Changes between Version 5 and Version 6 of doc/tec/aerosol


Ignore:
Timestamp:
Jan 28, 2019 1:05:23 PM (6 years ago)
Author:
westbrink
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/aerosol

    v5 v6  
    88DESCRIPTION\\\\
    99Click on any icon below to get to the respective part of the documentation.\\\\
    10 [[Image(button_input.png,120px,link=wiki:doc/app/agtpar)]]
    11 
    12 [[Image(button_ex_setup.png,120px,link=browser:palm/trunk/EXAMPLES/agents/)]]
    13 
    14 
    15 
    16 [[Image(button_code_structure.png,120px,link=wiki:doc/tec/mas/implementation)]]  \\\\\\\\   
     10[[Image(button_input.png,120px,link=wiki:doc/app/salsapar)]]
     11[[Image(button_input.png,120px,link=wiki:doc/app/salsaref)]]   \\\\\\\\   
    1712
    1813
     
    4742
    4843
    49 \\\\
    50 == Parameter list ==
    51 '''NAMELIST group name: {{{salsa_parameters}}}''' \\
    52 
    53 ||='''Parameter Name'''  =||='''[../fortrantypes FORTRAN Type]'''  =||='''Default Value'''  =||='''Explanation'''  =||
    54 |----------------
    55 {{{#!td style="vertical-align:top"
    56 [=#advect_particle_water '''advect_particle_water''']
    57 }}}
    58 {{{#!td style="vertical-align:top"
    59 L
    60 }}}
    61 {{{#!td style="vertical-align:top"
    62 .T.
    63 }}}
    64 {{{#!td
    65 Parameter to switch on the advection of condensed water in aerosol particles.
    66 
    67 If '''advect_particle_water''' = .F., the aerosol particle water content is calculated at each dt_salsa based on the equilibrium solution using the ZSR
    68 method (Stokes and Robinson, 1966).
    69 }}}
    70 |----------------
    71 {{{#!td style="vertical-align:top"
    72 [=#bc_salsa_b '''bc_salsa_b''']
    73 }}}
    74 {{{#!td style="vertical-align:top"
    75 C(20)
    76 }}}
    77 {{{#!td style="vertical-align:top"
    78 'neumann'
    79 }}}
    80 {{{#!td
    81 The bottom boundary condition of the aerosol (and gas) concentrations.
    82 
    83 Allowed are the values '' 'dirichlet' '' (constant surface concentration over the entire simulation) and 'neumann' (zero concentration gradient).
    84 
    85 If the aerosol (ans gaseous) emissions are defined as surface fluxes, '''bc_salsa_b''' = '' 'neumann' '' is required.
    86 }}}
    87 |----------------
    88 {{{#!td style="vertical-align:top"
    89 [=#bc_salsa_t '''bc_salsa_t''']
    90 }}}
    91 {{{#!td style="vertical-align:top"
    92 C(20)
    93 }}}
    94 {{{#!td style="vertical-align:top"
    95 'neumann'
    96 }}}
    97 {{{#!td
    98 The top boundary condition of the aerosol (and gas) concentrations.
    99 
    100 Allowed are the values '' 'dirichlet' '' (constant top boundary concentration over the entire simulation) and '' 'neumann' '' (zero concentration gradient).
    101 }}}
    102 |----------------
    103 {{{#!td style="vertical-align:top"
    104 [=#decycle_lr '''decycle_lr''']
    105 }}}
    106 {{{#!td style="vertical-align:top"
    107 L
    108 }}}
    109 {{{#!td style="vertical-align:top"
    110 .F.
    111 }}}
    112 {{{#!td
    113 Parameter to the switch on the decycling of aerosol particles along x. The switch applies also for gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) if the chemistry model is not applied.
    114 
    115 The decycling method per each lateral boundary is set by [#decycle_method decycle_method].
    116 }}}
    117 |----------------
    118 {{{#!td style="vertical-align:top"
    119 [=#decycle_method '''decycle_method''']
    120 }}}
    121 {{{#!td style="vertical-align:top"
    122 C(20) * 4
    123 }}}
    124 {{{#!td style="vertical-align:top"
    125 'dirichlet','dirichlet',\\'dirichlet','dirichlet'
    126 }}}
    127 {{{#!td
    128 The decycling method at lateral boundaries, in the following order: left, right, south, north.
    129 
    130 If '''decycle_method''' = 'dirichlet', the initial aerosol (and gas) concentrations are copied to the ghost layers and the first three grid points at the boundary.
