Changes between Version 4 and Version 5 of doc/tec/bc
- Timestamp:
- Apr 5, 2016 1:38:57 PM (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
doc/tec/bc
v4 v5 162 162 \end{equation*} 163 163 \begin{equation*} 164 Ri_\mathrm{b,Ne} = - \dfrac{g z_\mathrm{MO} \overline{v^{\prime\prime} \theta_\mathrm{v}^{\prime\prime}}_0}{\kappa^2 u_\mathrm{h}^3 \theta_v}\; ,164 Ri_\mathrm{b,Ne} = - \dfrac{g z_\mathrm{MO} \overline{v^{\prime\prime} \theta_\mathrm{v}^{\prime\prime}}_0}{\kappa^2 u_\mathrm{h}^3 \theta_v}\;. 165 165 \end{equation*} 166 166 }}} 167 In case of {{{most_method = 'newton'}}}, the above equations are solved for ''L'' by Newton iteration, i.e. finding the root of the equation 168 {{{ 169 #!Latex 170 \begin{equation*} 171 f = Ri_\mathrm{b} - \dfrac{z}{L} \cdot \dfrac{[\ldots]^x}{[\ldots]^y} 172 \end{equation*} 173 }}} 174 where ''x'' and ''y'' depend on the chosen boundary conditions (see above). The solution is given by iteration of 175 {{{ 176 #!Latex 177 \begin{equation*} 178 L^{t+1} = L^t - \dfrac{f(L^t)}{f'(L^t)} 179 \end{equation*} 180 }}} 181 with 182 #!Latex 183 \begin{equation*} 184 f'(L) = \dfrac{df}{dL} 185 \end{equation*} 186 }}}