Changes between Version 4 and Version 5 of doc/tec/bc


Ignore:
Timestamp:
Apr 5, 2016 1:38:57 PM (9 years ago)
Author:
maronga
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/bc

    v4 v5  
    162162\end{equation*}
    163163\begin{equation*}
    164 Ri_\mathrm{b,Ne} = - \dfrac{g z_\mathrm{MO} \overline{v^{\prime\prime} \theta_\mathrm{v}^{\prime\prime}}_0}{\kappa^2 u_\mathrm{h}^3 \theta_v}\;,
     164Ri_\mathrm{b,Ne} = - \dfrac{g z_\mathrm{MO} \overline{v^{\prime\prime} \theta_\mathrm{v}^{\prime\prime}}_0}{\kappa^2 u_\mathrm{h}^3 \theta_v}\;.
    165165\end{equation*}
    166166}}}
     167In case of {{{most_method = 'newton'}}}, the above equations are solved for ''L'' by Newton iteration, i.e. finding the root of the equation
     168{{{
     169#!Latex
     170\begin{equation*}
     171f = Ri_\mathrm{b} - \dfrac{z}{L} \cdot \dfrac{[\ldots]^x}{[\ldots]^y}
     172\end{equation*}
     173}}}
     174where ''x'' and ''y'' depend on the chosen boundary conditions (see above). The solution is given by iteration of
     175{{{
     176#!Latex
     177\begin{equation*}
     178L^{t+1} = L^t - \dfrac{f(L^t)}{f'(L^t)}
     179\end{equation*}
     180}}}
     181with
     182#!Latex
     183\begin{equation*}
     184f'(L) = \dfrac{df}{dL}
     185\end{equation*}
     186}}}