    131 
    132 If '''decycle_method''' = 'neumann', a zero concentration gradient is set at the boundary.
    133 }}}
    134 |----------------
    135 {{{#!td style="vertical-align:top"
    136 [=#decycle_ns '''decycle_ns''']
    137 }}}
    138 {{{#!td style="vertical-align:top"
    139 L
    140 }}}
    141 {{{#!td style="vertical-align:top"
    142 .F.
    143 }}}
    144 {{{#!td
    145 Parameter to the switch on the decycling of aerosol particles along y. The switch applies also for gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) if the chemistry model is not applied.
    146 
    147 The decycling method per each lateral boundary is set by [#decycle_method decycle_method].
    148 }}}
    149 |----------------
    150 {{{#!td style="vertical-align:top"
    151 [=#depo_topo_type '''depo_topo_type''']
    152 }}}
    153 {{{#!td style="vertical-align:top"
    154 C(20)
    155 }}}
    156 {{{#!td style="vertical-align:top"
    157 'zhang2001'
    158 }}}
    159 {{{#!td
    160 The method to solve the aerosol size specific dry deposition velocity (in m s-1) over an urban surface.
    161 Available options:
    162 'zhang2001' (Zhang et al. 2001)
    163 'petroff2010' (Petroff & Zhang, 2010).
    164 
    165 Note that the surface material is not specified in the included parametrisations.
    166 }}}
    167 |----------------
    168 {{{#!td style="vertical-align:top"
    169 [=#depo_vege_type '''depo_vege_type''']
    170 }}}
    171 {{{#!td style="vertical-align:top"
    172 C(20)
    173 }}}
    174 {{{#!td style="vertical-align:top"
    175 'zhang2001'
    176 }}}
    177 {{{#!td
    178 The method to solve the aerosol size specific dry deposition velocity (in m s-1).
    179 Available options:
    180 'zhang2001' (Zhang et al. 2001)
    181 'petroff2010' (Petroff & Zhang, 2010)
    182 
    183 Note that currently the deposition velocity is calculated by default for deciduous broadleaf trees.
    184 }}}
    185 |----------------
    186 {{{#!td style="vertical-align:top"
    187 [=#dpg '''dpg''']
    188 }}}
    189 {{{#!td style="vertical-align:top"
    190 R(7)
    191 }}}
    192 {{{#!td style="vertical-align:top"
    193 0.013, 0.054, 0.86, 0.2, 0.2, 0.2, 0.2
    194 }}}
    195 {{{#!td
    196 The number geometric mean diameter per aerosol mode (in µm). A total of 7 different aerosol modes can be applied.  Example modes: nucleation, Aitken, accumulation and coarse mode.
    197 
    198 If [#isdtyp isdtyp]= 1, the initial aerosol size distribution is described by input parameters '''dpg''', [#sigmag sigmag] and [#n_lognorm n_lognorm].
    199 }}}
    200 |----------------
    201 {{{#!td style="vertical-align:top"
    202 [=#dt_salsa '''dt_salsa''']
    203 }}}
    204 {{{#!td style="vertical-align:top"
    205 R
    206 }}}
    207 {{{#!td style="vertical-align:top"
    208 0.1
    209 }}}
    210 {{{#!td
    211 Time step for calling aerosol dynamic processes of SALSA. For switching on individual processes, see [#nlcnd nlcnd], [#nlcndgas nlcndgas], [#nlcndh2oae nlcndh2oae], [#nlcoag nlcoag], [#nldepo nldepo], [#nldepo_vege nldepo_vege], [#nldepo_topo nldepo_topo], [#nldistupdate nldistupdate] and [#nsnucl nsnucl].
    212 }}}
    213 |----------------
    214 {{{#!td style="vertical-align:top"
    215 [=#feedback_to_palm '''feedback_to_palm''']
    216 }}}
    217 {{{#!td style="vertical-align:top"
    218 L
    219 }}}
    220 {{{#!td style="vertical-align:top"
    221 .F.
