Changes between Version 64 and Version 65 of doc/tec/microphysics


Ignore:
Timestamp:
Feb 27, 2019 3:04:05 PM (6 years ago)
Author:
westbrink
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/microphysics

    v64 v65  
    33Attention! This page is under construction!
    44
    5 
     5PALM offers an embedded bulk cloud microphysics representation that takes into account warm (i.e., no ice) cloud-microphysical processes.
    66\\\\
    77Click on any icon below to get to the respective part of the documentation.\\\\
    8 [[Image(Button_References.png,120px,link=wiki:doc/app/bcmref)]] \\\\
     8[[Image(Button_References.png,120px,link=wiki:doc/app/bcmref)]]
    99[[Image(Button_InputPara.png,120px,link=wiki:doc/app/bcmpar)]]
    10 
    11 
    12 PALM offers an embedded bulk cloud microphysics representation that takes into account warm (i.e., no ice) cloud-microphysical processes. Therefore, PALM solves the prognostic equations for the total water mixing ratio
    13 {{{
    14 #!Latex
    15 \begin{align*}
    16   & q = q_\mathrm{v} + q_\mathrm{l},
    17 \end{align*}
    18 }}}
    19 instead of ''q'',,v,,, and for a linear approximation of the liquid water potential temperature ([#emanuel1994 e.g., Emanuel, 1994])
    20 {{{
    21 #!Latex
    22 \begin{align*}
    23   \theta_\mathrm{l} = \theta - \frac{L_\mathrm{V}}{c_p \Pi}
    24   q_\mathrm{l}\,,
    25 \end{align*}
    26 }}}
    27 instead of ''θ'' as described in Sect. [wiki:doc/tec/gov governing equations]. Since ''q'' and ''θ'',,l,, are conserved quantities for wet adiabatic processes, condensation/evaporation is not considered for these variables.
    28 
    29 PALM offers three different schemes ([#kessler1969 Kessler (1969)], [#seifert2001 Seifert and Beheng (2001],[#seifert2006  2006)], [#morrison2007 Morrison et al. (2007)]) for the treatment of liquid phase microphysics. The [#kessler1969 Kessler (1969)] scheme provides a computational inexpensive way for the bulk microphysics. However, it only converts supersaturation into liquid water and considering autoconversion after a parameterization of [#kessler1969 Kessler (1969)].
    30 
    31 A more detailed parameterization is given by following the two-moment scheme of [#seifert2001 Seifert and Beheng (2001],[#seifert2006  2006)], which is based on the separation of the droplet spectrum into droplets with radii < 40 μm (cloud droplets) and droplets with radii ≥ 40 μm (rain droplets). Here, the model predicts the first two moments of these partial droplet spectra, namely cloud and rain
    32 droplet number concentration (''N'',,c,, and ''N'',,r,,, respectively) as well as cloud and rain water mixing ratio
    33 (''q'',,c,, and ''q'',,r,,, respectively). Consequently, ''q'',,l,, is the sum of both ''q'',,c,, and ''q'',,r,,. The moments' corresponding microphysical tendencies are derived by assuming the partial droplet spectra to follow a gamma distribution that can be described by the predicted quantities and empirical relationships for the distribution's slope and shape parameters. For a detailed derivation of these terms, see [#seifert2001 Seifert and Beheng (2001],[#seifert2006  2006)].
