Changes between Version 24 and Version 25 of doc/tec/radiation


Ignore:
Timestamp:
Apr 5, 2016 9:37:13 AM (9 years ago)
Author:
maronga
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/radiation

    v24 v25  
    33
    44== Constant radiation ==
    5 Not really being a radiation model, this option allows for prescribing the net radiation at the surface (e.g. as driving for the [wiki:doc/tec/lsm land surface model]). The user can use the user interface in order to modify the net radiation during the run. For more information, see [wiki:doc/app/radpar#net_radiation net_radiation].
     5Not really being a radiation model, this option allows for prescribing the net radiation at the surface (e.g. as driving for the [wiki:doc/tec/lsm land surface model]). The user has the possibility to modify the net radiation during the run via the [wiki:doc/app/userint user interface]. For more information, see [wiki:doc/app/radpar#net_radiation net_radiation]. Note that this scheme limits several parameterizations in the land surface scheme that require shortwave and longwave radiative fluxes.
    66
    77
     
    99A simple clear sky radiation model can be used for simulations without clouds and highly-parametrized radiation fluxes.
    1010
     11=== Radiation budget ===
     12The radiation budget at the Earth's surface reads
     13{{{
     14#!Latex
     15\begin{equation*}
     16R_\mathrm{n} = SW_\mathrm{in} - SW_\mathrm{out} + LW_\mathrm{in} - LW_\mathrm{out}
     17\end{equation*}
     18}}}
     19with ''R'',,n,,, ''SW'',,in,,, ''SW'',,out,,, ''LW'',,in,,, ''LW'',,out,, being the net radiation, shortwave incoming (downward), shortwave outgoing (upward), longwave incoming (downward), and longwave outgoing (upward) flux, respectively.
     20
     21=== Parameterization  of radiative fluxes ===
     22
     23The shortwave outgoing radiative flux depends on the surface albedo ''α'':
     24{{{
     25#!Latex
     26\begin{equation*}
     27SW_\mathrm{out} = \alpha\ SW_\mathrm{in}
     28\end{equation*}
     29}}}
     30The longwave outgoing radiative flux can be parameterized as
     31{{{
     32#!Latex
     33\begin{equation*}
     34LW_\mathrm{out} = \epsilon\ \sigma\ T_0^4
     35\end{equation*}
     36}}}
     37where ''ε'' is the surface emissivity and ''σ'' = 5.67 * 10^-8^ W m^-2^ K^-4^ is the Stefan-Boltzmann constant. ''T'',,0,, is the skin temperature provided by the solver for the surface energy budget.
     38
     39The longwave incoming radiative flux follows a very simple parameterization:
     40{{{
     41#!Latex
     42\begin{equation*}
     43LW_\mathrm{in} = \epsilon_\mathrm{atm}\ \sigma\ T_1^4
     44\end{equation*}
     45}}}
     46with
     47{{{
     48#!Latex
     49$\epsilon_\mathrm{atm} = 0.8$: Emissivity of the atmosphere\\
     50$T_1$: Temperature at first grid level
     51}}}
     52
     53The shortwave incoming radiative flux is calculated from
     54{{{
     55#!Latex
     56\begin{equation*}
     57SW_\mathrm{in} = S_0\ \tau\ \sin(\varPsi)
     58\end{equation*}
     59}}}
     60with
     61{{{
     62#!Latex
     63$S_0 = 1368 W m^{-2}$: Solar constant\\
     64$\varPsi$: Zenith angle
     65}}}
     66and the transmissivity of the atmosphere ''τ'':
     67{{{
     68#!Latex
     69\begin{equation*}
     70\tau = 0.6 + 0.2\ \sin(\varPsi)
     71\end{equation*}
     72}}}
     73''ψ'' is the cosine of the zenith angle, depending on time, date and location. Input parameters are
     74* day of year (1-365)
     75* UTC time (0:00 - 23:59)
     76* Longitude (-180° - 180°)
     77* Latitude (-90° - 90°)
     78
     79''ψ'' is calculated from the following system of equations:
     80{{{
     81#!Latex
     82\begin{equation*}
     83D = \arcsin \left[ d1 * \sin\left(d2 * day - d3\right) \right]
     84\end{equation*}
     85}}}
     86where D is the declination of the sun with
     87{{{
     88#!Latex
     89$d1 = \sin \left(\dfrac{23.45 * \pi}{180}\right)$\\
     90$d2 = \dfrac{2 \pi}{365}$\\
     91$d3 = 81\ d2$
     92}}}
     93The hour angle is then given by
     94{{{
     95#!Latex
     96\begin{equation*}
     97H = 2 \pi \left(\dfrac{t_\mathrm{UTC}}{86400}\right) + lon - \pi
     98\end{equation*}
     99}}}
     100where ''t'',,UTC,, is the current UTC time and ''lon'' is longitude.
     101
     102The cosine of the zenith angle ''Z'' is computed as
     103{{{
     104#!Latex
     105\begin{equation*}
     106Z = \sin(lat) \sin(D) + \cos(lat) \cos(D) \cos(H)
     107\end{equation*}
     108}}}
     109where ''lat'' is latitude.
     110
    11111
    12112== RRTMG ==
    13113Since r1585 PALM can be used in combination with the [http://rtweb.aer.com/rrtm_frame.html RRTMG] radiation code. The RRTMG source code is shipped along with PALM, but it is not part of the model (this means that RRTMG is put under a difference licence than PALM, which e.g. forbids reselling of the code). Unlike most embedded modules in PALM, the RRTMG is thus used as external library and linked to the default PALM code. This in turn means that RRTMG must be installed in advance on the host where PALM shall be executed. The next section explains the installation of RRTMG and how to use it in PALM. Please note that RRTMG requires to use the netCDF data format.
     114
     115=== Basics ===
     116
     117
    14118
    15119=== Installation ===