Changes between Version 11 and Version 12 of doc/tec/lsm


Ignore:
Timestamp:
Apr 4, 2016 4:28:37 PM (9 years ago)
Author:
maronga
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/lsm

    v11 v12  
    105105
    106106== Soil model ==
    107 The soil model consists of prognostic equations for the soil temperature and the volumetric soil moisture which are solved for multiple layers. By default, the soil model consists of four layers, in which the vertical heat and water transport is modelled using the Fourier law of diffusion and Richards' equation, respectively. Also, root fractions can be assigned to each soil layer to to account for the explicit water withdrawal of plants used for transpiration from the respective soil layer.
     107The soil model consists of prognostic equations for the soil temperature and the volumetric soil moisture which are solved for multiple layers. The soil model only takes into account vertical transport within the soil and no ice phase is considered. By default, the soil model consists of four layers, in which the vertical heat and water transport is modelled using the Fourier law of diffusion and Richards' equation, respectively. Also, root fractions can be assigned to each soil layer to to account for the explicit water withdrawal of plants used for transpiration from the respective soil layer.
    108108
    109109=== Soil heat transport ===
     110The prognostic equation for soil temperature reads
     111{{{
     112#!Latex
     113\begin{equation*}
     114(\rho C)_\mathrm{soil} \dfrac{\partial T_\mathrm{soil}}{\partial t} = \dfrac{\partial}{\partial z} \left( \lambda_T \dfrac{\partial T_\mathrm{soil}}{\partial z}\right)
     115\end{equation*}
     116}}}
     117with
     118{{{
     119#!Latex
     120$(\rho C)_\mathrm{soil}$: Volumetric heat capacity of the soil layer\\
     121$\lambda_T$: Thermal heat conductivity of the soil layer
     122}}}
     123The volumetric heat capacity is calculated as
     124{{{
     125#!Latex
     126\begin{equation*}
     127   \lambda_T = Ke\ (\lambda_{T,\mathrm{sat}} - \lambda_{T,\mathrm{dry}}) + \lambda_{T,\mathrm{dry}}
     128\end{equation*}
     129}}}
     130with
     131{{{
     132#!Latex
     133$\lambda_{T,\mathrm{sat}}$: Heat conductivity of saturated soil\\
     134$\lambda_{T,\mathrm{dry}}$: Heat conductivity of dry soil
     135$Ke$: Kersten number
     136}}}
     137The heat conductivity of saturated soil is given by
     138{{{
     139#!Latex
     140\begin{equation*}
     141\lambda_{T,\mathrm{sat}} = \lambda_{T,\mathrm{sm}}^{1-m_\mathrm{soil,sat}}\ \lambda_\mathrm{m}
     142\end{equation*}
     143}}}
     144with
     145{{{
     146#!Latex
     147$\lambda_{T,\mathrm{sm}}$: Heat conductivity of the soil matrix\\
     148$\lambda_\mathrm{m}$: Heat conductivity of water\\
     149}}}
     150The Kersten number is calculated as
     151{{{
     152#!Latex
     153\begin{equation*}
     154Ke = \log_{10} \left[max\left(0.1, \dfrac{m_\mathrm{soil}}{m_\mathrm{sat}}\right) \right] + 1
     155\end{equation*}
     156}}}
     157
    110158
    111159=== Soil moisture transport ===
    112 
    113 
    114 
    115 For more details, see \citet{viterbo1995} and \citet{balsamo2009}.
    116 
    117 
     160The prognostic equation for volumetric soil moisture reads
     161{{{
     162#!Latex
     163\begin{equation*}
     164\dfrac{\partial m_\mathrm{soil}}{\partial t} = \dfrac{\partial}{\partial z} \left( \lambda_m \dfrac{\partial m_\mathrm{soil}}{\partial z} - \gamma\right) + S_m
     165\end{equation*}
     166}}}
     167with
     168{{{
     169#!Latex
     170$\lambda_m$: Hydraulic diffusion coefficient\\
     171$\gamma$: Hydraulic conductivity\\
     172$S_m$: Sink term due to root extraction
     173}}}
     174
     175The hydraulic diffusion coefficient is calculated after Clapp and Hornberger (1978) as
     176{{{
     177#!Latex
     178\begin{equation*}
     179\lambda_m = \dfrac{b \gamma_\mathrm{sat}(-\Psi_\mathrm{sat})}{m_\mathrm{sat}}\left(\dfrac{m_\mathrm{soil}}{m_\mathrm{sat}}\right)^{b+2}
     180\end{equation*}
     181}}}
     182with
     183{{{
     184#!Latex
     185$b = 6.04$: exponent\\
     186$\gamma_\mathrm{sat}$: Hydraulic conductivity at saturation\\
     187$\Psi_\mathrm{sat} = -338 m$: Matrix potential at saturation
     188}}}
     189
     190The hydraulic conductivity is calculated either after Van Genuchten (1980) (as in H-TESSEL):
     191{{{
     192#!Latex
     193\begin{equation*}
     194 \gamma = \gamma_\mathrm{sat} \dfrac{\left[(1 + (\alpha h)^n)^{1 - 1/n} - (\alpha h)^{n-1}\right]^2}{(1+ (\alpha h)^n)^{(1 - 1/n)(l + 2)}}
     195\end{equation*}
     196}}}
     197where
     198{{{
     199#!Latex
     200$h$: Pressure head\\
     201$n$: Van Genuchten coefficient\\
     202$l$: Van Genuchten coefficient
     203}}}
     204and
     205{{{
     206#!Latex
     207\begin{equation}
     208m_\mathrm{soil}(h) = m_\mathrm{res} + \dfrac{m_\mathrm{sat} - m_\mathrm{res}}{(1 + (\alpha h)^n)^{1 - 1/n}}
     209\end{equation}
     210}}}
     211or after Clapp anf Hornberger (1978):
     212{{{
     213#!Latex
     214\begin{equation}
     215\gamma = \gamma_\mathrm{sat} \left(\dfrac{m_\mathrm{soil}}{m_\mathrm{sat}}\right)^{2b + 3}
     216\end{equation}
     217}}}
     218
     219For more details, see also Viterbo et al. (1995) and Balsamo et al. (2009).
    118220
    119221== Technical details ==