">dissipation_1d</span>
3762= <span style="font-style: italic;">'detering'</span>
3763forces the dissipation to be calculated as diss = 0.064 * e**1.5 / l.<br>
3764
3765
3766
3767
3768
[153]3769
3770
[116]3771      </td>
3772
3773
3774
3775
[153]3776
3777
[116]3778 </tr>
[240]3779    <tr><td style="vertical-align: top;"><p><a name="dp_external"></a><b>dp_external</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top; font-style: italic;">.F.</td><td>External pressure gradient switch.<br><br>This
3780parameter is used to switch on/off an external pressure gradient as
3781driving force. The external pressure gradient is controlled by the
3782parameters <a href="#dp_smooth">dp_smooth</a>, <a href="#dp_level_b">dp_level_b</a> and <a href="#dpdxy">dpdxy</a>.<br><br>Note that&nbsp;<span style="font-weight: bold;">dp_external</span> = <span style="font-style: italic;">.T.</span> requires <a href="#conserve_volume_flow">conserve_volume_flow</a> =<span style="font-style: italic;"> .F. </span>It is normally recommended to disable the Coriolis force by setting <a href="l#omega">omega</a> = 0.0.</td></tr><tr><td style="vertical-align: top;"><p><a name="dp_smooth"></a><b>dp_smooth</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top; font-style: italic;">.F.</td><td>Vertically smooth the external pressure gradient using a sinusoidal smoothing function.<br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span>. It is useful in combination with&nbsp;<a href="#dp_level_b">dp_level_b</a> &gt;&gt; 0 to generate a non-accelerated boundary layer well below&nbsp;<a href="#dp_level_b">dp_level_b</a>.</td></tr><tr><td style="vertical-align: top;"><p><a name="dp_level_b"></a><b>dp_level_b</b></p></td><td style="vertical-align: top;">R</td><td style="vertical-align: top; font-style: italic;">0.0</td><td><font size="3">Lower
3783limit of the vertical range for which the external pressure gradient is applied (</font>in <font size="3">m).</font><br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span><span lang="en-GB">It
3784must hold the condition zu(0) &lt;= <b>dp_level_b</b>
3785&lt;= zu(</span><a href="#nz"><span lang="en-GB">nz</span></a><span lang="en-GB">)</span><span lang="en-GB">.&nbsp;</span>It can be used in combination with&nbsp;<a href="#dp_smooth">dp_smooth</a> = <span style="font-style: italic;">.T.</span> to generate a non-accelerated boundary layer well below&nbsp;<span style="font-weight: bold;">dp_level_b</span> if&nbsp;<span style="font-weight: bold;">dp_level_b</span> &gt;&gt; 0.<br><br>Note
3786that there is no upper limit of the vertical range because the external
3787pressure gradient is always applied up to the top of the model domain.</td></tr><tr><td style="vertical-align: top;"><p><a name="dpdxy"></a><b>dpdxy</b></p></td><td style="vertical-align: top;">R(2)</td><td style="font-style: italic; vertical-align: top;">2 * 0.0</td><td>Values of the external pressure gradient applied in x- and y-direction, respectively (in Pa/m).<br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span>It sets the pressure gradient values. Negative values mean an acceleration, positive values mean deceleration. For example, <span style="font-weight: bold;">dpdxy</span> = -0.0002, 0.0, drives the flow in positive x-direction, <span lang="en-GB"></span></td></tr>
[116]3788
3789
3790
3791
3792
3793
[153]3794    <tr>
[116]3795
[160]3796      <td style="vertical-align: top;"><a name="drag_coefficient"></a><span style="font-weight: bold;">drag_coefficient</span></td>
[116]3797
[160]3798      <td style="vertical-align: top;">R</td>
[153]3799
[160]3800      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
[153]3801
[160]3802      <td style="vertical-align: top;">Drag coefficient used in the plant canopy model.<br>
[153]3803
3804      <br>
3805
3806This parameter has to be non-zero, if the parameter <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>.</td>
3807
3808    </tr>
3809
3810    <tr>
3811
3812
3813
3814
3815
3816
[116]3817 <td style="vertical-align: top;"> 
3818     
3819     
3820     
3821     
[153]3822     
3823     
[116]3824      <p><a name="dt"></a><b>dt</b></p>
3825
3826
3827
3828
[153]3829
3830
[116]3831 </td>
3832
3833
3834
3835
3836
[153]3837
3838
[116]3839      <td style="vertical-align: top;">R</td>
3840
3841
3842
3843
[153]3844
3845
[116]3846 <td style="vertical-align: top;"><span style="font-style: italic;">variable</span></td>
3847
3848
3849
3850
3851
[153]3852
3853
[116]3854      <td style="vertical-align: top;"> 
3855     
3856     
3857     
3858     
[153]3859     
3860     
[116]3861      <p>Time step for
3862the 3d-model (in s).&nbsp; </p>
3863
3864
3865
3866
[153]3867
3868
[116]3869 
3870     
3871     
3872     
3873     
[153]3874     
3875     
[116]3876      <p>By default, (i.e.
3877if a Runge-Kutta scheme is used, see <a href="#timestep_scheme">timestep_scheme</a>)
3878the value of the time step is calculating after each time step
3879(following the time step criteria) and
3880used for the next step.</p>
3881
3882
3883
3884
[153]3885
3886
[116]3887 
3888     
3889     
3890     
3891     
[153]3892     
3893     
[116]3894      <p>If the user assigns <b>dt</b>
3895a value, then the time step is
3896fixed to this value throughout the whole run (whether it fulfills the
3897time step
3898criteria or not). However, changes are allowed for restart runs,
3899because <b>dt</b> can also be used as a <a href="chapter_4.2.html#dt_laufparameter">run
3900parameter</a>.&nbsp; </p>
3901
3902
3903
3904
[153]3905
3906
[116]3907 
3908     
3909     
3910     
3911     
[153]3912     
3913     
[116]3914      <p>In case that the
3915calculated time step meets the condition<br>
3916
3917
3918
3919
[153]3920
3921
[116]3922 </p>
3923
3924
3925
3926
[153]3927
3928
[116]3929 
3930     
3931     
3932     
3933     
[153]3934     
3935     
[116]3936      <ul>
3937
3938
3939
3940
3941
[153]3942
3943
[116]3944       
3945       
3946       
3947       
[153]3948       
3949       
[116]3950        <p><b>dt</b> &lt; 0.00001 * <a href="chapter_4.2.html#dt_max">dt_max</a> (with dt_max
3951= 20.0)</p>
3952
3953
3954
3955
[153]3956
3957
[116]3958 
3959     
3960     
3961     
3962     
[153]3963     
3964     
[116]3965      </ul>
3966
3967
3968
3969
[153]3970
3971
[116]3972 
3973     
3974     
3975     
3976     
[153]3977     
3978     
[116]3979      <p>the simulation will be
3980aborted. Such situations usually arise
3981in case of any numerical problem / instability which causes a
3982non-realistic increase of the wind speed.&nbsp; </p>
3983
3984
3985
3986
[153]3987
3988
[116]3989 
3990     
3991     
3992     
3993     
[153]3994     
3995     
[116]3996      <p>A
3997small time step due to a large mean horizontal windspeed
3998speed may be enlarged by using a coordinate transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
3999in order to spare CPU time.<br>
4000
4001
4002
4003
[153]4004
4005
[116]4006 </p>
4007
4008
4009
4010
[153]4011
4012
[116]4013 
4014     
4015     
4016     
4017     
[153]4018     
4019     
[116]4020      <p>If the
4021leapfrog timestep scheme is used (see <a href="#timestep_scheme">timestep_scheme</a>)
4022a temporary time step value dt_new is calculated first, with dt_new = <a href="chapter_4.2.html#fcl_factor">cfl_factor</a>
4023* dt_crit where dt_crit is the maximum timestep allowed by the CFL and
4024diffusion condition. Next it is examined whether dt_new exceeds or
4025falls below the
4026value of the previous timestep by at
4027least +5 % / -2%. If it is smaller, <span style="font-weight: bold;">dt</span>
4028= dt_new is immediately used for the next timestep. If it is larger,
4029then <span style="font-weight: bold;">dt </span>=
40301.02 * dt_prev
4031(previous timestep) is used as the new timestep, however the time
4032step is only increased if the last change of the time step is dated
4033back at
4034least 30 iterations. If dt_new is located in the interval mentioned
4035above, then dt
4036does not change at all. By doing so, permanent time step changes as
4037well as large
4038sudden changes (increases) in the time step are avoided.</p>
4039
4040
4041
4042
[153]4043
4044
[116]4045 </td>
4046
4047
4048
4049
4050
[153]4051
4052
[116]4053    </tr>
4054
4055
4056
4057
[153]4058
4059
[116]4060 <tr>
4061
4062
4063
4064
[153]4065
4066
[116]4067 <td style="vertical-align: top;">
4068     
4069     
4070     
4071     
[153]4072     
4073     
[116]4074      <p><a name="dt_pr_1d"></a><b>dt_pr_1d</b></p>
4075
4076
4077
4078
4079
[153]4080
4081
[116]4082      </td>
4083
4084
4085
4086
[153]4087
4088
[116]4089 <td style="vertical-align: top;">R</td>
4090
4091
4092
4093
4094
[153]4095
4096
[116]4097      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4098
4099
4100
4101
4102
[153]4103
4104
[116]4105      <td style="vertical-align: top;"> 
4106     
4107     
4108     
4109     
[153]4110     
4111     
[116]4112      <p>Temporal
4113interval of vertical profile output of the 1D-model
4114(in s).&nbsp; </p>
4115
4116
4117
4118
[153]4119
4120
[116]4121 
4122     
4123     
4124     
4125     
[153]4126     
4127     
[116]4128      <p>Data are written in ASCII
4129format to file <a href="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</a>.
4130This parameter is only in effect if the 1d-model has been switched on
4131for the
4132initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
4133= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
4134
4135
4136
4137
4138
[153]4139
4140
[116]4141      </td>
4142
4143
4144
4145
[153]4146
4147
[116]4148 </tr>
4149
4150
4151
4152
[153]4153
4154
[116]4155 <tr>
4156
4157
4158
4159
[153]4160
4161
[116]4162 <td style="vertical-align: top;"> 
4163     
4164     
4165     
4166     
[153]4167     
4168     
[116]4169      <p><a name="dt_run_control_1d"></a><b>dt_run_control_1d</b></p>
4170
4171
4172
4173
4174
[153]4175
4176
[116]4177      </td>
4178
4179
4180
4181
[153]4182
4183
[116]4184 <td style="vertical-align: top;">R</td>
4185
4186
4187
4188
4189
[153]4190
4191
[116]4192      <td style="vertical-align: top;"><span style="font-style: italic;">60.0</span></td>
4193
4194
4195
4196
[153]4197
4198
[116]4199 <td style="vertical-align: top;"> 
4200     
4201     
4202     
4203     
[153]4204     
4205     
[116]4206      <p>Temporal interval of
4207runtime control output of the 1d-model
4208(in s).&nbsp; </p>
4209
4210
4211
4212
[153]4213
4214
[116]4215 
4216     
4217     
4218     
4219     
[153]4220     
4221     
[116]4222      <p>Data are written in ASCII
4223format to file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
4224This parameter is only in effect if the 1d-model is switched on for the
4225initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
4226= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
4227
4228
4229
4230
4231
[153]4232
4233
[116]4234      </td>
4235
4236
4237
4238
[153]4239
4240
[116]4241 </tr>
4242
4243
4244
4245
[153]4246
4247
[116]4248 <tr>
4249
4250
4251
4252
[153]4253
4254
[116]4255 <td style="vertical-align: top;"> 
4256     
4257     
4258     
4259     
[153]4260     
4261     
[116]4262      <p><a name="dx"></a><b>dx</b></p>
4263
4264
4265
4266
4267
[153]4268
4269
[116]4270      </td>
4271
4272
4273
4274
[153]4275
4276
[116]4277 <td style="vertical-align: top;">R</td>
4278
4279
4280
4281
4282
[153]4283
4284
[116]4285      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4286
4287
4288
4289
[153]4290
4291
[116]4292 <td style="vertical-align: top;"> 
4293     
4294     
4295     
4296     
[153]4297     
4298     
[116]4299      <p>Horizontal grid
4300spacing along the x-direction (in m).&nbsp; </p>
4301
4302
4303
4304
[153]4305
4306
[116]4307 
4308     
4309     
4310     
4311     
[153]4312     
4313     
[116]4314      <p>Along
4315x-direction only a constant grid spacing is allowed.</p>
4316
4317
4318
4319
[153]4320
4321
[116]4322     
4323     
4324     
4325     
[153]4326     
4327     
[116]4328      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4329and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4330
4331
4332
4333
[153]4334
4335
[116]4336 </td>
4337
4338
4339
4340
4341
[153]4342
4343
[116]4344    </tr>
4345
4346
4347
4348
[153]4349
4350
[116]4351 <tr>
4352
4353
4354
4355
[153]4356
4357
[116]4358 <td style="vertical-align: top;">
4359     
4360     
4361     
4362     
[153]4363     
4364     
[116]4365      <p><a name="dy"></a><b>dy</b></p>
4366
4367
4368
4369
4370
[153]4371
4372
[116]4373      </td>
4374
4375
4376
4377
[153]4378
4379
[116]4380 <td style="vertical-align: top;">R</td>
4381
4382
4383
4384
4385
[153]4386
4387
[116]4388      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4389
4390
4391
4392
[153]4393
4394
[116]4395 <td style="vertical-align: top;"> 
4396     
4397     
4398     
4399     
[153]4400     
4401     
[116]4402      <p>Horizontal grid
4403spacing along the y-direction (in m).&nbsp; </p>
4404
4405
4406
4407
[153]4408
4409
[116]4410 
4411     
4412     
4413     
4414     
[153]4415     
4416     
[116]4417      <p>Along y-direction only a constant grid spacing is allowed.</p>
4418
4419
4420
4421
[153]4422
4423
[116]4424     
4425     
4426     
4427     
[153]4428     
4429     
[116]4430      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4431and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4432
4433
4434
4435
[153]4436
4437
[116]4438 </td>
4439
4440
4441
4442
4443
[153]4444
4445
[116]4446    </tr>
4447
4448
4449
4450
[153]4451
4452
[116]4453 <tr>
4454
4455
4456
4457
[153]4458
4459
[116]4460 <td style="vertical-align: top;">
4461     
4462     
4463     
4464     
[153]4465     
4466     
[116]4467      <p><a name="dz"></a><b>dz</b></p>
4468
4469
4470
4471
4472
[153]4473
4474
[116]4475      </td>
4476
4477
4478
4479
[153]4480
4481
[116]4482 <td style="vertical-align: top;">R</td>
4483
4484
4485
4486
4487
[153]4488
4489
[116]4490      <td style="vertical-align: top;"><br>
4491
4492
4493
4494
[153]4495
4496
[116]4497 </td>
4498
4499
4500
4501
[153]4502
4503
[116]4504 <td style="vertical-align: top;"> 
4505     
4506     
4507     
4508     
[153]4509     
4510     
[116]4511      <p>Vertical grid
4512spacing (in m).&nbsp; </p>
4513
4514
4515
4516
[153]4517
4518
[116]4519 
4520     
4521     
4522     
4523     
[153]4524     
4525     
[116]4526      <p>This parameter must be
4527assigned by the user, because no
4528default value is given.<br>
4529
4530
4531
4532
[153]4533
4534
[116]4535 </p>
4536
4537
4538
4539
[153]4540
4541
[116]4542 
4543     
4544     
4545     
4546     
[153]4547     
4548     
[116]4549      <p>By default, the
4550model uses constant grid spacing along z-direction, but it can be
4551stretched using the parameters <a href="#dz_stretch_level">dz_stretch_level</a>
4552and <a href="#dz_stretch_factor">dz_stretch_factor</a>.
4553In case of stretching, a maximum allowed grid spacing can be given by <a href="#dz_max">dz_max</a>.<br>
4554
4555
4556
4557
[153]4558
4559
[116]4560 </p>
4561
4562
4563
4564
[153]4565
4566
[116]4567 
4568     
4569     
4570     
4571     
[153]4572     
4573     
[116]4574      <p>Assuming
4575a constant <span style="font-weight: bold;">dz</span>,
4576the scalar levels (zu) are calculated directly by:&nbsp; </p>
4577
4578
4579
4580
4581
[153]4582
4583
[116]4584     
4585     
4586     
4587     
[153]4588     
4589     
[116]4590      <ul>
4591
4592
4593
4594
[153]4595
4596
[116]4597 
4598       
4599       
4600       
4601       
[153]4602       
4603       
[116]4604        <p>zu(0) = - dz * 0.5&nbsp; <br>
4605
4606
4607
4608
4609
[153]4610
4611
[116]4612zu(1) = dz * 0.5</p>
4613
4614
4615
4616
[153]4617
4618
[116]4619 
4620     
4621     
4622     
4623     
[153]4624     
4625     
[116]4626      </ul>
4627
4628
4629
4630
[153]4631
4632
[116]4633 
4634     
4635     
4636     
4637     
[153]4638     
4639     
[116]4640      <p>The w-levels lie
4641half between them:&nbsp; </p>
4642
4643
4644
4645
[153]4646
4647
[116]4648 
4649     
4650     
4651     
4652     
[153]4653     
4654     
[116]4655      <ul>
4656
4657
4658
4659
[153]4660
4661
[116]4662 
4663       
4664       
4665       
4666       
[153]4667       
4668       
[116]4669        <p>zw(k) =
4670( zu(k) + zu(k+1) ) * 0.5</p>
4671
4672
4673
4674
[153]4675
4676
[116]4677 
4678     
4679     
4680     
4681     
[153]4682     
4683     
[116]4684      </ul>
4685
4686
4687
4688
[153]4689
4690
[116]4691 </td>
4692
4693
4694
4695
[153]4696
4697
[116]4698 </tr>
4699
4700
4701
4702
4703
[153]4704
4705
[116]4706    <tr>
4707
4708
4709
4710
[153]4711
4712
[116]4713      <td style="vertical-align: top;"><a name="dz_max"></a><span style="font-weight: bold;">dz_max</span></td>
4714
4715
4716
4717
[153]4718
4719
[116]4720      <td style="vertical-align: top;">R</td>
4721
4722
4723
4724
[153]4725
4726
[116]4727      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4728
4729
4730
4731
[153]4732
4733
[116]4734      <td style="vertical-align: top;">Allowed maximum vertical grid
4735spacing (in m).<br>
4736
4737
4738
4739
[153]4740
4741
[116]4742      <br>
4743
4744
4745
4746
[153]4747
4748
[116]4749If the vertical grid is stretched
4750(see <a href="#dz_stretch_factor">dz_stretch_factor</a>
4751and <a href="#dz_stretch_level">dz_stretch_level</a>),
4752      <span style="font-weight: bold;">dz_max</span> can
4753be used to limit the vertical grid spacing.</td>
4754
4755
4756
4757
[153]4758
4759
[116]4760    </tr>
4761
4762
4763
4764
[153]4765
4766
[116]4767    <tr>
4768
4769
4770
4771
4772
[153]4773
4774
[116]4775      <td style="vertical-align: top;"> 
4776     
4777     
4778     
4779     
[153]4780     
4781     
[116]4782      <p><a name="dz_stretch_factor"></a><b>dz_stretch_factor</b></p>
4783
4784
4785
4786
4787
[153]4788
4789
[116]4790      </td>
4791
4792
4793
4794
[153]4795
4796
[116]4797 <td style="vertical-align: top;">R</td>
4798
4799
4800
4801
4802
[153]4803
4804
[116]4805      <td style="vertical-align: top;"><span style="font-style: italic;">1.08</span></td>
4806
4807
4808
4809
[153]4810
4811
[116]4812 <td style="vertical-align: top;"> 
4813     
4814     
4815     
4816     
[153]4817     
4818     
[116]4819      <p>Stretch factor for a
4820vertically stretched grid (see <a href="#dz_stretch_level">dz_stretch_level</a>).&nbsp;
4821      </p>
4822
4823
4824
4825
[153]4826
4827
[116]4828 
4829     
4830     
4831     
4832     
[153]4833     
4834     
[116]4835      <p>The stretch factor should not exceed a value of
4836approx. 1.10 -
48371.12, otherwise the discretization errors due to the stretched grid not
4838negligible any more. (refer Kalnay de Rivas)</p>
4839
4840
4841
4842
[153]4843
4844
[116]4845 </td>
4846
4847
4848
4849
[153]4850
4851
[116]4852 </tr>
4853
4854
4855
4856
4857
[153]4858
4859
[116]4860    <tr>
4861
4862
4863
4864
[153]4865
4866
[116]4867 <td style="vertical-align: top;"> 
4868     
4869     
4870     
4871     
[153]4872     
4873     
[116]4874      <p><a name="dz_stretch_level"></a><b>dz_stretch_level</b></p>
4875
4876
4877
4878
4879
[153]4880
4881
[116]4882      </td>
4883
4884
4885
4886
[153]4887
4888
[116]4889 <td style="vertical-align: top;">R</td>
4890
4891
4892
4893
4894
[153]4895
4896
[116]4897      <td style="vertical-align: top;"><span style="font-style: italic;">100000.0</span><br>
4898
4899
4900
4901
[153]4902
4903
[116]4904 </td>
4905
4906
4907
4908
4909
[153]4910
4911
[116]4912      <td style="vertical-align: top;"> 
4913     
4914     
4915     
4916     
[153]4917     
4918     
[116]4919      <p>Height level
4920above/below which the grid is to be stretched
4921vertically (in m).&nbsp; </p>
4922
4923
4924
4925
[153]4926
4927
[116]4928 
4929     
4930     
4931     
4932     
[153]4933     
4934     
[116]4935      <p>For <a href="chapter_4.1.html#ocean">ocean</a> = .F., <b>dz_stretch_level </b>is the height level (in m)&nbsp;<span style="font-weight: bold;">above </span>which the grid is to be stretched
4936vertically. The vertical grid
4937spacings <a href="#dz">dz</a>
4938above this level are calculated as&nbsp; </p>
4939
4940
4941
4942
[153]4943
4944
[116]4945 
4946     
4947     
4948     
4949     
[153]4950     
4951     
[116]4952      <ul>
4953
4954
4955
4956
[153]4957
4958
[116]4959 
4960       
4961       
4962       
4963       
[153]4964       
4965       
[116]4966        <p><b>dz</b>(k+1)
4967= <b>dz</b>(k) * <a href="#dz_stretch_factor">dz_stretch_factor</a></p>
4968
4969
4970
4971
4972
[153]4973
4974
[116]4975     
4976     
4977     
4978     
[153]4979     
4980     
[116]4981      </ul>
4982
4983
4984
4985
[153]4986
4987
[116]4988 
4989     
4990     
4991     
4992     
[153]4993     
4994     
[116]4995      <p>and used as spacings for the scalar levels (zu).
4996The
4997w-levels are then defined as:&nbsp; </p>
4998
4999
5000
5001
[153]5002
5003
[116]5004 
5005     
5006     
5007     
5008     
[153]5009     
5010     
[116]5011      <ul>
5012
5013
5014
5015
[153]5016
5017
[116]5018 
5019       
5020       
5021       
5022       
[153]5023       
5024       
[116]5025        <p>zw(k)
5026= ( zu(k) + zu(k+1) ) * 0.5.
5027
5028 
5029     
5030      </p>
5031
5032
[153]5033
5034
[116]5035     
5036     
[153]5037     
5038     
[116]5039      </ul>
5040
5041
[153]5042
5043
[116]5044     
5045     
[153]5046     
5047     
[116]5048      <p>For <a href="#ocean">ocean</a> = .T., <b>dz_stretch_level </b>is the height level (in m, negative) <span style="font-weight: bold;">below</span> which the grid is to be stretched
5049vertically. The vertical grid
5050spacings <a href="chapter_4.1.html#dz">dz</a> below this level are calculated correspondingly as
5051
5052 
5053     
5054      </p>
5055
5056
[153]5057
5058
[116]5059     
5060     
[153]5061     
5062     
[116]5063      <ul>
5064
5065
[153]5066
5067
[116]5068       
5069       
[153]5070       
5071       
[116]5072        <p><b>dz</b>(k-1)
5073= <b>dz</b>(k) * <a href="chapter_4.1.html#dz_stretch_factor">dz_stretch_factor</a>.</p>
5074
5075
[153]5076
5077
[116]5078     
5079     
[153]5080     
5081     
[116]5082      </ul>
5083
5084
5085
5086
[153]5087
5088
[116]5089 </td>
5090
5091
5092
5093
[153]5094
5095
[116]5096 </tr>
5097
5098
5099
5100
5101
[153]5102
5103
[116]5104    <tr>
5105
5106
5107
[153]5108
5109
[116]5110      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_init"></a>e_init</span></td>
5111
5112
5113
[153]5114
5115
[116]5116      <td style="vertical-align: top;">R</td>
5117
5118
5119
[153]5120
5121
[116]5122      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
5123
5124
5125
[153]5126
5127
[116]5128      <td>Initial subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
5129
5130
5131
5132
5133
[153]5134
5135
[116]5136      <br>
5137
5138
5139
5140
[153]5141
5142
[116]5143This
5144option prescribes an initial&nbsp;subgrid-scale TKE from which the initial diffusion coefficients K<sub>m</sub> and K<sub>h</sub> will be calculated if <span style="font-weight: bold;">e_init</span> is positive. This option only has an effect if&nbsp;<a href="#km_constant">km_constant</a> is not set.</td>
5145
5146
5147
[153]5148
5149
[116]5150    </tr>
5151
5152
5153
[153]5154
5155
[116]5156    <tr>
5157
5158
5159
5160
[153]5161
5162
[116]5163 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_min"></a>e_min</span></td>
5164
5165
5166
5167
5168
[153]5169
5170
[116]5171      <td style="vertical-align: top;">R</td>
5172
5173
5174
5175
[153]5176
5177
[116]5178 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
5179
5180
5181
5182
[153]5183
5184
[116]5185 <td>Minimum
5186subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
5187
5188
5189
5190
5191
[153]5192
5193
[116]5194      <br>
5195
5196
5197
5198
[153]5199
5200
[116]5201This
5202option&nbsp;adds artificial viscosity to the flow by ensuring that
5203the
5204subgrid-scale TKE does not fall below the minimum threshold <span style="font-weight: bold;">e_min</span>.</td>
5205
5206
5207
5208
[153]5209
5210
[116]5211 </tr>
5212
5213
5214
5215
5216
[153]5217
5218
[116]5219    <tr>
5220
5221
5222
5223
[153]5224
5225
[116]5226 <td style="vertical-align: top;"> 
5227     
5228     
5229     
5230     
[153]5231     
5232     
[116]5233      <p><a name="end_time_1d"></a><b>end_time_1d</b></p>
5234
5235
5236
5237
5238
[153]5239
5240
[116]5241      </td>
5242
5243
5244
5245
[153]5246
5247
[116]5248 <td style="vertical-align: top;">R</td>
5249
5250
5251
5252
5253
[153]5254
5255
[116]5256      <td style="vertical-align: top;"><span style="font-style: italic;">864000.0</span><br>
5257
5258
5259
5260
[153]5261
5262
[116]5263 </td>
5264
5265
5266
5267
5268
[153]5269
5270
[116]5271      <td style="vertical-align: top;"> 
5272     
5273     
5274     
5275     
[153]5276     
5277     
[116]5278      <p>Time to be
5279simulated for the 1d-model (in s).&nbsp; </p>
5280
5281
5282
5283
[153]5284
5285
[116]5286 
5287     
5288     
5289     
5290     
[153]5291     
5292     
[116]5293      <p>The
5294default value corresponds to a simulated time of 10 days.
5295Usually, after such a period the inertia oscillations have completely
5296decayed and the solution of the 1d-model can be regarded as stationary
5297(see <a href="#damp_level_1d">damp_level_1d</a>).
5298This parameter is only in effect if the 1d-model is switched on for the
5299initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
5300= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
5301
5302
5303
5304
5305
[153]5306
5307
[116]5308      </td>
5309
5310
5311
5312
[153]5313
5314
[116]5315 </tr>
5316
5317
5318
5319
[153]5320
5321
[116]5322 <tr>
5323
5324
5325
5326
[153]5327
5328
[116]5329 <td style="vertical-align: top;"> 
5330     
5331     
5332     
5333     
[153]5334     
5335     
[116]5336      <p><a name="fft_method"></a><b>fft_method</b></p>
5337
5338
5339
5340
5341
[153]5342
5343
[116]5344      </td>
5345
5346
5347
5348
[153]5349
5350
[116]5351 <td style="vertical-align: top;">C * 20</td>
5352
5353
5354
5355
5356
[153]5357
5358
[116]5359      <td style="vertical-align: top;"><span style="font-style: italic;">'system-</span><br style="font-style: italic;">
5360
5361
5362
5363
[153]5364
5365
[116]5366 <span style="font-style: italic;">specific'</span></td>
5367
5368
5369
5370
5371
[153]5372
5373
[116]5374      <td style="vertical-align: top;"> 
5375     
5376     
5377     
5378     
[153]5379     
5380     
[116]5381      <p>FFT-method to
5382be used.<br>
5383
5384
5385
5386
[153]5387
5388
[116]5389 </p>
5390
5391
5392
5393
[153]5394
5395
[116]5396 
5397     
5398     
5399     
5400     
[153]5401     
5402     
[116]5403      <p><br>
5404
5405
5406
5407
5408
[153]5409
5410
[116]5411The fast fourier transformation (FFT) is used for solving the
5412perturbation pressure equation with a direct method (see <a href="chapter_4.2.html#psolver">psolver</a>)
5413and for calculating power spectra (see optional software packages,
5414section <a href="chapter_4.2.html#spectra_package">4.2</a>).</p>
5415
5416
5417
5418
5419
[153]5420
5421
[116]5422     
5423     
5424     
5425     
[153]5426     
5427     
[116]5428      <p><br>
5429
5430
5431
5432
5433
[153]5434
5435
[116]5436By default, system-specific, optimized routines from external
5437vendor libraries are used. However, these are available only on certain
5438computers and there are more or less severe restrictions concerning the
5439number of gridpoints to be used with them.<br>
5440
5441
5442
5443
[153]5444
5445
[116]5446 </p>
5447
5448
5449
5450
[153]5451
5452
[116]5453 
5454     
5455     
5456     
5457     
[153]5458     
5459     
[116]5460      <p>There
5461are two other PALM internal methods available on every
5462machine (their respective source code is part of the PALM source code):</p>
5463
5464
5465
5466
5467
[153]5468
5469
[116]5470     
5471     
5472     
5473     
[153]5474     
5475     
[116]5476      <p>1.: The <span style="font-weight: bold;">Temperton</span>-method
5477from Clive Temperton (ECWMF) which is computationally very fast and
5478switched on with <b>fft_method</b> = <span style="font-style: italic;">'temperton-algorithm'</span>.
5479The number of horizontal gridpoints (nx+1, ny+1) to be used with this
5480method must be composed of prime factors 2, 3 and 5.<br>
5481
5482
5483
5484
[153]5485
5486
[116]5487 </p>
5488
5489
5490
5491
5492
[153]5493
5494
[116]54952.: The <span style="font-weight: bold;">Singleton</span>-method
5496which is very slow but has no restrictions concerning the number of
5497gridpoints to be used with, switched on with <b>fft_method</b>
5498= <span style="font-style: italic;">'singleton-algorithm'</span>.