    222 }}}
    223 {{{#!td
    224 Parameter to switch on the dynamic feedback to the flow due to condensation of water vapour on aerosol particles.
    225 
    226 If '''feedback_to_palm''' = .F., the salsa module does not interact with the flow.
    227 }}}
    228 |----------------
    229 {{{#!td style="vertical-align:top"
    230 [=#H2SO4_init '''H2SO4_init''']
    231 }}}
    232 {{{#!td style="vertical-align:top"
    233 R
    234 }}}
    235 {{{#!td style="vertical-align:top"
    236 1.0
    237 }}}
    238 {{{#!td
    239 Initial number concentration (in m^-3^) of gaseous sulphuric acid H2SO4 (g).
    240 }}}
    241 |----------------
    242 {{{#!td style="vertical-align:top"
    243 [=#HNO3_init '''HNO3_init''']
    244 }}}
    245 {{{#!td style="vertical-align:top"
    246 R
    247 }}}
    248 {{{#!td style="vertical-align:top"
    249 1.0
    250 }}}
    251 {{{#!td
    252 Initial number concentration (in m^-3^) of gaseous nitric acid HNO3 (g).
    253 }}}
    254 |----------------
    255 {{{#!td style="vertical-align:top"
    256 [=#igctyp '''igctyp''']
    257 }}}
    258 {{{#!td style="vertical-align:top"
    259 I
    260 }}}
    261 {{{#!td style="vertical-align:top"
    262 1
    263 }}}
    264 {{{#!td
    265 Gas concentration initialisation type.
    266 
    267 If '''igctyp''' = 1, the whole modelling domain is initialised with values given in [#H2SO4_init H2SO4_init], [#HNO3_init HNO3_init], [#NH3_init NH3_init], [#OCNV_init OCNV_init] and [#OCSV_init OCSV_init].
    268 
    269 If '''igctyp''' = 2, the initial gas concentrations are read from the input file PIDS_CHEM. In this case, also vertical profiles can be provided.
    270 }}}
    271 |----------------
    272 {{{#!td style="vertical-align:top"
    273 [=#isdtyp '''isdtyp''']
    274 }}}
    275 {{{#!td style="vertical-align:top"
    276 I
    277 }}}
    278 {{{#!td style="vertical-align:top"
    279 1
    280 }}}
    281 {{{#!td
    282 Aerosol size distribution initialisation type.
    283 
    284 If '''isdtyp''' = 1, the whole modelling domain is initialised with a constant log-normal aerosol size distribution described by input parameters [#dpg dpg], [#sigmag sigmag] and [#n_lognorm n_lognorm].
    285 
    286 If '''isdtyp''' = 2, the initial aerosol size distribution is read from the input file PIDS_AERO. In this case, also a vertical profile of the aerosol size distribution can be provided.
    287 }}}
    288 |----------------
    289 {{{#!td style="vertical-align:top"
    290 [=#listspec '''listspec''']
    291 }}}
    292 {{{#!td style="vertical-align:top"
    293 C*3(7)
    294 }}}
    295 {{{#!td style="vertical-align:top"
    296 'SO4',
    297 6 * '   '
    298 }}}
    299 {{{#!td
    300 List of activated aerosol chemical components.
    301 Available options: \\
    302 
    303 SO4 = Sulphates\\
    304 OC = Organic carbon\\
    305 BC = Black carbon\\
    306 DU = Dust\\
    307 SS = Sea salt\\
    308 NH =  Ammonia\\
    309 NO = Nitrates\\
    310 
    311 All chemical components included in the simulation must be activated here.
    312 }}}
    313 |----------------
    314 {{{#!td style="vertical-align:top"
    315 [=#mass_fracs_a '''mass_fracs_a''']
    316 }}}
    317 {{{#!td style="vertical-align:top"
    318 R(7)
    319 }}}
    320 {{{#!td style="vertical-align:top"
    321 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    322 }}}
    323 {{{#!td
    324 Mass fractions of soluble chemical components (subrange 2a).
    325 
    326 Given in the same order as the list of activated aerosol chemical components [#listspec listspec].
    327 }}}
    328 |----------------
    329 {{{#!td style="vertical-align:top"
    330 [=#mass_fracs_b '''mass_fracs_b''']
    331 }}}
    332 {{{#!td style="vertical-align:top"
    333 R(7)
    334 }}}
    335 {{{#!td style="vertical-align:top"
    336 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    337 }}}
    338 {{{#!td
    339 Mass fractions of insoluble chemical components (subrange 2b).
    340 
    341 Given in the same order as the list of activated aerosol chemical components [#listspec listspec].
    342 
    343 Setting '''mass_fracs_b''' > 0.0 and [#nf2a nf2a] < 1.0 allows for the description of externally mixed aerosol particle populations in the subrange 2. However, this notably increases the computational demand.
