Changes between Version 18 and Version 19 of doc/tec/noncyclic


Ignore:
Timestamp:
Nov 12, 2015 12:48:24 PM (9 years ago)
Author:
boeske
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/noncyclic

    v18 v19  
    2727{{{
    2828#!Latex
    29  s^{t + \Delta t}(k,j,-1) = s_{init}(k) \; . \quad(1)
     29$s^{t + \Delta t}(k,j,-1) = s_{init}(k) \; . \quad(1)$
    3030 }}}
    3131t denotes the time, Δt the time step and s,,init,, the initialization profile of the scalar quantities which is constant in time.
     
    3434{{{
    3535#!Latex
    36  e^{t + \Delta t}(k,j,-1) = e^{t + \Delta t}(k,j,0) \; . \quad(2)
     36$e^{t + \Delta t}(k,j,-1) = e^{t + \Delta t}(k,j,0) \; . \quad(2)$
    3737 }}}
    3838To prevent gravity waves from being reflected at the inflow, a relaxation term can be added to the prognostic equations for the potential temperature θ (Davies, 1976):
    3939{{{
    4040#!Latex
    41  \theta^{t+1}(d) = ... - \Delta t \cdot K(d) \cdot \left( \theta^{t}(d) - \theta_{init} \right) \; . \quad(3)
     41$\theta^{t+1}(d) = ... - \Delta t \cdot K(d) \cdot \left( \theta^{t}(d) - \theta_{init} \right) \; . \quad(3)$
    4242 }}}
    4343Here, d is the distance normal to the wall and θ,,init,, the initial value of the potential temperature, which corresponds to the value at the inflow boundary.
     
    4646{{{
    4747#!Latex
    48 K(d) =
     48$K(d) =
    4949\begin{cases}
    5050d_f \sin^2\left( \frac{\pi}{2} \frac{d_w - d}{d_w} \right) , \text{for } d < d_w \\  \qquad\quad  0  \qquad \quad \;\;\; , \text{for } d \ge d_w
    51 \end{cases} . \quad (4)
     51\end{cases} . \quad (4)$
    5252 }}}
    5353d,,f,, is a damping factor to control the damping intensity, and d,,w,, is the width of the relaxation region extending from the inflow. Quantities d,,f,, and d,,w,, can be set with parameters [../../app/inipar/#pt_damping_factor pt_damping_factor] and [../../app/inipar/#pt_damping_width pt_damping_width], respectively.
     
    6565{{{
    6666#!Latex
    67  \partial_t \psi  + c_{\psi} \partial_n \psi  = 0 \; , \quad (5)
     67$\partial_t \psi  + c_{\psi} \partial_n \psi  = 0 \; , \quad (5)$
    6868}}}
    6969which considers flow disturbances propagating with the mean flow and by waves.
     
    7676{{{
    7777#!Latex
    78    c_{\psi} = - \frac{\partial_t \psi}{\partial_n \psi}  \; . \quad (6)
     78$c_{\psi} = - \frac{\partial_t \psi}{\partial_n \psi}  \; . \quad (6)$
    7979}}}
    8080
     
    8484{{{
    8585#!Latex
    86    c_{\psi} = - c_{max} \frac{\psi^t_{nx} - \psi^{t - \Delta t}_{nx} }{ \psi^{t-\Delta t}_{nx} - \psi^{t - \Delta t}_{nx-1} }   \; , \quad (7)
     86$c_{\psi} = - c_{max} \frac{\psi^t_{nx} - \psi^{t - \Delta t}_{nx} }{ \psi^{t-\Delta t}_{nx} - \psi^{t - \Delta t}_{nx-1} }   \; , \quad (7)$
    8787}}}
    8888with the maximum phase velocity
    8989{{{
    9090#!Latex
    91   c_{max} = \frac{\Delta x}{\Delta t} \; . \quad (8)
     91$c_{max} = \frac{\Delta x}{\Delta t} \; . \quad (8)$
    9292}}}
    9393The phase velocity has to be in the range of 0 ≤ c,,ψ,, < c,,max,, because negative values propagate waves back to the inner domain. c,,max,, represents the maximum phase velocity that ensures numerical stability (Courant-Friedrichs-Lewy condition).
     