5499      </td>
5500
5501
5502
5503
[153]5504
5505
[116]5506 </tr>
5507
5508
5509
5510
[153]5511
5512
[116]5513 <tr>
5514
5515
5516
5517
[153]5518
5519
[116]5520 <td style="vertical-align: top;"> 
5521     
5522     
5523     
5524     
[153]5525     
5526     
[116]5527      <p><a name="galilei_transformation"></a><b>galilei_transformation</b></p>
5528
5529
5530
5531
5532
[153]5533
5534
[116]5535      </td>
5536
5537
5538
5539
[153]5540
5541
[116]5542 <td style="vertical-align: top;">L</td>
5543
5544
5545
5546
5547
[153]5548
5549
[116]5550      <td style="vertical-align: top;"><i>.F.</i></td>
5551
5552
5553
5554
5555
[153]5556
5557
[116]5558      <td style="vertical-align: top;">Application of a
5559Galilei-transformation to the
5560coordinate
5561system of the model.<br>
5562
5563
5564
5565
[153]5566
5567
[116]5568     
5569     
5570     
5571     
[153]5572     
5573     
[116]5574      <p>With <b>galilei_transformation</b>
5575= <i>.T.,</i> a so-called
5576Galilei-transformation is switched on which ensures that the coordinate
5577system of the model is moved along with the geostrophical wind.
5578Alternatively, the model domain can be moved along with the averaged
5579horizontal wind (see <a href="#use_ug_for_galilei_tr">use_ug_for_galilei_tr</a>,
5580this can and will naturally change in time). With this method,
5581numerical inaccuracies of the Piascek - Williams - scheme (concerns in
5582particular the momentum advection) are minimized. Beyond that, in the
5583majority of cases the lower relative velocities in the moved system
5584permit a larger time step (<a href="#dt">dt</a>).
5585Switching the transformation on is only worthwhile if the geostrophical
5586wind (ug, vg)
5587and the averaged horizontal wind clearly deviate from the value 0. In
5588each case, the distance the coordinate system has been moved is written
5589to the file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.&nbsp;
5590      </p>
5591
5592
5593
5594
[153]5595
5596
[116]5597 
5598     
5599     
5600     
5601     
[153]5602     
5603     
[116]5604      <p>Non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
5605and <a href="#bc_ns">bc_ns</a>), the specification
5606of a gestrophic
5607wind that is not constant with height
5608as well as e.g. stationary inhomogeneities at the bottom boundary do
5609not allow the use of this transformation.</p>
5610
5611
5612
5613
[153]5614
5615
[116]5616 </td>
5617
5618
5619
5620
[153]5621
5622
[116]5623 </tr>
5624
5625
5626
5627
5628
[153]5629
5630
[116]5631    <tr>
5632
5633
5634
5635
[153]5636
5637
[116]5638 <td style="vertical-align: top;"> 
5639     
5640     
5641     
5642     
[153]5643     
5644     
[116]5645      <p><a name="grid_matching"></a><b>grid_matching</b></p>
5646
5647
5648
5649
5650
[153]5651
5652
[116]5653      </td>
5654
5655
5656
5657
[153]5658
5659
[116]5660 <td style="vertical-align: top;">C * 6</td>
5661
5662
5663
5664
5665
[153]5666
5667
[305]5668      <td style="vertical-align: top;"><span style="font-style: italic;">'strict'</span></td>
[116]5669
5670
5671
5672
[153]5673
5674
[116]5675 <td style="vertical-align: top;">Variable to adjust the
5676subdomain
5677sizes in parallel runs.<br>
5678
5679
5680
5681
[153]5682
5683
[116]5684 <br>
5685
5686
5687
5688
5689
[153]5690
5691
[116]5692For <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>,
5693the subdomains are forced to have an identical
5694size on all processors. In this case the processor numbers in the
5695respective directions of the virtual processor net must fulfill certain
5696divisor conditions concerning the grid point numbers in the three
5697directions (see <a href="#nx">nx</a>, <a href="#ny">ny</a>
5698and <a href="#nz">nz</a>).
5699Advantage of this method is that all PEs bear the same computational
5700load.<br>
5701
5702
5703
5704
[153]5705
5706
[116]5707 <br>
5708
5709
5710
5711
5712
[153]5713
5714
[116]5715There is no such restriction by default, because then smaller
5716subdomains are allowed on those processors which
5717form the right and/or north boundary of the virtual processor grid. On
5718all other processors the subdomains are of same size. Whether smaller
5719subdomains are actually used, depends on the number of processors and
5720the grid point numbers used. Information about the respective settings
5721are given in file <a href="file:///home/raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.<br>
5722
5723
5724
5725
5726
[153]5727
5728
[116]5729      <br>
5730
5731
5732
5733
5734
[153]5735
5736
[116]5737When using a multi-grid method for solving the Poisson equation (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
5738only <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>
5739is allowed.<br>
5740
5741
5742
5743
[153]5744
5745
[116]5746 <br>
5747
5748
5749
5750
[153]5751
5752
[116]5753 <b>Note:</b><br>
5754
5755
5756
5757
5758
[153]5759
5760
[116]5761In some cases for small processor numbers there may be a very bad load
5762balancing among the
5763processors which may reduce the performance of the code.</td>
5764
5765
5766
5767
[153]5768
5769
[116]5770 </tr>
5771
5772
5773
5774
5775
[153]5776
5777
[197]5778    <tr><td style="vertical-align: top;"><p><a name="humidity"></a><b>humidity</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><i>.F.</i></td><td style="vertical-align: top;"><p>Parameter to
5779switch on the prognostic equation for specific
5780humidity q.<br>
[116]5781
5782
5783
5784
[153]5785
5786
[197]5787 </p>
5788
5789
5790
5791
5792
5793
5794 
5795     
5796     
5797     
5798     
5799     
5800     
5801      <p>The initial vertical
5802profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a>
5803and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>.&nbsp;
5804Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a>
5805and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br>
5806
5807
5808
5809
5810
5811
5812
5813      </p>
5814
5815
5816
5817
5818
5819
5820
5821If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
5822= .TRUE.), q becomes the total liquid water content (sum of specific
5823humidity and liquid water content).</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_height"></a>inflow_damping_height</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">from precursor run</span></td><td style="vertical-align: top;">Height below which the turbulence signal is used for turbulence recycling (in m).<br><br>In case of a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>),
5824this parameter defines the vertical thickness of the turbulent layer up
5825to which the turbulence extracted at the recycling plane (see <a href="chapter_4.1.html#recycling_width">recycling_width</a>)
5826shall be imposed to the inflow. Above this level the turbulence signal
5827is linearly damped to zero. The transition range within which the
5828signal falls to zero is given by the parameter <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>By default, this height is set as the height of the convective boundary layer as calculated from a precursor run. See <a href="chapter_3.9.html">chapter 3.9</a> about proper settings for getting this CBL height from a precursor run. </td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_width"></a>inflow_damping_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#inflow_damping_height">inflow_damping</a></span><a href="chapter_4.1.html#inflow_damping_height"><br style="font-style: italic;"><span style="font-style: italic;">_height</span></a></td><td style="vertical-align: top;">Transition range within which the turbulance signal is damped to zero (in m).<br><br>See <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> for explanation.</td></tr><tr>
5829
5830
5831
5832
5833
5834
[116]5835 <td style="vertical-align: top;"><a name="inflow_disturbance_begin"></a><b>inflow_disturbance_<br>
5836
5837
5838
5839
5840
[153]5841
5842
[116]5843begin</b></td>
5844
5845
5846
5847
[153]5848
5849
[116]5850 <td style="vertical-align: top;">I</td>
5851
5852
5853
5854
5855
[153]5856
5857
[116]5858      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(10,</span><br style="font-style: italic;">
5859
5860
5861
5862
[153]5863
5864
[116]5865 <span style="font-style: italic;">nx/2 or ny/2)</span></td>
5866
5867
5868
5869
5870
[153]5871
5872
[116]5873      <td style="vertical-align: top;">Lower
5874limit of the horizontal range for which random perturbations are to be
5875imposed on the horizontal velocity field (gridpoints).<br>
5876
5877
5878
5879
[153]5880
5881
[116]5882 <br>
5883
5884
5885
5886
5887
[153]5888
5889
[116]5890If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5891or <a href="#bc_ns">bc_ns</a>),
5892this parameter gives the gridpoint number (counted horizontally from
5893the inflow)&nbsp; from which on perturbations are imposed on the
5894horizontal velocity field. Perturbations must be switched on with
5895parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5896
5897
5898
5899
5900
[153]5901
5902
[116]5903    </tr>
5904
5905
5906
5907
[153]5908
5909
[116]5910 <tr>
5911
5912
5913
5914
[153]5915
5916
[116]5917 <td style="vertical-align: top;"><a name="inflow_disturbance_end"></a><b>inflow_disturbance_<br>
5918
5919
5920
5921
5922
[153]5923
5924
[116]5925end</b></td>
5926
5927
5928
5929
[153]5930
5931
[116]5932 <td style="vertical-align: top;">I</td>
5933
5934
5935
5936
5937
[153]5938
5939
[116]5940      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(100,</span><br style="font-style: italic;">
5941
5942
5943
5944
[153]5945
5946
[116]5947 <span style="font-style: italic;">3/4*nx or</span><br style="font-style: italic;">
5948
5949
5950
5951
[153]5952
5953
[116]5954 <span style="font-style: italic;">3/4*ny)</span></td>
5955
5956
5957
5958
[153]5959
5960
[116]5961 <td style="vertical-align: top;">Upper
5962limit of the horizontal range for which random perturbations are
5963to be imposed on the horizontal velocity field (gridpoints).<br>
5964
5965
5966
5967
[153]5968
5969
[116]5970 <br>
5971
5972
5973
5974
5975
[153]5976
5977
[116]5978If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5979or <a href="#bc_ns">bc_ns</a>),
5980this parameter gives the gridpoint number (counted horizontally from
5981the inflow)&nbsp; unto which perturbations are imposed on the
5982horizontal
5983velocity field. Perturbations must be switched on with parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5984
5985
5986
5987
5988
[153]5989
5990
[116]5991    </tr>
5992
5993
5994
5995
[153]5996
5997
[116]5998 <tr>
5999
6000
6001
6002
[153]6003
6004
[116]6005 <td style="vertical-align: top;">
6006     
6007     
6008     
6009     
[153]6010     
6011     
[116]6012      <p><a name="initializing_actions"></a><b>initializing_actions</b></p>
6013
6014
6015
6016
6017
[153]6018
6019
[116]6020      </td>
6021
6022
6023
6024
[153]6025
6026
[116]6027 <td style="vertical-align: top;">C * 100</td>
6028
6029
6030
6031
6032
[153]6033
6034
[116]6035      <td style="vertical-align: top;"><br>
6036
6037
6038
6039
[153]6040
6041
[116]6042 </td>
6043
6044
6045
6046
[153]6047
6048
[116]6049 <td style="vertical-align: top;"> 
6050     
6051     
6052     
6053     
[153]6054     
6055     
[116]6056      <p style="font-style: normal;">Initialization actions
6057to be carried out.&nbsp; </p>
6058
6059
6060
6061
[153]6062
6063
[116]6064 
6065     
6066     
6067     
6068     
[153]6069     
6070     
[116]6071      <p style="font-style: normal;">This parameter does not have a
6072default value and therefore must be assigned with each model run. For
6073restart runs <b>initializing_actions</b> = <span style="font-style: italic;">'read_restart_data'</span>
6074must be set. For the initial run of a job chain the following values
6075are allowed:&nbsp; </p>
6076
6077
6078
6079
[153]6080
6081
[116]6082 
6083     
6084     
6085     
6086     
[153]6087     
6088     
[116]6089      <p style="font-style: normal;"><span style="font-style: italic;">'set_constant_profiles'</span>
6090      </p>
6091
6092
6093
6094
[153]6095
6096
[116]6097 
6098     
6099     
6100     
6101     
[153]6102     
6103     
[116]6104      <ul>
6105
6106
6107
6108
[153]6109
6110
[116]6111 
6112       
6113       
6114       
6115       
[153]6116       
6117       
[116]6118        <p>A horizontal wind profile consisting
6119of linear sections (see <a href="#ug_surface">ug_surface</a>,
6120        <a href="#ug_vertical_gradient">ug_vertical_gradient</a>,
6121        <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
6122and <a href="#vg_surface">vg_surface</a>, <a href="#vg_vertical_gradient">vg_vertical_gradient</a>,
6123        <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
6124respectively) as well as a vertical temperature (humidity) profile
6125consisting of
6126linear sections (see <a href="#pt_surface">pt_surface</a>,
6127        <a href="#pt_vertical_gradient">pt_vertical_gradient</a>,
6128        <a href="#q_surface">q_surface</a>
6129and <a href="#q_vertical_gradient">q_vertical_gradient</a>)
6130are assumed as initial profiles. The subgrid-scale TKE is set to 0 but K<sub>m</sub>
6131and K<sub>h</sub> are set to very small values because
6132otherwise no TKE
6133would be generated.</p>
6134
6135
6136
6137
[153]6138
6139
[116]6140 
6141     
6142     
6143     
6144     
[153]6145     
6146     
[116]6147      </ul>
6148
6149
6150
6151
[153]6152
6153
[116]6154 
6155     
6156     
6157     
6158     
[153]6159     
6160     
[116]6161      <p style="font-style: italic;">'set_1d-model_profiles' </p>
6162
6163
6164
6165
6166
[153]6167
6168
[116]6169     
6170     
6171     
6172     
[153]6173     
6174     
[116]6175      <ul>
6176
6177
6178
6179
[153]6180
6181
[116]6182 
6183       
6184       
6185       
6186       
[153]6187       
6188       
[116]6189        <p>The arrays of the 3d-model are initialized with
6190the
6191(stationary) solution of the 1d-model. These are the variables e, kh,
6192km, u, v and with Prandtl layer switched on rif, us, usws, vsws. The
6193temperature (humidity) profile consisting of linear sections is set as
6194for 'set_constant_profiles' and assumed as constant in time within the
61951d-model. For steering of the 1d-model a set of parameters with suffix
6196"_1d" (e.g. <a href="#end_time_1d">end_time_1d</a>,
6197        <a href="#damp_level_1d">damp_level_1d</a>)
6198is available.</p>
6199
6200
6201
6202
[153]6203
6204
[116]6205 
6206     
6207     
6208     
6209     
[153]6210     
6211     
[116]6212      </ul>
6213
6214
6215
6216
[153]6217
6218
[116]6219 
6220     
6221     
6222     
6223     
[153]6224     
6225     
[116]6226      <p><span style="font-style: italic;">'by_user'</span></p>
6227
6228
6229
6230
[153]6231
6232
[116]6233     
6234     
6235     
6236     
[153]6237     
6238     
[116]6239      <p style="margin-left: 40px;">The initialization of the arrays
6240of the 3d-model is under complete control of the user and has to be
6241done in routine <a href="chapter_3.5.1.html#user_init_3d_model">user_init_3d_model</a>
6242of the user-interface.<span style="font-style: italic;"></span></p>
6243
6244
6245
6246
[153]6247
6248
[116]6249     
6250     
6251     
6252     
[153]6253     
6254     
[116]6255      <p><span style="font-style: italic;">'initialize_vortex'</span>
6256      </p>
6257
6258
6259
6260
[153]6261
6262
[116]6263 
6264     
6265     
6266     
6267     
[153]6268     
6269     
[116]6270      <div style="margin-left: 40px;">The initial
6271velocity field of the
62723d-model corresponds to a
6273Rankine-vortex with vertical axis. This setting may be used to test
6274advection schemes. Free-slip boundary conditions for u and v (see <a href="#bc_uv_b">bc_uv_b</a>, <a href="#bc_uv_t">bc_uv_t</a>)
6275are necessary. In order not to distort the vortex, an initial
6276horizontal wind profile constant
6277with height is necessary (to be set by <b>initializing_actions</b>
6278= <span style="font-style: italic;">'set_constant_profiles'</span>)
6279and some other conditions have to be met (neutral stratification,
6280diffusion must be
6281switched off, see <a href="#km_constant">km_constant</a>).
6282The center of the vortex is located at jc = (nx+1)/2. It
6283extends from k = 0 to k = nz+1. Its radius is 8 * <a href="#dx">dx</a>
6284and the exponentially decaying part ranges to 32 * <a href="#dx">dx</a>
6285(see init_rankine.f90). </div>
6286
6287
6288
6289
[153]6290
6291
[116]6292 
6293     
6294     
6295     
6296     
[153]6297     
6298     
[116]6299      <p><span style="font-style: italic;">'initialize_ptanom'</span>
6300      </p>
6301
6302
6303
6304
[153]6305
6306
[116]6307 
6308     
6309     
6310     
6311     
[153]6312     
6313     
[116]6314      <ul>
6315
6316
6317
6318
[153]6319
6320
[116]6321 
6322       
6323       
6324       
6325       
[153]6326       
6327       
[116]6328        <p>A 2d-Gauss-like shape disturbance
6329(x,y) is added to the
6330initial temperature field with radius 10.0 * <a href="#dx">dx</a>
6331and center at jc = (nx+1)/2. This may be used for tests of scalar
6332advection schemes
6333(see <a href="#scalar_advec">scalar_advec</a>).
6334Such tests require a horizontal wind profile constant with hight and
6335diffusion
6336switched off (see <span style="font-style: italic;">'initialize_vortex'</span>).
6337Additionally, the buoyancy term
6338must be switched of in the equation of motion&nbsp; for w (this
6339requires the user to comment out the call of <span style="font-family: monospace;">buoyancy</span> in the
[197]6340source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p></ul>
[116]6341
6342
6343
6344
6345
[153]6346
[116]6347 
6348     
6349     
6350     
6351     
[153]6352     
6353     
[197]6354      <p style="font-style: italic;">'read_data_for_recycling'</p><p style="font-style: normal; margin-left: 40px;">Here,
63553d-data from a precursor run are read by the initial (main) run. The
6356precursor run is allowed to have a smaller domain along x and y
6357compared with the main run. Also, different numbers of processors can
6358be used for these two runs. Limitations are that the precursor run must
6359use cyclic horizontal boundary conditions and that the subdomains of
6360the main run must not be larger than the subdomains of the precursor
6361run. If the total domain of the main run is larger than that of the precursor
6362run, the domain is filled by cyclic repetition&nbsp;of the (cyclic)
6363precursor data. This initialization method is recommended if a
6364turbulent inflow is used (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). 3d-data must be made available to the run by activating an appropriate file connection statement for local file BININ. See <a href="chapter_3.9.html">chapter 3.9</a> for more details, where usage of a turbulent inflow is explained. </p><p style="font-style: normal;">Values may be
[116]6365combined, e.g. <b>initializing_actions</b> = <span style="font-style: italic;">'set_constant_profiles
6366initialize_vortex'</span>, but the values of <span style="font-style: italic;">'set_constant_profiles'</span>,
6367      <span style="font-style: italic;">'set_1d-model_profiles'</span>
6368, and <span style="font-style: italic;">'by_user'</span>
6369must not be given at the same time.</p>
6370
6371
6372
6373
[153]6374
6375
[116]6376 
6377     
6378     
6379     
6380     
[153]6381     
6382     
[197]6383     
[116]6384
6385
6386
6387
[153]6388
6389
[116]6390 </td>
6391
6392
6393
6394
[153]6395
6396
[116]6397 </tr>
6398
6399
6400
6401
6402
[153]6403
6404
[116]6405    <tr>
6406
6407
6408
6409
[153]6410
6411
[116]6412 <td style="vertical-align: top;"> 
6413     
6414     
6415     
6416     
[153]6417     
6418     
[116]6419      <p><a name="km_constant"></a><b>km_constant</b></p>
6420
6421
6422
6423
6424
[153]6425
6426
[116]6427      </td>
6428
6429
6430
6431
[153]6432
6433
[116]6434 <td style="vertical-align: top;">R</td>
6435
6436
6437
6438
6439
[153]6440
6441
[116]6442      <td style="vertical-align: top;"><i>variable<br>
6443
6444
6445
6446
6447
[153]6448
6449
[116]6450(computed from TKE)</i></td>
6451
6452
6453
6454
[153]6455
6456
[116]6457 <td style="vertical-align: top;"> 
6458     
6459     
6460     
6461     
[153]6462     
6463     
[116]6464      <p>Constant eddy
6465diffusivities are used (laminar
6466simulations).&nbsp; </p>
6467
6468
6469
6470
[153]6471
6472
[116]6473 
6474     
6475     
6476     
6477     
[153]6478     
6479     
[116]6480      <p>If this parameter is
6481specified, both in the 1d and in the
64823d-model constant values for the eddy diffusivities are used in
6483space and time with K<sub>m</sub> = <b>km_constant</b>
6484and K<sub>h</sub> = K<sub>m</sub> / <a href="chapter_4.2.html#prandtl_number">prandtl_number</a>.
6485The prognostic equation for the subgrid-scale TKE is switched off.
6486Constant eddy diffusivities are only allowed with the Prandtl layer (<a href="#prandtl_layer">prandtl_layer</a>)
6487switched off.</p>
6488
6489
6490
6491
[153]6492
6493
[116]6494 </td>
6495
6496
6497
6498
[153]6499
6500
[116]6501 </tr>
6502
6503
6504
6505
[153]6506
6507
[116]6508 <tr>
6509
6510
6511
6512
[153]6513
6514
[116]6515 <td style="vertical-align: top;"> 
6516     
6517     
6518     
6519     
[153]6520     
6521     
[116]6522      <p><a name="km_damp_max"></a><b>km_damp_max</b></p>
6523
6524
6525
6526
6527
[153]6528
6529
[116]6530      </td>
6531
6532
6533
6534
[153]6535
6536
[116]6537 <td style="vertical-align: top;">R</td>
6538
6539
6540
6541
6542
[153]6543
6544
[116]6545      <td style="vertical-align: top;"><span style="font-style: italic;">0.5*(dx
6546or dy)</span></td>
6547
6548
6549
6550
[153]6551
6552
[116]6553 <td style="vertical-align: top;">Maximum
6554diffusivity used for filtering the velocity field in the vicinity of
6555the outflow (in m<sup>2</sup>/s).<br>
6556
6557
6558
6559
[153]6560
6561
[116]6562 <br>
6563
6564
6565
6566
6567
[153]6568
6569
[116]6570When using non-cyclic lateral boundaries (see <a href="#bc_lr">bc_lr</a>
6571or <a href="#bc_ns">bc_ns</a>),
6572a smoothing has to be applied to the
6573velocity field in the vicinity of the outflow in order to suppress any
6574reflections of outgoing disturbances. Smoothing is done by increasing
6575the eddy diffusivity along the horizontal direction which is
6576perpendicular to the outflow boundary. Only velocity components
6577parallel to the outflow boundary are filtered (e.g. v and w, if the
6578outflow is along x). Damping is applied from the bottom to the top of
6579the domain.<br>
6580
6581
6582
6583
[153]6584
6585
[116]6586 <br>
6587
6588
6589
6590
6591
[153]6592
6593
[116]6594The horizontal range of the smoothing is controlled by <a href="#outflow_damping_width">outflow_damping_width</a>
6595which defines the number of gridpoints (counted from the outflow
6596boundary) from where on the smoothing is applied. Starting from that
6597point, the eddy diffusivity is linearly increased (from zero to its
6598maximum value given by <span style="font-weight: bold;">km_damp_max</span>)
6599until half of the damping range width, from where it remains constant
6600up to the outflow boundary. If at a certain grid point the eddy
6601diffusivity calculated from the flow field is larger than as described
6602above, it is used instead.<br>
6603
6604
6605
6606
[153]6607
6608
[116]6609 <br>
6610
6611
6612
6613
6614
[153]6615
6616
[116]6617The default value of <span style="font-weight: bold;">km_damp_max</span>
6618has been empirically proven to be sufficient.</td>
6619
6620
6621
6622
[153]6623
6624
[116]6625 </tr>
6626
6627
6628
6629
[153]6630
6631
6632 <tr>
6633
[160]6634      <td style="vertical-align: top;"><a name="lad_surface"></a><span style="font-weight: bold;">lad_surface</span></td>
[153]6635
[160]6636      <td style="vertical-align: top;">R</td>
[153]6637
[160]6638      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
[153]6639
[160]6640      <td style="vertical-align: top;">Surface value of the leaf area density (in m<sup>2</sup>/m<sup>3</sup>).<br>
[153]6641
6642      <br>
6643
6644This
[138]6645parameter assigns the value of the leaf area density <span style="font-weight: bold;">lad</span> at the surface (k=0)<b>.</b> Starting from this value,
[166]6646the leaf area density profile is constructed with <a href="#lad_vertical_gradient">lad_vertical_gradient</a>
6647and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level
[153]6648      </a>.</td>
6649
6650    </tr>
6651
6652    <tr>
6653
[160]6654      <td style="vertical-align: top;"><a name="lad_vertical_gradient"></a><span style="font-weight: bold;">lad_vertical_gradient</span></td>
[153]6655
[160]6656      <td style="vertical-align: top;">R (10)</td>
[153]6657
[160]6658      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
[153]6659
[160]6660      <td style="vertical-align: top;">Gradient(s) of the leaf area density (in&nbsp;m<sup>2</sup>/m<sup>4</sup>).<br>
[153]6661
6662      <br>
6663
6664     
6665      <p>This leaf area density gradient
[138]6666holds starting from the height&nbsp;
[166]6667level defined by <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>
[138]6668(precisely: for all uv levels k where zu(k) &gt; lad_vertical_gradient_level, lad(k) is set: lad(k) = lad(k-1) + dzu(k) * <b>lad_vertical_gradient</b>)
6669up to the level defined by <a href="#pch_index">pch_index</a>. Above that level lad(k) will automatically set to 0.0. A total of 10 different gradients for 11 height intervals (10 intervals
[166]6670if <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>(1)
[138]6671= <i>0.0</i>) can be assigned. The leaf area density at the surface is
[166]6672assigned via <a href="#lad_surface">lad_surface</a>.&nbsp;
[153]6673      </p>
6674
6675      </td>
6676
6677    </tr>
6678
6679    <tr>
6680
[160]6681      <td style="vertical-align: top;"><a name="lad_vertical_gradient_level"></a><span style="font-weight: bold;">lad_vertical_gradient_level</span></td>
[153]6682
[160]6683      <td style="vertical-align: top;">R (10)</td>
[153]6684
[160]6685      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
[153]6686
[160]6687      <td style="vertical-align: top;">Height level from which on the&nbsp;gradient
[166]6688of the leaf area density defined by <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>
[153]6689is effective (in m).<br>
[116]6690
[153]6691      <br>
[116]6692
[153]6693The height levels have to be assigned in ascending order. The
[166]6694default values result in a leaf area density that is constant with height uup to the top of the plant canopy layer defined by <a href="#pch_index">pch_index</a>. For the piecewise construction of temperature profiles see <a href="#lad_vertical_gradient">lad_vertical_gradient</a>.</td>
[116]6695
[153]6696    </tr>
[116]6697
[153]6698    <tr>
[116]6699
[160]6700      <td style="vertical-align: top;"><a name="leaf_surface_concentration"></a><b>leaf_surface_concentration</b></td>
[153]6701
[160]6702      <td style="vertical-align: top;">R</td>
[153]6703
[160]6704      <td style="vertical-align: top;"><i>0.0</i></td>
[153]6705
[160]6706      <td style="vertical-align: top;">Concentration of a passive scalar at the surface of a leaf (in K m/s).<br>
[153]6707
6708
6709      <br>
6710
6711
[166]6712This parameter is only of importance in cases in that both, <a href="#plant_canopy">plant_canopy</a> and <a href="#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
[153]6713The value of the concentration of a passive scalar at the surface of a
6714leaf is required for the parametrisation of the sources and sinks of
6715scalar concentration due to the canopy.</td>
6716
6717    </tr>
6718
6719    <tr>
6720
6721
6722
6723
6724
6725
6726
[116]6727      <td style="vertical-align: top;"> 
6728     
6729     
6730     
6731     
[153]6732     
6733     
[116]6734      <p><a name="long_filter_factor"></a><b>long_filter_factor</b></p>
6735
6736
6737
6738
6739
[153]6740
6741
[116]6742      </td>
6743
6744
6745
6746
[153]6747
6748
[116]6749 <td style="vertical-align: top;">R</td>
6750
6751
6752
6753
6754
[153]6755
6756
[116]6757      <td style="vertical-align: top;"><i>0.0</i></td>
6758
6759
6760
6761
6762
[153]6763
6764
[116]6765      <td style="vertical-align: top;"> 
6766     
6767     
6768     
6769     
[153]6770     
6771     
[116]6772      <p>Filter factor
6773for the so-called Long-filter.<br>
6774
6775
6776
6777
[153]6778
6779
[116]6780 </p>
6781
6782
6783
6784
[153]6785
6786
[116]6787 
6788     
6789     
6790     
6791     
[153]6792     
6793     
[116]6794      <p><br>
6795
6796
6797
6798
6799
[153]6800
6801
[116]6802This filter very efficiently
6803eliminates 2-delta-waves sometimes cauesed by the upstream-spline
6804scheme (see Mahrer and
6805Pielke, 1978: Mon. Wea. Rev., 106, 818-830). It works in all three
6806directions in space. A value of <b>long_filter_factor</b>
6807= <i>0.01</i>
6808sufficiently removes the small-scale waves without affecting the
6809longer waves.<br>
6810
6811
6812
6813
[153]6814
6815
[116]6816 </p>
6817
6818
6819
6820
[153]6821
6822
[116]6823 
6824     
6825     
6826     
6827     
[153]6828     
6829     
[116]6830      <p>By default, the filter is
6831switched off (= <i>0.0</i>).