    34 
    35 We employ the computational efficient implementation of this scheme as used in the UCLA-LES ([#savic2008 Savic-Jovcic and Stevens, 2008]) and DALES ([#heus2010 Heus et al., 2010]) models. We thus solve only two additional prognostic equations for ''N'',,r,, and ''q'',,r,,:
    36 {{{
    37 #!Latex
    38 \begin{align*}
    39  \frac{\partial N_\mathrm{r}}{\partial t} = - u_j \frac{\partial N_\mathrm{r}}{\partial x_j} - \frac{\partial}{\partial x_j}\left(\overline{u_j^{\prime\prime}N_\mathrm{r}^{\prime\prime}}\right) +   \Psi_{N_\mathrm{r}},\\
    40  \frac{\partial q_\mathrm{r}}{\partial t} = - u_j
    41  \frac{\partial q_\mathrm{r}}{\partial x_j} - \frac{\partial}{\partial
    42    x_j}\left(\overline{u_j^{\prime\prime}q_\mathrm{r}^{\prime\prime}}\right)
    43  + \Psi_{q_\mathrm{r}},
    44 \end{align*}
    45 }}}
    46 with the sink/source terms ''Ψ'',,Nr,, and ''Ψ'',,qr,,, and the SGS fluxes
    47 {{{
    48 #!Latex
    49 \begin{align*}
    50   &  \overline{u_j^{\prime\prime}N_\mathrm{r}^{\prime\prime}} = -K_\mathrm{h} \:\frac{\partial q_\mathrm{r}} {\partial x_{i}}\,\\
    51   & \overline{u_j^{\prime\prime}q_\mathrm{r}^{\prime\prime}} =
    52   -K_\mathrm{h} \:\frac{\partial N_\mathrm{r}} {\partial
    53     x_{i}}\,
    54 \end{align*}
    55 }}}
    56 with ''N'',,c,, and ''q'',,c,, being a fixed parameter and a diagnostic quantity, respectively.
    57 
    58 The [#morrison2007 Morrison et al. (2007)] microphysics scheme can be understood as an extension of the scheme of [#seifert2001 Seifert and Beheng (2001],[#seifert2006  2006)], where ''N'',,c,, and ''q'',,c,, are prognostic quantities as well. Moreover, using the [#morrison2007 Morrison et al. (2007)] scheme includes an explicit calculation of diffusional growth and an activation parameterization.
    59 
    60 In the next subsections we will describe the diagnostic/prognostic determination (in dependence of the chosen scheme) of ''q'',,c,,. From Sect. [wiki:doc/tec/microphysics#Autoconversion autoconversion] on, the microphysical processes considered in the sink/source terms of ''θ'',,l,,, ''q'', ''N'',,r,, and ''q'',,r,,, as well as ''N'',,c,, and ''q'',,c,, for the [#morrison2007 Morrison et al. (2007)] scheme.
    61 {{{
    62 #!Latex
    63 \begin{align*}
    64   &  \Psi_{\theta_\mathrm{l}} = - \frac{L_\mathrm{v}}{c_p \Pi} \varphi_q,\\
    65   &  \Psi_{q}  = \left.\frac{\partial q}{\partial t} \right|_\text{sed, c} + \left.\frac{\partial q}{\partial t} \right|_\text{sed, r},\\
    66   &  \Psi_{N_\mathrm{r}} = \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_{\text{auto}}+ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_\text{slf/brk}+ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_{\text{evap}}+ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_\text{sed, r},\\
    67   & \Psi_{q_\mathrm{r}} = \left.\frac{\partial
    68       q_\mathrm{r}}{\partial t} \right|_{\text{auto}} +
    69   \left.\frac{\partial q_\mathrm{r}}{\partial t}
    70   \right|_{\text{accr}}+ \left.\frac{\partial q_\mathrm{r}}{\partial
    71       t} \right|_{\text{evap}}+ \left.\frac{\partial
    72       q_\mathrm{r}}{\partial t} \right|_\text{sed, r},\\
    73   &  \Psi_{N_\mathrm{c}} = \left.\frac{\partial N_\mathrm{c}}{\partial t} \right|_{\text{acti}}+ \left.\frac{\partial N_\mathrm{c}}{\partial t} \right|_\text{auto}+ \left.\frac{\partial N_\mathrm{c}}{\partial t} \right|_{\text{evap}}+ \left.\frac{\partial N_\mathrm{c}}{\partial t} \right|_\text{sed, c},\\
    74   & \Psi_{q_\mathrm{c}} = \left.\frac{\partial
    75       q_\mathrm{c}}{\partial t} \right|_{\text{auto}} +
    76   \left.\frac{\partial q_\mathrm{c}}{\partial t}
    77   \right|_{\text{accr}}+ \left.\frac{\partial q_\mathrm{c}}{\partial
    78       t} \right|_{\text{cond,evap}}+ \left.\frac{\partial
    79       q_\mathrm{c}}{\partial t} \right|_\text{sed, c},
    80 \end{align*}
    81 }}}
    82 are used in the formulations of [#seifert2006 Seifert and Beheng (2006)] unless explicitly specified. Section [wiki:doc/tec/microphysics#Turbulenceclosure turbulence closure] gives an overview of the necessary changes for the turbulence closure [wiki:doc/tec/sgs#Turbulenceclosure (cf. Sect. turbulence closure)] using ''q'' and ''θ'',,l,, instead of ''q'',,v,, and ''θ'', respectively.
