Changes between Initial Version and Version 1 of doc/tec/mas/social_forces


Ignore:
Timestamp:
Aug 31, 2018 12:47:07 PM (6 years ago)
Author:
sward
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/mas/social_forces

    v1 v1  
     1This page is part of the MAS-documentation. \\
     2For an overview of all MAS-related pages, see the [wiki:doc/tec/mas MAS main page]\\\\
     3
     4= Social Forces =
     5
     6Agent movement and close-range interaction is implemented using a modified Social Force Model. The implementation uses concepts from the original Social Force Model ([#helbing1995 Helbing, 1995]) and an extension of it for close-rage collision prediction and avoidance ([#karamouzas2014 Karamouzas et. al, 2014]).\\
     7The Social Forces approach is based on the idea that pedestrian movement is results from forces exerted on the pedestrian by its surroundings and goals. These forces can be either '''repulsive''' or '''attractive'''. Repulsive forces are associated with obstacles such as buildings, trees or other pedestrians. The current goal of each pedestrian exerts an attractive force on it. The resulting force on a **pedestrian α** is the sum of all attractive and repulsive forces,
     8{{{
     9#!Latex
     10\begin{equation*}
     11\vec{F_{\alpha}} = \sum_i{\vec{F_i}}.
     12\end{equation*}
     13}}}
     14The forces considered here are repulsion by obstacles and other pedestrians as well as the acceleration term driving the pedestrian toward its target. \\\\
     15The repulsion by an '''obstacle //B//''' is defined as
     16{{{
     17#!Latex
     18\begin{equation*}
     19\vec{F}_{\alpha B} = - \nabla_{\vec{r}_{\alpha B}} U(|\vec{r}_{\alpha B}|),
     20\end{equation*}
     21}}}
     22with the repulsive potential
     23{{{
     24#!Latex
     25\begin{equation*}
     26U = (|\vec{r}_{\alpha B}|) = U_0 \cdot e^{-|\vec{r}_{\alpha B}|/R_{B}}.
     27\end{equation*}
     28}}}
     29In the MAS, //U,,0,,// is [wiki:/doc/app/agtpar#repuls_wall repuls_wall] and //R,,B,,// is [wiki:/doc/app/agtpar#sigma_rep_wall sigma_rep_wall].\\\\
     30The repulsion by another **pedestrian //β//** is defined as
     31{{{
     32#!Latex
     33\begin{equation*}
     34\vec{F}_{\alpha \beta} = - \nabla_{\vec{r}_{\alpha \beta}} V(|\vec{r}_{\alpha \beta}|),
     35\end{equation*}
     36}}}
     37with the repulsive potential
     38{{{
     39#!Latex
     40\begin{equation*}
     41V = (|\vec{r}_{\alpha \beta}|) = V_0 \cdot e^{-|\vec{r}_{\alpha \beta}|/R_{\beta}}.
     42\end{equation*}
     43}}}
     44In the MAS, //V,,0,,// is [wiki:/doc/app/agtpar#repuls_agent repuls_agent] and //R,,β,,// is [wiki:/doc/app/agtpar#sigma_rep_agent sigma_rep_agent]. This agent repulsive force is only used if α and β are already colliding (i.e. two circles with centers at the respective agents' position with radius [wiki:/doc/app/agtpar#radius_agent radius_agent] are intersecting). Otherwise, a collision avoidance force according to ([#karamouzas2014 Karamouzas et. al, 2014]) is calculated:
     45{{{
     46#!Latex
     47\begin{equation*}
     48\vec{F}_{\alpha} = -\nabla_{\vec{r}_{\alpha \beta}} \left( \frac{k}{\tau^2}e^{-\tau/\tau_0} \right).
     49\end{equation*}
     50}}}
     51Here, τ is the time until, given the current trajectory, a collision between the two pedestrians would occur, τ,,0,, = 3 s and k is a constant to sets the units with a value of 1.5 m^2^ kg.\\\\
     52The **acceleration force**
     53{{{
     54#!Latex
     55\begin{equation*}
     56\vec{F_a} = \frac{}{}(v_0\vec{e}_{\alpha} - \vec{v}_{\alpha})
     57\end{equation*}
     58}}}
     59describes the tendency of a pedestrian to accelerate toward its target. Here, τ,,α,, is a relaxation time ([wiki:/doc/app/agtpar#tau_accel_agent tau_accel_agent]) that describes how quickly the pedestrian approaches v,,0,, its desired walking speed with the direction to its current target, e.\\\\
     60The pedestrian's walking speed is given by
     61{{{
     62#!Latex
     63\begin{equation*}
     64\frac{d\vec{v}_{\alpha}}{dt} = \vec{F}_{\alpha},
     65\end{equation*}
     66}}}
     67with a simple Euler-forward method used for time-integration.\\
     68
     69== Examples ==
     70
     71For an example job to get to know the agent model, have a look at\\
     72{{{trunk/EXAMPLES/agents}}}
     73
     74
     75
     76== References ==
     77* [=#helbing1995] '''Helbing, D., Molnar, P.''' (1995). Social force model for pedestrian dynamics. Physical review E, 51(5), 4282. [https://doi.org/10.1103/PhysRevE.51.4282 doi]
     78* [=#karamouzas2014] '''Karamouzas, I., Skinner, B., Guy, S.J.''' 2014. Universal Power Law Governing Pedestrian Interactions. Pyhsical Review Letters, 113, 238701. [https://doi.org/10.1103/PhysRevLett.113.238701 doi]