6832It is exclusively applied to the tendencies calculated by the
6833upstream-spline scheme (see <a href="#momentum_advec">momentum_advec</a>
6834and <a href="#scalar_advec">scalar_advec</a>),
6835not to the prognostic variables themselves. At the bottom and top
6836boundary of the model domain the filter effect for vertical
68372-delta-waves is reduced. There, the amplitude of these waves is only
6838reduced by approx. 50%, otherwise by nearly 100%.&nbsp; <br>
6839
6840
6841
6842
6843
[153]6844
6845
[116]6846Filter factors with values &gt; <i>0.01</i> also
6847reduce the amplitudes
6848of waves with wavelengths longer than 2-delta (see the paper by Mahrer
6849and
6850Pielke, quoted above). </p>
6851
6852
6853
6854
[153]6855
6856
[116]6857 </td>
6858
6859
6860
6861
[153]6862
6863
[116]6864 </tr>
6865
6866
6867
6868
[153]6869
6870
[116]6871 <tr>
6872
6873
6874
6875
[153]6876
6877
[116]6878      <td style="vertical-align: top;"><a name="loop_optimization"></a><span style="font-weight: bold;">loop_optimization</span></td>
6879
6880
6881
6882
[153]6883
6884
[116]6885      <td style="vertical-align: top;">C*16</td>
6886
6887
6888
6889
[153]6890
6891
[116]6892      <td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td>
6893
6894
6895
6896
[153]6897
6898
[116]6899      <td>Method used to optimize loops for solving the prognostic equations .<br>
6900
6901
6902
6903
[153]6904
6905
[116]6906      <br>
6907
6908
6909
6910
[153]6911
6912
[116]6913By
6914default, the optimization method depends on the host on which PALM is
6915running. On machines with vector-type CPUs, single 3d-loops are used to
6916calculate each tendency term of each prognostic equation, while on all
6917other machines, all prognostic equations are solved within one big loop
6918over the two horizontal indices<span style="font-family: Courier New,Courier,monospace;"> i </span>and<span style="font-family: Courier New,Courier,monospace;"> j </span>(giving a good cache uitilization).<br>
6919
6920
6921
6922
[153]6923
6924
[116]6925      <br>
6926
6927
6928
6929
[153]6930
6931
[116]6932The default behaviour can be changed by setting either <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'vector'</span> or <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'cache'</span>.</td>
6933
6934
6935
6936
[153]6937
6938
[116]6939    </tr>
6940
6941
6942
6943
[153]6944
6945
[116]6946    <tr>
6947
6948
6949
6950
6951
[153]6952
6953
[116]6954      <td style="vertical-align: top;"><a name="mixing_length_1d"></a><span style="font-weight: bold;">mixing_length_1d</span><br>
6955
6956
6957
6958
6959
[153]6960
6961
[116]6962      </td>
6963
6964
6965
6966
[153]6967
6968
[116]6969 <td style="vertical-align: top;">C*20<br>
6970
6971
6972
6973
6974
[153]6975
6976
[116]6977      </td>
6978
6979
6980
6981
[153]6982
6983
[116]6984 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
6985
6986
6987
6988
[153]6989
6990
[116]6991 <span style="font-style: italic;">model'</span><br>
6992
6993
6994
6995
[153]6996
6997
[116]6998 </td>
6999
7000
7001
7002
7003
[153]7004
7005
[116]7006      <td style="vertical-align: top;">Mixing length used in the
70071d-model.<br>
7008
7009
7010
7011
[153]7012
7013
[116]7014 <br>
7015
7016
7017
7018
7019
[153]7020
7021
[116]7022By default the mixing length is calculated as in the 3d-model (i.e. it
7023depends on the grid spacing).<br>
7024
7025
7026
7027
[153]7028
7029
[116]7030 <br>
7031
7032
7033
7034
7035
[153]7036
7037
[116]7038By setting <span style="font-weight: bold;">mixing_length_1d</span>
7039= <span style="font-style: italic;">'blackadar'</span>,
7040the so-called Blackadar mixing length is used (l = kappa * z / ( 1 +
7041kappa * z / lambda ) with the limiting value lambda = 2.7E-4 * u_g / f).<br>
7042
7043
7044
7045
7046
[153]7047
7048
[116]7049      </td>
7050
7051
7052
7053
[153]7054
7055
[116]7056 </tr>
7057
7058
7059
7060
[153]7061
7062
[116]7063 
7064
7065
7066
7067
7068
[153]7069
7070
[116]7071    <tr>
7072
7073
7074
7075
[153]7076
7077
[116]7078 <td style="vertical-align: top;"> 
7079     
7080     
7081     
7082     
[153]7083     
7084     
[116]7085      <p><a name="momentum_advec"></a><b>momentum_advec</b></p>
7086
7087
7088
7089
7090
[153]7091
7092
[116]7093      </td>
7094
7095
7096
7097
[153]7098
7099
[116]7100 <td style="vertical-align: top;">C * 10</td>
7101
7102
7103
7104
7105
[153]7106
7107
[116]7108      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
7109
7110
7111
7112
7113
[153]7114
7115
[116]7116      <td style="vertical-align: top;"> 
7117     
7118     
7119     
7120     
[153]7121     
7122     
[116]7123      <p>Advection
7124scheme to be used for the momentum equations.<br>
7125
7126
7127
7128
[153]7129
7130
[116]7131 <br>
7132
7133
7134
7135
7136
[153]7137
7138
[116]7139The user can choose between the following schemes:<br>
7140
7141
7142
7143
7144
[153]7145
7146
[116]7147&nbsp;<br>
7148
7149
7150
7151
[153]7152
7153
[116]7154 <br>
7155
7156
7157
7158
[153]7159
7160
[116]7161 <span style="font-style: italic;">'pw-scheme'</span><br>
7162
7163
7164
7165
7166
[153]7167
7168
[116]7169      </p>
7170
7171
7172
7173
[153]7174
7175
[116]7176 
7177     
7178     
7179     
7180     
[153]7181     
7182     
[116]7183      <div style="margin-left: 40px;">The scheme of
7184Piascek and
7185Williams (1970, J. Comp. Phys., 6,
7186392-405) with central differences in the form C3 is used.<br>
7187
7188
7189
7190
7191
[153]7192
7193
[116]7194If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
7195= <span style="font-style: italic;">'leapfrog+euler'</span>
7196the
7197advection scheme is - for the Euler-timestep - automatically switched
7198to an upstream-scheme.<br>
7199
7200
7201
7202
[153]7203
7204
[116]7205 </div>
7206
7207
7208
7209
[153]7210
7211
[116]7212 
7213     
7214     
7215     
7216     
[153]7217     
7218     
[116]7219      <p> </p>
7220
7221
7222
7223
[153]7224
7225
[116]7226 
7227     
7228     
7229     
7230     
[153]7231     
7232     
[116]7233      <p><span style="font-style: italic;">'ups-scheme'</span><br>
7234
7235
7236
7237
7238
[153]7239
7240
[116]7241      </p>
7242
7243
7244
7245
[153]7246
7247
[116]7248 
7249     
7250     
7251     
7252     
[153]7253     
7254     
[116]7255      <div style="margin-left: 40px;">The
7256upstream-spline scheme is
7257used
7258(see Mahrer and Pielke,
72591978: Mon. Wea. Rev., 106, 818-830). In opposite to the
7260Piascek-Williams scheme, this is characterized by much better numerical
7261features (less numerical diffusion, better preservation of flow
7262structures, e.g. vortices), but computationally it is much more
7263expensive. In
7264addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
7265= <span style="font-style: italic;">'</span><i>euler'</i>),
7266i.e. the
7267timestep accuracy is only of first order.
7268For this reason the advection of scalar variables (see <a href="#scalar_advec">scalar_advec</a>)
7269should then also be carried out with the upstream-spline scheme,
7270because otherwise the scalar variables would
7271be subject to large numerical diffusion due to the upstream
7272scheme.&nbsp; </div>
7273
7274
7275
7276
[153]7277
7278
[116]7279 
7280     
7281     
7282     
7283     
[153]7284     
7285     
[116]7286      <p style="margin-left: 40px;">Since
7287the cubic splines used tend
7288to overshoot under
7289certain circumstances, this effect must be adjusted by suitable
7290filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
7291      <a href="#long_filter_factor">long_filter_factor</a>,
7292      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
7293This is always neccessary for runs with stable stratification,
7294even if this stratification appears only in parts of the model domain.<br>
7295
7296
7297
7298
7299
[153]7300
7301
[116]7302      </p>
7303
7304
7305
7306
[153]7307
7308
[116]7309 
7310     
7311     
7312     
7313     
[153]7314     
7315     
[116]7316      <div style="margin-left: 40px;">With stable
7317stratification the
7318upstream-spline scheme also
7319produces gravity waves with large amplitude, which must be
7320suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
7321
7322
7323
7324
7325
[153]7326
7327
[116]7328      <br>
7329
7330
7331
7332
[153]7333
7334
[116]7335 <span style="font-weight: bold;">Important: </span>The&nbsp;
7336upstream-spline scheme is not implemented for humidity and passive
7337scalars (see&nbsp;<a href="#humidity">humidity</a>
7338and <a href="#passive_scalar">passive_scalar</a>)
7339and requires the use of a 2d-domain-decomposition. The last conditions
7340severely restricts code optimization on several machines leading to
7341very long execution times! The scheme is also not allowed for
7342non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
7343and <a href="#bc_ns">bc_ns</a>).</div>
7344
7345
7346
7347
[153]7348
7349
[116]7350 </td>
7351
7352
7353
7354
7355
[153]7356
7357
[116]7358    </tr>
7359
7360
7361
7362
[153]7363
7364
[116]7365 <tr>
7366
7367
7368
7369
[153]7370
7371
[116]7372 <td style="vertical-align: top;"><a name="netcdf_precision"></a><span style="font-weight: bold;">netcdf_precision</span><br>
7373
7374
7375
7376
7377
[153]7378
7379
[116]7380      </td>
7381
7382
7383
7384
[153]7385
7386
[116]7387 <td style="vertical-align: top;">C*20<br>
7388
7389
7390
7391
7392
[153]7393
7394
[116]7395(10)<br>
7396
7397
7398
7399
[153]7400
7401
[116]7402 </td>
7403
7404
7405
7406
[153]7407
7408
[116]7409 <td style="vertical-align: top;"><span style="font-style: italic;">single preci-</span><br style="font-style: italic;">
7410
7411
7412
7413
[153]7414
7415
[116]7416 <span style="font-style: italic;">sion for all</span><br style="font-style: italic;">
7417
7418
7419
7420
[153]7421
7422
[116]7423 <span style="font-style: italic;">output quan-</span><br style="font-style: italic;">
7424
7425
7426
7427
[153]7428
7429
[116]7430 <span style="font-style: italic;">tities</span><br>
7431
7432
7433
7434
[153]7435
7436
[116]7437 </td>
7438
7439
7440
7441
7442
[153]7443
7444
[116]7445      <td style="vertical-align: top;">Defines the accuracy of
7446the NetCDF output.<br>
7447
7448
7449
7450
[153]7451
7452
[116]7453 <br>
7454
7455
7456
7457
7458
[153]7459
7460
[116]7461By default, all NetCDF output data (see <a href="chapter_4.2.html#data_output_format">data_output_format</a>)
7462have single precision&nbsp; (4 byte) accuracy. Double precision (8
7463byte) can be choosen alternatively.<br>
7464
7465
7466
7467
7468
[153]7469
7470
[116]7471Accuracy for the different output data (cross sections, 3d-volume data,
7472spectra, etc.) can be set independently.<br>
7473
7474
7475
7476
[153]7477
7478
[116]7479 <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL4'</span>
7480(single precision) or <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL8'</span>
7481(double precision) are the two principally allowed values for <span style="font-weight: bold;">netcdf_precision</span>,
7482where the string <span style="font-style: italic;">'&lt;out&gt;'
7483      </span>can be chosen out of the following list:<br>
7484
7485
7486
7487
[153]7488
7489
[116]7490 <br>
7491
7492
7493
7494
7495
[153]7496
7497
[116]7498     
7499     
7500     
7501     
[153]7502     
7503     
[116]7504      <table style="text-align: left; width: 284px; height: 234px;" border="1" cellpadding="2" cellspacing="2">
7505
7506
7507
7508
[153]7509
7510
[116]7511 <tbody>
7512
7513
7514
7515
7516
[153]7517
7518
[116]7519          <tr>
7520
7521
7522
7523
[153]7524
7525
[116]7526 <td style="vertical-align: top;"><span style="font-style: italic;">'xy'</span><br>
7527
7528
7529
7530
[153]7531
7532
[116]7533 </td>
7534
7535
7536
7537
7538
[153]7539
7540
[116]7541            <td style="vertical-align: top;">horizontal cross section<br>
7542
7543
7544
7545
7546
[153]7547
7548
[116]7549            </td>
7550
7551
7552
7553
[153]7554
7555
[116]7556 </tr>
7557
7558
7559
7560
[153]7561
7562
[116]7563 <tr>
7564
7565
7566
7567
[153]7568
7569
[116]7570 <td style="vertical-align: top;"><span style="font-style: italic;">'xz'</span><br>
7571
7572
7573
7574
[153]7575
7576
[116]7577 </td>
7578
7579
7580
7581
7582
[153]7583
7584
[116]7585            <td style="vertical-align: top;">vertical (xz) cross
7586section<br>
7587
7588
7589
7590
[153]7591
7592
[116]7593 </td>
7594
7595
7596
7597
[153]7598
7599
[116]7600 </tr>
7601
7602
7603
7604
[153]7605
7606
[116]7607 <tr>
7608
7609
7610
7611
[153]7612
7613
[116]7614 <td style="vertical-align: top;"><span style="font-style: italic;">'yz'</span><br>
7615
7616
7617
7618
[153]7619
7620
[116]7621 </td>
7622
7623
7624
7625
7626
[153]7627
7628
[116]7629            <td style="vertical-align: top;">vertical (yz) cross
7630section<br>
7631
7632
7633
7634
[153]7635
7636
[116]7637 </td>
7638
7639
7640
7641
[153]7642
7643
[116]7644 </tr>
7645
7646
7647
7648
[153]7649
7650
[116]7651 <tr>
7652
7653
7654
7655
[153]7656
7657
[116]7658 <td style="vertical-align: top;"><span style="font-style: italic;">'2d'</span><br>
7659
7660
7661
7662
[153]7663
7664
[116]7665 </td>
7666
7667
7668
7669
7670
[153]7671
7672
[116]7673            <td style="vertical-align: top;">all cross sections<br>
7674
7675
7676
7677
7678
[153]7679
7680
[116]7681            </td>
7682
7683
7684
7685
[153]7686
7687
[116]7688 </tr>
7689
7690
7691
7692
[153]7693
7694
[116]7695 <tr>
7696
7697
7698
7699
[153]7700
7701
[116]7702 <td style="vertical-align: top;"><span style="font-style: italic;">'3d'</span><br>
7703
7704
7705
7706
[153]7707
7708
[116]7709 </td>
7710
7711
7712
7713
7714
[153]7715
7716
[116]7717            <td style="vertical-align: top;">volume data<br>
7718
7719
7720
7721
[153]7722
7723
[116]7724 </td>
7725
7726
7727
7728
7729
[153]7730
7731
[116]7732          </tr>
7733
7734
7735
7736
[153]7737
7738
[116]7739 <tr>
7740
7741
7742
7743
[153]7744
7745
[116]7746 <td style="vertical-align: top;"><span style="font-style: italic;">'pr'</span><br>
7747
7748
7749
7750
[153]7751
7752
[116]7753 </td>
7754
7755
7756
7757
7758
[153]7759
7760
[116]7761            <td style="vertical-align: top;">vertical profiles<br>
7762
7763
7764
7765
7766
[153]7767
7768
[116]7769            </td>
7770
7771
7772
7773
[153]7774
7775
[116]7776 </tr>
7777
7778
7779
7780
[153]7781
7782
[116]7783 <tr>
7784
7785
7786
7787
[153]7788
7789
[116]7790 <td style="vertical-align: top;"><span style="font-style: italic;">'ts'</span><br>
7791
7792
7793
7794
[153]7795
7796
[116]7797 </td>
7798
7799
7800
7801
7802
[153]7803
7804
[116]7805            <td style="vertical-align: top;">time series, particle
7806time series<br>
7807
7808
7809
7810
[153]7811
7812
[116]7813 </td>
7814
7815
7816
7817
[153]7818
7819
[116]7820 </tr>
7821
7822
7823
7824
[153]7825
7826
[116]7827 <tr>
7828
7829
7830
7831
[153]7832
7833
[116]7834 <td style="vertical-align: top;"><span style="font-style: italic;">'sp'</span><br>
7835
7836
7837
7838
[153]7839
7840
[116]7841 </td>
7842
7843
7844
7845
7846
[153]7847
7848
[116]7849            <td style="vertical-align: top;">spectra<br>
7850
7851
7852
7853
[153]7854
7855
[116]7856 </td>
7857
7858
7859
7860
7861
[153]7862
7863
[116]7864          </tr>
7865
7866
7867
7868
[153]7869
7870
[116]7871 <tr>
7872
7873
7874
7875
[153]7876
7877
[116]7878 <td style="vertical-align: top;"><span style="font-style: italic;">'prt'</span><br>
7879
7880
7881
7882
[153]7883
7884
[116]7885 </td>
7886
7887
7888
7889
7890
[153]7891
7892
[116]7893            <td style="vertical-align: top;">particles<br>
7894
7895
7896
7897
[153]7898
7899
[116]7900 </td>
7901
7902
7903
7904
7905
[153]7906
7907
[116]7908          </tr>
7909
7910
7911
7912
[153]7913
7914
[116]7915 <tr>
7916
7917
7918
7919
[153]7920
7921
[116]7922 <td style="vertical-align: top;"><span style="font-style: italic;">'all'</span><br>
7923
7924
7925
7926
[153]7927
7928
[116]7929 </td>
7930
7931
7932
7933
7934
[153]7935
7936
[116]7937            <td style="vertical-align: top;">all output quantities<br>
7938
7939
7940
7941
7942
[153]7943
7944
[116]7945            </td>
7946
7947
7948
7949
[153]7950
7951
[116]7952 </tr>
7953
7954
7955
7956
[153]7957
7958
[116]7959 
7960       
7961       
7962       
7963       
[153]7964       
7965       
[116]7966        </tbody> 
7967     
7968     
7969     
7970     
[153]7971     
7972     
[116]7973      </table>
7974
7975
7976
7977
[153]7978
7979
[116]7980 <br>
7981
7982
7983
7984
[153]7985
7986
[116]7987 <span style="font-weight: bold;">Example:</span><br>
7988
7989
7990
7991
7992
[153]7993
7994
[116]7995If all cross section data and the particle data shall be output in
7996double precision and all other quantities in single precision, then <span style="font-weight: bold;">netcdf_precision</span> = <span style="font-style: italic;">'2d_NF90_REAL8'</span>, <span style="font-style: italic;">'prt_NF90_REAL8'</span>
7997has to be assigned.<br>
7998
7999
8000
8001
[153]8002
8003
[116]8004 </td>
8005
8006
8007
8008
[153]8009
8010
[116]8011 </tr>
8012
8013
8014
8015
8016
[153]8017
8018
[197]8019   
[116]8020
8021
8022
8023
[153]8024
8025
[116]8026 
8027
8028
8029
8030
8031
[153]8032
8033
[116]8034    <tr>
8035
8036
8037
8038
[153]8039
8040
[116]8041 <td style="vertical-align: top;"> 
8042     
8043     
8044     
8045     
[153]8046     
8047     
[116]8048      <p><a name="nsor_ini"></a><b>nsor_ini</b></p>
8049
8050
8051
8052
8053
[153]8054
8055
[116]8056      </td>
8057
8058
8059
8060
[153]8061
8062
[116]8063 <td style="vertical-align: top;">I</td>
8064
8065
8066
8067
8068
[153]8069
8070
[116]8071      <td style="vertical-align: top;"><i>100</i></td>
8072
8073
8074
8075
8076
[153]8077
8078
[116]8079      <td style="vertical-align: top;"> 
8080     
8081     
8082     
8083     
[153]8084     
8085     
[116]8086      <p>Initial number
8087of iterations with the SOR algorithm.&nbsp; </p>
8088
8089
8090
8091
[153]8092
8093
[116]8094 
8095     
8096     
8097     
8098     
[153]8099     
8100     
[116]8101      <p>This
8102parameter is only effective if the SOR algorithm was
8103selected as the pressure solver scheme (<a href="chapter_4.2.html#psolver">psolver</a>
8104= <span style="font-style: italic;">'sor'</span>)
8105and specifies the
8106number of initial iterations of the SOR
8107scheme (at t = 0). The number of subsequent iterations at the following
8108timesteps is determined
8109with the parameter <a href="#nsor">nsor</a>.
8110Usually <b>nsor</b> &lt; <b>nsor_ini</b>,
8111since in each case
8112subsequent calls to <a href="chapter_4.2.html#psolver">psolver</a>
8113use the solution of the previous call as initial value. Suitable
8114test runs should determine whether sufficient convergence of the
8115solution is obtained with the default value and if necessary the value
8116of <b>nsor_ini</b> should be changed.</p>
8117
8118
8119
8120
[153]8121
8122
[116]8123 </td>
8124
8125
8126
8127
8128
[153]8129
8130
[116]8131    </tr>
8132
8133
8134
8135
[153]8136
8137
[116]8138 <tr>
8139
8140
8141
8142
[153]8143
8144
[116]8145 <td style="vertical-align: top;">
8146     
8147     
8148     
8149     
[153]8150     
8151     
[116]8152      <p><a name="nx"></a><b>nx</b></p>
8153
8154
8155
8156
8157
[153]8158
8159
[116]8160      </td>
8161
8162
8163
8164
[153]8165
8166
[116]8167 <td style="vertical-align: top;">I</td>
8168
8169
8170
8171
8172
[153]8173
8174
[116]8175      <td style="vertical-align: top;"><br>
8176
8177
8178
8179
[153]8180
8181
[116]8182 </td>
8183
8184
8185
8186
[153]8187
8188
[116]8189 <td style="vertical-align: top;"> 
8190     
8191     
8192     
8193     
[153]8194     
8195     
[116]8196      <p>Number of grid
8197points in x-direction.&nbsp; </p>
8198
8199
8200
8201
[153]8202
8203
[116]8204 
8205     
8206     
8207     
8208     
[153]8209     
8210     
[116]8211      <p>A value for this
8212parameter must be assigned. Since the lower
8213array bound in PALM
8214starts with i = 0, the actual number of grid points is equal to <b>nx+1</b>.
8215In case of cyclic boundary conditions along x, the domain size is (<b>nx+1</b>)*
8216      <a href="#dx">dx</a>.</p>
8217
8218
8219
8220
[153]8221
8222
[116]8223 
8224     
8225     
8226     
8227     
[153]8228     
8229     
[116]8230      <p>For
8231parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8232= <span style="font-style: italic;">'strict'</span>,
8233      <b>nx+1</b> must
8234be an integral multiple
8235of the processor numbers (see <a href="#npex">npex</a>
8236and <a href="#npey">npey</a>)
8237along x- as well as along y-direction (due to data
8238transposition restrictions).</p>
8239
8240
8241
8242
[153]8243
8244
[116]8245     
8246     
8247     
8248     
[153]8249     
8250     
[116]8251      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8252and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8253
8254
8255
8256
[153]8257
8258
[116]8259 </td>
8260
8261
8262
8263
[153]8264
8265
[116]8266 </tr>
8267
8268
8269
8270
[153]8271
8272
[116]8273 <tr>
8274
8275
8276
8277
8278
[153]8279
8280
[116]8281      <td style="vertical-align: top;"> 
8282     
8283     
8284     
8285     
[153]8286     
8287     
[116]8288      <p><a name="ny"></a><b>ny</b></p>
8289
8290
8291
8292
8293
[153]8294
8295
[116]8296      </td>
8297
8298
8299
8300
[153]8301
8302
[116]8303 <td style="vertical-align: top;">I</td>
8304
8305
8306
8307
8308
[153]8309
8310
[116]8311      <td style="vertical-align: top;"><br>
8312
8313
8314
8315
[153]8316
8317
[116]8318 </td>
8319
8320
8321
8322
[153]8323
8324
[116]8325 <td style="vertical-align: top;"> 
8326     
8327     
8328     
8329     
[153]8330     
8331     
[116]8332      <p>Number of grid
8333points in y-direction.&nbsp; </p>
8334
8335
8336
8337
[153]8338
8339
[116]8340 
8341     
8342     
8343     
8344     
[153]8345     
8346     
[116]8347      <p>A value for this
8348parameter must be assigned. Since the lower
8349array bound in PALM starts with j = 0, the actual number of grid points
8350is equal to <b>ny+1</b>. In case of cyclic boundary
8351conditions along
8352y, the domain size is (<b>ny+1</b>) * <a href="#dy">dy</a>.</p>
8353
8354
8355
8356
8357
[153]8358
8359
[116]8360     
8361     
8362     
8363     
[153]8364     
8365     
[116]8366      <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8367= <span style="font-style: italic;">'strict'</span>,
8368      <b>ny+1</b> must
8369be an integral multiple
8370of the processor numbers (see <a href="#npex">npex</a>
8371and <a href="#npey">npey</a>)&nbsp;
8372along y- as well as along x-direction (due to data
8373transposition restrictions).</p>
8374
8375
8376
8377
[153]8378
8379
[116]8380     
8381     
8382     
8383     
[153]8384     
8385     
[116]8386      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8387and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8388
8389
8390
8391
[153]8392
8393
[116]8394 </td>
8395
8396
8397
8398
[153]8399
8400
[116]8401 </tr>
8402
8403
8404
8405
[153]8406
8407
[116]8408 <tr>
8409
8410
8411
8412
8413
[153]8414
8415
[116]8416      <td style="vertical-align: top;"> 
8417     
8418     
8419     
8420     
[153]8421     
8422     
[116]8423      <p><a name="nz"></a><b>nz</b></p>
8424
8425
8426
8427
8428
[153]8429
8430
[116]8431      </td>
8432
8433
8434
8435
[153]8436
8437
[116]8438 <td style="vertical-align: top;">I</td>
8439
8440
8441
8442
8443
[153]8444
8445
[116]8446      <td style="vertical-align: top;"><br>
8447
8448
8449
8450
[153]8451
8452
[116]8453 </td>
8454
8455
8456
8457
[153]8458
8459
[116]8460 <td style="vertical-align: top;"> 
8461     
8462     
8463     
8464     
[153]8465     
8466     
[116]8467      <p>Number of grid
8468points in z-direction.&nbsp; </p>
8469
8470
8471
8472
[153]8473
8474
[116]8475 
8476     
8477     
8478     
8479     
[153]8480     
8481     
[116]8482      <p>A value for this
8483parameter must be assigned. Since the lower
8484array bound in PALM
8485starts with k = 0 and since one additional grid point is added at the
8486top boundary (k = <b>nz+1</b>), the actual number of grid
8487points is <b>nz+2</b>.
8488However, the prognostic equations are only solved up to <b>nz</b>
8489(u,
8490v)
8491or up to <b>nz-1</b> (w, scalar quantities). The top
8492boundary for u
8493and v is at k = <b>nz+1</b> (u, v) while at k = <b>nz</b>
8494for all
8495other quantities.&nbsp; </p>
8496
8497
8498
8499
[153]8500
8501
[116]8502 
8503     
8504     
8505     
8506     
[153]8507     
8508     
[116]8509      <p>For parallel
8510runs,&nbsp; in case of <a href="#grid_matching">grid_matching</a>
8511= <span style="font-style: italic;">'strict'</span>,
8512      <b>nz</b> must
8513be an integral multiple of
8514the number of processors in x-direction (due to data transposition
8515restrictions).</p>
8516
8517
8518
8519
[153]8520
8521
[116]8522 </td>
8523
8524
8525
8526
[153]8527
8528
[116]8529 </tr>
8530
8531
8532
8533
[153]8534
8535
[116]8536 <tr>
8537
8538
8539
8540
[153]8541
8542
[116]8543      <td style="vertical-align: top;"><a name="ocean"></a><span style="font-weight: bold;">ocean</span></td>
8544
8545
8546
8547
[153]8548
8549
[116]8550      <td style="vertical-align: top;">L</td>
8551
8552
8553
8554
[153]8555
8556
[116]8557      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
8558
8559
8560
8561
[153]8562
8563
[116]8564      <td style="vertical-align: top;">Parameter to switch on&nbsp;ocean runs.<br>
8565
8566
8567
8568
[153]8569
8570
[116]8571      <br>
8572
8573
8574
8575
[153]8576
8577
[116]8578By default PALM is configured to simulate&nbsp;atmospheric flows. However, starting from version 3.3, <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> allows&nbsp;simulation of ocean turbulent flows. Setting this switch has several effects:<br>
8579
8580
8581
8582
[153]8583
8584
[116]8585      <br>
8586
8587
8588
8589
[153]8590
8591
[116]8592     
8593     
8594     
8595     
[153]8596     
8597     
[116]8598      <ul>
8599
8600
8601
8602
[153]8603
8604
[116]8605        <li>An additional prognostic equation for salinity is solved.</li>
8606
8607
8608
8609
[153]8610
8611
[116]8612        <li>Potential temperature in buoyancy and stability-related terms is replaced by potential density.</li>
8613
8614
8615
8616
[153]8617
8618
[116]8619        <li>Potential
8620density is calculated from the equation of state for seawater after
8621each timestep, using the algorithm proposed by Jackett et al. (2006, J.