    344 
    345 If the sum of SUM('''mass_fracs_b''') = 0.0, all aerosol particles are assumed to be soluble and the subrange 2b is not initialised.
    346 }}}
    347 |----------------
    348 {{{#!td style="vertical-align:top"
    349 [=#n_lognorm '''n_lognorm''']
    350 }}}
    351 {{{#!td style="vertical-align:top"
    352 R(7)
    353 }}}
    354 {{{#!td style="vertical-align:top"
    355 1.04E5, 3.23E4, 5.4, 0.0, 0.0, 0.0, 0.0
    356 }}}
    357 {{{#!td
    358 The total aerosol number concentration per aerosol mode (in cm^-3^). A total of 7 different aerosol modes can be applied.  Example modes: nucleation, Aitken, accumulation and coarse mode.
    359 
    360 If [#isdtyp isdtyp] = 1, the initial aerosol size distribution is described by input parameters [#dpg dpg], [#sigmag sigmag] and '''n_lognorm'''.
    361 }}}
    362 |----------------
    363 {{{#!td style="vertical-align:top"
    364 [=#nbin '''nbin''']
    365 }}}
    366 {{{#!td style="vertical-align:top"
    367 I(2)
    368 }}}
    369 {{{#!td style="vertical-align:top"
    370 3, 7
    371 }}}
    372 {{{#!td
    373 Number of aerosol size bins per subrange.
    374 }}}
    375 |----------------
    376 {{{#!td style="vertical-align:top"
    377 [=#nf2a '''nf2a''']
    378 }}}
    379 {{{#!td style="vertical-align:top"
    380 R
    381 }}}
    382 {{{#!td style="vertical-align:top"
    383 1.0
    384 }}}
    385 {{{#!td
    386 The number fraction allocated to subrange 2a. The number fraction allocated to the subrange 2b will be then 1.0-nf2a.
    387 }}}
    388 |----------------
    389 {{{#!td style="vertical-align:top"
    390 [=#NH3_init '''NH3_init''']
    391 }}}
    392 {{{#!td style="vertical-align:top"
    393 R
    394 }}}
    395 {{{#!td style="vertical-align:top"
    396 1.0
    397 }}}
    398 {{{#!td
    399 Initial number concentration (in m^-3^) of gaseous ammonia NH3 (g).
    400 }}}
    401 |----------------
    402 {{{#!td style="vertical-align:top"
    403 [=#nj3 '''nj3''']
    404 }}}
    405 {{{#!td style="vertical-align:top"
    406 I
    407 }}}
    408 {{{#!td style="vertical-align:top"
    409 1
    410 }}}
    411 {{{#!td
    412 Parametrisation for calculating the apparent formation rate of 3 nm sized aerosol particles (J,,3,,, in # s^-1^). \\
    413 Available options:\\
    414 1 = condensational sink (Kerminen and Kulmala, 2002)\\
    415 2 = coagulational sink (Lehtinen et al. 2007)\\
    416 3 = coagS+self-coagulation (Anttila et al. 2010)
    417 }}}
    418 |----------------
    419 {{{#!td style="vertical-align:top"
    420 [=#nlcnd '''nlcnd''']
    421 }}}
    422 {{{#!td style="vertical-align:top"
    423 L
    424 }}}
    425 {{{#!td style="vertical-align:top"
    426 .F.
    427 }}}
    428 {{{#!td
    429 Parameter to switch on the condensation of gaseous compounds on aerosol particles.
    430 }}}
    431 |----------------
    432 {{{#!td style="vertical-align:top"
    433 [=#nlcndgas '''nlcndgas''']
    434 }}}
    435 {{{#!td style="vertical-align:top"
    436 L
    437 }}}
    438 {{{#!td style="vertical-align:top"
    439 .F.