    83 
    84 [[Image(Table4.png,600px,border=1)]]
    85 
    86 == Activation of cloud droplets ==
    87 
    88 The use of the  [#morrison2007 Morrison et al. (2007)] scheme enables a prognostic equation for the cloud droplet number concentration. Here, it is assumed that cloud droplets are activated in dependence of the current supersaturation. This basic method is called Twomey activation scheme with the general form of
    89 {{{
    90 #!Latex
    91 \begin{align*}
    92   & N_\mathrm{CCN}=N_\mathrm{0} \times S^\mathrm{k},
    93 \end{align*}
    94 }}}
    95 where ''N'',,CCN,, is the number of activated aerosols, ''N'',,0,, is the number concentration of dry aerosol, S is the supersaturation and k is power index between 0 and 1. In PALM the supersaturation is calculated explicitly by their thermodynamic fields of potential temperature and water vapor mixing ratio. However, curvature and solution effects can be considered with an analytical extension of the Twomey type activation scheme of [#khvorostyanov2006 Khvorostyanov and Curry (2006)]. By doing so, the number of activated aerosol is calculated by
    96 {{{
    97 #!Latex
    98 \begin{align*}
    99   & N_\mathrm{CCN}=\frac{N_\mathrm{0}}{2} [1-\text{erf}(u)];\hspace{1.5cm} u = \frac{\ln(S_\mathrm{0}/S)}{\sqrt{2} \ln \sigma_\mathrm{s}}
    100 \end{align*}
    101 }}}
    102 where erf is the Gaussian error function, and
    103 {{{
    104 #!Latex
    105 \begin{align*}
    106    S_\mathrm{0} & = r_\mathrm{d0}^{-(1+\beta)} \left(\frac{4A^3}{27b}\right)^{1/2},\\
    107    \sigma_\mathrm{s} & = \sigma_\mathrm{d}^{1+\beta}.
    108 \end{align*}
    109 }}}
    110 Here A is the Kelivn parameter and b and ''β'' depend on the chemical composition and physical properties of the dry aerosol.
    111 Since aerosol is not predicted in this scheme, the number of aerosols previously activated is assumed to be equal to the number of droplets ''N'',,c,,.
    112 Therefore, the actual activation rate is given by 
    113 {{{
    114 #!Latex
    115 \begin{align*}
    116     \left. \frac{\partial N_\mathrm{c}}{\partial t} \right|_{\text{acti}} = \text{max}\left(\frac{N_\mathrm{CCN}-N_\mathrm{c}}{\Delta t},0\right).
    117 \end{align*}
    118 }}}
    119 == Diffusional growth of cloud water ==
    120 
    121 By the usage of [#seifert2001 Seifert and Beheng (2001],[#seifert2006  2006)] scheme the diagnostic estimation of ''q'',,c,, is based on the assumption that water supersaturations are immediately removed by the diffusional growth of cloud droplets only. This can be justified since the bulk surface area of cloud droplets exceeds that of rain drops considerably ([#stevens2008 Stevens and Seifert, 2008]). Following this saturation adjustment approach, ''q'',,c,, is obtained by
    122 {{{
    123 #!Latex
    124 \begin{align*}
    125   & q_\mathrm{c}=\max{\left(0, q - q_\mathrm{r} - q_\mathrm{s}
    126     \right)},
    127 \end{align*}
    128 }}}
    129 where ''q'',,s,, is the saturation mixing ratio. Because ''q'',,s,, is a function of ''T'' (not predicted), ''q'',,s,, is computed from the liquid water temperature ''T'',,l,, = ''Π θ,,l,, in a first step:
    130 {{{
    131 #!Latex
    132 \begin{align*}
    133  q_\mathrm{s}(T_\mathrm{l}) = \frac{R_\mathrm{d}}{R_\mathrm{v}}
    134  \frac{p_\text{v, s}(T_\mathrm{l})}{p - p_\text{v, s}(T_\mathrm{l})},
    135 \end{align*}
    136 }}}
    137 using an empirical relationship for the saturation water vapor pressure ''p'',,v,s,, ([#bougeault1981 Bougeault, 1981]):
    138 {{{
    139 #!Latex
    140 \begin{align*}
    141   & p_\text{v, s}(T_\mathrm{l}) = 610.78 \text{Pa} \cdot
    142   \exp{\left(17.269\,\frac{T_\mathrm{l}-273.16\,\text{K}}{T_\mathrm{l}-35.86\,\text{K}}
    143     \right)}.