8622Atmos. Oceanic Technol., <span style="font-weight: bold;">23</span>, 1709-1728).<br>
8623
8624
8625
8626
[153]8627
8628
[116]8629So far, only the initial hydrostatic pressure is entered into this equation.</li>
8630
8631
8632
8633
[153]8634
8635
[116]8636        <li>z=0 (sea surface) is assumed at the model top (vertical grid index <span style="font-family: Courier New,Courier,monospace;">k=nzt</span> on the w-grid), with negative values of z indicating the depth.</li>
8637
8638
8639
8640
[153]8641
8642
[116]8643        <li>Initial profiles are constructed (e.g. from <a href="#pt_vertical_gradient">pt_vertical_gradient</a> / <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>) starting from the sea surface, using surface values&nbsp;given by <a href="#pt_surface">pt_surface</a>, <a href="#sa_surface">sa_surface</a>, <a href="#ug_surface">ug_surface</a>, and <a href="#vg_surface">vg_surface</a>.</li>
8644
8645
8646
8647
[153]8648
8649
[116]8650        <li>Zero salinity flux is used as default boundary condition at the bottom of the sea.</li>
8651
8652
8653
8654
[153]8655
8656
[116]8657        <li>If switched on, random perturbations are by default imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3).</li>
8658
8659
8660
8661
[153]8662
8663
[116]8664     
8665     
8666     
8667     
[153]8668     
8669     
[116]8670      </ul>
8671
8672
8673
8674
[153]8675
8676
[116]8677      <br>
8678
8679
8680
8681
[153]8682
8683
[116]8684Relevant parameters to be exclusively used for steering ocean runs are <a href="#bc_sa_t">bc_sa_t</a>, <a href="#bottom_salinityflux">bottom_salinityflux</a>, <a href="#sa_surface">sa_surface</a>, <a href="#sa_vertical_gradient">sa_vertical_gradient</a>, <a href="#sa_vertical_gradient_level">sa_vertical_gradient_level</a>, and <a href="#top_salinityflux">top_salinityflux</a>.<br>
8685
8686
8687
8688
[153]8689
8690
[116]8691      <br>
8692
8693
8694
8695
[153]8696
8697
[116]8698Section <a href="chapter_4.2.2.html">4.4.2</a> gives an example for appropriate settings of these and other parameters neccessary for ocean runs.<br>
8699
8700
8701
8702
[153]8703
8704
[116]8705      <br>
8706
8707
8708
8709
[153]8710
8711
[116]8712      <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> does not allow settings of <a href="#timestep_scheme">timestep_scheme</a> = <span style="font-style: italic;">'leapfrog'</span> or <span style="font-style: italic;">'leapfrog+euler'</span> as well as <a href="#scalar_advec">scalar_advec</a> = <span style="font-style: italic;">'ups-scheme'</span>.<span style="font-weight: bold;"></span><br>
8713
[153]8714
8715
[116]8716      </td>
8717
8718
8719
8720
[153]8721
8722
[116]8723    </tr>
8724
8725
8726
8727
[153]8728
8729
[116]8730    <tr>
8731
8732
8733
8734
[153]8735
8736
[116]8737 <td style="vertical-align: top;"> 
8738     
8739     
8740     
8741     
[153]8742     
8743     
[116]8744      <p><a name="omega"></a><b>omega</b></p>
8745
8746
8747
8748
8749
[153]8750
8751
[116]8752      </td>
8753
8754
8755
8756
[153]8757
8758
[116]8759 <td style="vertical-align: top;">R</td>
8760
8761
8762
8763
8764
[153]8765
8766
[116]8767      <td style="vertical-align: top;"><i>7.29212E-5</i></td>
8768
8769
8770
8771
8772
[153]8773
8774
[116]8775      <td style="vertical-align: top;"> 
8776     
8777     
8778     
8779     
[153]8780     
8781     
[116]8782      <p>Angular
8783velocity of the rotating system (in rad s<sup>-1</sup>).&nbsp;
8784      </p>
8785
8786
8787
8788
[153]8789
8790
[116]8791 
8792     
8793     
8794     
8795     
[153]8796     
8797     
[116]8798      <p>The angular velocity of the earth is set by
8799default. The
8800values
8801of the Coriolis parameters are calculated as:&nbsp; </p>
8802
8803
8804
8805
[153]8806
8807
[116]8808 
8809     
8810     
8811     
8812     
[153]8813     
8814     
[116]8815      <ul>
8816
8817
8818
8819
8820
[153]8821
8822
[116]8823       
8824       
8825       
8826       
[153]8827       
8828       
[116]8829        <p>f = 2.0 * <b>omega</b> * sin(<a href="#phi">phi</a>)&nbsp;
8830        <br>
8831
8832
8833
8834
[153]8835
8836
[116]8837f* = 2.0 * <b>omega</b> * cos(<a href="#phi">phi</a>)</p>
8838
8839
8840
8841
8842
[153]8843
8844
[116]8845     
8846     
8847     
8848     
[153]8849     
8850     
[116]8851      </ul>
8852
8853
8854
8855
[153]8856
8857
[116]8858 </td>
8859
8860
8861
8862
[153]8863
8864
[116]8865 </tr>
8866
8867
8868
8869
[153]8870
8871
[116]8872 <tr>
8873
8874
8875
8876
[153]8877
8878
[116]8879 <td style="vertical-align: top;"> 
8880     
8881     
8882     
8883     
[153]8884     
8885     
[116]8886      <p><a name="outflow_damping_width"></a><b>outflow_damping_width</b></p>
8887
8888
8889
8890
8891
[153]8892
8893
[116]8894      </td>
8895
8896
8897
8898
[153]8899
8900
[116]8901 <td style="vertical-align: top;">I</td>
8902
8903
8904
8905
8906
[153]8907
8908
[116]8909      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(20,
8910nx/2</span> or <span style="font-style: italic;">ny/2)</span></td>
8911
8912
8913
8914
8915
[153]8916
8917
[116]8918      <td style="vertical-align: top;">Width of
8919the damping range in the vicinity of the outflow (gridpoints).<br>
8920
8921
8922
8923
8924
[153]8925
8926
[116]8927      <br>
8928
8929
8930
8931
8932
[153]8933
8934
[116]8935When using non-cyclic lateral boundaries (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
8936or <a href="chapter_4.1.html#bc_ns">bc_ns</a>),
8937a smoothing has to be applied to the
8938velocity field in the vicinity of the outflow in order to suppress any
8939reflections of outgoing disturbances. This parameter controlls the
8940horizontal range to which the smoothing is applied. The range is given
8941in gridpoints counted from the respective outflow boundary. For further
8942details about the smoothing see parameter <a href="chapter_4.1.html#km_damp_max">km_damp_max</a>,
8943which defines the magnitude of the damping.</td>
8944
8945
8946
8947
[153]8948
8949
[116]8950 </tr>
8951
8952
8953
8954
8955
[153]8956
8957
[116]8958    <tr>
8959
8960
8961
8962
[153]8963
8964
[116]8965 <td style="vertical-align: top;"> 
8966     
8967     
8968     
8969     
[153]8970     
8971     
[116]8972      <p><a name="overshoot_limit_e"></a><b>overshoot_limit_e</b></p>
8973
8974
8975
8976
8977
[153]8978
8979
[116]8980      </td>
8981
8982
8983
8984
[153]8985
8986
[116]8987 <td style="vertical-align: top;">R</td>
8988
8989
8990
8991
8992
[153]8993
8994
[116]8995      <td style="vertical-align: top;"><i>0.0</i></td>
8996
8997
8998
8999
9000
[153]9001
9002
[116]9003      <td style="vertical-align: top;"> 
9004     
9005     
9006     
9007     
[153]9008     
9009     
[116]9010      <p>Allowed limit
9011for the overshooting of subgrid-scale TKE in
9012case that the upstream-spline scheme is switched on (in m<sup>2</sup>/s<sup>2</sup>).&nbsp;
9013      </p>
9014
9015
9016
9017
[153]9018
9019
[116]9020 
9021     
9022     
9023     
9024     
[153]9025     
9026     
[116]9027      <p>By deafult, if cut-off of overshoots is switched
9028on for the
9029upstream-spline scheme (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>),
9030no overshoots are permitted at all. If <b>overshoot_limit_e</b>
9031is given a non-zero value, overshoots with the respective
9032amplitude (both upward and downward) are allowed.&nbsp; </p>
9033
9034
9035
9036
9037
[153]9038
9039
[116]9040     
9041     
9042     
9043     
[153]9044     
9045     
[116]9046      <p>Only positive values are allowed for <b>overshoot_limit_e</b>.</p>
9047
9048
9049
9050
9051
[153]9052
9053
[116]9054      </td>
9055
9056
9057
9058
[153]9059
9060
[116]9061 </tr>
9062
9063
9064
9065
[153]9066
9067
[116]9068 <tr>
9069
9070
9071
9072
[153]9073
9074
[116]9075 <td style="vertical-align: top;"> 
9076     
9077     
9078     
9079     
[153]9080     
9081     
[116]9082      <p><a name="overshoot_limit_pt"></a><b>overshoot_limit_pt</b></p>
9083
9084
9085
9086
9087
[153]9088
9089
[116]9090      </td>
9091
9092
9093
9094
[153]9095
9096
[116]9097 <td style="vertical-align: top;">R</td>
9098
9099
9100
9101
9102
[153]9103
9104
[116]9105      <td style="vertical-align: top;"><i>0.0</i></td>
9106
9107
9108
9109
9110
[153]9111
9112
[116]9113      <td style="vertical-align: top;"> 
9114     
9115     
9116     
9117     
[153]9118     
9119     
[116]9120      <p>Allowed limit
9121for the overshooting of potential temperature in
9122case that the upstream-spline scheme is switched on (in K).&nbsp; </p>
9123
9124
9125
9126
9127
[153]9128
9129
[116]9130     
9131     
9132     
9133     
[153]9134     
9135     
[116]9136      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9137      </p>
9138
9139
9140
9141
[153]9142
9143
[116]9144 
9145     
9146     
9147     
9148     
[153]9149     
9150     
[116]9151      <p>Only positive values are allowed for <b>overshoot_limit_pt</b>.</p>
9152
9153
9154
9155
9156
[153]9157
9158
[116]9159      </td>
9160
9161
9162
9163
[153]9164
9165
[116]9166 </tr>
9167
9168
9169
9170
[153]9171
9172
[116]9173 <tr>
9174
9175
9176
9177
[153]9178
9179
[116]9180 <td style="vertical-align: top;"> 
9181     
9182     
9183     
9184     
[153]9185     
9186     
[116]9187      <p><a name="overshoot_limit_u"></a><b>overshoot_limit_u</b></p>
9188
9189
9190
9191
9192
[153]9193
9194
[116]9195      </td>
9196
9197
9198
9199
[153]9200
9201
[116]9202 <td style="vertical-align: top;">R</td>
9203
9204
9205
9206
9207
[153]9208
9209
[116]9210      <td style="vertical-align: top;"><i>0.0</i></td>
9211
9212
9213
9214
9215
[153]9216
9217
[116]9218      <td style="vertical-align: top;">Allowed limit for the
9219overshooting of
9220the u-component of velocity in case that the upstream-spline scheme is
9221switched on (in m/s).
9222     
9223     
9224     
9225     
[153]9226     
9227     
[116]9228      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9229      </p>
9230
9231
9232
9233
[153]9234
9235
[116]9236 
9237     
9238     
9239     
9240     
[153]9241     
9242     
[116]9243      <p>Only positive values are allowed for <b>overshoot_limit_u</b>.</p>
9244
9245
9246
9247
9248
[153]9249
9250
[116]9251      </td>
9252
9253
9254
9255
[153]9256
9257
[116]9258 </tr>
9259
9260
9261
9262
[153]9263
9264
[116]9265 <tr>
9266
9267
9268
9269
[153]9270
9271
[116]9272 <td style="vertical-align: top;"> 
9273     
9274     
9275     
9276     
[153]9277     
9278     
[116]9279      <p><a name="overshoot_limit_v"></a><b>overshoot_limit_v</b></p>
9280
9281
9282
9283
9284
[153]9285
9286
[116]9287      </td>
9288
9289
9290
9291
[153]9292
9293
[116]9294 <td style="vertical-align: top;">R</td>
9295
9296
9297
9298
9299
[153]9300
9301
[116]9302      <td style="vertical-align: top;"><i>0.0</i></td>
9303
9304
9305
9306
9307
[153]9308
9309
[116]9310      <td style="vertical-align: top;"> 
9311     
9312     
9313     
9314     
[153]9315     
9316     
[116]9317      <p>Allowed limit
9318for the overshooting of the v-component of
9319velocity in case that the upstream-spline scheme is switched on
9320(in m/s).&nbsp; </p>
9321
9322
9323
9324
[153]9325
9326
[116]9327 
9328     
9329     
9330     
9331     
[153]9332     
9333     
[116]9334      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9335      </p>
9336
9337
9338
9339
[153]9340
9341
[116]9342 
9343     
9344     
9345     
9346     
[153]9347     
9348     
[116]9349      <p>Only positive values are allowed for <b>overshoot_limit_v</b>.</p>
9350
9351
9352
9353
9354
[153]9355
9356
[116]9357      </td>
9358
9359
9360
9361
[153]9362
9363
[116]9364 </tr>
9365
9366
9367
9368
[153]9369
9370
[116]9371 <tr>
9372
9373
9374
9375
[153]9376
9377
[116]9378 <td style="vertical-align: top;"> 
9379     
9380     
9381     
9382     
[153]9383     
9384     
[116]9385      <p><a name="overshoot_limit_w"></a><b>overshoot_limit_w</b></p>
9386
9387
9388
9389
9390
[153]9391
9392
[116]9393      </td>
9394
9395
9396
9397
[153]9398
9399
[116]9400 <td style="vertical-align: top;">R</td>
9401
9402
9403
9404
9405
[153]9406
9407
[116]9408      <td style="vertical-align: top;"><i>0.0</i></td>
9409
9410
9411
9412
9413
[153]9414
9415
[116]9416      <td style="vertical-align: top;"> 
9417     
9418     
9419     
9420     
[153]9421     
9422     
[116]9423      <p>Allowed limit
9424for the overshooting of the w-component of
9425velocity in case that the upstream-spline scheme is switched on
9426(in m/s).&nbsp; </p>
9427
9428
9429
9430
[153]9431
9432
[116]9433 
9434     
9435     
9436     
9437     
[153]9438     
9439     
[116]9440      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9441      </p>
9442
9443
9444
9445
[153]9446
9447
[116]9448 
9449     
9450     
9451     
9452     
[153]9453     
9454     
[116]9455      <p>Only positive values are permitted for <b>overshoot_limit_w</b>.</p>
9456
9457
9458
9459
9460
[153]9461
9462
[116]9463      </td>
9464
9465
9466
9467
[153]9468
9469
[116]9470 </tr>
9471
9472
9473
9474
[153]9475
9476
[116]9477 <tr>
9478
9479
9480
9481
[153]9482
9483
[116]9484 <td style="vertical-align: top;"> 
9485     
9486     
9487     
9488     
[153]9489     
9490     
[116]9491      <p><a name="passive_scalar"></a><b>passive_scalar</b></p>
9492
9493
9494
9495
9496
[153]9497
9498
[116]9499      </td>
9500
9501
9502
9503
[153]9504
9505
[116]9506 <td style="vertical-align: top;">L</td>
9507
9508
9509
9510
9511
[153]9512
9513
[116]9514      <td style="vertical-align: top;"><i>.F.</i></td>
9515
9516
9517
9518
9519
[153]9520
9521
[116]9522      <td style="vertical-align: top;"> 
9523     
9524     
9525     
9526     
[153]9527     
9528     
[116]9529      <p>Parameter to
9530switch on the prognostic equation for a passive
9531scalar. <br>
9532
9533
9534
9535
[153]9536
9537
[116]9538 </p>
9539
9540
9541
9542
[153]9543
9544
[116]9545 
9546     
9547     
9548     
9549     
[153]9550     
9551     
[116]9552      <p>The initial vertical profile
9553of s can be set via parameters <a href="#s_surface">s_surface</a>,
9554      <a href="#s_vertical_gradient">s_vertical_gradient</a>
9555and&nbsp; <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
9556Boundary conditions can be set via <a href="#s_surface_initial_change">s_surface_initial_change</a>
9557and <a href="#surface_scalarflux">surface_scalarflux</a>.&nbsp;
9558      </p>
9559
9560
9561
9562
[153]9563
9564
[116]9565 
9566     
9567     
9568     
9569     
[153]9570     
9571     
[116]9572      <p><b>Note:</b> <br>
9573
9574
9575
9576
9577
[153]9578
9579
[116]9580With <span style="font-weight: bold;">passive_scalar</span>
9581switched
9582on, the simultaneous use of humidity (see&nbsp;<a href="#humidity">humidity</a>)
9583is impossible.</p>
9584
9585
9586
9587
[153]9588
9589
[116]9590 </td>
9591
9592
9593
9594
[153]9595
9596
[116]9597 </tr>
9598
9599
9600
9601
9602
9603
[153]9604 <tr>
[116]9605
[160]9606      <td style="vertical-align: top;"><a name="pch_index"></a><span style="font-weight: bold;">pch_index</span></td>
[116]9607
[160]9608      <td style="vertical-align: top;">I</td>
[153]9609
[160]9610      <td style="vertical-align: top;"><span style="font-style: italic;">0</span></td>
[153]9611
[160]9612      <td style="vertical-align: top;">Grid point index (scalar) of the upper boundary of the plant canopy layer.<br>
[153]9613
9614      <br>
9615
9616Above <span style="font-weight: bold;">pch_index</span> the arrays of leaf area density and drag_coeffient are automatically set to zero in case of <a href="#plant_canopy">plant_canopy</a> = .T.. Up to <span style="font-weight: bold;">pch_index</span> a leaf area density profile can be prescribed by using the parameters <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a> and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>.</td>
9617
9618    </tr>
9619
9620    <tr>
9621
9622
9623
9624
9625
9626
[116]9627 <td style="vertical-align: top;"> 
9628     
9629     
9630     
9631     
[153]9632     
9633     
[116]9634      <p><a name="phi"></a><b>phi</b></p>
9635
9636
9637
9638
9639
[153]9640
9641
[116]9642      </td>
9643
9644
9645
9646
[153]9647
9648
[116]9649 <td style="vertical-align: top;">R</td>
9650
9651
9652
9653
9654
[153]9655
9656
[116]9657      <td style="vertical-align: top;"><i>55.0</i></td>
9658
9659
9660
9661
9662
[153]9663
9664
[116]9665      <td style="vertical-align: top;"> 
9666     
9667     
9668     
9669     
[153]9670     
9671     
[116]9672      <p>Geographical
9673latitude (in degrees).&nbsp; </p>
9674
9675
9676
9677
[153]9678
9679
[116]9680 
9681     
9682     
9683     
9684     
[153]9685     
9686     
[116]9687      <p>The value of
9688this parameter determines the value of the
9689Coriolis parameters f and f*, provided that the angular velocity (see <a href="#omega">omega</a>)
9690is non-zero.</p>
9691
9692
9693
9694
[153]9695
9696
[116]9697 </td>
9698
9699
9700
9701
[153]9702
9703
[116]9704 </tr>
9705
9706
9707
9708
[153]9709
9710
9711 <tr>
9712
[160]9713      <td style="vertical-align: top;"><a name="plant_canopy"></a><span style="font-weight: bold;">plant_canopy</span></td>
[153]9714
[160]9715      <td style="vertical-align: top;">L</td>
[153]9716
[160]9717      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
[153]9718
[160]9719      <td style="vertical-align: top;">Switch for the plant_canopy_model.<br>
[153]9720
9721      <br>
9722
9723If <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>, the plant canopy model of Watanabe (2004, BLM 112, 307-341) is used. <br>
9724
9725The
[138]9726impact of a plant canopy on a turbulent flow is considered by an
9727additional drag term in the momentum equations and an additional sink
9728term in the prognostic equation for the subgrid-scale TKE. These
[166]9729additional terms are dependent on the leaf drag coefficient (see <a href="#drag_coefficient">drag_coefficient</a>) and the leaf area density (see <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a>, <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>). The top boundary of the plant canopy is determined by the parameter <a href="#pch_index">pch_index</a>. For all heights equal to or larger than zw(k=<span style="font-weight: bold;">pch_index</span>) the leaf area density is 0 (i.e. there is no canopy at these heights!). <br>
[116]9730
[166]9731By default, a horizontally homogeneous plant canopy is prescribed, if&nbsp; <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>. However, the user can define other types of plant canopies (see <a href="#canopy_mode">canopy_mode</a>).<br><br>If <span style="font-weight: bold;">plant_canopy</span> and&nbsp; <span style="font-weight: bold;">passive_scalar</span><span style="font-style: italic;"> </span>are set <span style="font-style: italic;">.T.</span>,
9732the canopy acts as an additional source or sink, respectively, of
9733scalar concentration. The source/sink strength is dependent on the
9734scalar concentration at the leaf surface, which is generally constant
9735with time in PALM and which can be specified by specifying the
9736parameter <a href="#leaf_surface_concentration">leaf_surface_concentration</a>. <br><br>Additional heating of the air by the plant canopy is taken into account, when the default value of the parameter <a href="#cthf">cthf</a> is altered in the parameter file. In that case the value of <a href="#surface_heatflux">surface_heatflux</a>
9737specified in the parameter file is not used in the model. Instead the
9738near-surface heat flux is derived from an expontial function that is
9739dependent on the cumulative leaf area index. <br> 
[116]9740
[153]9741      <br>
[116]9742
[153]9743      <span style="font-weight: bold;">plant_canopy</span> = <span style="font-style: italic;">.T. </span>is only allowed together with a non-zero <a href="#drag_coefficient">drag_coefficient</a>.</td>
[116]9744
[153]9745    </tr>
9746
9747    <tr>
9748
9749
9750
9751
9752
9753
[116]9754 <td style="vertical-align: top;"> 
9755     
9756     
9757     
9758     
[153]9759     
9760     
[116]9761      <p><a name="prandtl_layer"></a><b>prandtl_layer</b></p>
9762
9763
9764
9765
9766
[153]9767
9768
[116]9769      </td>
9770
9771
9772
9773
[153]9774
9775
[116]9776 <td style="vertical-align: top;">L</td>
9777
9778
9779
9780
9781
[153]9782
9783
[116]9784      <td style="vertical-align: top;"><i>.T.</i></td>
9785
9786
9787
9788
9789
[153]9790
9791
[116]9792      <td style="vertical-align: top;"> 
9793     
9794     
9795     
9796     
[153]9797     
9798     
[116]9799      <p>Parameter to
9800switch on a Prandtl layer.&nbsp; </p>
9801
9802
9803
9804
[153]9805
9806
[116]9807 
9808     
9809     
9810     
9811     
[153]9812     
9813     
[116]9814      <p>By default,
9815a Prandtl layer is switched on at the bottom
9816boundary between z = 0 and z = 0.5 * <a href="#dz">dz</a>
9817(the first computational grid point above ground for u, v and the
9818scalar quantities).
9819In this case, at the bottom boundary, free-slip conditions for u and v
9820(see <a href="#bc_uv_b">bc_uv_b</a>)
9821are not allowed. Likewise, laminar
9822simulations with constant eddy diffusivities (<a href="#km_constant">km_constant</a>)
9823are forbidden.&nbsp; </p>
9824
9825
9826
9827
[153]9828
9829
[116]9830 
9831     
9832     
9833     
9834     
[153]9835     
9836     
[116]9837      <p>With Prandtl-layer
9838switched off, the TKE boundary condition <a href="#bc_e_b">bc_e_b</a>
9839= '<i>(u*)**2+neumann'</i> must not be used and is
9840automatically
9841changed to <i>'neumann'</i> if necessary.&nbsp; Also,
9842the pressure
9843boundary condition <a href="#bc_p_b">bc_p_b</a>
9844= <i>'neumann+inhomo'</i>&nbsp; is not allowed. </p>
9845
9846
9847
9848
9849
[153]9850
9851
[116]9852     
9853     
9854     
9855     
[153]9856     
9857     
[116]9858      <p>The roughness length is declared via the parameter <a href="#roughness_length">roughness_length</a>.</p>
9859
9860
9861
9862
9863
[153]9864
9865
[116]9866      </td>
9867
9868
9869
9870
[153]9871
9872
[116]9873 </tr>
9874
9875
9876
9877
[153]9878
9879
[116]9880 <tr>
9881
9882
9883
9884
[153]9885
9886
[116]9887 <td style="vertical-align: top;"> 
9888     
9889     
9890     
9891     
[153]9892     
9893     
[116]9894      <p><a name="precipitation"></a><b>precipitation</b></p>
9895
9896
9897
9898
9899
[153]9900
9901
[116]9902      </td>
9903
9904
9905
9906
[153]9907
9908
[116]9909 <td style="vertical-align: top;">L</td>
9910
9911
9912
9913
9914
[153]9915
9916
[116]9917      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
9918
9919
9920
9921
[153]9922
9923
[116]9924 <td style="vertical-align: top;"> 
9925     
9926     
9927     
9928     
[153]9929     
9930     
[116]9931      <p>Parameter to switch
9932on the precipitation scheme.<br>
9933
9934
9935
9936
[153]9937
9938
[116]9939 </p>
9940
9941
9942
9943
[153]9944
9945
[116]9946 
9947     
9948     
9949     
9950     
[153]9951     
9952     
[116]9953      <p>For
9954precipitation processes PALM uses a simplified Kessler
9955scheme. This scheme only considers the
9956so-called autoconversion, that means the generation of rain water by
9957coagulation of cloud drops among themselves. Precipitation begins and
9958is immediately removed from the flow as soon as the liquid water
9959content exceeds the critical value of 0.5 g/kg.</p>
9960
9961
9962
9963
[153]9964
9965
[116]9966     
9967     
9968     
9969     
[153]9970     
9971     
[116]9972      <p>The precipitation rate and amount can be output by assigning the runtime parameter <a href="chapter_4.2.html#data_output">data_output</a> = <span style="font-style: italic;">'prr*'</span> or <span style="font-style: italic;">'pra*'</span>, respectively. The time interval on which the precipitation amount is defined can be controlled via runtime parameter <a href="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</a>.</p>
9973
9974
9975
9976
[153]9977
9978
[116]9979 </td>
9980
9981
9982
9983
[153]9984
9985
[116]9986 </tr>
9987
9988
9989
9990
9991
[153]9992
9993
[116]9994    <tr>
9995
9996
9997
9998
[153]9999
10000
[116]10001      <td style="vertical-align: top;"><a name="pt_reference"></a><span style="font-weight: bold;">pt_reference</span></td>
10002
10003
10004
10005
[153]10006
10007
[116]10008      <td style="vertical-align: top;">R</td>
10009
10010
10011
10012
[153]10013
10014
[116]10015      <td style="vertical-align: top;"><span style="font-style: italic;">use horizontal average as
10016refrence</span></td>
10017
10018
10019
10020
[153]10021
10022
[116]10023      <td style="vertical-align: top;">Reference
10024temperature to be used in all buoyancy terms (in K).<br>
10025
10026
10027
10028
[153]10029
10030
[116]10031      <br>
10032
10033
10034
10035
[153]10036
10037
[116]10038By
10039default, the instantaneous horizontal average over the total model
10040domain is used.<br>
10041
10042
10043
10044
[153]10045
10046
[116]10047      <br>
10048
10049
10050
10051
[153]10052
10053
[116]10054      <span style="font-weight: bold;">Attention:</span><br>
10055
10056
10057
10058
[153]10059
10060
[116]10061In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), always a reference temperature is used in the buoyancy terms with a default value of <span style="font-weight: bold;">pt_reference</span> = <a href="#pt_surface">pt_surface</a>.</td>
10062
10063
10064
10065
[153]10066
10067
[116]10068    </tr>
10069
10070
10071
10072
[153]10073
10074
[116]10075    <tr>
10076
10077
10078
10079
[153]10080
10081
[116]10082 <td style="vertical-align: top;"> 
10083     
10084     
10085     
10086     
[153]10087     
10088     
[116]10089      <p><a name="pt_surface"></a><b>pt_surface</b></p>
10090
10091
10092
10093
10094
[153]10095
10096
[116]10097      </td>
10098
10099
10100
10101
[153]10102
10103
[116]10104 <td style="vertical-align: top;">R</td>
10105
10106
10107
10108
10109
[153]10110
10111
[116]10112      <td style="vertical-align: top;"><i>300.0</i></td>
10113
10114
10115
10116
10117
[153]10118
10119
[116]10120      <td style="vertical-align: top;"> 
10121     
10122     
10123     
10124     
[153]10125     
10126     
[116]10127      <p>Surface
10128potential temperature (in K).&nbsp; </p>
10129
10130
10131
10132
[153]10133
10134
[116]10135 
10136     
10137     
10138     
10139     
[153]10140     
10141     
[116]10142      <p>This
10143parameter assigns the value of the potential temperature
10144      <span style="font-weight: bold;">pt</span> at the surface (k=0)<b>.</b> Starting from this value,
10145the
10146initial vertical temperature profile is constructed with <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10147and <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level
10148      </a>.
10149This profile is also used for the 1d-model as a stationary profile.</p>
10150
10151
10152
10153
[153]10154
10155
[116]10156     
10157     
10158     
10159     
[153]10160     
10161     
[116]10162      <p><span style="font-weight: bold;">Attention:</span><br>
10163
10164
10165
10166
[153]10167
10168
[116]10169In case of ocean runs (see <a href="#ocean">ocean</a>),
10170this parameter gives the temperature value at the sea surface, which is
10171at k=nzt. The profile is then constructed from the surface down to the
10172bottom of the model.</p>
10173
10174
10175
10176
10177
[153]10178
10179
[116]10180      </td>
10181
10182
10183
10184
[153]10185
10186
[116]10187 </tr>
10188
10189
10190
10191
[153]10192
10193
[116]10194 <tr>
10195
10196
10197
10198
[153]10199
10200
[116]10201 <td style="vertical-align: top;"> 
10202     
10203     
10204     
10205     
[153]10206     
10207     
[116]10208      <p><a name="pt_surface_initial_change"></a><b>pt_surface_initial</b>
10209      <br>
10210
10211
10212
10213
[153]10214
10215
[116]10216 <b>_change</b></p>
10217
10218
10219
10220
[153]10221
10222
[116]10223 </td>
10224
10225
10226
10227
[153]10228
10229
[116]10230 <td style="vertical-align: top;">R</td>
10231
10232
10233
10234
[153]10235
10236
[116]10237 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
10238
10239
10240
10241
[153]10242
10243
[116]10244 </td>
10245
10246
10247
10248
10249
[153]10250
10251
[116]10252      <td style="vertical-align: top;"> 
10253     
10254     
10255     
10256     
[153]10257     
10258     
[116]10259      <p>Change in
10260surface temperature to be made at the beginning of
10261the 3d run
10262(in K).&nbsp; </p>
10263
10264
10265
10266
[153]10267
10268
[116]10269 
10270     
10271     
10272     
10273     
[153]10274     
10275     
[116]10276      <p>If <b>pt_surface_initial_change</b>
10277is set to a non-zero
10278value, the near surface sensible heat flux is not allowed to be given
10279simultaneously (see <a href="#surface_heatflux">surface_heatflux</a>).</p>
10280
10281
10282
10283
10284
[153]10285
10286
[116]10287      </td>
10288
10289
10290
10291
[153]10292
10293
[116]10294 </tr>
10295
10296
10297
10298
[153]10299
10300
[116]10301 <tr>
10302
10303
10304
10305
[153]10306
10307
[116]10308 <td style="vertical-align: top;"> 
10309     
10310     
10311     
10312     
[153]10313     
10314     
[116]10315      <p><a name="pt_vertical_gradient"></a><b>pt_vertical_gradient</b></p>
10316
10317
10318
10319
10320
[153]10321
10322
[116]10323      </td>
10324
10325
10326
10327
[153]10328
10329
[116]10330 <td style="vertical-align: top;">R (10)</td>
10331
10332
10333
10334
10335
[153]10336
10337
[116]10338      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10339
10340
10341
10342
10343
[153]10344
10345
[116]10346      <td style="vertical-align: top;"> 
10347     
10348     
10349     
10350     
[153]10351     
10352     
[116]10353      <p>Temperature
10354gradient(s) of the initial temperature profile (in
10355K
10356/ 100 m).&nbsp; </p>
10357
10358
10359
10360
[153]10361
10362
[116]10363 
10364     
10365     
10366     
10367     
[153]10368     
10369     
[116]10370      <p>This temperature gradient
10371holds starting from the height&nbsp;
10372level defined by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>
10373(precisely: for all uv levels k where zu(k) &gt;
10374pt_vertical_gradient_level,
10375pt_init(k) is set: pt_init(k) = pt_init(k-1) + dzu(k) * <b>pt_vertical_gradient</b>)
10376up to the top boundary or up to the next height level defined
10377by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>.
10378A total of 10 different gradients for 11 height intervals (10 intervals
10379if <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>(1)
10380= <i>0.0</i>) can be assigned. The surface temperature is
10381assigned via <a href="#pt_surface">pt_surface</a>.&nbsp;
10382      </p>
10383
10384
10385
10386
[153]10387
10388
[116]10389 
10390     
10391     
10392     
10393     
[153]10394     
10395     
[116]10396      <p>Example:&nbsp; </p>
10397
10398
10399
10400
[153]10401
10402
[116]10403 
10404     
10405     
10406     
10407     
[153]10408     
10409     
[116]10410      <ul>
10411
10412
10413
10414
[153]10415
10416
[116]10417 
10418       
10419       
10420       
10421       
[153]10422       
10423       
[116]10424        <p><b>pt_vertical_gradient</b>
10425= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
10426
10427
10428
10429
10430
[153]10431
10432
[116]10433        <b>pt_vertical_gradient_level</b> = <i>500.0</i>,
10434        <i>1000.0</i>,</p>
10435
10436
10437
10438
[153]10439
10440
[116]10441 
10442     
10443     
10444     
10445     
[153]10446     
10447     
[116]10448      </ul>
10449
10450
10451
10452
[153]10453
10454
[116]10455 
10456     
10457     
10458     
10459     
[153]10460     
10461     
[116]10462      <p>That
10463defines the temperature profile to be neutrally
10464stratified
10465up to z = 500.0 m with a temperature given by <a href="#pt_surface">pt_surface</a>.
10466For 500.0 m &lt; z &lt;= 1000.0 m the temperature gradient is
104671.0 K /
10468100 m and for z &gt; 1000.0 m up to the top boundary it is
104690.5 K / 100 m (it is assumed that the assigned height levels correspond
10470with uv levels).</p>
10471
10472
10473
10474
[153]10475
10476
[116]10477     
10478     
10479     
10480     
[153]10481     
10482     
[116]10483      <p><span style="font-weight: bold;">Attention:</span><br>
10484
10485
10486
10487
[153]10488
10489
[116]10490In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
10491the profile is constructed like described above, but starting from the
10492sea surface (k=nzt) down to the bottom boundary of the model. Height
10493levels have then to be given as negative values, e.g. <span style="font-weight: bold;">pt_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</p>
10494
10495
10496
10497
[153]10498
10499
[116]10500 </td>
10501
10502
10503
10504
[153]10505
10506
[116]10507 </tr>
10508
10509
10510
10511
[153]10512
10513
[116]10514 <tr>
10515
10516
10517
10518
[153]10519
10520
[116]10521 <td style="vertical-align: top;"> 
10522     
10523     
10524     
10525     
[153]10526     
10527     
[116]10528      <p><a name="pt_vertical_gradient_level"></a><b>pt_vertical_gradient</b>
10529      <br>
10530
10531
10532
10533
[153]10534
10535
[116]10536 <b>_level</b></p>
10537
10538
10539
10540
[153]10541
10542
[116]10543 </td>
10544
10545
10546
10547
[153]10548
10549
[116]10550 <td style="vertical-align: top;">R (10)</td>
10551
10552
10553
10554
[153]10555
10556
[116]10557 <td style="vertical-align: top;"> 
10558     
10559     
10560     
10561     
[153]10562     
10563     
[116]10564      <p><i>10 *</i>&nbsp;
10565      <span style="font-style: italic;">0.0</span><br>
10566
10567
10568
10569
10570
[153]10571
10572
[116]10573      </p>
10574
10575
10576
10577
[153]10578
10579
[116]10580 </td>
10581
10582
10583
10584
[153]10585
10586
[116]10587 <td style="vertical-align: top;">
10588     
10589     
10590     
10591     
[153]10592     
10593     
[116]10594      <p>Height level from which on the temperature gradient defined by
10595      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10596is effective (in m).&nbsp; </p>
10597
10598
10599
10600
[153]10601
10602
[116]10603 
10604     
10605     
10606     
10607     
[153]10608     
10609     
[116]10610      <p>The height levels have to be assigned in ascending order. The
10611default values result in a neutral stratification regardless of the
10612values of <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10613(unless the top boundary of the model is higher than 100000.0 m).
