Changes between Version 4 and Version 5 of doc/tec/microphysics
- Timestamp:
- May 21, 2016 4:09:36 PM (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
doc/tec/microphysics
v4 v5 20 20 instead of ''θ'' as described in Sect. [wiki:doc/tec/gov governing equations]. Since ''q'' and ''θ'',,l,, are conserved quantities for wet adiabatic processes, condensation/evaporation is not considered for these variables. 21 21 22 Liquid phase microphysics are parametrized following the two-moment scheme of [#seifert2001 Seifert and Beheng (2001],[#seifert2006 2006)], which is based on the separation of the droplet spectrum into droplets with radii < 40 μm (cloud droplets) and droplets with radii ≥ 40 μm (rain droplets). The model predicts the first two moments of these partial droplet spectra, namely cloud and rain22 Liquid phase microphysics are parametrized following the two-moment scheme of [#seifert2001 Seifert and Beheng (2001],[#seifert2006 2006)], which is based on the separation of the droplet spectrum into droplets with radii < 40 μm (cloud droplets) and droplets with radii ≥ 40 μm (rain droplets). The model predicts the first two moments of these partial droplet spectra, namely cloud and rain 23 23 droplet number concentration (''N'',,c,, and ''N'',,r,,, respectively) as well as cloud and rain water specific humidity 24 (''q'',,c,, and ''q'',,r,,, respectively). Consequently, ''q'',,l,, is the sum of both ''q'',,c,, and ''q'',,r,,. The moments' corresponding microphysical tendencies are derived by assuming the partial droplet spectra to follow a gamma distribution that can be described by the predicted quantities and empirical relationships for the distribution's slope and shape parameters. For a detailed derivation of these terms, see [#seifert2001 Seifert and Beheng (2001],[#seifert2006 2006)].24 (''q'',,c,, and ''q'',,r,,, respectively). Consequently, ''q'',,l,, is the sum of both ''q'',,c,, and ''q'',,r,,. The moments' corresponding microphysical tendencies are derived by assuming the partial droplet spectra to follow a gamma distribution that can be described by the predicted quantities and empirical relationships for the distribution's slope and shape parameters. For a detailed derivation of these terms, see [#seifert2001 Seifert and Beheng (2001],[#seifert2006 2006)]. 25 25 26 26 We employ the computational efficient implementation of this scheme as used in the UCLA-LES ([#savic2008 Savic-Jovcic and Stevens, 2008]) and DALES ([#heus2010 Heus et al., 2010]) models. We thus solve only two additional prognostic equations for ''N'',,r,, and ''q'',,r,,: … … 62 62 \end{align*} 63 63 }}} 64 are used in the formulations of [#seifert2006 Seifert and Beheng (2006)] unless explicitly specified. Section [wiki:doc/tec/microphysics#Turbulenceclosure turbulence closure] gives an overview of the necessary changes for the turbulence closure [wiki:doc/tec/sgs#Turbulenceclosure cf. Sect. turbulence closure] using ''q'' and ''θ'',,l,, instead of ''q'',,v,, and $θ$, respectively.64 are used in the formulations of [#seifert2006 Seifert and Beheng (2006)] unless explicitly specified. Section [wiki:doc/tec/microphysics#Turbulenceclosure turbulence closure] gives an overview of the necessary changes for the turbulence closure [wiki:doc/tec/sgs#Turbulenceclosure (cf. Sect. turbulence closure)] using ''q'' and ''θ'',,l,, instead of ''q'',,v,, and $θ$, respectively. 65 65 66 66 == Diffusional growth of cloud water ==