    144 \end{align*}
    145 }}}
    146 ''q'',,s,,(''T'') is subsequently calculated from a 1st-order Taylor series expansion of ''q'',,s,, at ''T'',,l,, ([#sommeria1977 Sommeria and Deardorff, 1977]):
    147 {{{
    148 #!Latex
    149 \begin{align*}
    150   & q_\mathrm{s}(T)=q_\mathrm{s}(T_\mathrm{l})\frac{1+\beta\,q}{1+
    151     \beta\,q_\mathrm{s}(T_\mathrm{l})},
    152 \end{align*}
    153 }}}
    154 with
    155 {{{
    156 #!Latex
    157 \begin{align*}
    158   & \beta = \frac{L_\mathrm{v}^2}{R_\mathrm{v} c_p
    159     T_\mathrm{l}^2}.
    160 \end{align*}
    161 }}}
    162 
    163 In contrast to that an explicit approach for the diffusional growth is applied in case of [#morrison2007 Morrison et al. (2007)]. The condensation rate is calculated following [#khairoutdinov2000 Khairoutdinov and Kogan (2000)] and given by
    164 {{{
    165 #!Latex
    166 \begin{align*}
    167   & \left.\frac{\partial q_\mathrm{c}}{\partial t}
    168   \right|_{\text{cond,evap}}= \frac{4
    169   \pi\,G(T,p)}{\rho_\mathrm{a}}S\, R_\mathrm{c},
    170 \end{align*}
    171 }}}
    172 where S is the supersaturation, ''R'',,c,, the integral radius and G(T,p) a function of temperature and pressure considering heat conductivity and diffusion.
    173 Using this explicit approach the used timestep must fulfill a new criterion, since it is assumed that the supersaturation is constant during one timestep. The typical diffusion timescale is given by [#arnason1971 Arnason and Brown (1971)] with
    174 {{{
    175 #!Latex
    176 \begin{align*}
    177   & \Delta t \leq 2 \tau
    178 \end{align*}
    179 }}}
    180 with
    181 {{{
    182 #!Latex
    183 \begin{align*}
    184   & \tau = (4\, \pi\,D_\mathrm{v}\,\langle r_\mathrm{c}\rangle)^{-1}.
    185 \end{align*}
    186 }}}
    187 However, in PALM this criterion is not explicitly checked. Too ensure that unrealistic condensation or evaporation rates are avoided this scheme is limited to the value of the saturation-adjustment scheme.
    188 == Autoconversion ==
    189 
    190 In the following Sects. [wiki:doc/tec/microphysics#Autoconversion Autoconversion] - [wiki:doc/tec/microphysics#Self-collectionandbreakup Self-collection and breakup] we describe collision and coalescence processes by applying the stochastic collection equation ([#pruppacher1997 e.g., Pruppacher and Klett, 1997, Chap. 15.3]) in the framework of the described two-moment scheme. As two species (cloud and rain droplets, hereafter also denoted as c and r, respectively) are considered only, there are three possible interactions affecting the rain quantities: autoconversion, accretion, and selfcollection. Autoconversion summarizes all merging of cloud droplets resulting in rain drops
    191 (c + c → r). Accretion describes the growth of rain drops by the collection of cloud droplets (r + c → r). Selfcollection denotes the merging of rain drops (r + r → r).