10614For the piecewise construction of temperature profiles see <a href="#pt_vertical_gradient">pt_vertical_gradient</a>.</p>
10615
10616
10617
10618
[153]10619
10620
[116]10621      <span style="font-weight: bold;">Attention:</span><br>
10622
10623
10624
10625
[153]10626
10627
[116]10628In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.
10629      </td>
10630
10631
10632
10633
[153]10634
10635
[116]10636 </tr>
10637
10638
10639
10640
[153]10641
10642
[116]10643 <tr>
10644
10645
10646
10647
[153]10648
10649
[116]10650 <td style="vertical-align: top;"> 
10651     
10652     
10653     
10654     
[153]10655     
10656     
[116]10657      <p><a name="q_surface"></a><b>q_surface</b></p>
10658
10659
10660
10661
10662
[153]10663
10664
[116]10665      </td>
10666
10667
10668
10669
[153]10670
10671
[116]10672 <td style="vertical-align: top;">R</td>
10673
10674
10675
10676
10677
[153]10678
10679
[116]10680      <td style="vertical-align: top;"><i>0.0</i></td>
10681
10682
10683
10684
10685
[153]10686
10687
[116]10688      <td style="vertical-align: top;"> 
10689     
10690     
10691     
10692     
[153]10693     
10694     
[116]10695      <p>Surface
10696specific humidity / total water content (kg/kg).&nbsp; </p>
10697
10698
10699
10700
[153]10701
10702
[116]10703 
10704     
10705     
10706     
10707     
[153]10708     
10709     
[116]10710      <p>This
10711parameter assigns the value of the specific humidity q at
10712the surface (k=0).&nbsp; Starting from this value, the initial
10713humidity
10714profile is constructed with&nbsp; <a href="#q_vertical_gradient">q_vertical_gradient</a>
10715and <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10716This profile is also used for the 1d-model as a stationary profile.</p>
10717
10718
10719
10720
10721
[153]10722
10723
[116]10724      </td>
10725
10726
10727
10728
[153]10729
10730
[116]10731 </tr>
10732
10733
10734
10735
[153]10736
10737
[116]10738 <tr>
10739
10740
10741
10742
[153]10743
10744
[116]10745 <td style="vertical-align: top;"> 
10746     
10747     
10748     
10749     
[153]10750     
10751     
[116]10752      <p><a name="q_surface_initial_change"></a><b>q_surface_initial</b>
10753      <br>
10754
10755
10756
10757
[153]10758
10759
[116]10760 <b>_change</b></p>
10761
10762
10763
10764
[153]10765
10766
[116]10767 </td>
10768
10769
10770
10771
[153]10772
10773
[116]10774 <td style="vertical-align: top;">R<br>
10775
10776
10777
10778
[153]10779
10780
[116]10781 </td>
10782
10783
10784
10785
[153]10786
10787
[116]10788 <td style="vertical-align: top;"><i>0.0</i></td>
10789
10790
10791
10792
10793
[153]10794
10795
[116]10796      <td style="vertical-align: top;"> 
10797     
10798     
10799     
10800     
[153]10801     
10802     
[116]10803      <p>Change in
10804surface specific humidity / total water content to
10805be made at the beginning
10806of the 3d run (kg/kg).&nbsp; </p>
10807
10808
10809
10810
[153]10811
10812
[116]10813 
10814     
10815     
10816     
10817     
[153]10818     
10819     
[116]10820      <p>If <b>q_surface_initial_change</b><i>
10821      </i>is set to a
10822non-zero value the
10823near surface latent heat flux (water flux) is not allowed to be given
10824simultaneously (see <a href="#surface_waterflux">surface_waterflux</a>).</p>
10825
10826
10827
10828
10829
[153]10830
10831
[116]10832      </td>
10833
10834
10835
10836
[153]10837
10838
[116]10839 </tr>
10840
10841
10842
10843
[153]10844
10845
[116]10846 <tr>
10847
10848
10849
10850
[153]10851
10852
[116]10853 <td style="vertical-align: top;"> 
10854     
10855     
10856     
10857     
[153]10858     
10859     
[116]10860      <p><a name="q_vertical_gradient"></a><b>q_vertical_gradient</b></p>
10861
10862
10863
10864
10865
[153]10866
10867
[116]10868      </td>
10869
10870
10871
10872
[153]10873
10874
[116]10875 <td style="vertical-align: top;">R (10)</td>
10876
10877
10878
10879
10880
[153]10881
10882
[116]10883      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10884
10885
10886
10887
10888
[153]10889
10890
[116]10891      <td style="vertical-align: top;"> 
10892     
10893     
10894     
10895     
[153]10896     
10897     
[116]10898      <p>Humidity
10899gradient(s) of the initial humidity profile
10900(in 1/100 m).&nbsp; </p>
10901
10902
10903
10904
[153]10905
10906
[116]10907 
10908     
10909     
10910     
10911     
[153]10912     
10913     
[116]10914      <p>This humidity gradient
10915holds starting from the height
10916level&nbsp; defined by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>
10917(precisely: for all uv levels k, where zu(k) &gt;
10918q_vertical_gradient_level,
10919q_init(k) is set: q_init(k) = q_init(k-1) + dzu(k) * <b>q_vertical_gradient</b>)
10920up to the top boundary or up to the next height level defined
10921by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10922A total of 10 different gradients for 11 height intervals (10 intervals
10923if <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>(1)
10924= <i>0.0</i>) can be asigned. The surface humidity is
10925assigned
10926via <a href="#q_surface">q_surface</a>. </p>
10927
10928
10929
10930
10931
[153]10932
10933
[116]10934     
10935     
10936     
10937     
[153]10938     
10939     
[116]10940      <p>Example:&nbsp; </p>
10941
10942
10943
10944
[153]10945
10946
[116]10947 
10948     
10949     
10950     
10951     
[153]10952     
10953     
[116]10954      <ul>
10955
10956
10957
10958
[153]10959
10960
[116]10961 
10962       
10963       
10964       
10965       
[153]10966       
10967       
[116]10968        <p><b>q_vertical_gradient</b>
10969= <i>0.001</i>, <i>0.0005</i>,&nbsp; <br>
10970
10971
10972
10973
10974
[153]10975
10976
[116]10977        <b>q_vertical_gradient_level</b> = <i>500.0</i>,
10978        <i>1000.0</i>,</p>
10979
10980
10981
10982
[153]10983
10984
[116]10985 
10986     
10987     
10988     
10989     
[153]10990     
10991     
[116]10992      </ul>
10993
10994
10995
10996
10997
[153]10998
10999
[116]11000That defines the humidity to be constant with height up to z =
11001500.0
11002m with a
11003value given by <a href="#q_surface">q_surface</a>.
11004For 500.0 m &lt; z &lt;= 1000.0 m the humidity gradient is
110050.001 / 100
11006m and for z &gt; 1000.0 m up to the top boundary it is
110070.0005 / 100 m (it is assumed that the assigned height levels
11008correspond with uv
11009levels). </td>
11010
11011
11012
11013
[153]11014
11015
[116]11016 </tr>
11017
11018
11019
11020
[153]11021
11022
[116]11023 <tr>
11024
11025
11026
11027
[153]11028
11029
[116]11030 <td style="vertical-align: top;"> 
11031     
11032     
11033     
11034     
[153]11035     
11036     
[116]11037      <p><a name="q_vertical_gradient_level"></a><b>q_vertical_gradient</b>
11038      <br>
11039
11040
11041
11042
[153]11043
11044
[116]11045 <b>_level</b></p>
11046
11047
11048
11049
[153]11050
11051
[116]11052 </td>
11053
11054
11055
11056
[153]11057
11058
[116]11059 <td style="vertical-align: top;">R (10)</td>
11060
11061
11062
11063
[153]11064
11065
[116]11066 <td style="vertical-align: top;"> 
11067     
11068     
11069     
11070     
[153]11071     
11072     
[116]11073      <p><i>10 *</i>&nbsp;
11074      <i>0.0</i></p>
11075
11076
11077
11078
[153]11079
11080
[116]11081 </td>
11082
11083
11084
11085
[153]11086
11087
[116]11088 <td style="vertical-align: top;"> 
11089     
11090     
11091     
11092     
[153]11093     
11094     
[116]11095      <p>Height level from
11096which on the humidity gradient defined by <a href="#q_vertical_gradient">q_vertical_gradient</a>
11097is effective (in m).&nbsp; </p>
11098
11099
11100
11101
[153]11102
11103
[116]11104 
11105     
11106     
11107     
11108     
[153]11109     
11110     
[116]11111      <p>The height levels
11112are to be assigned in ascending order. The
11113default values result in a humidity constant with height regardless of
11114the values of <a href="#q_vertical_gradient">q_vertical_gradient</a>
11115(unless the top boundary of the model is higher than 100000.0 m). For
11116the piecewise construction of humidity profiles see <a href="#q_vertical_gradient">q_vertical_gradient</a>.</p>
11117
11118
11119
11120
11121
[153]11122
11123
[116]11124      </td>
11125
11126
11127
11128
[153]11129
11130
[116]11131 </tr>
11132
11133
11134
11135
[153]11136
11137
[116]11138 <tr>
11139
11140
11141
11142
[153]11143
11144
[116]11145 <td style="vertical-align: top;"> 
11146     
11147     
11148     
11149     
[153]11150     
11151     
[116]11152      <p><a name="radiation"></a><b>radiation</b></p>
11153
11154
11155
11156
11157
[153]11158
11159
[116]11160      </td>
11161
11162
11163
11164
[153]11165
11166
[116]11167 <td style="vertical-align: top;">L</td>
11168
11169
11170
11171
11172
[153]11173
11174
[116]11175      <td style="vertical-align: top;"><i>.F.</i></td>
11176
11177
11178
11179
11180
[153]11181
11182
[116]11183      <td style="vertical-align: top;"> 
11184     
11185     
11186     
11187     
[153]11188     
11189     
[116]11190      <p>Parameter to
11191switch on longwave radiation cooling at
11192cloud-tops.&nbsp; </p>
11193
11194
11195
11196
[153]11197
11198
[116]11199 
11200     
11201     
11202     
11203     
[153]11204     
11205     
[116]11206      <p>Long-wave radiation
11207processes are parameterized by the
11208effective emissivity, which considers only the absorption and emission
11209of long-wave radiation at cloud droplets. The radiation scheme can be
11210used only with <a href="#cloud_physics">cloud_physics</a>
11211= .TRUE. .</p>
11212
11213
11214
11215
[153]11216
11217
[116]11218 </td>
11219
11220
11221
11222
[153]11223
11224
[116]11225 </tr>
11226
11227
11228
11229
[153]11230
11231
[116]11232 <tr>
11233
11234
11235
11236
[153]11237
11238
[116]11239 <td style="vertical-align: top;"> 
11240     
11241     
11242     
11243     
[153]11244     
11245     
[116]11246      <p><a name="random_generator"></a><b>random_generator</b></p>
11247
11248
11249
11250
11251
[153]11252
11253
[116]11254      </td>
11255
11256
11257
11258
[153]11259
11260
[116]11261 <td style="vertical-align: top;">C * 20</td>
11262
11263
11264
11265
11266
[153]11267
11268
[116]11269      <td style="vertical-align: top;"> 
11270     
11271     
11272     
11273     
[153]11274     
11275     
[116]11276      <p><i>'numerical</i><br>
11277
11278
11279
11280
11281
[153]11282
11283
[116]11284      <i>recipes'</i></p>
11285
11286
11287
11288
[153]11289
11290
[116]11291 </td>
11292
11293
11294
11295
[153]11296
11297
[116]11298 <td style="vertical-align: top;"> 
11299     
11300     
11301     
11302     
[153]11303     
11304     
[116]11305      <p>Random number
11306generator to be used for creating uniformly
11307distributed random numbers. <br>
11308
11309
11310
11311
[153]11312
11313
[116]11314 </p>
11315
11316
11317
11318
[153]11319
11320
[116]11321 
11322     
11323     
11324     
11325     
[153]11326     
11327     
[116]11328      <p>It is
11329used if random perturbations are to be imposed on the
11330velocity field or on the surface heat flux field (see <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>
11331and <a href="chapter_4.2.html#random_heatflux">random_heatflux</a>).
11332By default, the "Numerical Recipes" random number generator is used.
11333This one provides exactly the same order of random numbers on all
11334different machines and should be used in particular for comparison runs.<br>
11335
11336
11337
11338
11339
[153]11340
11341
[116]11342      <br>
11343
11344
11345
11346
11347
[153]11348
11349
[116]11350Besides, a system-specific generator is available ( <b>random_generator</b>
11351= <i>'system-specific')</i> which should particularly be
11352used for runs
11353on vector parallel computers (NEC), because the default generator
11354cannot be vectorized and therefore significantly drops down the code
11355performance on these machines.<br>
11356
11357
11358
11359
[153]11360
11361
[116]11362 </p>
11363
11364
11365
11366
[153]11367
11368
[116]11369 <span style="font-weight: bold;">Note:</span><br>
11370
11371
11372
11373
11374
[153]11375
11376
[116]11377Results from two otherwise identical model runs will not be comparable
11378one-to-one if they used different random number generators.</td>
11379
11380
11381
11382
[153]11383
11384
[116]11385 </tr>
11386
11387
11388
11389
11390
[153]11391
11392
[116]11393    <tr>
11394
11395
11396
11397
[153]11398
11399
[116]11400 <td style="vertical-align: top;"> 
11401     
11402     
11403     
11404     
[153]11405     
11406     
[116]11407      <p><a name="random_heatflux"></a><b>random_heatflux</b></p>
11408
11409
11410
11411
11412
[153]11413
11414
[116]11415      </td>
11416
11417
11418
11419
[153]11420
11421
[116]11422 <td style="vertical-align: top;">L</td>
11423
11424
11425
11426
11427
[153]11428
11429
[116]11430      <td style="vertical-align: top;"><i>.F.</i></td>
11431
11432
11433
11434
11435
[153]11436
11437
[116]11438      <td style="vertical-align: top;"> 
11439     
11440     
11441     
11442     
[153]11443     
11444     
[116]11445      <p>Parameter to
11446impose random perturbations on the internal two-dimensional near
11447surface heat flux field <span style="font-style: italic;">shf</span>.
11448      <br>
11449
11450
11451
11452
[153]11453
11454
[116]11455 </p>
11456
11457
11458
11459
[153]11460
11461
[116]11462If a near surface heat flux is used as bottom
11463boundary
11464condition (see <a href="#surface_heatflux">surface_heatflux</a>),
11465it is by default assumed to be horizontally homogeneous. Random
11466perturbations can be imposed on the internal
11467two-dimensional&nbsp;heat flux field <span style="font-style: italic;">shf</span> by assigning <b>random_heatflux</b>
11468= <i>.T.</i>. The disturbed heat flux field is calculated
11469by
11470multiplying the
11471values at each mesh point with a normally distributed random number
11472with a mean value and standard deviation of 1. This is repeated after
11473every timestep.<br>
11474
11475
11476
11477
[153]11478
11479
[116]11480 <br>
11481
11482
11483
11484
11485
[153]11486
11487
[116]11488In case of a non-flat <a href="#topography">topography</a>,&nbsp;assigning
11489      <b>random_heatflux</b>
11490= <i>.T.</i> imposes random perturbations on the
11491combined&nbsp;heat
11492flux field <span style="font-style: italic;">shf</span>
11493composed of <a href="#surface_heatflux">surface_heatflux</a>
11494at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a>
11495at the topography top face.</td>
11496
11497
11498
11499
[153]11500
11501
[116]11502 </tr>
11503
11504
11505
11506
[153]11507
11508
[197]11509 <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="recycling_width"></a>recycling_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#nx">nx</a> * <a href="chapter_4.1.html#dx">dx</a></span></td><td style="vertical-align: top;">Distance of the recycling plane from the inflow boundary (in m).<br><br>This
11510parameter sets the horizontal extension (along the direction of the
11511main flow) of the so-called recycling domain which is used to generate
11512a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). <span style="font-weight: bold;">recycling_width</span> must be larger than the grid spacing (dx) and smaller than the length of the total domain (nx * dx).</td></tr><tr>
[116]11513
11514
11515
11516
[153]11517
11518
[116]11519 <td style="vertical-align: top;"> 
11520     
11521     
11522     
11523     
[153]11524     
11525     
[116]11526      <p><a name="rif_max"></a><b>rif_max</b></p>
11527
11528
11529
11530
11531
[153]11532
11533
[116]11534      </td>
11535
11536
11537
11538
[153]11539
11540
[116]11541 <td style="vertical-align: top;">R</td>
11542
11543
11544
11545
11546
[153]11547
11548
[116]11549      <td style="vertical-align: top;"><i>1.0</i></td>
11550
11551
11552
11553
11554
[153]11555
11556
[116]11557      <td style="vertical-align: top;"> 
11558     
11559     
11560     
11561     
[153]11562     
11563     
[116]11564      <p>Upper limit of
11565the flux-Richardson number.&nbsp; </p>
11566
11567
11568
11569
[153]11570
11571
[116]11572 
11573     
11574     
11575     
11576     
[153]11577     
11578     
[116]11579      <p>With the
11580Prandtl layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>),
11581flux-Richardson numbers (rif) are calculated for z=z<sub>p</sub>
11582(k=1)
11583in the 3d-model (in the 1d model for all heights). Their values in
11584particular determine the
11585values of the friction velocity (1d- and 3d-model) and the values of
11586the eddy diffusivity (1d-model). With small wind velocities at the
11587Prandtl layer top or small vertical wind shears in the 1d-model, rif
11588can take up unrealistic large values. They are limited by an upper (<span style="font-weight: bold;">rif_max</span>) and lower
11589limit (see <a href="#rif_min">rif_min</a>)
11590for the flux-Richardson number. The condition <b>rif_max</b>
11591&gt; <b>rif_min</b>
11592must be met.</p>
11593
11594
11595
11596
[153]11597
11598
[116]11599 </td>
11600
11601
11602
11603
[153]11604
11605
[116]11606 </tr>
11607
11608
11609
11610
[153]11611
11612
[116]11613 <tr>
11614
11615
11616
11617
[153]11618
11619
[116]11620 <td style="vertical-align: top;"> 
11621     
11622     
11623     
11624     
[153]11625     
11626     
[116]11627      <p><a name="rif_min"></a><b>rif_min</b></p>
11628
11629
11630
11631
11632
[153]11633
11634
[116]11635      </td>
11636
11637
11638
11639
[153]11640
11641
[116]11642 <td style="vertical-align: top;">R</td>
11643
11644
11645
11646
11647
[153]11648
11649
[116]11650      <td style="vertical-align: top;"><i>- 5.0</i></td>
11651
11652
11653
11654
11655
[153]11656
11657
[116]11658      <td style="vertical-align: top;"> 
11659     
11660     
11661     
11662     
[153]11663     
11664     
[116]11665      <p>Lower limit of
11666the flux-Richardson number.&nbsp; </p>
11667
11668
11669
11670
[153]11671
11672
[116]11673 
11674     
11675     
11676     
11677     
[153]11678     
11679     
[116]11680      <p>For further
11681explanations see <a href="#rif_max">rif_max</a>.
11682The condition <b>rif_max</b> &gt; <b>rif_min </b>must
11683be met.</p>
11684
11685
11686
11687
[153]11688
11689
[116]11690 </td>
11691
11692
11693
11694
[153]11695
11696
[116]11697 </tr>
11698
11699
11700
11701
[153]11702
11703
[116]11704 <tr>
11705
11706
11707
11708
[153]11709
11710
[116]11711 <td style="vertical-align: top;"> 
11712     
11713     
11714     
11715     
[153]11716     
11717     
[116]11718      <p><a name="roughness_length"></a><b>roughness_length</b></p>
11719
11720
11721
11722
11723
[153]11724
11725
[116]11726      </td>
11727
11728
11729
11730
[153]11731
11732
[116]11733 <td style="vertical-align: top;">R</td>
11734
11735
11736
11737
11738
[153]11739
11740
[116]11741      <td style="vertical-align: top;"><i>0.1</i></td>
11742
11743
11744
11745
11746
[153]11747
11748
[116]11749      <td style="vertical-align: top;"> 
11750     
11751     
11752     
11753     
[153]11754     
11755     
[116]11756      <p>Roughness
11757length (in m).&nbsp; </p>
11758
11759
11760
11761
[153]11762
11763
[116]11764 
11765     
11766     
11767     
11768     
[153]11769     
11770     
[116]11771      <p>This parameter is
11772effective only in case that a Prandtl layer
11773is switched
11774on (see <a href="#prandtl_layer">prandtl_layer</a>).</p>
11775
11776
11777
11778
11779
[153]11780
11781
[116]11782      </td>
11783
11784
11785
11786
[153]11787
11788
[116]11789 </tr>
11790
11791
11792
11793
[153]11794
11795
[116]11796 <tr>
11797
11798
11799
11800
[153]11801
11802
[116]11803      <td style="vertical-align: top;"><a name="sa_surface"></a><span style="font-weight: bold;">sa_surface</span></td>
11804
11805
11806
11807
[153]11808
11809
[116]11810      <td style="vertical-align: top;">R</td>
11811
11812
11813
11814
[153]11815
11816
[116]11817      <td style="vertical-align: top;"><span style="font-style: italic;">35.0</span></td>
11818
11819
11820
11821
[153]11822
11823
[116]11824      <td style="vertical-align: top;"> 
11825     
11826     
11827     
11828     
[153]11829     
11830     
[116]11831      <p>Surface salinity (in psu).&nbsp;</p>
11832
11833
11834
11835
[153]11836
11837
[116]11838This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
11839     
11840     
11841     
11842     
[153]11843     
11844     
[116]11845      <p>This
11846parameter assigns the value of the salinity <span style="font-weight: bold;">sa</span> at the sea surface (k=nzt)<b>.</b> Starting from this value,
11847the
11848initial vertical salinity profile is constructed from the surface down to the bottom of the model (k=0) by using&nbsp;<a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
11849and&nbsp;<a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level
11850      </a>.</p>
11851
11852
11853
11854
[153]11855
11856
[116]11857      </td>
11858
11859
11860
11861
[153]11862
11863
[116]11864    </tr>
11865
11866
11867
11868
[153]11869
11870
[116]11871    <tr>
11872
11873
11874
11875
[153]11876
11877
[116]11878      <td style="vertical-align: top;"><a name="sa_vertical_gradient"></a><span style="font-weight: bold;">sa_vertical_gradient</span></td>
11879
11880
11881
11882
[153]11883
11884
[116]11885      <td style="vertical-align: top;">R(10)</td>
11886
11887
11888
11889
[153]11890
11891
[116]11892      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
11893
11894
11895
11896
[153]11897
11898
[116]11899      <td style="vertical-align: top;">
11900     
11901     
11902     
11903     
[153]11904     
11905     
[116]11906      <p>Salinity gradient(s) of the initial salinity profile (in psu
11907/ 100 m).&nbsp; </p>
11908
11909
11910
11911
[153]11912
11913
[116]11914 
11915     
11916     
11917     
11918     
[153]11919     
11920     
[116]11921      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
11922
11923
11924
11925
[153]11926
11927
[116]11928     
11929     
11930     
11931     
[153]11932     
11933     
[116]11934      <p>This salinity gradient
11935holds starting from the height&nbsp;
11936level defined by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>
11937(precisely: for all uv levels k where zu(k) &lt;
11938sa_vertical_gradient_level, sa_init(k) is set: sa_init(k) =
11939sa_init(k+1) - dzu(k+1) * <b>sa_vertical_gradient</b>) down to the bottom boundary or down to the next height level defined
11940by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>.
11941A total of 10 different gradients for 11 height intervals (10 intervals
11942if <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>(1)
11943= <i>0.0</i>) can be assigned. The surface salinity at k=nzt is
11944assigned via <a href="chapter_4.1.html#sa_surface">sa_surface</a>.&nbsp;
11945      </p>
11946
11947
11948
11949
[153]11950
11951
[116]11952 
11953     
11954     
11955     
11956     
[153]11957     
11958     
[116]11959      <p>Example:&nbsp; </p>
11960
11961
11962
11963
[153]11964
11965
[116]11966 
11967     
11968     
11969     
11970     
[153]11971     
11972     
[116]11973      <ul>
11974
11975
11976
11977
[153]11978
11979
[116]11980       
11981       
11982       
11983       
[153]11984       
11985       
[116]11986        <p><b>sa_vertical_gradient</b>
11987= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
11988
11989
11990
11991
11992
[153]11993
11994
[116]11995        <b>sa_vertical_gradient_level</b> = <i>-500.0</i>,
11996-<i>1000.0</i>,</p>
11997
11998
11999
12000
[153]12001
12002
[116]12003     
12004     
12005     
12006     
[153]12007     
12008     
[116]12009      </ul>
12010
12011
12012
12013
[153]12014
12015
[116]12016 
12017     
12018     
12019     
12020     
[153]12021     
12022     
[116]12023      <p>That
12024defines the salinity to be constant down to z = -500.0 m with a salinity given by <a href="chapter_4.1.html#sa_surface">sa_surface</a>.
12025For -500.0 m &lt; z &lt;= -1000.0 m the salinity gradient is
120261.0 psu /
12027100 m and for z &lt; -1000.0 m down to the bottom boundary it is
120280.5 psu / 100 m (it is assumed that the assigned height levels correspond
12029with uv levels).</p>
12030
12031
12032
12033
[153]12034
12035
[116]12036      </td>
12037
12038
12039
12040
[153]12041
12042
[116]12043    </tr>
12044
12045
12046
12047
[153]12048
12049
[116]12050    <tr>
12051
12052
12053
12054
[153]12055
12056
[116]12057      <td style="vertical-align: top;"><a name="sa_vertical_gradient_level"></a><span style="font-weight: bold;">sa_vertical_gradient_level</span></td>
12058
12059
12060
12061
[153]12062
12063
[116]12064      <td style="vertical-align: top;">R(10)</td>
12065
12066
12067
12068
[153]12069
12070
[116]12071      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
12072
12073
12074
12075
[153]12076
12077
[116]12078      <td style="vertical-align: top;">
12079     
12080     
12081     
12082     
[153]12083     
12084     
[116]12085      <p>Height level from which on the salinity gradient defined by <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
12086is effective (in m).&nbsp; </p>
12087
12088
12089
12090
[153]12091
12092
[116]12093 
12094     
12095     
12096     
12097     
[153]12098     
12099     
[116]12100      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
12101
12102
12103
12104
[153]12105
12106
[116]12107     
12108     
12109     
12110     
[153]12111     
12112     
[116]12113      <p>The height levels have to be assigned in descending order. The
12114default values result in a constant salinity profile regardless of the
12115values of <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
12116(unless the bottom boundary of the model is lower than -100000.0 m).
12117For the piecewise construction of salinity profiles see <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>.</p>
12118
12119
12120
12121
[153]12122
12123
[116]12124      </td>
12125
12126
12127
12128
[153]12129
12130
[116]12131    </tr>
12132
12133
12134
12135
[153]12136
12137
[116]12138    <tr>
12139
12140
12141
12142
[153]12143
12144
[116]12145 <td style="vertical-align: top;"> 
12146     
12147     
12148     
12149     
[153]12150     
12151     
[116]12152      <p><a name="scalar_advec"></a><b>scalar_advec</b></p>
12153
12154
12155
12156
12157
[153]12158
12159
[116]12160      </td>
12161
12162
12163
12164
[153]12165
12166
[116]12167 <td style="vertical-align: top;">C * 10</td>
12168
12169
12170
12171
12172
[153]12173
12174
[116]12175      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
12176
12177
12178
12179
12180
[153]12181
12182
[116]12183      <td style="vertical-align: top;"> 
12184     
12185     
12186     
12187     
[153]12188     
12189     
[116]12190      <p>Advection
12191scheme to be used for the scalar quantities.&nbsp; </p>
12192
12193
12194
12195
[153]12196
12197
[116]12198 
12199     
12200     
12201     
12202     
[153]12203     
12204     
[116]12205      <p>The
12206user can choose between the following schemes:<br>
12207
12208
12209
12210
[153]12211
12212
[116]12213 </p>
12214
12215
12216
12217
[153]12218
12219
[116]12220 
12221     
12222     
12223     
12224     
[153]12225     
12226     
[116]12227      <p><span style="font-style: italic;">'pw-scheme'</span><br>
12228
12229
12230
12231
12232
[153]12233
12234
[116]12235      </p>
12236
12237
12238
12239
[153]12240
12241
[116]12242 
12243     
12244     
12245     
12246     
[153]12247     
12248     
[116]12249      <div style="margin-left: 40px;">The scheme of
12250Piascek and
12251Williams (1970, J. Comp. Phys., 6,
12252392-405) with central differences in the form C3 is used.<br>
12253
12254
12255
12256
12257
[153]12258
12259
[116]12260If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
12261= <span style="font-style: italic;">'leapfrog+euler'</span>
12262the
12263advection scheme is - for the Euler-timestep - automatically switched
12264to an upstream-scheme. <br>
12265
12266
12267
12268
[153]12269
12270
[116]12271 </div>
12272
12273
12274
12275
[153]12276
12277
[116]12278 <br>
12279
12280
12281
12282
[153]12283
12284
[116]12285 
12286     
12287     
12288     
12289     
[153]12290     
12291     
[116]12292      <p><span style="font-style: italic;">'bc-scheme'</span><br>
12293
12294
12295
12296
12297
[153]12298
12299
[116]12300      </p>
12301
12302
12303
12304
[153]12305
12306
[116]12307 
12308     
12309     
12310     
12311     
[153]12312     
12313     
[116]12314      <div style="margin-left: 40px;">The Bott
12315scheme modified by
12316Chlond (1994, Mon.
12317Wea. Rev., 122, 111-125). This is a conservative monotonous scheme with
12318very small numerical diffusion and therefore very good conservation of
12319scalar flow features. The scheme however, is computationally very
12320expensive both because it is expensive itself and because it does (so
12321far) not allow specific code optimizations (e.g. cache optimization).