    440 }}}
    441 {{{#!td
    442 Parameter to switch on the condensation of gaseous compounds, excluding water vapour, on aerosol particles.
    443 
    444 Requires [#nlcnd nlcnd] = .T..
    445 }}}
    446 |----------------
    447 {{{#!td style="vertical-align:top"
    448 [=#nlcndgash2oae '''nlcndgash2oae''']
    449 }}}
    450 {{{#!td style="vertical-align:top"
    451 L
    452 }}}
    453 {{{#!td style="vertical-align:top"
    454 .F.
    455 }}}
    456 {{{#!td
    457 Parameter to switch on the condensation of water vapour on aerosol particles.
    458 
    459 Requires [#nlcnd nlcnd] = .T..
    460 }}}
    461 |----------------
    462 {{{#!td style="vertical-align:top"
    463 [=#nlcoag '''nlcoag''']
    464 }}}
    465 {{{#!td style="vertical-align:top"
    466 L
    467 }}}
    468 {{{#!td style="vertical-align:top"
    469 .F.
    470 }}}
    471 {{{#!td
    472 Parameter to switch on the coagulation of aerosol particles.
    473 }}}
    474 |----------------
    475 {{{#!td style="vertical-align:top"
    476 [=#nldepo '''nldepo''']
    477 }}}
    478 {{{#!td style="vertical-align:top"
    479 L
    480 }}}
    481 {{{#!td style="vertical-align:top"
    482 .F.
    483 }}}
    484 {{{#!td
    485 Parameter to switch of the dry deposition and sedimentation of aerosol particles.
    486 }}}
    487 |----------------
    488 {{{#!td style="vertical-align:top"
    489 [=#nldepo_topo '''nldepo_topo''']
    490 }}}
    491 {{{#!td style="vertical-align:top"
    492 L
    493 }}}
    494 {{{#!td style="vertical-align:top"
    495 .F.
    496 }}}
    497 {{{#!td
    498 Parameter to switch aerosol dry deposition on topography elements (ground, wall, roofs). The parametrisation to calculate the size-dependent deposition velocity is set by parameter [#depo_topo_type depo_topo_type].
    499 
    500 Requires [#nldepo nldepo] = .T..
    501 }}}
    502 |----------------
    503 {{{#!td style="vertical-align:top"
    504 [=#nldepo_vege '''nldepo_vege''']
    505 }}}
    506 {{{#!td style="vertical-align:top"
    507 L
    508 }}}
    509 {{{#!td style="vertical-align:top"
    510 .F.
    511 }}}
    512 {{{#!td
    513 Parameter to switch on aerosol dry deposition on resolved scale vegetation. The parametrisation to calculate the size-dependent deposition velocity is set by parameter [#depo_vege_type depo_vege_type].
    514 
    515 Note that currently the deposition velocity is calculated by default for deciduous broadleaf trees.
    516 
    517 Requires [#nldepo nldepo] = .T..
    518 }}}
    519 |----------------
    520 {{{#!td style="vertical-align:top"
    521 [=#nldistupdate '''nldistupdate''']
    522 }}}
    523 {{{#!td style="vertical-align:top"
    524 L
    525 }}}
    526 {{{#!td style="vertical-align:top"
    527 .T.
    528 }}}
    529 {{{#!td
    530 Parameter to switch on the aerosol number size distribution update switch.
    531 
    532 If '''nldistupdate''' = .F., aerosol particles that become too small or large in their size bin are not allowed to move to another size bin.
    533 }}}
    534 |----------------
    535 {{{#!td style="vertical-align:top"
    536 [=#nsnucl '''nsnucl''']
    537 }}}
    538 {{{#!td style="vertical-align:top"
    539 I
    540 }}}
    541 {{{#!td style="vertical-align:top"
    542 0
    543 }}}
    544 {{{#!td
    545 The nucleation scheme applied.
    546 If '''nsnucl''' = 0, nucleation is switched off.\\
    547 
    548 Available options:\\
    549 1 = binary nucleation (Vehkamäki et al., 2002)\\
    550 2 = activation type nucleation (Riipinen et al., 2007)\\
    551 3 = kinetic nucleation (Sihto et al., 2006)\\
    552 4 = ternary nucleation (Napari et al., 2002a,b)\\
    553 5 = organic nucleation (Paasonen et al., 2010)\\
    554 6 =  sum of binary and organic nucleation (Paasonen et al., 2010)\\
    555 7 =  heteromolecular nucleation (Paasonen et al., 2010)\\
    556 8 =  homomolecular nucleation of H2SO4 and heteromolecular nucleation of H2SO4 and organics (Paasonen et al., 2010)\\
    557 9 =  homomolecular nucleation of H2SO4 and organics, and heteromolecular nucleation of H2SO4 and organics (Paasonen et al., 2010).
