| 293 | The sedimentation of rain water is implemented following [#stevens2008 Stevens and Seifert (2008)]. The sedimentation velocities are based on an empirical relation for the terminal fall velocity after [#rogers1993 Rogers et al. (1993)]. They are given by |
| 294 | {{{ |
| 295 | #!Latex |
| 296 | \begin{align*} |
| 297 | & w_{N_\mathrm{r}} = \left(9.65\,\text{m\,s}^{-1} - |
| 298 | 9.8\,\text{m\,s}^{-1} \left(1+ |
| 299 | 600\,\text{m}/\lambda_\mathrm{r}\right)^{-(\mu_\mathrm{r} + 1)} |
| 300 | \right), |
| 301 | \end{align*} |
| 302 | }}} |
| 303 | and |
| 304 | {{{ |
| 305 | #!Latex |
| 306 | \begin{align*} |
| 307 | & w_{q_\mathrm{r}} = \left(9.65\,\text{m\,s}^{-1} - |
| 308 | 9.8\,\text{m\,s}^{-1} \left(1+ |
| 309 | 600\,\text{m}/\lambda_\mathrm{r}\right)^{-(\mu_\mathrm{r} + 4)} |
| 310 | \right). |
| 311 | \end{align*} |
| 312 | }}} |
| 313 | The resulting sedimentation fluxes ''F'',,Nr,, and ''F'',,qr,, are calculated using a semi-Lagrangian |
| 314 | scheme and a slope limiter (see [#stevens2008 Stevens and Seifert, 2008], their Appendix A). The resulting tendencies read as |
| 315 | {{{ |
| 316 | #!Latex |
| 317 | \begin{align*} |
| 318 | & |
| 319 | \left.\frac{\partial q_\mathrm{r}}{\partial t} \right|_\text{sed, r}= -\frac{\partial F_{q_\mathrm{r}}}{\partial z},~ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_\text{sed, r}= -\frac{\partial F_{N_\mathrm{r}}}{\partial z},\;\text{and}~ \left.\frac{\partial q}{\partial t} \right|_\text{sed, r}= |
| 320 | \left.\frac{\partial q_\mathrm{r}}{\partial t} \right|_\text{sed, r}. |
| 321 | \end{align*} |
| 322 | }}} |
| 323 | |