12322Choice of this
12323scheme forces the Euler timestep scheme to be used for the scalar
12324quantities. For output of horizontally averaged
12325profiles of the resolved / total heat flux, <a href="chapter_4.2.html#data_output_pr">data_output_pr</a>
12326= <i>'w*pt*BC'</i> / <i>'wptBC' </i>should
12327be used, instead of the
12328standard profiles (<span style="font-style: italic;">'w*pt*'</span>
12329and <span style="font-style: italic;">'wpt'</span>)
12330because these are
12331too inaccurate with this scheme. However, for subdomain analysis (see <a href="#statistic_regions">statistic_regions</a>)
12332exactly the reverse holds: here <i>'w*pt*BC'</i> and <i>'wptBC'</i>
12333show very large errors and should not be used.<br>
12334
12335
12336
12337
[153]12338
12339
[116]12340 <br>
12341
12342
12343
12344
12345
[153]12346
12347
[116]12348This scheme is not allowed for non-cyclic lateral boundary conditions
12349(see <a href="#bc_lr">bc_lr</a>
12350and <a href="#bc_ns">bc_ns</a>).<br>
12351
12352
12353
12354
[153]12355
12356
[116]12357 <br>
12358
12359
12360
12361
12362
[153]12363
12364
[116]12365      </div>
12366
12367
12368
12369
[153]12370
12371
[116]12372 <span style="font-style: italic;">'ups-scheme'</span><br>
12373
12374
12375
12376
12377
[153]12378
12379
[116]12380     
12381     
12382     
12383     
[153]12384     
12385     
[116]12386      <p style="margin-left: 40px;">The upstream-spline-scheme
12387is used
12388(see Mahrer and Pielke,
123891978: Mon. Wea. Rev., 106, 818-830). In opposite to the Piascek
12390Williams scheme, this is characterized by much better numerical
12391features (less numerical diffusion, better preservation of flux
12392structures, e.g. vortices), but computationally it is much more
12393expensive. In
12394addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
12395= <span style="font-style: italic;">'</span><i>euler'</i>),
12396i.e. the
12397timestep accuracy is only first order. For this reason the advection of
12398momentum (see <a href="#momentum_advec">momentum_advec</a>)
12399should then also be carried out with the upstream-spline scheme,
12400because otherwise the momentum would
12401be subject to large numerical diffusion due to the upstream
12402scheme.&nbsp; </p>
12403
12404
12405
12406
[153]12407
12408
[116]12409 
12410     
12411     
12412     
12413     
[153]12414     
12415     
[116]12416      <p style="margin-left: 40px;">Since
12417the cubic splines used tend
12418to overshoot under
12419certain circumstances, this effect must be adjusted by suitable
12420filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
12421      <a href="#long_filter_factor">long_filter_factor</a>,
12422      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
12423This is always neccesssary for runs with stable stratification,
12424even if this stratification appears only in parts of the model
12425domain.&nbsp; </p>
12426
12427
12428
12429
[153]12430
12431
[116]12432 
12433     
12434     
12435     
12436     
[153]12437     
12438     
[116]12439      <p style="margin-left: 40px;">With
12440stable stratification the
12441upstream-upline scheme also produces gravity waves with large
12442amplitude, which must be
12443suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
12444
12445
12446
12447
12448
[153]12449
12450
[116]12451      </p>
12452
12453
12454
12455
[153]12456
12457
[116]12458 
12459     
12460     
12461     
12462     
[153]12463     
12464     
[116]12465      <p style="margin-left: 40px;"><span style="font-weight: bold;">Important: </span>The&nbsp;
12466upstream-spline scheme is not implemented for humidity and passive
12467scalars (see&nbsp;<a href="#humidity">humidity</a>
12468and <a href="#passive_scalar">passive_scalar</a>)
12469and requires the use of a 2d-domain-decomposition. The last conditions
12470severely restricts code optimization on several machines leading to
12471very long execution times! This scheme is also not allowed for
12472non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
12473and <a href="#bc_ns">bc_ns</a>).</p>
12474
12475
12476
12477
[153]12478
12479
[116]12480      <br>
12481
12482
12483
12484
[153]12485
12486
[116]12487A
12488differing advection scheme can be choosed for the subgrid-scale TKE
12489using parameter <a href="chapter_4.1.html#use_upstream_for_tke">use_upstream_for_tke</a>.</td>
12490
12491
12492
12493
12494
[153]12495
12496
[116]12497    </tr>
12498
12499
12500
12501
[153]12502
12503
[116]12504 <tr>
12505
[160]12506      <td style="vertical-align: top;"><a name="scalar_exchange_coefficient"></a><b>scalar_exchange_coefficient</b></td>
[116]12507
[160]12508      <td style="vertical-align: top;">R</td>
[116]12509
[160]12510      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
[116]12511
[160]12512      <td style="vertical-align: top;">Scalar exchange coefficient for a leaf (dimensionless).<br>
[153]12513
12514
12515      <br>
12516
12517
12518This parameter is only of importance in cases in that both, <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</a> and <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
12519The value of the scalar exchange coefficient is required for the parametrisation of the sources and sinks of
12520scalar concentration due to the canopy.</td>
12521
12522    </tr>
12523
12524    <tr>
12525
12526
12527
12528
12529
12530
[116]12531 <td style="vertical-align: top;">
12532     
12533     
12534     
12535     
[153]12536     
12537     
[116]12538      <p><a name="statistic_regions"></a><b>statistic_regions</b></p>
12539
12540
12541
12542
12543
[153]12544
12545
[116]12546      </td>
12547
12548
12549
12550
[153]12551
12552
[116]12553 <td style="vertical-align: top;">I</td>
12554
12555
12556
12557
12558
[153]12559
12560
[116]12561      <td style="vertical-align: top;"><i>0</i></td>
12562
12563
12564
12565
12566
[153]12567
12568
[116]12569      <td style="vertical-align: top;"> 
12570     
12571     
12572     
12573     
[153]12574     
12575     
[116]12576      <p>Number of
12577additional user-defined subdomains for which
12578statistical analysis
12579and corresponding output (profiles, time series) shall be
12580made.&nbsp; </p>
12581
12582
12583
12584
[153]12585
12586
[116]12587 
12588     
12589     
12590     
12591     
[153]12592     
12593     
[116]12594      <p>By default, vertical profiles and
12595other statistical quantities
12596are calculated as horizontal and/or volume average of the total model
12597domain. Beyond that, these calculations can also be carried out for
12598subdomains which can be defined using the field <a href="chapter_3.5.3.html">rmask </a>within the
12599user-defined software
12600(see <a href="chapter_3.5.3.html">chapter
126013.5.3</a>). The number of these subdomains is determined with the
12602parameter <b>statistic_regions</b>. Maximum 9 additional
12603subdomains
12604are allowed. The parameter <a href="chapter_4.3.html#region">region</a>
12605can be used to assigned names (identifier) to these subdomains which
12606are then used in the headers
12607of the output files and plots.</p>
12608
12609
12610
12611
[153]12612
12613
[116]12614     
12615     
12616     
12617     
[153]12618     
12619     
[116]12620      <p>If the default NetCDF
12621output format is selected (see parameter <a href="chapter_4.2.html#data_output_format">data_output_format</a>),
12622data for the total domain and all defined subdomains are output to the
12623same file(s) (<a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>,
12624      <a href="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</a>).
12625In case of <span style="font-weight: bold;">statistic_regions</span>
12626&gt; <span style="font-style: italic;">0</span>,
12627data on the file for the different domains can be distinguished by a
12628suffix which is appended to the quantity names. Suffix 0 means data for
12629the total domain, suffix 1 means data for subdomain 1, etc.</p>
12630
12631
12632
12633
[153]12634
12635
[116]12636     
12637     
12638     
12639     
[153]12640     
12641     
[116]12642      <p>In
12643case of <span style="font-weight: bold;">data_output_format</span>
12644= <span style="font-style: italic;">'profil'</span>,
12645individual local files for profiles (<a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>)&nbsp;are
12646created for each subdomain. The individual subdomain files differ by
12647their name (the
12648number of the respective subdomain is attached, e.g.
12649PLOT1D_DATA_1). In this case the name of the file with the data of
12650the total domain is PLOT1D_DATA_0. If no subdomains
12651are declared (<b>statistic_regions</b> = <i>0</i>),
12652the name
12653PLOT1D_DATA is used (this must be considered in the
12654respective file connection statements of the <span style="font-weight: bold;">mrun</span> configuration
12655file).</p>
12656
12657
12658
12659
[153]12660
12661
[116]12662 </td>
12663
12664
12665
12666
[153]12667
12668
[116]12669 </tr>
12670
12671
12672
12673
[153]12674
12675
[116]12676 <tr>
12677
12678
12679
12680
[153]12681
12682
[116]12683 <td style="vertical-align: top;"> 
12684     
12685     
12686     
12687     
[153]12688     
12689     
[116]12690      <p><a name="surface_heatflux"></a><b>surface_heatflux</b></p>
12691
12692
12693
12694
12695
[153]12696
12697
[116]12698      </td>
12699
12700
12701
12702
[153]12703
12704
[116]12705 <td style="vertical-align: top;">R</td>
12706
12707
12708
12709
12710
[153]12711
12712
[116]12713      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
12714
12715
12716
12717
12718
[153]12719
12720
[116]12721heatflux<br>
12722
12723
12724
12725
[153]12726
12727
[116]12728 </span></td>
12729
12730
12731
12732
[153]12733
12734
[116]12735 <td style="vertical-align: top;"> 
12736     
12737     
12738     
12739     
[153]12740     
12741     
[116]12742      <p>Kinematic sensible
12743heat flux at the bottom surface (in K m/s).&nbsp; </p>
12744
12745
12746
12747
[153]12748
12749
[116]12750 
12751     
12752     
12753     
12754     
[153]12755     
12756     
[116]12757      <p>If
12758a value is assigned to this parameter, the internal two-dimensional
12759surface heat flux field <span style="font-style: italic;">shf</span>
12760is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span>&nbsp;as
12761bottom (horizontally homogeneous) boundary condition for the
12762temperature equation. This additionally requires that a Neumann
12763condition must be used for the potential temperature (see <a href="#bc_pt_b">bc_pt_b</a>),
12764because otherwise the resolved scale may contribute to
12765the surface flux so that a constant value cannot be guaranteed. Also,
12766changes of the
12767surface temperature (see <a href="#pt_surface_initial_change">pt_surface_initial_change</a>)
12768are not allowed. The parameter <a href="#random_heatflux">random_heatflux</a>
12769can be used to impose random perturbations on the (homogeneous) surface
12770heat
12771flux field <span style="font-style: italic;">shf</span>.&nbsp;</p>
12772
12773
12774
12775
12776
[153]12777
12778
[116]12779     
12780     
12781     
12782     
[153]12783     
12784     
[116]12785      <p>
12786In case of a non-flat <a href="#topography">topography</a>,&nbsp;the
12787internal two-dimensional&nbsp;surface heat
12788flux field <span style="font-style: italic;">shf</span>
12789is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span>
12790at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a>
12791at the topography top face.&nbsp;The parameter<a href="#random_heatflux"> random_heatflux</a>
12792can be used to impose random perturbations on this combined surface
12793heat
12794flux field <span style="font-style: italic;">shf</span>.&nbsp;
12795      </p>
12796
12797
12798
12799
[153]12800
12801
[116]12802 
12803     
12804     
12805     
12806     
[153]12807     
12808     
[116]12809      <p>If no surface heat flux is assigned, <span style="font-style: italic;">shf</span> is calculated
12810at each timestep by u<sub>*</sub> * theta<sub>*</sub>
12811(of course only with <a href="#prandtl_layer">prandtl_layer</a>
12812switched on). Here, u<sub>*</sub>
12813and theta<sub>*</sub> are calculated from the Prandtl law
12814assuming
12815logarithmic wind and temperature
12816profiles between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_pt_b">bc_pt_b</a>)
12817must be used as bottom boundary condition for the potential temperature.</p>
12818
12819
12820
12821
[153]12822
12823
[116]12824     
12825     
12826     
12827     
[153]12828     
12829     
[116]12830      <p>See
12831also <a href="#top_heatflux">top_heatflux</a>.</p>
12832
12833
12834
12835
12836
[153]12837
12838
[116]12839      </td>
12840
12841
12842
12843
[153]12844
12845
[116]12846 </tr>
12847
12848
12849
12850
[153]12851
12852
[116]12853 <tr>
12854
12855
12856
12857
[153]12858
12859
[116]12860 <td style="vertical-align: top;"> 
12861     
12862     
12863     
12864     
[153]12865     
12866     
[116]12867      <p><a name="surface_pressure"></a><b>surface_pressure</b></p>
12868
12869
12870
12871
12872
[153]12873
12874
[116]12875      </td>
12876
12877
12878
12879
[153]12880
12881
[116]12882 <td style="vertical-align: top;">R</td>
12883
12884
12885
12886
12887
[153]12888
12889
[116]12890      <td style="vertical-align: top;"><i>1013.25</i></td>
12891
12892
12893
12894
12895
[153]12896
12897
[116]12898      <td style="vertical-align: top;"> 
12899     
12900     
12901     
12902     
[153]12903     
12904     
[116]12905      <p>Atmospheric
12906pressure at the surface (in hPa).&nbsp; </p>
12907
12908
12909
12910
12911
[153]12912
12913
[116]12914Starting from this surface value, the vertical pressure
12915profile is calculated once at the beginning of the run assuming a
12916neutrally stratified
12917atmosphere. This is needed for
12918converting between the liquid water potential temperature and the
12919potential temperature (see <a href="#cloud_physics">cloud_physics</a><span style="text-decoration: underline;"></span>).</td>
12920
12921
12922
12923
12924
[153]12925
12926
[116]12927    </tr>
12928
12929
12930
12931
[153]12932
12933
[116]12934 <tr>
12935
12936
12937
12938
[153]12939
12940
[116]12941 <td style="vertical-align: top;">
12942     
12943     
12944     
12945     
[153]12946     
12947     
[116]12948      <p><a name="surface_scalarflux"></a><b>surface_scalarflux</b></p>
12949
12950
12951
12952
12953
[153]12954
12955
[116]12956      </td>
12957
12958
12959
12960
[153]12961
12962
[116]12963 <td style="vertical-align: top;">R</td>
12964
12965
12966
12967
12968
[153]12969
12970
[116]12971      <td style="vertical-align: top;"><i>0.0</i></td>
12972
12973
12974
12975
12976
[153]12977
12978
[116]12979      <td style="vertical-align: top;"> 
12980     
12981     
12982     
12983     
[153]12984     
12985     
[116]12986      <p>Scalar flux at
12987the surface (in kg/(m<sup>2</sup> s)).&nbsp; </p>
12988
12989
12990
12991
12992
[153]12993
12994
[116]12995     
12996     
12997     
12998     
[153]12999     
13000     
[116]13001      <p>If a non-zero value is assigned to this parameter, the
13002respective scalar flux value is used
13003as bottom (horizontally homogeneous) boundary condition for the scalar
13004concentration equation.&nbsp;This additionally requires that a
13005Neumann
13006condition must be used for the scalar concentration&nbsp;(see <a href="#bc_s_b">bc_s_b</a>),
13007because otherwise the resolved scale may contribute to
13008the surface flux so that a constant value cannot be guaranteed. Also,
13009changes of the
13010surface scalar concentration (see <a href="#s_surface_initial_change">s_surface_initial_change</a>)
13011are not allowed. <br>
13012
13013
13014
13015
[153]13016
13017
[116]13018 </p>
13019
13020
13021
13022
[153]13023
13024
[116]13025 
13026     
13027     
13028     
13029     
[153]13030     
13031     
[116]13032      <p>If no surface scalar
13033flux is assigned (<b>surface_scalarflux</b>
13034= <i>0.0</i>),
13035it is calculated at each timestep by u<sub>*</sub> * s<sub>*</sub>
13036(of course only with Prandtl layer switched on). Here, s<sub>*</sub>
13037is calculated from the Prandtl law assuming a logarithmic scalar
13038concentration
13039profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_s_b">bc_s_b</a>)
13040must be used as bottom boundary condition for the scalar concentration.</p>
13041
13042
13043
13044
13045
[153]13046
13047
[116]13048      </td>
13049
13050
13051
13052
[153]13053
13054
[116]13055 </tr>
13056
13057
13058
13059
[153]13060
13061
[116]13062 <tr>
13063
13064
13065
13066
[153]13067
13068
[116]13069 <td style="vertical-align: top;"> 
13070     
13071     
13072     
13073     
[153]13074     
13075     
[116]13076      <p><a name="surface_waterflux"></a><b>surface_waterflux</b></p>
13077
13078
13079
13080
13081
[153]13082
13083
[116]13084      </td>
13085
13086
13087
13088
[153]13089
13090
[116]13091 <td style="vertical-align: top;">R</td>
13092
13093
13094
13095
13096
[153]13097
13098
[116]13099      <td style="vertical-align: top;"><i>0.0</i></td>
13100
13101
13102
13103
13104
[153]13105
13106
[116]13107      <td style="vertical-align: top;"> 
13108     
13109     
13110     
13111     
[153]13112     
13113     
[116]13114      <p>Kinematic
13115water flux near the surface (in m/s).&nbsp; </p>
13116
13117
13118
13119
[153]13120
13121
[116]13122 
13123     
13124     
13125     
13126     
[153]13127     
13128     
[116]13129      <p>If
13130a non-zero value is assigned to this parameter, the
13131respective water flux value is used
13132as bottom (horizontally homogeneous) boundary condition for the
13133humidity equation. This additionally requires that a Neumann
13134condition must be used for the specific humidity / total water content
13135(see <a href="#bc_q_b">bc_q_b</a>),
13136because otherwise the resolved scale may contribute to
13137the surface flux so that a constant value cannot be guaranteed. Also,
13138changes of the
13139surface humidity (see <a href="#q_surface_initial_change">q_surface_initial_change</a>)
13140are not allowed.<br>
13141
13142
13143
13144
[153]13145
13146
[116]13147 </p>
13148
13149
13150
13151
[153]13152
13153
[116]13154 
13155     
13156     
13157     
13158     
[153]13159     
13160     
[116]13161      <p>If no surface water
13162flux is assigned (<b>surface_waterflux</b>
13163= <i>0.0</i>),
13164it is calculated at each timestep by u<sub>*</sub> * q<sub>*</sub>
13165(of course only with Prandtl layer switched on). Here, q<sub>*</sub>
13166is calculated from the Prandtl law assuming a logarithmic temperature
13167profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_q_b">bc_q_b</a>)
13168must be used as the bottom boundary condition for the humidity.</p>
13169
13170
13171
13172
13173
[153]13174
13175
[116]13176      </td>
13177
13178
13179
13180
[153]13181
13182
[116]13183 </tr>
13184
13185
13186
13187
[153]13188
13189
[116]13190 <tr>
13191
13192
13193
13194
[153]13195
13196
[116]13197 <td style="vertical-align: top;"> 
13198     
13199     
13200     
13201     
[153]13202     
13203     
[116]13204      <p><a name="s_surface"></a><b>s_surface</b></p>
13205
13206
13207
13208
13209
[153]13210
13211
[116]13212      </td>
13213
13214
13215
13216
[153]13217
13218
[116]13219 <td style="vertical-align: top;">R</td>
13220
13221
13222
13223
13224
[153]13225
13226
[116]13227      <td style="vertical-align: top;"><i>0.0</i></td>
13228
13229
13230
13231
13232
[153]13233
13234
[116]13235      <td style="vertical-align: top;"> 
13236     
13237     
13238     
13239     
[153]13240     
13241     
[116]13242      <p>Surface value
13243of the passive scalar (in kg/m<sup>3</sup>).&nbsp;<br>
13244
13245
13246
13247
13248
[153]13249
13250
[116]13251      </p>
13252
13253
13254
13255
13256
[153]13257
13258
[116]13259This parameter assigns the value of the passive scalar s at
13260the surface (k=0)<b>.</b> Starting from this value, the
13261initial vertical scalar concentration profile is constructed with<a href="#s_vertical_gradient">
13262s_vertical_gradient</a> and <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.</td>
13263
13264
13265
13266
13267
[153]13268
13269
[116]13270    </tr>
13271
13272
13273
13274
[153]13275
13276
[116]13277 <tr>
13278
13279
13280
13281
[153]13282
13283
[116]13284 <td style="vertical-align: top;">
13285     
13286     
13287     
13288     
[153]13289     
13290     
[116]13291      <p><a name="s_surface_initial_change"></a><b>s_surface_initial</b>
13292      <br>
13293
13294
13295
13296
[153]13297
13298
[116]13299 <b>_change</b></p>
13300
13301
13302
13303
[153]13304
13305
[116]13306 </td>
13307
13308
13309
13310
[153]13311
13312
[116]13313 <td style="vertical-align: top;">R</td>
13314
13315
13316
13317
[153]13318
13319
[116]13320 <td style="vertical-align: top;"><i>0.0</i></td>
13321
13322
13323
13324
13325
[153]13326
13327
[116]13328      <td style="vertical-align: top;"> 
13329     
13330     
13331     
13332     
[153]13333     
13334     
[116]13335      <p>Change in
13336surface scalar concentration to be made at the
13337beginning of the 3d run (in kg/m<sup>3</sup>).&nbsp; </p>
13338
13339
13340
13341
13342
[153]13343
13344
[116]13345     
13346     
13347     
13348     
[153]13349     
13350     
[116]13351      <p>If <b>s_surface_initial_change</b><i>&nbsp;</i>is
13352set to a
13353non-zero
13354value, the near surface scalar flux is not allowed to be given
13355simultaneously (see <a href="#surface_scalarflux">surface_scalarflux</a>).</p>
13356
13357
13358
13359
13360
[153]13361
13362
[116]13363      </td>
13364
13365
13366
13367
[153]13368
13369
[116]13370 </tr>
13371
13372
13373
13374
[153]13375
13376
[116]13377 <tr>
13378
13379
13380
13381
[153]13382
13383
[116]13384 <td style="vertical-align: top;"> 
13385     
13386     
13387     
13388     
[153]13389     
13390     
[116]13391      <p><a name="s_vertical_gradient"></a><b>s_vertical_gradient</b></p>
13392
13393
13394
13395
13396
[153]13397
13398
[116]13399      </td>
13400
13401
13402
13403
[153]13404
13405
[116]13406 <td style="vertical-align: top;">R (10)</td>
13407
13408
13409
13410
13411
[153]13412
13413
[116]13414      <td style="vertical-align: top;"><i>10 * 0</i><i>.0</i></td>
13415
13416
13417
13418
13419
[153]13420
13421
[116]13422      <td style="vertical-align: top;"> 
13423     
13424     
13425     
13426     
[153]13427     
13428     
[116]13429      <p>Scalar
13430concentration gradient(s) of the initial scalar
13431concentration profile (in kg/m<sup>3 </sup>/
13432100 m).&nbsp; </p>
13433
13434
13435
13436
[153]13437
13438
[116]13439 
13440     
13441     
13442     
13443     
[153]13444     
13445     
[116]13446      <p>The scalar gradient holds
13447starting from the height level
13448defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level
13449      </a>(precisely: for all uv levels k, where zu(k) &gt;
13450s_vertical_gradient_level, s_init(k) is set: s_init(k) = s_init(k-1) +
13451dzu(k) * <b>s_vertical_gradient</b>) up to the top
13452boundary or up to
13453the next height level defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
13454A total of 10 different gradients for 11 height intervals (10 intervals
13455if <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>(1)
13456= <i>0.0</i>) can be assigned. The surface scalar value is
13457assigned
13458via <a href="#s_surface">s_surface</a>.<br>
13459
13460
13461
13462
[153]13463
13464
[116]13465 </p>
13466
13467
13468
13469
13470
[153]13471
13472
[116]13473     
13474     
13475     
13476     
[153]13477     
13478     
[116]13479      <p>Example:&nbsp; </p>
13480
13481
13482
13483
[153]13484
13485
[116]13486 
13487     
13488     
13489     
13490     
[153]13491     
13492     
[116]13493      <ul>
13494
13495
13496
13497
[153]13498
13499
[116]13500 
13501       
13502       
13503       
13504       
[153]13505       
13506       
[116]13507        <p><b>s_vertical_gradient</b>
13508= <i>0.1</i>, <i>0.05</i>,&nbsp; <br>
13509
13510
13511
13512
13513
[153]13514
13515
[116]13516        <b>s_vertical_gradient_level</b> = <i>500.0</i>,
13517        <i>1000.0</i>,</p>
13518
13519
13520
13521
[153]13522
13523
[116]13524 
13525     
13526     
13527     
13528     
[153]13529     
13530     
[116]13531      </ul>
13532
13533
13534
13535
[153]13536
13537
[116]13538 
13539     
13540     
13541     
13542     
[153]13543     
13544     
[116]13545      <p>That
13546defines the scalar concentration to be constant with
13547height up to z = 500.0 m with a value given by <a href="#s_surface">s_surface</a>.
13548For 500.0 m &lt; z &lt;= 1000.0 m the scalar gradient is 0.1
13549kg/m<sup>3 </sup>/ 100 m and for z &gt; 1000.0 m up to
13550the top
13551boundary it is 0.05 kg/m<sup>3 </sup>/ 100 m (it is
13552assumed that the
13553assigned height levels
13554correspond with uv
13555levels).</p>
13556
13557
13558
13559
[153]13560
13561
[116]13562 </td>
13563
13564
13565
13566
[153]13567
13568
[116]13569 </tr>
13570
13571
13572
13573
[153]13574
13575
[116]13576 <tr>
13577
13578
13579
13580
[153]13581
13582
[116]13583 <td style="vertical-align: top;"> 
13584     
13585     
13586     
13587     
[153]13588     
13589     
[116]13590      <p><a name="s_vertical_gradient_level"></a><b>s_vertical_gradient_</b>
13591      <br>
13592
13593
13594
13595
[153]13596
13597
[116]13598 <b>level</b></p>
13599
13600
13601
13602
[153]13603
13604
[116]13605 </td>
13606
13607
13608
13609
[153]13610
13611
[116]13612 <td style="vertical-align: top;">R (10)</td>
13613
13614
13615
13616
[153]13617
13618
[116]13619 <td style="vertical-align: top;"> 
13620     
13621     
13622     
13623     
[153]13624     
13625     
[116]13626      <p><i>10 *</i>
13627      <i>0.0</i></p>
13628
13629
13630
13631
[153]13632
13633
[116]13634 </td>
13635
13636
13637
13638
[153]13639
13640
[116]13641 <td style="vertical-align: top;"> 
13642     
13643     
13644     
13645     
[153]13646     
13647     
[116]13648      <p>Height level from
13649which on the scalar gradient defined by <a href="#s_vertical_gradient">s_vertical_gradient</a>
13650is effective (in m).&nbsp; </p>
13651
13652
13653
13654
[153]13655
13656
[116]13657 
13658     
13659     
13660     
13661     
[153]13662     
13663     
[116]13664      <p>The height levels
13665are to be assigned in ascending order. The
13666default values result in a scalar concentration constant with height
13667regardless of the values of <a href="#s_vertical_gradient">s_vertical_gradient</a>
13668(unless the top boundary of the model is higher than 100000.0 m). For
13669the
13670piecewise construction of scalar concentration profiles see <a href="#s_vertical_gradient">s_vertical_gradient</a>.</p>
13671
13672
13673
13674
13675
[153]13676
13677
[116]13678      </td>
13679
13680
13681
13682
[153]13683
13684
[116]13685 </tr>
13686
13687
13688
13689
[153]13690
13691
[116]13692 <tr>
13693
13694
13695
13696
[153]13697
13698
[116]13699 <td style="vertical-align: top;"> 
13700     
13701     
13702     
13703     
[153]13704     
13705     
[116]13706      <p><a name="timestep_scheme"></a><b>timestep_scheme</b></p>
13707
13708
13709
13710
13711
[153]13712
13713
[116]13714      </td>
13715
13716
13717
13718
[153]13719
13720
[116]13721 <td style="vertical-align: top;">C * 20</td>
13722
13723
13724
13725
13726
[153]13727
13728
[116]13729      <td style="vertical-align: top;"> 
13730     
13731     
13732     
13733     
[153]13734     
13735     
[116]13736      <p><i>'runge</i><br>
13737
13738
13739
13740
13741
[153]13742
13743
[116]13744      <i>kutta-3'</i></p>
13745
13746
13747
13748
[153]13749
13750
[116]13751 </td>
13752
13753
13754
13755
[153]13756
13757
[116]13758 <td style="vertical-align: top;"> 
13759     
13760     
13761     
13762     
[153]13763     
13764     
[116]13765      <p>Time step scheme to
13766be used for the integration of the prognostic
13767variables.&nbsp; </p>
13768
13769
13770
13771
[153]13772
13773
[116]13774 
13775     
13776     
13777     
13778     
[153]13779     
13780     
[116]13781      <p>The user can choose between
13782the following schemes:<br>
13783
13784
13785
13786
[153]13787
13788
[116]13789 </p>
13790
13791
13792
13793
[153]13794
13795
[116]13796 
13797     
13798     
13799     
13800     
[153]13801     
13802     
[116]13803      <p><span style="font-style: italic;">'runge-kutta-3'</span><br>
13804
13805
13806
13807
13808
[153]13809
13810
[116]13811      </p>
13812
13813
13814
13815
[153]13816
13817
[116]13818 
13819     
13820     
13821     
13822     
[153]13823     
13824     
[116]13825      <div style="margin-left: 40px;">Third order
13826Runge-Kutta scheme.<br>
13827
13828
13829
13830
13831
[153]13832
13833
[116]13834This scheme requires the use of <a href="#momentum_advec">momentum_advec</a>
13835= <a href="#scalar_advec">scalar_advec</a>
13836= '<i>pw-scheme'</i>. Please refer to the&nbsp;<a href="../tec/numerik.heiko/zeitschrittverfahren.pdf">documentation
13837on PALM's time integration schemes&nbsp;(28p., in German)</a>
13838fur further details.<br>
13839
13840
13841
13842
[153]13843
13844
[116]13845 </div>
13846
13847
13848
13849
[153]13850
13851
[116]13852 
13853     
13854     
13855     
13856     
[153]13857     
13858     
[116]13859      <p><span style="font-style: italic;">'runge-kutta-2'</span><br>
13860
13861
13862
13863
13864
[153]13865
13866
[116]13867      </p>
13868
13869
13870
13871
[153]13872
13873
[116]13874 
13875     
13876     
13877     
13878     
[153]13879     
13880     
[116]13881      <div style="margin-left: 40px;">Second order
13882Runge-Kutta scheme.<br>
13883
13884
13885
13886
13887
[153]13888
13889
[116]13890For special features see <b>timestep_scheme</b> = '<i>runge-kutta-3'</i>.<br>
13891
13892
13893
13894
13895
[153]13896
13897
[116]13898      </div>
13899
13900
13901
13902
[153]13903
13904
[116]13905 <br>
13906
13907
13908
13909
[153]13910
13911
[116]13912 <span style="font-style: italic;"><span style="font-style: italic;">'leapfrog'</span><br>
13913
13914
13915
13916
13917
[153]13918
13919
[116]13920      <br>
13921
13922
13923
13924
[153]13925
13926
[116]13927 </span> 
13928     
13929     
13930     
13931     
[153]13932     
13933     
[116]13934      <div style="margin-left: 40px;">Second
13935order leapfrog scheme.<br>
13936
13937
13938
13939
13940
[153]13941
13942
[116]13943Although this scheme requires a constant timestep (because it is
13944centered in time),&nbsp; is even applied in case of changes in
13945timestep. Therefore, only small
13946changes of the timestep are allowed (see <a href="#dt">dt</a>).
13947However, an Euler timestep is always used as the first timestep of an
13948initiali run. When using the Bott-Chlond scheme for scalar advection
13949(see <a href="#scalar_advec">scalar_advec</a>),
13950the prognostic equation for potential temperature will be calculated
13951with the Euler scheme, although the leapfrog scheme is switched
13952on.&nbsp; <br>
13953
13954
13955
13956
13957
[153]13958
13959
[116]13960The leapfrog scheme must not be used together with the upstream-spline
13961scheme for calculating the advection (see <a href="#scalar_advec">scalar_advec</a>
13962= '<i>ups-scheme'</i> and <a href="#momentum_advec">momentum_advec</a>
13963= '<i>ups-scheme'</i>).<br>
13964
13965
13966
13967
[153]13968
13969
[116]13970 </div>
13971
13972
13973
13974
[153]13975
13976
[116]13977 <br>
13978
13979
13980
13981
13982
[153]13983
13984
[116]13985      <span style="font-style: italic;">'</span><span style="font-style: italic;"><span style="font-style: italic;">leapfrog+euler'</span><br>
13986
13987
13988
13989
13990
[153]13991
13992
[116]13993      <br>
13994
13995
13996
13997
[153]13998
13999
[116]14000 </span> 
14001     
14002     
14003     
14004     
[153]14005     
14006     
[116]14007      <div style="margin-left: 40px;">The
14008leapfrog scheme is used, but
14009after each change of a timestep an Euler timestep is carried out.
