40 | | In the MAS, //U,,0,,// is [wiki:/doc/app/agtpar#repuls_wall repuls_wall] and //R,,B,,// is [wiki:/doc/app/agtpar#sigma_rep_wall sigma_rep_wall].\\\\ |
| 40 | In the MAS, //U,,0,,// is [wiki:/doc/app/agtpar#repuls_wall repuls_wall] and //R,,B,,// is [wiki:/doc/app/agtpar#sigma_rep_wall sigma_rep_wall].\\ |
56 | | In the MAS, //V,,0,,// is [wiki:/doc/app/agtpar#repuls_agent repuls_agent] and //R,,β,,// is [wiki:/doc/app/agtpar#sigma_rep_agent sigma_rep_agent]. This agent repulsive force is only used if α and β are already colliding (i.e. two circles with centers at the respective agents' position with radius [wiki:/doc/app/agtpar#radius_agent radius_agent] are intersecting). Otherwise, a collision avoidance force according to ([#karamouzas2014 Karamouzas et. al, 2014]) is calculated: |
| 56 | In the MAS, //V,,0,,// is [wiki:/doc/app/agtpar#repuls_agent repuls_agent] and //R,,β,,// is [wiki:/doc/app/agtpar#sigma_rep_agent sigma_rep_agent]. This agent repulsive force is only used if α and β are already colliding (i.e. two circles with centers at the respective agents' position with radius [wiki:/doc/app/agtpar#radius_agent radius_agent] are intersecting). In this way, a quasi-solid core of the agents is realized. \\ |
| 57 | However, the standard Social-Force Model performs poorly regarding collision avoidance since it contains no mechanism to address this issue. This shows itself in frequent collisions between agents. \\ |
| 58 | To remedy this, [#karamouzas2014 Karamouzas et. al, 2014] performed statistical analysis on movement tracking data. They found a 'universal power law governing pedestrian interactions' regardless of scenario. This approach performs very well concerning close-range collision avoidance maneuvers of agents in a wide variety of cases. It causes agents to slow down, speed up or slightly alter their path to avoid colliding with each other. The corresponding force is calculated as |
73 | | describes the tendency of a pedestrian to accelerate toward its target. Here, τ,,α,, is a relaxation time ([wiki:/doc/app/agtpar#tau_accel_agent tau_accel_agent]) that describes how quickly the pedestrian approaches v,,0,, its desired walking speed with the direction to its current target, e.\\\\ |
| 75 | describes the tendency of a pedestrian to accelerate toward its current target (more on agent pathfinding **[wiki:doc/tec/mas/agent_pathfinding here]**). Here, τ,,α,, is a relaxation time ([wiki:/doc/app/agtpar#tau_accel_agent tau_accel_agent]) that describes how quickly the pedestrian approaches v,,0,, its desired walking speed.\\\\ |