    9696{{{
    9797#!Latex
    98   \psi^{t+\Delta t}_{nx+1} = \psi^{t}_{nx+1} - \frac{\overline{c}_{\psi}}{c_{max}} (\psi^{t}_{nx+1} - \psi^{t}_{nx}) \; , \quad (9)
     98$\psi^{t+\Delta t}_{nx+1} = \psi^{t}_{nx+1} - \frac{\overline{c}_{\psi}}{c_{max}} (\psi^{t}_{nx+1} - \psi^{t}_{nx}) \; , \quad (9)$
    9999}}}
    100100with the phase velocity averaged parallel to the outflow:
    101101{{{
    102102#!Latex
    103   \overline{c}_{\psi} = \frac{1}{ny+1} \sum_{j=0}^{ny}  c_{\psi, j} \; . \quad (10)
     103$\overline{c}_{\psi} = \frac{1}{ny+1} \sum_{j=0}^{ny}  c_{\psi, j} \; . \quad (10)$
    104104}}}
    105105In Orlanskis work, the phase velocity c,,ψ,, was not averaged along the outflow, which is sufficient for simplified flows as shown by Yoshida and Watanabe (2010).
     
    113113{{{
    114114#!Latex
    115 \begin{tabular}{|c |c |c |c| c|}
     115$\begin{tabular}{|c |c |c |c| c|}
    116116\hline
    117117  & Right-left flow  &\multicolumn{2}{c|}{ South-north flow} & North-south flow \\
     
    129129  & $(nx - 1) \rightarrow 1$ &  $(nx - 1) \rightarrow 1$  &  &  \\
    130130\hline
    131 \end{tabular}
     131\end{tabular} $
    132132}}}
    133133
     
    137137{{{
    138138#!Latex
    139  \psi^{t + \Delta t}(k,j,nx+1) = \psi^{t}(k,j,nx) \; , \quad (11)
     139$\psi^{t + \Delta t}(k,j,nx+1) = \psi^{t}(k,j,nx) \; , \quad (11)$
    140140}}}
    141141with ψ = {u,v,w}.
     
    149149{{{
    150150#!Latex
    151   \dot{m} = \sum_{k=1}^{nz-1} \Delta z(k) \sum_{l=0}^{nx_i} \psi(l,k) \Delta x_i \; . \quad (12)
     151$\dot{m} = \sum_{k=1}^{nz-1} \Delta z(k) \sum_{l=0}^{nx_i} \psi(l,k) \Delta x_i \; . \quad (12)$
    152152}}}
    153153where Δx,,i,, and ψ is equal to Δy (Δx) and u (v) in case of [../../app/inipar/#bc_lr bc_lr] ([../../app/inipar/#bc_ns bc_ns]).
     
    155155{{{
    156156#!Latex
    157  \psi_{corr} = \frac{\dot{m}_{inflow} - \dot{m}_{outflow}}{A} \; ,
     157$\psi_{corr} = \frac{\dot{m}_{inflow} - \dot{m}_{outflow}}{A} \; ,$
    158158}}}
    159159where A is the area of the boundary
    160160{{{
    161161#!Latex
    162  A = \sum_1^{nz-1} \Delta z \sum_0^{nx_i} \Delta x_i \; .
     162$A = \sum_1^{nz-1} \Delta z \sum_0^{nx_i} \Delta x_i \; .$
    163163}}}
    164164The streamwise velocity at the outflow is corrected by adding ψ,,corr,, at each grid point of the outflow between bottom and top (k=1:nz), in order to guarantee that the mass leaving the domain exactly balances the one entering it.