14010Although this method is theoretically correct (because the pure
14011leapfrog method does not allow timestep changes), the divergence of the
14012velocity field (after applying the pressure solver) may be
14013significantly larger than with <span style="font-style: italic;">'leapfrog'</span>.<br>
14014
14015
14016
14017
14018
[153]14019
14020
[116]14021      </div>
14022
14023
14024
14025
[153]14026
14027
[116]14028 <br>
14029
14030
14031
14032
[153]14033
14034
[116]14035 <span style="font-style: italic;">'euler'</span><br>
14036
14037
14038
14039
14040
[153]14041
14042
[116]14043      <br>
14044
14045
14046
14047
[153]14048
14049
[116]14050 
14051     
14052     
14053     
14054     
[153]14055     
14056     
[116]14057      <div style="margin-left: 40px;">First order
14058Euler scheme.&nbsp; <br>
14059
14060
14061
14062
14063
[153]14064
14065
[116]14066The Euler scheme must be used when treating the advection terms with
14067the upstream-spline scheme (see <a href="#scalar_advec">scalar_advec</a>
14068= <span style="font-style: italic;">'ups-scheme'</span>
14069and <a href="#momentum_advec">momentum_advec</a>
14070= <span style="font-style: italic;">'ups-scheme'</span>).</div>
14071
14072
14073
14074
14075
[153]14076
14077
[116]14078      <br>
14079
14080
14081
14082
[153]14083
14084
[116]14085      <br>
14086
14087
14088
14089
[153]14090
14091
[116]14092A differing timestep scheme can be choosed for the
14093subgrid-scale TKE using parameter <a href="#use_upstream_for_tke">use_upstream_for_tke</a>.<br>
14094
14095
14096
14097
14098
[153]14099
14100
[116]14101      </td>
14102
14103
14104
14105
[153]14106
14107
[116]14108 </tr>
14109
14110
14111
14112
[153]14113
14114
[116]14115 <tr>
14116
14117
14118
14119
[153]14120
14121
[116]14122 <td style="text-align: left; vertical-align: top;"><span style="font-weight: bold;"><a name="topography"></a></span><span style="font-weight: bold;">topography</span></td>
14123
14124
14125
14126
14127
[153]14128
14129
[116]14130      <td style="vertical-align: top;">C * 40</td>
14131
14132
14133
14134
[153]14135
14136
[116]14137 <td style="vertical-align: top;"><span style="font-style: italic;">'flat'</span></td>
14138
14139
14140
14141
[153]14142
14143
[116]14144 <td>
14145     
14146     
14147     
14148     
[153]14149     
14150     
[116]14151      <p>Topography mode.&nbsp; </p>
14152
14153
14154
14155
[153]14156
14157
[116]14158 
14159     
14160     
14161     
14162     
[153]14163     
14164     
[116]14165      <p>The user can
14166choose between the following modes:<br>
14167
14168
14169
14170
[153]14171
14172
[116]14173 </p>
14174
14175
14176
14177
[153]14178
14179
[116]14180 
14181     
14182     
14183     
14184     
[153]14185     
14186     
[116]14187      <p><span style="font-style: italic;">'flat'</span><br>
14188
14189
14190
14191
[153]14192
14193
[116]14194 </p>
14195
14196
14197
14198
14199
[153]14200
14201
[116]14202     
14203     
14204     
14205     
[153]14206     
14207     
[116]14208      <div style="margin-left: 40px;">Flat surface.</div>
14209
14210
14211
14212
[153]14213
14214
[116]14215 
14216     
14217     
14218     
14219     
[153]14220     
14221     
[116]14222      <p><span style="font-style: italic;">'single_building'</span><br>
14223
14224
14225
14226
14227
[153]14228
14229
[116]14230      </p>
14231
14232
14233
14234
[153]14235
14236
[116]14237 
14238     
14239     
14240     
14241     
[153]14242     
14243     
[116]14244      <div style="margin-left: 40px;">Flow
14245around&nbsp;a single rectangular building mounted on a flat surface.<br>
14246
14247
14248
14249
14250
14251
14252
[240]14253The building size and location can be specified by the parameters <a href="#building_height">building_height</a>, <a href="#building_length_x">building_length_x</a>, <a href="#building_length_y">building_length_y</a>, <a href="#building_wall_left">building_wall_left</a> and <a href="#building_wall_south">building_wall_south</a>.<font color="#000000"><br></font></div>
[116]14254
14255
14256
[153]14257
14258
14259
14260
[116]14261      <span style="font-style: italic;"></span> 
14262     
14263     
14264     
14265     
[153]14266     
14267     
[240]14268      <p><span style="font-style: italic;">'single_street_canyon'</span><br>
[116]14269
14270
14271
14272
14273
[153]14274
14275
[116]14276      </p>
14277
14278
14279
14280
[153]14281
14282
[116]14283 
14284     
14285     
14286     
14287     
[153]14288     
14289     
[240]14290      <div style="margin-left: 40px;">Flow
14291over a single, quasi-2D street canyon of infinite length oriented either in x- or in y-direction.<br>
14292
14293
14294
14295
14296
14297
14298
14299The canyon size, orientation and location can be specified by the parameters <a href="chapter_4.1.html#canyon_height">canyon_height</a> plus <span style="font-weight: bold;">either</span>&nbsp;<a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a> and <a href="chapter_4.1.html#canyon_wall_left">canyon_wall_left</a> <span style="font-weight: bold;">or</span>&nbsp; <a href="chapter_4.1.html#canyon_width_y">canyon_width_y</a> and <a href="chapter_4.1.html#canyon_wall_south">canyon_wall_south</a>.<font color="#000000"><br></font></div>
14300
14301
14302
14303
14304
14305
14306
14307      <span style="font-style: italic;"></span>&nbsp;<span style="font-style: italic;"></span><p><span style="font-style: italic;">'read_from_file'</span><br>
14308
14309
14310
14311
14312
14313
14314
14315      </p>
14316
14317
14318
14319
14320
14321
14322 
14323     
14324     
14325     
14326     
14327     
14328     
[116]14329      <div style="margin-left: 40px;">Flow around
14330arbitrary topography.<br>
14331
14332
14333
14334
14335
[153]14336
14337
[116]14338This mode requires the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">. This file contains </font><font color="#000000"><font color="#000000">the&nbsp;</font></font><font color="#000000">arbitrary topography </font><font color="#000000"><font color="#000000">height
14339information</font></font><font color="#000000">
14340in m. These data&nbsp;<span style="font-style: italic;"></span>must
[217]14341exactly match the horizontal grid.<br></font> </div>
[116]14342
14343
14344
14345
[153]14346
14347
[116]14348 <span style="font-style: italic;"><br>
14349
14350
14351
14352
[153]14353
14354
[116]14355 </span><font color="#000000">
14356Alternatively, the user may add code to the user interface subroutine <a href="chapter_3.5.1.html#user_init_grid">user_init_grid</a>
[256]14357to allow further topography modes. </font>These require to explicitly set the<span style="font-weight: bold;"> </span><a href="#topography_grid_convention">topography_grid_convention</a>&nbsp;to either <span style="font-style: italic;">'cell_edge'</span> or <span style="font-style: italic;">'cell_center'</span>.<br>
[116]14358
[153]14359      <font color="#000000">
[116]14360
14361
14362
[153]14363
[116]14364 <br>
14365
14366
14367
14368
14369
[153]14370
14371
[165]14372Non-flat <span style="font-weight: bold;">topography</span>
14373modes may assign a</font>
14374kinematic sensible<font color="#000000"> <a href="chapter_4.1.html#wall_heatflux">wall_heatflux</a> at the five topography faces.</font><br>
14375
14376      <font color="#000000">
14377
14378
14379
14380
14381 <br>
14382
14383
14384
14385
14386
14387
14388
[116]14389All non-flat <span style="font-weight: bold;">topography</span>
14390modes </font>require the use of <a href="#momentum_advec">momentum_advec</a>
14391= <a href="#scalar_advec">scalar_advec</a>
14392= '<i>pw-scheme'</i>, <a href="chapter_4.2.html#psolver">psolver</a>
[197]14393/= <i>'sor</i><i>'</i>,
[116]14394      <i>&nbsp;</i><a href="#alpha_surface">alpha_surface</a>
[197]14395= 0.0,<span style="font-style: italic;"></span>&nbsp;<a style="" href="#galilei_transformation">galilei_transformation</a>
[116]14396= <span style="font-style: italic;">.F.</span>,&nbsp;<a href="#cloud_physics">cloud_physics&nbsp;</a> = <span style="font-style: italic;">.F.</span>,&nbsp; <a href="#cloud_droplets">cloud_droplets</a> = <span style="font-style: italic;">.F.</span>,&nbsp;&nbsp;<a href="#humidity">humidity</a> = <span style="font-style: italic;">.F.</span>, and <a href="#prandtl_layer">prandtl_layer</a> = .T..<br>
14397
14398
14399
14400
14401
[153]14402
14403
[116]14404      <font color="#000000"><br>
14405
14406
14407
14408
14409
[153]14410
14411
[116]14412Note that an inclined model domain requires the use of <span style="font-weight: bold;">topography</span> = <span style="font-style: italic;">'flat'</span> and a
14413nonzero </font><a href="#alpha_surface">alpha_surface</a>.</td>
14414
14415
14416
14417
14418
[153]14419
14420
[116]14421    </tr>
14422
14423
14424
14425
[153]14426
14427
[256]14428 <tr><td style="vertical-align: top;"><a name="topography_grid_convention"></a><span style="font-weight: bold;">topography_grid_</span><br style="font-weight: bold;"><span style="font-weight: bold;">convention</span></td><td style="vertical-align: top;">C*11</td><td style="vertical-align: top;"><span style="font-style: italic;">default depends on value of <a href="chapter_4.1.html#topography">topography</a>; see text for details</span></td><td>Convention for defining the&nbsp;topography grid.<br><br>Possible values are<br><ul><li><span style="font-style: italic;">'cell_edge':&nbsp;</span>the distance between cell edges defines the extent of topography. This setting is normally for <span style="font-style: italic;">generic topographies</span>, i.e. topographies that are constructed using length parameters. For example, <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'single_building'</span> is constructed using <a href="chapter_4.1.html#building_length_x">building_length_x</a> and <a href="chapter_4.1.html#building_length_y">building_length_y</a>.
14429The advantage of this setting is that the actual size of generic
14430topography is independent of the grid size, provided that the length
14431parameters are an integer multiple of the grid lengths&nbsp;<a href="chapter_4.1.html#dx">dx</a> and&nbsp;<a href="chapter_4.1.html#dy">dy</a>. This is convenient&nbsp;for resolution parameter studies.</li><li><span style="font-style: italic;">'cell_center'</span><span style="font-style: italic;">:&nbsp;</span>the number of topography cells define the extent of topography. This setting is normally for <span style="font-style: italic;">rastered real topographies</span> derived from digital elevation models.&nbsp;For example, <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'read_from_file'</span> is constructed using&nbsp;the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">.&nbsp;</font>The
14432advantage of this setting is that the&nbsp;rastered topography cells of
14433the input file are directly mapped to topography grid boxes in PALM. <span style="font-style: italic;"></span></li></ul>The example files&nbsp;<big><code>example_topo_file</code></big> and&nbsp;<big><code>example_building</code></big> in <big><code>trunk/EXAMPLES/</code></big>
14434illustrate the difference between
14435both approaches. Both examples simulate a single building and yield the
14436same results. The former uses a rastered topography input file with <span style="font-style: italic;">'cell_center'</span> convention, the latter applies a generic topography with <span style="font-style: italic;">'cell_edge'</span> convention.<br><br>The default value is<br><ul><li><span style="font-style: italic;">'cell_edge' </span>if <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'single_building'</span> or <span style="font-style: italic;">'single_street_canyon'</span>,</li><li><span style="font-style: italic;">'cell_center'</span><span style="font-style: italic;"></span> if <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'read_from_file'</span>,</li><li><span style="font-style: italic;">none (' '</span> ) otherwise, leading to an abort if&nbsp;<span style="font-weight: bold;">topography_grid_convention</span> is not set.</li></ul>This means that <br><ul><li>For PALM simulations using a <span style="font-style: italic;">user-defined topography</span>, the<span style="font-weight: bold;"> topography_grid_convention</span> must be explicitly set to either <span style="font-style: italic;">'cell_edge'</span> or <span style="font-style: italic;">'cell_center'</span>.</li><li>For PALM simulations using a <span style="font-style: italic;">standard topography</span> <span style="font-style: italic;">('single_building'</span>, <span style="font-style: italic;">'single_street_canyon'</span> or <span style="font-style: italic;">'read_from_file')</span>, it is possible but not required to set the&nbsp; <span style="font-weight: bold;">topography_grid_convention</span> because appropriate default values apply.</li></ul></td></tr><tr>
[116]14437
14438
14439
14440
[153]14441
14442
[116]14443      <td style="vertical-align: top;"><a name="top_heatflux"></a><span style="font-weight: bold;">top_heatflux</span></td>
14444
14445
14446
14447
[153]14448
14449
[116]14450      <td style="vertical-align: top;">R</td>
14451
14452
14453
14454
[153]14455
14456
[116]14457      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
14458
14459
14460
14461
14462
[153]14463
14464
[116]14465heatflux</span></td>
14466
14467
14468
14469
[153]14470
14471
[116]14472      <td style="vertical-align: top;">
14473     
14474     
14475     
14476     
[153]14477     
14478     
[116]14479      <p>Kinematic
14480sensible heat flux at the top boundary (in K m/s).&nbsp; </p>
14481
14482
14483
14484
14485
[153]14486
14487
[116]14488     
14489     
14490     
14491     
[153]14492     
14493     
[116]14494      <p>If a value is assigned to this parameter, the internal
14495two-dimensional surface heat flux field <span style="font-family: monospace;">tswst</span> is
14496initialized with the value of <span style="font-weight: bold;">top_heatflux</span>&nbsp;as
14497top (horizontally homogeneous) boundary condition for the
14498temperature equation. This additionally requires that a Neumann
14499condition must be used for the potential temperature (see <a href="chapter_4.1.html#bc_pt_t">bc_pt_t</a>),
14500because otherwise the resolved scale may contribute to
14501the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14502
14503
14504
14505
14506
[153]14507
14508
[116]14509     
14510     
14511     
14512     
[153]14513     
14514     
[116]14515      <p><span style="font-weight: bold;">Note:</span><br>
14516
14517
14518
14519
[153]14520
14521
[116]14522The
14523application of a top heat flux additionally requires the setting of
14524initial parameter <a href="#use_top_fluxes">use_top_fluxes</a>
14525= .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p>
14526
14527
14528
14529
[153]14530
14531
[116]14532     
14533     
14534     
14535     
[153]14536     
14537     
[116]14538      <p>No
14539Prandtl-layer is available at the top boundary so far.</p>
14540
14541
14542
14543
[153]14544
14545
[116]14546     
14547     
14548     
14549     
[153]14550     
14551     
[116]14552      <p>See
14553also <a href="#surface_heatflux">surface_heatflux</a>.</p>
14554
14555
14556
14557
14558
[153]14559
14560
[116]14561      </td>
14562
14563
14564
14565
[153]14566
14567
[116]14568    </tr>
14569
14570
14571
14572
[153]14573
14574
[116]14575    <tr>
14576
14577
14578
14579
[153]14580
14581
[116]14582      <td style="vertical-align: top;"><a name="top_momentumflux_u"></a><span style="font-weight: bold;">top_momentumflux_u</span></td>
14583
14584
14585
14586
[153]14587
14588
[116]14589      <td style="vertical-align: top;">R</td>
14590
14591
14592
14593
[153]14594
14595
[116]14596      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td>
14597
14598
14599
14600
[153]14601
14602
[116]14603      <td style="vertical-align: top;">Momentum flux along x at the top boundary (in m2/s2).<br>
14604
14605
14606
14607
[153]14608
14609
[116]14610     
14611     
14612     
14613     
[153]14614     
14615     
[116]14616      <p>If a value is assigned to this parameter, the internal
14617two-dimensional u-momentum flux field <span style="font-family: monospace;">uswst</span> is
14618initialized with the value of <span style="font-weight: bold;">top_momentumflux_u</span> as
14619top (horizontally homogeneous) boundary condition for the u-momentum equation.</p>
14620
14621
14622
14623
[153]14624
14625
[116]14626     
14627     
14628     
14629     
[153]14630     
14631     
[116]14632      <p><span style="font-weight: bold;">Notes:</span><br>
14633
14634
14635
14636
[153]14637
14638
[116]14639The
14640application of a top momentum flux additionally requires the setting of
14641initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14642= .T.. Setting of <span style="font-weight: bold;">top_momentumflux_u</span> requires setting of <a href="#top_momentumflux_v">top_momentumflux_v</a> also.</p>
14643
14644
14645
14646
[153]14647
14648
[116]14649     
14650     
14651     
14652     
[153]14653     
14654     
[116]14655      <p>A&nbsp;Neumann
14656condition should be used for the u velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>),
14657because otherwise the resolved scale may contribute to
14658the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14659
14660
14661
14662
14663
[153]14664
14665
[116]14666      <span style="font-weight: bold;"></span>
14667     
14668     
14669     
14670     
[153]14671     
14672     
[116]14673      <p>No
14674Prandtl-layer is available at the top boundary so far.</p>
14675
14676
14677
14678
[153]14679
14680
[116]14681     
14682     
14683     
14684     
[153]14685     
14686     
[116]14687      <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and&nbsp;<a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g.&nbsp;top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p>
14688
14689
14690
14691
[153]14692
14693
[116]14694      </td>
14695
14696
14697
14698
[153]14699
14700
[116]14701    </tr>
14702
14703
14704
14705
[153]14706
14707
[116]14708    <tr>
14709
14710
14711
14712
[153]14713
14714
[116]14715      <td style="vertical-align: top;"><a name="top_momentumflux_v"></a><span style="font-weight: bold;">top_momentumflux_v</span></td>
14716
14717
14718
14719
[153]14720
14721
[116]14722      <td style="vertical-align: top;">R</td>
14723
14724
14725
14726
[153]14727
14728
[116]14729      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td>
14730
14731
14732
14733
[153]14734
14735
[116]14736      <td style="vertical-align: top;">Momentum flux along y at the top boundary (in m2/s2).<br>
14737
14738
14739
14740
[153]14741
14742
[116]14743     
14744     
14745     
14746     
[153]14747     
14748     
[116]14749      <p>If a value is assigned to this parameter, the internal
14750two-dimensional v-momentum flux field <span style="font-family: monospace;">vswst</span> is
14751initialized with the value of <span style="font-weight: bold;">top_momentumflux_v</span> as
14752top (horizontally homogeneous) boundary condition for the v-momentum equation.</p>
14753
14754
14755
14756
[153]14757
14758
[116]14759     
14760     
14761     
14762     
[153]14763     
14764     
[116]14765      <p><span style="font-weight: bold;">Notes:</span><br>
14766
14767
14768
14769
[153]14770
14771
[116]14772The
14773application of a top momentum flux additionally requires the setting of
14774initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14775= .T.. Setting of <span style="font-weight: bold;">top_momentumflux_v</span> requires setting of <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> also.</p>
14776
14777
14778
14779
[153]14780
14781
[116]14782     
14783     
14784     
14785     
[153]14786     
14787     
[116]14788      <p>A&nbsp;Neumann
14789condition should be used for the v velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>),
14790because otherwise the resolved scale may contribute to
14791the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14792
14793
14794
14795
14796
[153]14797
14798
[116]14799      <span style="font-weight: bold;"></span>
14800     
14801     
14802     
14803     
[153]14804     
14805     
[116]14806      <p>No
14807Prandtl-layer is available at the top boundary so far.</p>
14808
14809
14810
14811
[153]14812
14813
[116]14814     
14815     
14816     
14817     
[153]14818     
14819     
[116]14820      <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and&nbsp;<a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g.&nbsp;top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p>
14821
14822
14823
14824
[153]14825
14826
[116]14827      </td>
14828
14829
14830
14831
[153]14832
14833
[116]14834    </tr>
14835
14836
14837
14838
[153]14839
14840
[116]14841    <tr>
14842
14843
14844
14845
[153]14846
14847
[116]14848      <td style="vertical-align: top;"><a name="top_salinityflux"></a><span style="font-weight: bold;">top_salinityflux</span></td>
14849
14850
14851
14852
[153]14853
14854
[116]14855      <td style="vertical-align: top;">R</td>
14856
14857
14858
14859
[153]14860
14861
[116]14862      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
14863
14864
14865
14866
14867
[153]14868
14869
[116]14870salinityflux</span></td>
14871
14872
14873
14874
[153]14875
14876
[116]14877      <td style="vertical-align: top;">
14878     
14879     
14880     
14881     
[153]14882     
14883     
[116]14884      <p>Kinematic
14885salinity flux at the top boundary, i.e. the sea surface (in psu m/s).&nbsp; </p>
14886
14887
14888
14889
14890
[153]14891
14892
[116]14893     
14894     
14895     
14896     
[153]14897     
14898     
[116]14899      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
14900
14901
14902
14903
[153]14904
14905
[116]14906     
14907     
14908     
14909     
[153]14910     
14911     
[116]14912      <p>If a value is assigned to this parameter, the internal
14913two-dimensional surface heat flux field <span style="font-family: monospace;">saswst</span> is
14914initialized with the value of <span style="font-weight: bold;">top_salinityflux</span>&nbsp;as
14915top (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
14916condition must be used for the salinity (see <a href="chapter_4.1.html#bc_sa_t">bc_sa_t</a>),
14917because otherwise the resolved scale may contribute to
14918the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14919
14920
14921
14922
14923
[153]14924
14925
[116]14926     
14927     
14928     
14929     
[153]14930     
14931     
[116]14932      <p><span style="font-weight: bold;">Note:</span><br>
14933
14934
14935
14936
[153]14937
14938
[116]14939The
14940application of a salinity flux at the model top additionally requires the setting of
14941initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14942= .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p>
14943
14944
14945
14946
[153]14947
14948
[116]14949     
14950     
14951     
14952     
[153]14953     
14954     
[116]14955      <p>See
14956also <a href="chapter_4.1.html#bottom_salinityflux">bottom_salinityflux</a>.</p>
14957
14958
14959
14960
[153]14961
14962
[116]14963      </td>
14964
14965
14966
14967
[153]14968
14969
[116]14970    </tr>
14971
14972
14973
14974
[153]14975
14976
[197]14977    <tr><td style="vertical-align: top;"><a name="turbulent_inflow"></a><span style="font-weight: bold;">turbulent_inflow</span></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td><td style="vertical-align: top;">Generates a turbulent inflow at side boundaries using a turbulence recycling method.<br><br>Turbulent inflow is realized using the turbulence recycling method from Lund et al. (1998, J. Comp. Phys., <span style="font-weight: bold;">140</span>, 233-258) modified by Kataoka and Mizuno (2002, Wind and Structures, <span style="font-weight: bold;">5</span>, 379-392).<br><br>A turbulent inflow requires Dirichlet conditions at the respective inflow boundary. <span style="font-weight: bold;">So far, a turbulent inflow is realized from the left (west) side only, i.e. </span><a style="font-weight: bold;" href="chapter_4.1.html#bc_lr">bc_lr</a><span style="font-weight: bold;">&nbsp;=</span><span style="font-style: italic; font-weight: bold;"> 'dirichlet/radiation'</span><span style="font-weight: bold;"> is required!</span><br><br>The initial (quasi-stationary) turbulence field should be generated by a precursor run and used by setting <a href="chapter_4.1.html#initializing_actions">initializing_actions</a> =<span style="font-style: italic;"> 'read_data_for_recycling'</span>.<br><br>The distance of the recycling plane from the inflow boundary can be set with parameter <a href="chapter_4.1.html#recycling_width">recycling_width</a>.
14978The heigth above ground above which the turbulence signal is not used
14979for recycling and the width of the layer within&nbsp;the magnitude of
14980the turbulence signal is damped from 100% to 0% can be set with
[241]14981parameters <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> and <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>The detailed setup for a turbulent inflow is described in <a href="chapter_3.9.html">chapter 3.9</a>.</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="u_bulk"></a>u_bulk</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td>u-component of the predefined bulk velocity (in m/s).<br><br>This parameter comes into effect if <a href="#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T.</span> and <a href="#conserve_volume_flow_mode">conserve_volume_flow_mode</a> = <span style="font-style: italic;">'bulk_velocity'</span>.</td></tr><tr>
[116]14982
14983
14984
14985
[153]14986
14987
[116]14988 <td style="vertical-align: top;">
14989     
14990     
14991     
14992     
[153]14993     
14994     
[116]14995      <p><a name="ug_surface"></a><span style="font-weight: bold;">ug_surface</span></p>
14996
14997
14998
14999
15000
[153]15001
15002
[116]15003      </td>
15004
15005
15006
15007
[153]15008
15009
[116]15010 <td style="vertical-align: top;">R<br>
15011
15012
15013
15014
[153]15015
15016
[116]15017 </td>
15018
15019
15020
15021
15022
[153]15023
15024
[116]15025      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
15026
15027
15028
15029
[153]15030
15031
[116]15032 </td>
15033
15034
15035
15036
15037
[153]15038
15039
[116]15040      <td style="vertical-align: top;">u-component of the
15041geostrophic
15042wind at the surface (in m/s).<br>
15043
15044
15045
15046
[153]15047
15048
[116]15049 <br>
15050
15051
15052
15053
15054
[153]15055
15056
[116]15057This parameter assigns the value of the u-component of the geostrophic
15058wind (ug) at the surface (k=0). Starting from this value, the initial
15059vertical profile of the <br>
15060
15061
15062
15063
15064
[153]15065
15066
[116]15067u-component of the geostrophic wind is constructed with <a href="#ug_vertical_gradient">ug_vertical_gradient</a>
15068and <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>.
15069The
15070profile constructed in that way is used for creating the initial
15071vertical velocity profile of the 3d-model. Either it is applied, as it
15072has been specified by the user (<a href="#initializing_actions">initializing_actions</a>
15073= 'set_constant_profiles') or it is used for calculating a stationary
15074boundary layer wind profile (<a href="#initializing_actions">initializing_actions</a>
15075= 'set_1d-model_profiles'). If ug is constant with height (i.e. ug(k)=<span style="font-weight: bold;">ug_surface</span>)
15076and&nbsp; has a large
15077value, it is recommended to use a Galilei-transformation of the
15078coordinate system, if possible (see <a href="#galilei_transformation">galilei_transformation</a>),
15079in order to obtain larger time steps.<br>
15080
15081
15082
15083
[153]15084
15085
[116]15086      <br>
15087
15088
15089
15090
[153]15091
15092
[116]15093      <span style="font-weight: bold;">Attention:</span><br>
15094
15095
15096
15097
[153]15098
15099
[116]15100In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
15101this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is
15102at k=nzt. The profile is then constructed from the surface down to the
15103bottom of the model.<br>
15104
15105
15106
15107
[153]15108
15109
[116]15110 </td>
15111
15112
15113
15114
[153]15115
15116
[116]15117 </tr>
15118
15119
15120
15121
15122
[153]15123
15124
[116]15125    <tr>
15126
15127
15128
15129
[153]15130
15131
[116]15132 <td style="vertical-align: top;"> 
15133     
15134     
15135     
15136     
[153]15137     
15138     
[116]15139      <p><a name="ug_vertical_gradient"></a><span style="font-weight: bold;">ug_vertical_gradient</span></p>
15140
15141
15142
15143
15144
[153]15145
15146
[116]15147      </td>
15148
15149
15150
15151
[153]15152
15153
[116]15154 <td style="vertical-align: top;">R(10)<br>
15155
15156
15157
15158
15159
[153]15160
15161
[116]15162      </td>
15163
15164
15165
15166
[153]15167
15168
[116]15169 <td style="vertical-align: top;"><span style="font-style: italic;">10
15170* 0.0</span><br>
15171
15172
15173
15174
[153]15175
15176
[116]15177 </td>
15178
15179
15180
15181
[153]15182
15183
[116]15184 <td style="vertical-align: top;">Gradient(s) of the initial
15185profile of the&nbsp; u-component of the geostrophic wind (in
151861/100s).<br>
15187
15188
15189
15190
[153]15191
15192
[116]15193 <br>
15194
15195
15196
15197
15198
[153]15199
15200
[116]15201The gradient holds starting from the height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
15202(precisely: for all uv levels k where zu(k) &gt; <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>,
15203ug(k) is set: ug(k) = ug(k-1) + dzu(k) * <span style="font-weight: bold;">ug_vertical_gradient</span>)
15204up to the top
15205boundary or up to the next height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>.
15206A
15207total of 10 different gradients for 11 height intervals (10
15208intervals&nbsp; if <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>(1)
15209= 0.0) can be assigned. The surface geostrophic wind is assigned by <a href="#ug_surface">ug_surface</a>.<br>
15210
15211
15212
15213
[153]15214
15215
[116]15216      <br>
15217
15218
15219
15220
[153]15221
15222
[116]15223      <span style="font-weight: bold;">Attention:</span><br>
15224
15225
15226
15227
[153]15228
15229
[116]15230In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
15231the profile is constructed like described above, but starting from the
15232sea surface (k=nzt) down to the bottom boundary of the model. Height
15233levels have then to be given as negative values, e.g. <span style="font-weight: bold;">ug_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.<br>
15234
15235
15236
15237
[153]15238
15239
[116]15240 </td>
15241
15242
15243
15244
15245
[153]15246
15247
[116]15248    </tr>
15249
15250
15251
15252
[153]15253
15254
[116]15255 <tr>
15256
15257
15258
15259
[153]15260
15261
[116]15262 <td style="vertical-align: top;">
15263     
15264     
15265     
15266     
[153]15267     
15268     
[116]15269      <p><a name="ug_vertical_gradient_level"></a><span style="font-weight: bold;">ug_vertical_gradient_level</span></p>
15270
15271
15272
15273
15274
[153]15275
15276
[116]15277      </td>
15278
15279
15280
15281
[153]15282
15283
[116]15284 <td style="vertical-align: top;">R(10)<br>
15285
15286
15287
15288
15289
[153]15290
15291
[116]15292      </td>
15293
15294
15295
15296
[153]15297
15298
[116]15299 <td style="vertical-align: top;"><span style="font-style: italic;">10
15300* 0.0</span><br>
15301
15302
15303
15304
[153]15305
15306
[116]15307 </td>
15308
15309
15310
15311
[153]15312
15313
[116]15314 <td style="vertical-align: top;">Height level from which on the
15315gradient defined by <a href="#ug_vertical_gradient">ug_vertical_gradient</a>
15316is effective (in m).<br>
15317
15318
15319
15320
[153]15321
15322
[116]15323 <br>
15324
15325
15326
15327
15328
[153]15329
15330
[116]15331The height levels have to be assigned in ascending order. For the
15332piecewise construction of a profile of the u-component of the
15333geostrophic wind component (ug) see <a href="#ug_vertical_gradient">ug_vertical_gradient</a>.<br>
15334
15335
15336
15337
[153]15338
15339
[116]15340      <br>
15341
15342
15343
15344
[153]15345
15346
[116]15347      <span style="font-weight: bold;">Attention:</span><br>
15348
15349
15350
15351
[153]15352
15353
[116]15354In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td>
15355
15356
15357
15358
[153]15359
15360
[116]15361 </tr>
15362
15363
15364
15365
[153]15366
15367
[116]15368 <tr>
15369
15370
15371
15372
[153]15373
15374
[116]15375 <td style="vertical-align: top;"> 
15376     
15377     
15378     
15379     
[153]15380     
15381     
[116]15382      <p><a name="ups_limit_e"></a><b>ups_limit_e</b></p>
15383
15384
15385
15386
15387
[153]15388
15389
[116]15390      </td>
15391
15392
15393
15394
[153]15395
15396
[116]15397 <td style="vertical-align: top;">R</td>
15398
15399
15400
15401
15402
[153]15403
15404
[116]15405      <td style="vertical-align: top;"><i>0.0</i></td>
15406
15407
15408
15409
15410
[153]15411
15412
[116]15413      <td style="vertical-align: top;"> 
15414     
15415     
15416     
15417     
[153]15418     
15419     
[116]15420      <p>Subgrid-scale
15421turbulent kinetic energy difference used as
15422criterion for applying the upstream scheme when upstream-spline
15423advection is switched on (in m<sup>2</sup>/s<sup>2</sup>).
