| 72 | The correction functions read |
| 73 | {{{ |
| 74 | #!Latex |
| 75 | \begin{equation*} |
| 76 | \dfrac{1}{f_1(R_\mathrm{sw,in})} = min\left(1, \dfrac{0.004\ R_\mathrm{sw,in}}{0.81(0.004\ R_\mathrm{sw,in} + 1)}\right) |
| 77 | \end{equation*} |
| 78 | }}} |
| 79 | which accounts for the reaction of plants to shortwave radiation (opening/closing stomata), |
| 80 | {{{ |
| 81 | #!Latex |
| 82 | \begin{equation*} |
| 83 | \dfrac{1}{f_3(e_\mathrm{def})} = exp(g_\mathrm{D}\ e_\mathrm{def}) |
| 84 | \end{equation*} |
| 85 | }}} |
| 86 | where ''g'',,D,, is a correction factor (for high vegetation only, otherwise zero). Moreover, the reaction of plants to water availability in the soil is considered: |
| 87 | {{{ |
| 88 | #!Latex |
| 89 | \begin{equation*} |
| 90 | \dfrac{1}{f_2(\tilde m)} = |
| 91 | \begin{cases} |
| 92 | 0 & \tilde m < m_\mathrm{wilt}\\ |
| 93 | \dfrac{\tilde m - m_\mathrm{wilt}}{m_\mathrm{fc} - m_\mathrm{wilt}} & m_\mathrm{wilt} \leq \tilde m \leq m_\mathrm{fc}\\ |
| 94 | 1 & \tilde m > m_\mathrm{fc} |
| 95 | \end{cases} |
| 96 | \end{equation*} |
| 97 | }}} |
| 98 | where |
| 99 | {{{ |
| 100 | #!Latex |
| 101 | $m_\mathrm{wilt}$: Permanent wilting point\\ |
| 102 | $m_\mathrm{fc}$: Field capacity |
| 103 | }}} |
| 104 | and |
| 105 | {{{ |
| 106 | #!Latex |
| 107 | \begin{equation*} |
| 108 | \tilde m = \sum\limits_{k = 1}^4 R_k\ max(m_\mathrm{soil,k}, m_\mathrm{wilt}) |
| 109 | \end{equation*} |
| 110 | }}} |
| 111 | where |
| 112 | {{{ |
| 113 | #!Latex |
| 114 | $R_k$: Root fraction in layer $k$ |
| 115 | }}} |
| 116 | |