| 110 | The prognostic equation for soil temperature reads |
| 111 | {{{ |
| 112 | #!Latex |
| 113 | \begin{equation*} |
| 114 | (\rho C)_\mathrm{soil} \dfrac{\partial T_\mathrm{soil}}{\partial t} = \dfrac{\partial}{\partial z} \left( \lambda_T \dfrac{\partial T_\mathrm{soil}}{\partial z}\right) |
| 115 | \end{equation*} |
| 116 | }}} |
| 117 | with |
| 118 | {{{ |
| 119 | #!Latex |
| 120 | $(\rho C)_\mathrm{soil}$: Volumetric heat capacity of the soil layer\\ |
| 121 | $\lambda_T$: Thermal heat conductivity of the soil layer |
| 122 | }}} |
| 123 | The volumetric heat capacity is calculated as |
| 124 | {{{ |
| 125 | #!Latex |
| 126 | \begin{equation*} |
| 127 | \lambda_T = Ke\ (\lambda_{T,\mathrm{sat}} - \lambda_{T,\mathrm{dry}}) + \lambda_{T,\mathrm{dry}} |
| 128 | \end{equation*} |
| 129 | }}} |
| 130 | with |
| 131 | {{{ |
| 132 | #!Latex |
| 133 | $\lambda_{T,\mathrm{sat}}$: Heat conductivity of saturated soil\\ |
| 134 | $\lambda_{T,\mathrm{dry}}$: Heat conductivity of dry soil |
| 135 | $Ke$: Kersten number |
| 136 | }}} |
| 137 | The heat conductivity of saturated soil is given by |
| 138 | {{{ |
| 139 | #!Latex |
| 140 | \begin{equation*} |
| 141 | \lambda_{T,\mathrm{sat}} = \lambda_{T,\mathrm{sm}}^{1-m_\mathrm{soil,sat}}\ \lambda_\mathrm{m} |
| 142 | \end{equation*} |
| 143 | }}} |
| 144 | with |
| 145 | {{{ |
| 146 | #!Latex |
| 147 | $\lambda_{T,\mathrm{sm}}$: Heat conductivity of the soil matrix\\ |
| 148 | $\lambda_\mathrm{m}$: Heat conductivity of water\\ |
| 149 | }}} |
| 150 | The Kersten number is calculated as |
| 151 | {{{ |
| 152 | #!Latex |
| 153 | \begin{equation*} |
| 154 | Ke = \log_{10} \left[max\left(0.1, \dfrac{m_\mathrm{soil}}{m_\mathrm{sat}}\right) \right] + 1 |
| 155 | \end{equation*} |
| 156 | }}} |
| 157 | |
112 | | |
113 | | |
114 | | |
115 | | For more details, see \citet{viterbo1995} and \citet{balsamo2009}. |
116 | | |
117 | | |
| 160 | The prognostic equation for volumetric soil moisture reads |
| 161 | {{{ |
| 162 | #!Latex |
| 163 | \begin{equation*} |
| 164 | \dfrac{\partial m_\mathrm{soil}}{\partial t} = \dfrac{\partial}{\partial z} \left( \lambda_m \dfrac{\partial m_\mathrm{soil}}{\partial z} - \gamma\right) + S_m |
| 165 | \end{equation*} |
| 166 | }}} |
| 167 | with |
| 168 | {{{ |
| 169 | #!Latex |
| 170 | $\lambda_m$: Hydraulic diffusion coefficient\\ |
| 171 | $\gamma$: Hydraulic conductivity\\ |
| 172 | $S_m$: Sink term due to root extraction |
| 173 | }}} |
| 174 | |
| 175 | The hydraulic diffusion coefficient is calculated after Clapp and Hornberger (1978) as |
| 176 | {{{ |
| 177 | #!Latex |
| 178 | \begin{equation*} |
| 179 | \lambda_m = \dfrac{b \gamma_\mathrm{sat}(-\Psi_\mathrm{sat})}{m_\mathrm{sat}}\left(\dfrac{m_\mathrm{soil}}{m_\mathrm{sat}}\right)^{b+2} |
| 180 | \end{equation*} |
| 181 | }}} |
| 182 | with |
| 183 | {{{ |
| 184 | #!Latex |
| 185 | $b = 6.04$: exponent\\ |
| 186 | $\gamma_\mathrm{sat}$: Hydraulic conductivity at saturation\\ |
| 187 | $\Psi_\mathrm{sat} = -338 m$: Matrix potential at saturation |
| 188 | }}} |
| 189 | |
| 190 | The hydraulic conductivity is calculated either after Van Genuchten (1980) (as in H-TESSEL): |
| 191 | {{{ |
| 192 | #!Latex |
| 193 | \begin{equation*} |
| 194 | \gamma = \gamma_\mathrm{sat} \dfrac{\left[(1 + (\alpha h)^n)^{1 - 1/n} - (\alpha h)^{n-1}\right]^2}{(1+ (\alpha h)^n)^{(1 - 1/n)(l + 2)}} |
| 195 | \end{equation*} |
| 196 | }}} |
| 197 | where |
| 198 | {{{ |
| 199 | #!Latex |
| 200 | $h$: Pressure head\\ |
| 201 | $n$: Van Genuchten coefficient\\ |
| 202 | $l$: Van Genuchten coefficient |
| 203 | }}} |
| 204 | and |
| 205 | {{{ |
| 206 | #!Latex |
| 207 | \begin{equation} |
| 208 | m_\mathrm{soil}(h) = m_\mathrm{res} + \dfrac{m_\mathrm{sat} - m_\mathrm{res}}{(1 + (\alpha h)^n)^{1 - 1/n}} |
| 209 | \end{equation} |
| 210 | }}} |
| 211 | or after Clapp anf Hornberger (1978): |
| 212 | {{{ |
| 213 | #!Latex |
| 214 | \begin{equation} |
| 215 | \gamma = \gamma_\mathrm{sat} \left(\dfrac{m_\mathrm{soil}}{m_\mathrm{sat}}\right)^{2b + 3} |
| 216 | \end{equation} |
| 217 | }}} |
| 218 | |
| 219 | For more details, see also Viterbo et al. (1995) and Balsamo et al. (2009). |