15424&nbsp; </p>
15425
15426
15427
15428
[153]15429
15430
[116]15431 
15432     
15433     
15434     
15435     
[153]15436     
15437     
[116]15438      <p>This variable steers the appropriate
15439treatment of the
15440advection of the subgrid-scale turbulent kinetic energy in case that
15441the uptream-spline scheme is used . For further information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp; </p>
15442
15443
15444
15445
15446
[153]15447
15448
[116]15449     
15450     
15451     
15452     
[153]15453     
15454     
[116]15455      <p>Only positive values are allowed for <b>ups_limit_e</b>.
15456      </p>
15457
15458
15459
15460
[153]15461
15462
[116]15463 </td>
15464
15465
15466
15467
[153]15468
15469
[116]15470 </tr>
15471
15472
15473
15474
[153]15475
15476
[116]15477 <tr>
15478
15479
15480
15481
[153]15482
15483
[116]15484 <td style="vertical-align: top;"> 
15485     
15486     
15487     
15488     
[153]15489     
15490     
[116]15491      <p><a name="ups_limit_pt"></a><b>ups_limit_pt</b></p>
15492
15493
15494
15495
15496
[153]15497
15498
[116]15499      </td>
15500
15501
15502
15503
[153]15504
15505
[116]15506 <td style="vertical-align: top;">R</td>
15507
15508
15509
15510
15511
[153]15512
15513
[116]15514      <td style="vertical-align: top;"><i>0.0</i></td>
15515
15516
15517
15518
15519
[153]15520
15521
[116]15522      <td style="vertical-align: top;"> 
15523     
15524     
15525     
15526     
[153]15527     
15528     
[116]15529      <p>Temperature
15530difference used as criterion for applying&nbsp;
15531the upstream scheme when upstream-spline advection&nbsp; is
15532switched on
15533(in K).&nbsp; </p>
15534
15535
15536
15537
[153]15538
15539
[116]15540 
15541     
15542     
15543     
15544     
[153]15545     
15546     
[116]15547      <p>This criterion is used if the
15548upstream-spline scheme is
15549switched on (see <a href="#scalar_advec">scalar_advec</a>).<br>
15550
15551
15552
15553
15554
[153]15555
15556
[116]15557If, for a given gridpoint, the absolute temperature difference with
15558respect to the upstream
15559grid point is smaller than the value given for <b>ups_limit_pt</b>,
15560the upstream scheme is used for this gridpoint (by default, the
15561upstream-spline scheme is always used). Reason: in case of a very small
15562upstream gradient, the advection should cause only a very small
15563tendency. However, in such situations the upstream-spline scheme may
15564give wrong tendencies at a
15565grid point due to spline overshooting, if simultaneously the downstream
15566gradient is very large. In such cases it may be more reasonable to use
15567the upstream scheme. The numerical diffusion caused by the upstream
15568schme remains small as long as the upstream gradients are small.<br>
15569
15570
15571
15572
15573
[153]15574
15575
[116]15576      </p>
15577
15578
15579
15580
[153]15581
15582
[116]15583 
15584     
15585     
15586     
15587     
[153]15588     
15589     
[116]15590      <p>The percentage of grid points for which the
15591upstream
15592scheme is actually used, can be output as a time series with respect to
15593the
15594three directions in space with run parameter (see <a href="chapter_4.2.html#dt_dots">dt_dots</a>, the
15595timeseries names in the NetCDF file are <i>'splptx'</i>, <i>'splpty'</i>,
15596      <i>'splptz'</i>). The percentage
15597of gridpoints&nbsp; should stay below a certain limit, however, it
15598is
15599not possible to give
15600a general limit, since it depends on the respective flow.&nbsp; </p>
15601
15602
15603
15604
15605
[153]15606
15607
[116]15608     
15609     
15610     
15611     
[153]15612     
15613     
[116]15614      <p>Only positive values are permitted for <b>ups_limit_pt</b>.<br>
15615
15616
15617
15618
15619
[153]15620
15621
[116]15622      </p>
15623
15624
15625
15626
15627
[153]15628
15629
[116]15630A more effective control of
15631the &ldquo;overshoots&rdquo; can be achieved with parameter <a href="#cut_spline_overshoot">cut_spline_overshoot</a>.
15632      </td>
15633
15634
15635
15636
[153]15637
15638
[116]15639 </tr>
15640
15641
15642
15643
[153]15644
15645
[116]15646 <tr>
15647
15648
15649
15650
[153]15651
15652
[116]15653 <td style="vertical-align: top;"> 
15654     
15655     
15656     
15657     
[153]15658     
15659     
[116]15660      <p><a name="ups_limit_u"></a><b>ups_limit_u</b></p>
15661
15662
15663
15664
15665
[153]15666
15667
[116]15668      </td>
15669
15670
15671
15672
[153]15673
15674
[116]15675 <td style="vertical-align: top;">R</td>
15676
15677
15678
15679
15680
[153]15681
15682
[116]15683      <td style="vertical-align: top;"><i>0.0</i></td>
15684
15685
15686
15687
15688
[153]15689
15690
[116]15691      <td style="vertical-align: top;"> 
15692     
15693     
15694     
15695     
[153]15696     
15697     
[116]15698      <p>Velocity
15699difference (u-component) used as criterion for
15700applying the upstream scheme
15701when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15702
15703
15704
15705
15706
[153]15707
15708
[116]15709     
15710     
15711     
15712     
[153]15713     
15714     
[116]15715      <p>This variable steers the appropriate treatment of the
15716advection of the u-velocity-component in case that the upstream-spline
15717scheme is used. For further
15718information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15719      </p>
15720
15721
15722
15723
[153]15724
15725
[116]15726 
15727     
15728     
15729     
15730     
[153]15731     
15732     
[116]15733      <p>Only positive values are permitted for <b>ups_limit_u</b>.</p>
15734
15735
15736
15737
15738
[153]15739
15740
[116]15741      </td>
15742
15743
15744
15745
[153]15746
15747
[116]15748 </tr>
15749
15750
15751
15752
[153]15753
15754
[116]15755 <tr>
15756
15757
15758
15759
[153]15760
15761
[116]15762 <td style="vertical-align: top;"> 
15763     
15764     
15765     
15766     
[153]15767     
15768     
[116]15769      <p><a name="ups_limit_v"></a><b>ups_limit_v</b></p>
15770
15771
15772
15773
15774
[153]15775
15776
[116]15777      </td>
15778
15779
15780
15781
[153]15782
15783
[116]15784 <td style="vertical-align: top;">R</td>
15785
15786
15787
15788
15789
[153]15790
15791
[116]15792      <td style="vertical-align: top;"><i>0.0</i></td>
15793
15794
15795
15796
15797
[153]15798
15799
[116]15800      <td style="vertical-align: top;"> 
15801     
15802     
15803     
15804     
[153]15805     
15806     
[116]15807      <p>Velocity
15808difference (v-component) used as criterion for
15809applying the upstream scheme
15810when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15811
15812
15813
15814
15815
[153]15816
15817
[116]15818     
15819     
15820     
15821     
[153]15822     
15823     
[116]15824      <p>This variable steers the appropriate treatment of the
15825advection of the v-velocity-component in case that the upstream-spline
15826scheme is used. For further
15827information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15828      </p>
15829
15830
15831
15832
[153]15833
15834
[116]15835 
15836     
15837     
15838     
15839     
[153]15840     
15841     
[116]15842      <p>Only positive values are permitted for <b>ups_limit_v</b>.</p>
15843
15844
15845
15846
15847
[153]15848
15849
[116]15850      </td>
15851
15852
15853
15854
[153]15855
15856
[116]15857 </tr>
15858
15859
15860
15861
[153]15862
15863
[116]15864 <tr>
15865
15866
15867
15868
[153]15869
15870
[116]15871 <td style="vertical-align: top;"> 
15872     
15873     
15874     
15875     
[153]15876     
15877     
[116]15878      <p><a name="ups_limit_w"></a><b>ups_limit_w</b></p>
15879
15880
15881
15882
15883
[153]15884
15885
[116]15886      </td>
15887
15888
15889
15890
[153]15891
15892
[116]15893 <td style="vertical-align: top;">R</td>
15894
15895
15896
15897
15898
[153]15899
15900
[116]15901      <td style="vertical-align: top;"><i>0.0</i></td>
15902
15903
15904
15905
15906
[153]15907
15908
[116]15909      <td style="vertical-align: top;"> 
15910     
15911     
15912     
15913     
[153]15914     
15915     
[116]15916      <p>Velocity
15917difference (w-component) used as criterion for
15918applying the upstream scheme
15919when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15920
15921
15922
15923
15924
[153]15925
15926
[116]15927     
15928     
15929     
15930     
[153]15931     
15932     
[116]15933      <p>This variable steers the appropriate treatment of the
15934advection of the w-velocity-component in case that the upstream-spline
15935scheme is used. For further
15936information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15937      </p>
15938
15939
15940
15941
[153]15942
15943
[116]15944 
15945     
15946     
15947     
15948     
[153]15949     
15950     
[116]15951      <p>Only positive values are permitted for <b>ups_limit_w</b>.</p>
15952
15953
15954
15955
15956
[153]15957
15958
[116]15959      </td>
15960
15961
15962
15963
[153]15964
15965
[116]15966 </tr>
15967
15968
15969
15970
[153]15971
15972
[116]15973 <tr>
15974
15975
15976
15977
[153]15978
15979
[116]15980 <td style="vertical-align: top;"> 
15981     
15982     
15983     
15984     
[153]15985     
15986     
[116]15987      <p><a name="use_surface_fluxes"></a><b>use_surface_fluxes</b></p>
15988
15989
15990
15991
15992
[153]15993
15994
[116]15995      </td>
15996
15997
15998
15999
[153]16000
16001
[116]16002 <td style="vertical-align: top;">L</td>
16003
16004
16005
16006
16007
[153]16008
16009
[116]16010      <td style="vertical-align: top;"><i>.F.</i></td>
16011
16012
16013
16014
16015
[153]16016
16017
[116]16018      <td style="vertical-align: top;"> 
16019     
16020     
16021     
16022     
[153]16023     
16024     
[116]16025      <p>Parameter to
16026steer the treatment of the subgrid-scale vertical
16027fluxes within the diffusion terms at k=1 (bottom boundary).<br>
16028
16029
16030
16031
[153]16032
16033
[116]16034 </p>
16035
16036
16037
16038
16039
[153]16040
16041
[116]16042     
16043     
16044     
16045     
[153]16046     
16047     
[116]16048      <p>By default, the near-surface subgrid-scale fluxes are
16049parameterized (like in the remaining model domain) using the gradient
16050approach. If <b>use_surface_fluxes</b>
16051= <i>.TRUE.</i>, the user-assigned surface fluxes are used
16052instead
16053(see <a href="#surface_heatflux">surface_heatflux</a>,
16054      <a href="#surface_waterflux">surface_waterflux</a>
16055and <a href="#surface_scalarflux">surface_scalarflux</a>)
16056      <span style="font-weight: bold;">or</span> the
16057surface fluxes are
16058calculated via the Prandtl layer relation (depends on the bottom
16059boundary conditions, see <a href="#bc_pt_b">bc_pt_b</a>,
16060      <a href="#bc_q_b">bc_q_b</a>
16061and <a href="#bc_s_b">bc_s_b</a>).<br>
16062
16063
16064
16065
[153]16066
16067
[116]16068 </p>
16069
16070
16071
16072
16073
[153]16074
16075
[116]16076     
16077     
16078     
16079     
[153]16080     
16081     
[116]16082      <p><b>use_surface_fluxes</b>
16083is automatically set <i>.TRUE.</i>, if a Prandtl layer is
16084used (see <a href="#prandtl_layer">prandtl_layer</a>).&nbsp;
16085      </p>
16086
16087
16088
16089
[153]16090
16091
[116]16092 
16093     
16094     
16095     
16096     
[153]16097     
16098     
[116]16099      <p>The user may prescribe the surface fluxes at the
16100bottom
16101boundary without using a Prandtl layer by setting <span style="font-weight: bold;">use_surface_fluxes</span> =
16102      <span style="font-style: italic;">.T.</span> and <span style="font-weight: bold;">prandtl_layer</span> = <span style="font-style: italic;">.F.</span>. If , in this
16103case, the
16104momentum flux (u<sub>*</sub><sup>2</sup>)
16105should also be prescribed,
16106the user must assign an appropriate value within the user-defined code.</p>
16107
16108
16109
16110
16111
[153]16112
16113
[116]16114      </td>
16115
16116
16117
16118
[153]16119
16120
[116]16121 </tr>
16122
16123
16124
16125
[153]16126
16127
[116]16128 <tr>
16129
16130
16131
16132
[153]16133
16134
[116]16135      <td style="vertical-align: top;"><a name="use_top_fluxes"></a><span style="font-weight: bold;">use_top_fluxes</span></td>
16136
16137
16138
16139
[153]16140
16141
[116]16142      <td style="vertical-align: top;">L</td>
16143
16144
16145
16146
[153]16147
16148
[116]16149      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
16150
16151
16152
16153
[153]16154
16155
[116]16156      <td style="vertical-align: top;"> 
16157     
16158     
16159     
16160     
[153]16161     
16162     
[116]16163      <p>Parameter to steer
16164the treatment of the subgrid-scale vertical
16165fluxes within the diffusion terms at k=nz (top boundary).</p>
16166
16167
16168
16169
[153]16170
16171
[116]16172     
16173     
16174     
16175     
[153]16176     
16177     
[116]16178      <p>By
16179default, the fluxes at nz are calculated using the gradient approach.
16180If <b>use_top_fluxes</b>
16181= <i>.TRUE.</i>, the user-assigned top fluxes are used
16182instead
16183(see <a href="chapter_4.1.html#top_heatflux">top_heatflux</a>, <a href="#top_momentumflux_u">top_momentumflux_u</a>, <a href="#top_momentumflux_v">top_momentumflux_v</a>, <a href="#top_salinityflux">top_salinityflux</a>).</p>
16184
16185
16186
16187
[153]16188
16189
[116]16190     
16191     
16192     
16193     
[153]16194     
16195     
[116]16196      <p>Currently, no value for the latent heatflux can be assigned. In case of <span style="font-weight: bold;">use_top_fluxes</span> = <span style="font-style: italic;">.TRUE.</span>, the latent
16197heat flux at the top will be automatically set to zero.</p>
16198
16199
16200
16201
[153]16202
16203
[116]16204      </td>
16205
16206
16207
16208
[153]16209
16210
[116]16211    </tr>
16212
16213
16214
16215
[153]16216
16217
[116]16218    <tr>
16219
16220
16221
16222
16223
[153]16224
16225
[116]16226      <td style="vertical-align: top;"> 
16227     
16228     
16229     
16230     
[153]16231     
16232     
[116]16233      <p><a name="use_ug_for_galilei_tr"></a><b>use_ug_for_galilei_tr</b></p>
16234
16235
16236
16237
16238
[153]16239
16240
[116]16241      </td>
16242
16243
16244
16245
[153]16246
16247
[116]16248 <td style="vertical-align: top;">L</td>
16249
16250
16251
16252
16253
[153]16254
16255
[116]16256      <td style="vertical-align: top;"><i>.T.</i></td>
16257
16258
16259
16260
16261
[153]16262
16263
[116]16264      <td style="vertical-align: top;"> 
16265     
16266     
16267     
16268     
[153]16269     
16270     
[116]16271      <p>Switch to
16272determine the translation velocity in case that a
16273Galilean transformation is used.<br>
16274
16275
16276
16277
[153]16278
16279
[116]16280 </p>
16281
16282
16283
16284
[153]16285
16286
[116]16287 
16288     
16289     
16290     
16291     
[153]16292     
16293     
[116]16294      <p>In
16295case of a Galilean transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
16296      <b>use_ug_for_galilei_tr</b>
16297= <i>.T.</i>&nbsp; ensures
16298that the coordinate system is translated with the geostrophic windspeed.<br>
16299
16300
16301
16302
16303
[153]16304
16305
[116]16306      </p>
16307
16308
16309
16310
[153]16311
16312
[116]16313 
16314     
16315     
16316     
16317     
[153]16318     
16319     
[116]16320      <p>Alternatively, with <b>use_ug_for_galilei_tr</b>
16321= <i>.F</i>.,
16322the
16323geostrophic wind can be replaced as translation speed by the (volume)
16324averaged velocity. However, in this case the user must be aware of fast
16325growing gravity waves, so this
16326choice is usually not recommended!</p>
16327
16328
16329
16330
[153]16331
16332
[116]16333 </td>
16334
16335
16336
16337
[153]16338
16339
[116]16340 </tr>
16341
16342
16343
16344
[153]16345
16346
[116]16347 <tr>
16348
16349
16350
16351
[153]16352
16353
[116]16354      <td align="left" valign="top"><a name="use_upstream_for_tke"></a><span style="font-weight: bold;">use_upstream_for_tke</span></td>
16355
16356
16357
16358
[153]16359
16360
[116]16361      <td align="left" valign="top">L</td>
16362
16363
16364
16365
[153]16366
16367
[116]16368      <td align="left" valign="top"><span style="font-style: italic;">.F.</span></td>
16369
16370
16371
16372
[153]16373
16374
[116]16375      <td align="left" valign="top">Parameter to choose the
16376advection/timestep scheme to be used for the subgrid-scale TKE.<br>
16377
16378
16379
16380
[153]16381
16382
[116]16383      <br>
16384
16385
16386
16387
[153]16388
16389
[116]16390By
16391default, the advection scheme and the timestep scheme to be used for
16392the subgrid-scale TKE are set by the initialization parameters <a href="#scalar_advec">scalar_advec</a> and <a href="#timestep_scheme">timestep_scheme</a>,
16393respectively. <span style="font-weight: bold;">use_upstream_for_tke</span>
16394= <span style="font-style: italic;">.T.</span>
16395forces the Euler-scheme and the upstream-scheme to be used as timestep
16396scheme and advection scheme, respectively. By these methods, the strong
16397(artificial) near-surface vertical gradients of the subgrid-scale TKE
16398are significantly reduced. This is required when subgrid-scale
16399velocities are used for advection of particles (see particle package
16400parameter <a href="chapter_4.2.html#use_sgs_for_particles">use_sgs_for_particles</a>).</td>
16401
16402
16403
16404
[153]16405
16406
[116]16407    </tr>
16408
16409
16410
16411
[153]16412
16413
[241]16414    <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="v_bulk"></a>v_bulk</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td>v-component of the predefined bulk velocity (in m/s).<br><br>This parameter comes into effect if <a href="chapter_4.1.html#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T.</span> and <a href="chapter_4.1.html#conserve_volume_flow_mode">conserve_volume_flow_mode</a> = <span style="font-style: italic;">'bulk_velocity'</span>.</td></tr><tr>
[116]16415
16416
16417
16418
16419
[153]16420
16421
[116]16422      <td style="vertical-align: top;"> 
16423     
16424     
16425     
16426     
[153]16427     
16428     
[116]16429      <p><a name="vg_surface"></a><span style="font-weight: bold;">vg_surface</span></p>
16430
16431
16432
16433
16434
[153]16435
16436
[116]16437      </td>
16438
16439
16440
16441
[153]16442
16443
[116]16444 <td style="vertical-align: top;">R<br>
16445
16446
16447
16448
[153]16449
16450
[116]16451 </td>
16452
16453
16454
16455
16456
[153]16457
16458
[116]16459      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
16460
16461
16462
16463
[153]16464
16465
[116]16466 </td>
16467
16468
16469
16470
16471
[153]16472
16473
[116]16474      <td style="vertical-align: top;">v-component of the
16475geostrophic
16476wind at the surface (in m/s).<br>
16477
16478
16479
16480
[153]16481
16482
[116]16483 <br>
16484
16485
16486
16487
16488
[153]16489
16490
[116]16491This parameter assigns the value of the v-component of the geostrophic
16492wind (vg) at the surface (k=0). Starting from this value, the initial
16493vertical profile of the <br>
16494
16495
16496
16497
16498
[153]16499
16500
[116]16501v-component of the geostrophic wind is constructed with <a href="#vg_vertical_gradient">vg_vertical_gradient</a>
16502and <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>.
16503The
16504profile
16505constructed in that way is used for creating the initial vertical
16506velocity profile of the 3d-model. Either it is applied, as it has been
16507specified by the user (<a href="#initializing_actions">initializing_actions</a>
16508= 'set_constant_profiles')
16509or it is used for calculating a stationary boundary layer wind profile
16510(<a href="#initializing_actions">initializing_actions</a>
16511=
16512'set_1d-model_profiles'). If vg is constant
16513with height (i.e. vg(k)=<span style="font-weight: bold;">vg_surface</span>)
16514and&nbsp; has a large value, it is
16515recommended to use a Galilei-transformation of the coordinate system,
16516if possible (see <a href="#galilei_transformation">galilei_transformation</a>),
16517in order to obtain larger
16518time steps.<br>
16519
16520
16521
16522
[153]16523
16524
[116]16525      <br>
16526
16527
16528
16529
[153]16530
16531
[116]16532      <span style="font-weight: bold;">Attention:</span><br>
16533
16534
16535
16536
[153]16537
16538
[116]16539In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
16540this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is
16541at k=nzt. The profile is then constructed from the surface down to the
16542bottom of the model.</td>
16543
16544
16545
16546
[153]16547
16548
[116]16549 </tr>
16550
16551
16552
16553
[153]16554
16555
[116]16556 <tr>
16557
16558
16559
16560
[153]16561
16562
[116]16563 <td style="vertical-align: top;"> 
16564     
16565     
16566     
16567     
[153]16568     
16569     
[116]16570      <p><a name="vg_vertical_gradient"></a><span style="font-weight: bold;">vg_vertical_gradient</span></p>
16571
16572
16573
16574
16575
[153]16576
16577
[116]16578      </td>
16579
16580
16581
16582
[153]16583
16584
[116]16585 <td style="vertical-align: top;">R(10)<br>
16586
16587
16588
16589
16590
[153]16591
16592
[116]16593      </td>
16594
16595
16596
16597
[153]16598
16599
[116]16600 <td style="vertical-align: top;"><span style="font-style: italic;">10
16601* 0.0</span><br>
16602
16603
16604
16605
[153]16606
16607
[116]16608 </td>
16609
16610
16611
16612
[153]16613
16614
[116]16615 <td style="vertical-align: top;">Gradient(s) of the initial
16616profile of the&nbsp; v-component of the geostrophic wind (in
166171/100s).<br>
16618
16619
16620
16621
[153]16622
16623
[116]16624 <br>
16625
16626
16627
16628
16629
[153]16630
16631
[116]16632The gradient holds starting from the height level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>
16633(precisely: for all uv levels k where zu(k)
16634&gt; <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
16635vg(k) is set: vg(k) = vg(k-1) + dzu(k)
16636* <span style="font-weight: bold;">vg_vertical_gradient</span>)
16637up to
16638the top boundary or up to the next height
16639level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>.
16640A total of 10 different
16641gradients for 11 height intervals (10 intervals&nbsp; if <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>(1)
16642=
166430.0) can be assigned. The surface
16644geostrophic wind is assigned by <a href="#vg_surface">vg_surface</a>.<br>
16645
16646
16647
16648
[153]16649
16650
[116]16651      <br>
16652
16653
16654
16655
[153]16656
16657
[116]16658      <span style="font-weight: bold;">Attention:</span><br>
16659
16660
16661
16662
[153]16663
16664
[116]16665In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
16666the profile is constructed like described above, but starting from the
16667sea surface (k=nzt) down to the bottom boundary of the model. Height
16668levels have then to be given as negative values, e.g. <span style="font-weight: bold;">vg_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</td>
16669
16670
16671
16672
16673
[153]16674
16675
[116]16676    </tr>
16677
16678
16679
16680
[153]16681
16682
[116]16683 <tr>
16684
16685
16686
16687
[153]16688
16689
[116]16690 <td style="vertical-align: top;">
16691     
16692     
16693     
16694     
[153]16695     
16696     
[116]16697      <p><a name="vg_vertical_gradient_level"></a><span style="font-weight: bold;">vg_vertical_gradient_level</span></p>
16698
16699
16700
16701
16702
[153]16703
16704
[116]16705      </td>
16706
16707
16708
16709
[153]16710
16711
[116]16712 <td style="vertical-align: top;">R(10)<br>
16713
16714
16715
16716
16717
[153]16718
16719
[116]16720      </td>
16721
16722
16723
16724
[153]16725
16726
[116]16727 <td style="vertical-align: top;"><span style="font-style: italic;">10
16728* 0.0</span><br>
16729
16730
16731
16732
[153]16733
16734
[116]16735 </td>
16736
16737
16738
16739
[153]16740
16741
[116]16742 <td style="vertical-align: top;">Height level from which on the
16743gradient defined by <a href="#vg_vertical_gradient">vg_vertical_gradient</a>
16744is effective (in m).<br>
16745
16746
16747
16748
[153]16749
16750
[116]16751 <br>
16752
16753
16754
16755
16756
[153]16757
16758
[116]16759The height levels have to be assigned in ascending order. For the
16760piecewise construction of a profile of the v-component of the
16761geostrophic wind component (vg) see <a href="#vg_vertical_gradient">vg_vertical_gradient</a>.<br>
16762
16763
16764
16765
[153]16766
16767
[116]16768      <br>
16769
16770
16771
16772
[153]16773
16774
[116]16775      <span style="font-weight: bold;">Attention:</span><br>
16776
16777
16778
16779
[153]16780
16781
[116]16782In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td>
16783
16784
16785
16786
16787
[153]16788
16789
[116]16790    </tr>
16791
16792
16793
16794
[153]16795
16796
[116]16797 <tr>
16798
16799
16800
16801
[153]16802
16803
[116]16804 <td style="vertical-align: top;">
16805     
16806     
16807     
16808     
[153]16809     
16810     
[116]16811      <p><a name="wall_adjustment"></a><b>wall_adjustment</b></p>
16812
16813
16814
16815
16816
[153]16817
16818
[116]16819      </td>
16820
16821
16822
16823
[153]16824
16825
[116]16826 <td style="vertical-align: top;">L</td>
16827
16828
16829
16830
16831
[153]16832
16833
[116]16834      <td style="vertical-align: top;"><i>.T.</i></td>
16835
16836
16837
16838
16839
[153]16840
16841
[116]16842      <td style="vertical-align: top;"> 
16843     
16844     
16845     
16846     
[153]16847     
16848     
[116]16849      <p>Parameter to
16850restrict the mixing length in the vicinity of the
16851bottom
16852boundary (and near vertical walls of a non-flat <a href="chapter_4.1.html#topography">topography</a>).&nbsp; </p>
16853
16854
16855
16856
[153]16857
16858
[116]16859 
16860     
16861     
16862     
16863     
[153]16864     
16865     
[116]16866      <p>With <b>wall_adjustment</b>
16867= <i>.TRUE., </i>the mixing
16868length is limited to a maximum of&nbsp; 1.8 * z. This condition
16869typically affects only the
16870first grid points above the bottom boundary.</p>
[153]16871
16872
16873     
16874     
[116]16875      <p>In case of&nbsp; a non-flat <a href="chapter_4.1.html#topography">topography</a> the respective horizontal distance from vertical walls is used.</p>
16876
16877
16878
16879
[153]16880
16881
[116]16882 </td>
16883
16884
16885
16886
[153]16887
16888
[116]16889 </tr>
16890
16891
16892
16893
16894
[153]16895
16896
[116]16897    <tr>
16898
16899
16900
16901
[153]16902
16903
[116]16904 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="wall_heatflux"></a>wall_heatflux</span></td>
16905
16906
16907
16908
16909
[153]16910
16911
[116]16912      <td style="vertical-align: top;">R(5)</td>
16913
16914
16915
16916
[153]16917
16918
[116]16919 <td style="vertical-align: top;"><span style="font-style: italic;">5 * 0.0</span></td>
16920
16921
16922
16923
[153]16924
16925
[116]16926 <td>Prescribed
16927kinematic sensible heat flux in K m/s
16928at the five topography faces:<br>
16929
16930
16931
16932
[153]16933
16934
[116]16935 <br>
16936
16937
16938
16939
[153]16940
16941
[116]16942 
16943     
16944     
16945     
16946     
[153]16947     
16948     
[116]16949      <div style="margin-left: 40px;"><span style="font-weight: bold;">wall_heatflux(0)&nbsp;&nbsp;
16950&nbsp;</span>top face<br>
16951
16952
16953
16954
[153]16955
16956
[116]16957 <span style="font-weight: bold;">wall_heatflux(1)&nbsp;&nbsp;&nbsp;
16958      </span>left face<br>
16959
16960
16961
16962
[153]16963
16964
[116]16965 <span style="font-weight: bold;">wall_heatflux(2)&nbsp;&nbsp;&nbsp;
16966      </span>right face<br>
16967
16968
16969
16970
[153]16971
16972
[116]16973 <span style="font-weight: bold;">wall_heatflux(3)&nbsp;&nbsp;&nbsp;
16974      </span>south face<br>
16975
16976
16977
16978
[153]16979
16980
[116]16981 <span style="font-weight: bold;">wall_heatflux(4)&nbsp;&nbsp;&nbsp;
16982      </span>north face</div>
16983
16984
16985
16986
[153]16987
16988
[116]16989 <br>
16990
16991
16992
16993
16994
[153]16995
16996
[116]16997This parameter applies only in case of a non-flat <a href="#topography">topography</a>.&nbsp;The
16998parameter <a href="#random_heatflux">random_heatflux</a>
16999can be used to impose random perturbations on the internal
17000two-dimensional surface heat
17001flux field <span style="font-style: italic;">shf</span>
17002that is composed of <a href="#surface_heatflux">surface_heatflux</a>
17003at the bottom surface and <span style="font-weight: bold;">wall_heatflux(0)</span>
17004at the topography top face.&nbsp;</td>
17005
17006
17007
17008
[153]17009
17010
[116]17011 </tr>
17012
17013
17014
17015
[153]17016
17017
[116]17018 
17019 
17020 
17021 
17022 
[153]17023 
17024 
[116]17025  </tbody>
17026</table>
17027
17028
17029
17030
[153]17031
17032
[116]17033<br>
17034
17035
17036
17037
17038
[153]17039
17040
[116]17041<p style="line-height: 100%;"><br>
17042
17043
17044
17045
[153]17046
17047
[116]17048<font color="#000080"><font color="#000080"><a href="chapter_4.0.html"><font color="#000080"><img name="Grafik1" src="left.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="index.html"><font color="#000080"><img name="Grafik2" src="up.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="chapter_4.2.html"><font color="#000080"><img name="Grafik3" src="right.gif" align="bottom" border="2" height="32" width="32"></font></a></font></font></p>
17049
17050
17051
17052
17053
[153]17054
17055
[116]17056<p style="line-height: 100%;"><i>Last
17057change:&nbsp;</i> $Id: chapter_4.1.html 305 2009-04-27 11:58:42Z raasch $ </p>
17058
17059
17060
17061
17062
[153]17063
17064
[116]17065<br>
17066
17067
17068
17069
[153]17070
17071
[116]17072<br>
17073
17074
17075
17076
17077
[153]17078
17079
[160]17080</body></html>
Note: See TracBrowser for help on using the repository browser.