    192 
    193 The local temporal change of ''q'',,r,, due to autoconversion is
    194 {{{
    195 #!Latex
    196 \begin{align*}
    197   & \left.\frac{\partial q_\mathrm{r}}{\partial t}
    198   \right|_{\text{auto}}=\frac{K_{\text{auto}}}{20\,m_{\text{sep}}}\frac{(\mu_\mathrm{c} +2)
    199     (\mu_\mathrm{c} +4)}{(\mu_\mathrm{c} + 1)^2} q_\mathrm{c}^2
    200   m_\mathrm{c}^2 \cdot \left[1+
    201     \frac{\Phi_{\text{auto}}(\tau_\mathrm{c})}{(1-\tau_\mathrm{c})^2}\right]
    202   \rho_0.
    203 \end{align*}
    204 }}}
    205 Assuming that all new rain drops have a radius of 40 μm corresponding to the separation mass ''m'',,sep,, ''= 2.6 x 10^-10^'' kg, the local temporal change of ''N'',,r,, is
    206 {{{
    207 #!Latex
    208 \begin{align*}
    209   & \left.\frac{\partial N_\mathrm{r}}{\partial t}
    210   \right|_{\text{auto}}= \rho \left.\frac{\partial
    211       q_\mathrm{r}}{\partial t} \right|_{\text{auto}}
    212   \frac{1}{m_{\text{sep}}}.
    213 \end{align*}
    214 }}}
    215 Here, ''K'',,auto,, ''= 9.44 x 10^9^'' m^3^ kg^-2^ s^-1^ is the autoconversion kernel, ''μ'',,c,,'' = 1'' is the shape parameter of the cloud droplet gamma distribution and
    216 ''m'',,c,, ''= ρ q'',,c,, ''/ N'',,c,, is the mean mass of cloud droplets. ''τ'',,c,, ''= 1 - q'',,c,,'' / (q'',,c,,'' + q'',,r,,) is a dimensionless timescale steering the autoconversion similarity function
    217 {{{
    218 #!Latex
    219 \begin{align*}
    220   &
    221   \Phi_{\text{auto}}=600\,\cdot\,\tau_\mathrm{c}^{0.68}\,\left(1-\tau_\mathrm{c}^{0.68}\right)^3.
    222 \end{align*}
    223 }}}
    224 The increase of the autoconversion rate due to turbulence can be considered optionally by an increased autoconversion kernel depending on the local kinetic energy dissipation rate after [#seifert2010 Seifert et al. (2010)].
    225 
    226 == Accretion ==
    227 
    228 The increase of ''q'',,r,, by accretion is given by:
    229 {{{
    230 #!Latex
    231 \begin{align*}
    232   & \left.\frac{\partial q_\mathrm{r}}{\partial t}
    233   \right|_{\text{accr}}=
    234   K_{\text{accr}}\,q_\mathrm{c}\,q_\mathrm{r}\,\Phi_{\text{accr}}(\tau_\mathrm{c})
    235   \left(\rho_0\,\rho \right)^{\frac{1}{2}},
    236 \end{align*}
    237 }}}
    238 with the accretion kernel ''K'',,accr,,'' = 4.33'' m^3^ kg^-1^ s^-1^ and the similarity function
    239 {{{
    240 #!Latex
    241 \begin{align*}
    242   & \Phi_{\text{accr}}=\left(\frac{\tau_\mathrm{c}}{\tau_\mathrm{c} +
    243       5 \times 10^{-5}}\right)^4.
    244 \end{align*}
    245 }}}
    246 Turbulence effects on the accretion rate can be considered after using the kernel after [#seifert2010 Seifert et al. (2010)].
