Changes between Version 2 and Version 3 of doc/tec/microphysics


Ignore:
Timestamp:
May 21, 2016 4:02:36 PM (9 years ago)
Author:
Giersch
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/microphysics

    v2 v3  
    33= Cloud mircrophysics =
    44
     5PALM offers an embedded bulk cloud microphysics representation that takes into account the liquid water specific humidity and warm (i.e., no ice) cloud-microphysical processes. Therefore, PALM solves the prognostic equations for the total water content
     6{{{
     7#!Latex
     8\begin{align*}
     9  & q = q_\mathrm{v} + q_\mathrm{l},
     10\end{align*}
     11}}}
     12instead of ''q'',,v,,, and for a linear approximation of the liquid water potential temperature ([#emanuel1994 e.g., Emanuel, 1994])
     13{{{
     14#!Latex
     15\begin{align*}
     16  \theta_\mathrm{l} = \theta - \frac{L_\mathrm{V}}{c_p \Pi}
     17  q_\mathrm{l}\,,
     18\end{align*}
     19}}}
     20instead of ''θ'' as described in Sect. [wiki:doc/tec/gov governing equations]. Since ''q'' and ''θ'',,l,, are conserved quantities for wet adiabatic processes, condensation/evaporation is not considered for these variables.
     21
     22Liquid phase microphysics are parametrized following the two-moment scheme of [#seifert2001 Seifert and Beheng (2001],[#seifert2006 2006)], which is based on the separation of the droplet spectrum into droplets with radii < 40 μm (cloud droplets) and droplets with radii ≥ 40 μm (rain droplets). The model predicts the first two moments of these partial droplet spectra, namely cloud and rain
     23droplet number concentration (''N'',,c,, and ''N'',,r,,, respectively) as well as cloud and rain water specific humidity
     24(''q'',,c,, and ''q'',,r,,, respectively). Consequently, ''q'',,l,, is the sum of both ''q'',,c,, and ''q'',,r,,. The moments' corresponding microphysical tendencies are derived by assuming the partial droplet spectra to follow a gamma distribution that can be described by the predicted quantities and empirical relationships for the distribution's slope and shape parameters. For a detailed derivation of these terms, see [#seifert2001 Seifert and Beheng (2001],[#seifert2006 2006)].
     25
     26We employ the computational efficient implementation of this scheme as used in the UCLA-LES ([#savic2008 Savic-Jovcic and Stevens, 2008]) and DALES ([#heus2010 Heus et al., 2010]) models. We thus solve only two additional prognostic equations for ''N'',,r,, and ''q'',,r,,:
     27{{{
     28#!Latex
     29\begin{align*}
     30 \frac{\partial N_\mathrm{r}}{\partial t} = - u_j \frac{\partial N_\mathrm{r}}{\partial x_j} - \frac{\partial}{\partial x_j}\left(\overline{u_j^{\prime\prime}N_\mathrm{r}^{\prime\prime}}\right) +   \Psi_{N_\mathrm{r}},\\
     31 \frac{\partial q_\mathrm{r}}{\partial t} = - u_j
     32 \frac{\partial q_\mathrm{r}}{\partial x_j} - \frac{\partial}{\partial
     33   x_j}\left(\overline{u_j^{\prime\prime}q_\mathrm{r}^{\prime\prime}}\right)
     34 + \Psi_{q_\mathrm{r}},
     35\end{align*}
     36}}}
     37with the sink/source terms ''Ψ'',,Nr,, and ''Ψ'',,qr,,, and the SGS fluxes
     38{{{
     39#!Latex
     40\begin{align*}
     41  &  \overline{u_j^{\prime\prime}N_\mathrm{r}^{\prime\prime}} = -K_\mathrm{h} \:\frac{\partial q_\mathrm{r}} {\partial x_{i}}\,\\
     42  & \overline{u_j^{\prime\prime}q_\mathrm{r}^{\prime\prime}} =
     43  -K_\mathrm{h} \:\frac{\partial N_\mathrm{r}} {\partial
     44    x_{i}}\,
     45\end{align*}
     46}}}
     47with ''N'',,c,, and ''q'',,c,, being a fixed parameter and a diagnostic quantity, respectively.
     48
     49In the next subsections we will describe the diagnostic determination of ''q'',,c,,. From Sect. [wiki:doc/tec/microphysics#autoconversion autoconversion] on, the microphysical processes considered in the sink/source terms of ''θ'',,l,,, ''q'', ''N'',,r,, and ''q'',,r,,,
     50{{{
     51#!Latex
     52\begin{align*}
     53  &  \Psi_{\theta_\mathrm{l}} = - \frac{L_\mathrm{v}}{c_p \Pi} \varphi_q,\\
     54  &  \Psi_{q}  = \left.\frac{\partial q}{\partial t} \right|_\text{sed, c} + \left.\frac{\partial q}{\partial t} \right|_\text{sed, r},\\
     55  &  \Psi_{N_\mathrm{r}} = \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_{\text{auto}}+ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_\text{slf/brk}+ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_{\text{evap}}+ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_\text{sed, r},\\
     56  & \Psi_{q_\mathrm{r}} = \left.\frac{\partial
     57      q_\mathrm{r}}{\partial t} \right|_{\text{auto}} +
     58  \left.\frac{\partial q_\mathrm{r}}{\partial t}
     59  \right|_{\text{accr}}+ \left.\frac{\partial q_\mathrm{r}}{\partial
     60      t} \right|_{\text{evap}}+ \left.\frac{\partial
     61      q_\mathrm{r}}{\partial t} \right|_\text{sed, r},
     62\end{align*}
     63}}}
     64are used in the formulations of [#seifert2006 Seifert and Beheng (2006)] unless explicitly specified. Section [wiki:doc/tec/microphysics#turbulenceclosure turbulence closure] gives an overview of the necessary changes for the turbulence closure
     65(cf. Sect.~\ref{sec:closure}) using ''q'' and ''θ'',,l,, instead of ''q'',,v,, and $θ$, respectively.
     66
     67== Diffusional growth of cloud water ==
     68
     69== Autoconversion ==
     70
     71== Accretion ==
     72
     73== Self-collection and breakup ==
     74
     75== Evaporation of rainwater ==
     76
     77== Sedimentation of rainwater
     78
     79== Turbulence closure ==
     80
     81== Recent applications ==
    582
    683
    7 === Turbulence closure ===
     84== References ==
     85* [=#emanuel1994]'''Emanuel KA.''' 1994. Atmospheric Convection. Oxford University Press.
     86
     87* [=#seifert2001]'''Seifert A, Beheng KD.''' 2001. A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res. 59: 265–281.
     88
     89* [=#seifert2006]'''Seifert A, Beheng KD.''' 2006. A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol. Atmos. Phys. 92: 45–66.
     90
     91* [=#savic2008]'''Savic-Jovcic V, Stevens B.''' 2008. The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci. 65: 1587–1605. [http://dx.doi.org/10.1175/2007JAS2456.1 doi]
     92
     93* [=#heus2010]'''Heus T, van Heerwaarden CC, Jonker HJJ, Pier Siebesma A, Axelsen S, van den Dries K, Geoffroy O, Moene AF, Pino D, de Roode SR, Vilà-Guerau de Arellano J.''' 2010. Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev. 3: 415–444. [http://dx.doi.org/10.5194/gmd-3-415-2010 doi]
     94