| 326 | Using bulk cloud microphysics, PALM predicts liquid water temperature ''θ'',,l,, and total water content ''q'' instead of ''θ'' |
| 327 | and ''q'',,v,,. Consequently, some terms in the Eq. for |
| 328 | {{{ |
| 329 | #!Latex |
| 330 | $\overline{w^{\prime\prime}{\theta_{\mathrm{v}}}^{\prime\prime}}$ |
| 331 | }}} |
| 332 | of Sect. [wiki:/doc/tec/sgs turbulence closure] are unknown. We thus follow [#cuijpers1993 Cuijpers and Duynkerke (1993)] and calculate the SGS buoyancy flux from the known SGS fluxes |
| 333 | {{{ |
| 334 | #!Latex |
| 335 | $\overline{w^{\prime\prime}{\theta_{\mathrm{l}}}^{\prime\prime}}$ |
| 336 | }}} |
| 337 | and |
| 338 | {{{ |
| 339 | #!Latex |
| 340 | $\overline{w^{\prime\prime}{q}^{\prime\prime}}$. |
| 341 | }}} |
| 342 | In unsaturated air (''q'',,c,, = 0) the Eq. for |
| 343 | {{{ |
| 344 | #!Latex |
| 345 | $\overline{w^{\prime\prime} |
| 346 | {\theta_{\mathrm{v}}}^{\prime\prime}}$ |
| 347 | }}} |
| 348 | of Sect. [wiki:/doc/tec/sgs turbulence closure] is then replaced by |
| 349 | {{{ |
| 350 | #!Latex |
| 351 | \begin{align*} |
| 352 | & \overline{w^{\prime\prime} |
| 353 | {\theta_{\mathrm{v}}}^{\prime\prime}}=K_1\,\cdot\,\overline{w^{\prime\prime} |
| 354 | {\theta_\mathrm{l}}^{\prime\prime}} + |
| 355 | K_2\,\cdot\,\overline{w^{\prime\prime} {q}^{\prime\prime}}, |
| 356 | \end{align*} |
| 357 | }}} |
| 358 | with |
| 359 | {{{ |
| 360 | #!Latex |
| 361 | \begin{align*} |
| 362 | & K_1 = 1+\left(\frac{R_\mathrm{v}}{R_\mathrm{d}}-1\right)\,\cdot\,q,\\ |
| 363 | & K_2 = |
| 364 | \left(\frac{R_\mathrm{v}}{R_\mathrm{d}}-1\right)\,\cdot\,\theta_\mathrm{l}, |
| 365 | \end{align*} |
| 366 | }}} |
| 367 | and in saturated air (''q'',,c,, > 0) by |
| 368 | {{{ |
| 369 | #!Latex |
| 370 | \begin{align*} |
| 371 | & |
| 372 | K_1 =\frac{1 - q + \frac{R_\mathrm{v}}{R_\mathrm{d}} (q-q_\mathrm{l}) \cdot \left(1 + \frac{L_\mathrm{V}}{R_\mathrm{v} T} \right)}{1 + \frac{L_\mathrm{V}^2}{R_\mathrm{v} c_p T^2} (q-q_\mathrm{l})},\\ |
| 373 | & K_2 = \left(\frac{L_\mathrm{V}}{c_p T} K_1 - 1 \right) |
| 374 | \cdot \theta. |
| 375 | \end{align*} |
| 376 | }}} |
| 377 | |