    247 
    248 == Self-collection and breakup ==
    249 
    250 Selfcollection and breakup describe merging and splitting of rain drops, respectively, which affect the rain water drop number concentration only. Their combined impact is parametrized as
    251 {{{
    252 #!Latex
    253 \begin{align*}
    254   & \left.\frac{\partial N_\mathrm{r}}{\partial t}
    255   \right|_\text{slf/brk}=
    256   -(\Phi_{\text{break}}(r)+1)\,\left.\frac{\partial
    257       N_\mathrm{r}}{\partial t} \right|_{\text{self}},
    258 \end{align*}
    259 }}}
    260 with the breakup function
    261 {{{
    262 #!Latex
    263 \begin{align*}
    264   & \Phi_{\text{break}} =
    265   \begin{cases} 0 & \text{for~}  \widetilde{r_\mathrm{r}} < 0.15 \times 10^{-3}\,\mathrm{m},\\
    266     K_{\text{break}} (\widetilde{r_\mathrm{r}}-r_{\text{eq}}) &
    267     \text{otherwise},
    268   \end{cases}
    269 \end{align*}
    270 }}}
    271 depending on the volume averaged rain drop radius
    272 {{{
    273 #!Latex
    274 \begin{align*}
    275   &
    276   \widetilde{r_\mathrm{r}}=\left(\frac{\rho\,q_\mathrm{r}}{\frac{4}{3}\,\pi\,\rho_{\mathrm{l},0}\,N_\mathrm{r}}
    277   \right)^{\frac{1}{3}},
    278 \end{align*}
    279 }}}
    280 the equilibrium radius ''r'',,eq,, ''= 550 x 10^-6^'' m and the breakup kernel ''K'',,break,, ''= 2000'' m^-1^. The local temporal change of ''N'',,r,, due to selfcollection is
    281 {{{
    282 #!Latex
    283 \begin{align*}
    284   & \left.\frac{\partial N_\mathrm{r}}{\partial t}
    285   \right|_{\text{self}}= K_{\text{self}}\,N_\mathrm{r}\,q_\mathrm{r}
    286   \left(\rho_0\,\rho \right)^{\frac{1}{2}},
    287 \end{align*}
    288 }}}
    289 with the selfcollection kernel ''K'',,self,, ''= 7.12'' m^3^ kg^-1^ s^-1^.
    290 
    291 == Evaporation of rainwater ==
    292 
    293 The evaporation of rain drops in subsaturated air (relative water supersaturation ''S < 0'') is parametrized following [#seifert2008 Seifert (2008)]:
    294 {{{
    295 #!Latex
    296 \begin{align*}
    297   & \left.\frac{\partial q_\mathrm{r}}{\partial t}
    298   \right|_{\text{evap}}= 2
    299   \pi\,G\,S\,\frac{N_\mathrm{r}\,\lambda_\mathrm{r}^{\mu_\mathrm{r}+1}}{\Gamma(\mu_\mathrm{r}+1)}\,f_\mathrm{v}\,\rho,
    300 \end{align*}
    301 }}}
    302 where
    303 {{{
    304 #!Latex
    305 \begin{align*}
    306   & G = \left[\frac{R_\mathrm{v}T}{K_\mathrm{v}p_\text{v, s}(T)} +
    307     \left(\frac{L_\mathrm{V}}{R_\mathrm{v} T}-1\right)
    308     \frac{L_\mathrm{V}}{\lambda_\mathrm{h}\,T}\right]^{-1},
    309 \end{align*}
    310 }}}
    311 with ''K'',,v,,'' = 2.3 x 10^-5^'' m^2^ s^-1^ being the molecular diffusivity water vapor in air and ''λ'',,h,,'' = 2.43 x 10^-2^'' W m^-1^ K^-1^ being the heat conductivity of air. Here, ''N'',,r,, ''λ'',,r,,^''μ'',,r,,''+1^ / Γ(μ'',,r,,+1) denotes the intercept parameter of the rain drop gamma distribution with ''Γ'' being the gamma-function. Following [#stevens2008 Stevens and Seifert (2008)], the slope parameter reads as
    312 {{{
    313 #!Latex
    314 \begin{align*}
    315   & \lambda_\mathrm{r} = \frac{\left((\mu_\mathrm{r}+3)
    316       (\mu_\mathrm{r}+2) (\mu_\mathrm{r}+1)\right)^{\frac{1}{3}}}{2
    317     \cdot \widetilde{r_\mathrm{r}}},
    318 \end{align*}
    319 }}}
    320 with ''μ'',,r,, being the shape parameter, given by
    321 {{{
    322 #!Latex
    323 \begin{align*}
    324   & \mu_\mathrm{r} = 10\,\cdot\,\left(1 +
    325     \tanh{\left(1200\,\cdot\,\left(2 \cdot \widetilde{r_\mathrm{r}} -
    326           0.0014 \right)\right)} \right).
    327 \end{align*}
    328 }}}
    329 In order to account for the increased evaporation of falling rain drops, the so-called ventilation effect, a ventilation factor ''f'',,v,, is calculated optionally by a series expansion considering the rain drop size distribution ([#seifert2008 Seifert, 2008, Appendix]).
    330 
    331 The complete evaporation of rain drops (i.e., their evaporation to a size smaller than the separation radius of 40 µm) is
    332 parametrized as
    333 {{{
    334 #!Latex
    335 \begin{align*}
    336   & \left.\frac{\partial N_\mathrm{r}}{\partial t}
    337   \right|_{\text{evap}}= \gamma\,\frac{N_\mathrm{r}}{\rho
    338     q_\mathrm{r}}\,\left.\frac{\partial q_\mathrm{r}}{\partial t}
    339   \right|_{\text{evap}},
    340 \end{align*}
    341 }}}
    342 with ''γ = 0.7'' (see also [#heus2010 Heus et al., 2010]).
    343 
    344 == Sedimentation of cloudwater ==
    345 
    346 As shown by [#ackerman Ackerman et al. (2009)], the sedimentation of cloud water has to be taken in account for the simulation of stratocumulus clouds. They suggest the cloud water sedimentation flux to be calculated as
    347 {{{
    348 #!Latex
    349 \begin{align*}
    350   & F_{q_\mathrm{c}} = k \left(\frac{4}{3}
    351     \pi\rho_\mathrm{l}N_\mathrm{c}\right)^{-2/3} \left(\rho
    352     q_\mathrm{c}\right)^{\frac{5}{3}} \exp{\left(5
    353       \ln^2{\sigma_\mathrm{g}}\right)},
    354 \end{align*}
    355 }}}
    356 based on a Stokes drag approximation of the terminal velocities of log-normal distributed cloud droplets.  Here, ''k = 1.2 x 10^8^'' m^-1^ s^-1^ is a parameter and ''σ'',,g,, ''= 1.3'' the geometric SD of the cloud droplet size distribution ([#geoffroy Geoffroy et al., 2010]). The tendency of ''q'' results from the sedimentation flux divergences and reads as
    357 {{{
    358 #!Latex
    359 \begin{align*}
    360   & \left.\frac{\partial q}{\partial t} \right|_\text{sed, c}= -
    361   \frac{\partial F_{q_\mathrm{c}}}{\partial z} \frac{1}{\rho}.
    362 \end{align*}
    363 }}}
    364 
    365 == Sedimentation of rainwater ==
    366 
    367 The sedimentation of rain water is implemented following [#stevens2008 Stevens and Seifert (2008)]. The sedimentation velocities are based on an empirical relation for the terminal fall velocity after [#rogers1993 Rogers et al. (1993)]. They are given by
    368 {{{
    369 #!Latex
    370 \begin{align*}
    371   & w_{N_\mathrm{r}} = \left(9.65\,\text{m\,s}^{-1} -
    372     9.8\,\text{m\,s}^{-1} \left(1+
    373       600\,\text{m}/\lambda_\mathrm{r}\right)^{-(\mu_\mathrm{r} + 1)}
    374   \right),
    375 \end{align*}
    376 }}}
    377 and
    378 {{{
    379 #!Latex
    380 \begin{align*}
    381   & w_{q_\mathrm{r}} = \left(9.65\,\text{m\,s}^{-1} -
    382     9.8\,\text{m\,s}^{-1} \left(1+
    383       600\,\text{m}/\lambda_\mathrm{r}\right)^{-(\mu_\mathrm{r} + 4)}
    384   \right).
    385 \end{align*}
    386 }}}
    387 The resulting sedimentation fluxes ''F'',,Nr,, and ''F'',,qr,, are calculated using a semi-Lagrangian
    388 scheme and a slope limiter (see [#stevens2008 Stevens and Seifert, 2008], their Appendix A). The resulting tendencies read as
    389 {{{
    390 #!Latex
    391 \begin{align*}
    392  &
    393  \left.\frac{\partial q_\mathrm{r}}{\partial t} \right|_\text{sed, r}= -\frac{\partial F_{q_\mathrm{r}}}{\partial z},~ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_\text{sed, r}= -\frac{\partial F_{N_\mathrm{r}}}{\partial z},\;\text{and}~ \left.\frac{\partial q}{\partial t} \right|_\text{sed, r}=
    394  \left.\frac{\partial q_\mathrm{r}}{\partial t} \right|_\text{sed, r}.
    395 \end{align*}
    396 }}}
    397 
    398 == Turbulence closure ==
    399 
    400 Using bulk cloud microphysics, PALM predicts liquid water temperature ''θ'',,l,, and total water mixing ratio ''q'' instead of ''θ''
    401 and ''q'',,v,,. Consequently, some terms in the Eq. for
    402 {{{
    403 #!Latex
    404 $\overline{w^{\prime\prime}{\theta_{\mathrm{v}}}^{\prime\prime}}$
    405 }}}
    406 of Sect. [wiki:/doc/tec/sgs turbulence closure] are unknown. We thus follow [#cuijpers1993 Cuijpers and Duynkerke (1993)] and calculate the SGS buoyancy flux from the known SGS fluxes
    407 {{{
    408 #!Latex
    409 $\overline{w^{\prime\prime}{\theta_{\mathrm{l}}}^{\prime\prime}}$
    410 }}}
    411 and
    412 {{{
    413 #!Latex
    414 $\overline{w^{\prime\prime}{q}^{\prime\prime}}$.
    415 }}}
    416 In unsaturated air (''q'',,c,, = 0) the Eq. for
    417 {{{
    418 #!Latex
    419 $\overline{w^{\prime\prime}
    420     {\theta_{\mathrm{v}}}^{\prime\prime}}$
    421 }}}
    422 of Sect. [wiki:/doc/tec/sgs turbulence closure] is then replaced by
    423 {{{
    424 #!Latex
    425 \begin{align*}
    426   & \overline{w^{\prime\prime}
    427     {\theta_{\mathrm{v}}}^{\prime\prime}}=K_1\,\cdot\,\overline{w^{\prime\prime}
    428     {\theta_\mathrm{l}}^{\prime\prime}} +
    429   K_2\,\cdot\,\overline{w^{\prime\prime} {q}^{\prime\prime}},
    430 \end{align*}
    431 }}}
    432 with
    433 {{{
    434 #!Latex
    435 \begin{align*}
    436   &  K_1 = 1+\left(\frac{R_\mathrm{v}}{R_\mathrm{d}}-1\right)\,\cdot\,q,\\
    437   & K_2 =
    438   \left(\frac{R_\mathrm{v}}{R_\mathrm{d}}-1\right)\,\cdot\,\theta_\mathrm{l},
    439 \end{align*}
    440 }}}
    441 and in saturated air (''q'',,c,, > 0) by
    442 {{{
    443 #!Latex
    444 \begin{align*}
    445   &
    446   K_1 =\frac{1 - q + \frac{R_\mathrm{v}}{R_\mathrm{d}} (q-q_\mathrm{l}) \cdot \left(1 + \frac{L_\mathrm{V}}{R_\mathrm{v} T} \right)}{1 + \frac{L_\mathrm{V}^2}{R_\mathrm{v} c_p T^2} (q-q_\mathrm{l})},\\
    447   & K_2 = \left(\frac{L_\mathrm{V}}{c_p T} K_1 - 1 \right)
    448   \cdot \theta.
    449 \end{align*}
    450 }}}
    451 
     10[[Image(Button_Applications.png,120px,link=wiki:doc/app/bcmapp)]]
     11[[Image(Button_Equations.png,120px,link=wiki:doc/app/bcmequ)]]