    558 
    559 Requires [#nlcnd nlcnd] = .T..
    560 
    561 Note that the nucleation schemes were not evaluated in Kurppa et al. (2018).
    562 }}}
    563 |----------------
    564 {{{#!td style="vertical-align:top"
    565 [=#OCNV_init '''OCNV_init''']
    566 }}}
    567 {{{#!td style="vertical-align:top"
    568 R
    569 }}}
    570 {{{#!td style="vertical-align:top"
    571 1.0
    572 }}}
    573 {{{#!td
    574 Initial number concentration (in m^-3^) of gaseous non-volatile organic compounds.
    575 }}}
    576 |----------------
    577 {{{#!td style="vertical-align:top"
    578 [=#OCSV_init '''OCSV_init''']
    579 }}}
    580 {{{#!td style="vertical-align:top"
    581 R
    582 }}}
    583 {{{#!td style="vertical-align:top"
    584 1.0
    585 }}}
    586 {{{#!td
    587 Initial number concentration (in m^-3^) of gaseous semi-volatile organic compounds.
    588 }}}
    589 |----------------
    590 {{{#!td style="vertical-align:top"
    591 [=#read_restart_data_salsa '''read_restart_data_salsa''']
    592 }}}
    593 {{{#!td style="vertical-align:top"
    594 L
    595 }}}
    596 {{{#!td style="vertical-align:top"
    597 .F.
    598 }}}
    599 {{{#!td
    600 Read the restart data of the salsa module from the previous run.
    601 }}}
    602 |----------------
    603 {{{#!td style="vertical-align:top"
    604 [=#reglim '''reglim''']
    605 }}}
    606 {{{#!td style="vertical-align:top"
    607 R(3)
    608 }}}
    609 {{{#!td style="vertical-align:top"
    610 3.0E-9, 5.0E-8, 1.0E-5
    611 }}}
    612 {{{#!td
    613 Aerosol diameter limits for the subranges (in m) in the following order: lower limit of 1, upper limit of 1 and lower limit of 2, upper limit of 2.
    614 }}}
    615 |----------------
    616 {{{#!td style="vertical-align:top"
    617 [=#salsa_source_mode '''salsa_source_mode''']
    618 }}}
    619 {{{#!td style="vertical-align:top"
    620 C(20)
    621 }}}
    622 {{{#!td style="vertical-align:top"
    623 'no_source'
    624 }}}
    625 {{{#!td
    626 Source mode for aerosol and gaseous emissions.
    627 
    628 Setting '''salsa_source_mode''' = 'read_from_file' reads the source information from the NetCDF aero -information file.
    629 
    630 Note that all chemical components included in the simulation must be activated in [#listspec listspec].
    631 }}}
    632 |----------------
    633 {{{#!td style="vertical-align:top"
    634 [=#sigmag '''sigmag''']
    635 }}}
    636 {{{#!td style="vertical-align:top"
    637 R(7)
    638 }}}
    639 {{{#!td style="vertical-align:top"
    640 1.8, 2.16, 2.21, 2.0, 2.0, 2.0, 2.0
    641 }}}
    642 {{{#!td
    643 The standard deviation of the log-normal aerosol number size distribution per aerosol mode. A total of 7 different aerosol modes can be applied.  Example modes: nucleation, Aitken, accumulation and coarse mode.
    644 
    645 If [#isdtyp isdtyp] = 1, the initial aerosol size distribution is described by input parameters [#dpg dpg], '''sigmag''' and [#n_lognorm n_lognorm].
    646 }}}
    647 |----------------
    648 {{{#!td style="vertical-align:top"
    649 [=#skip_time_do_salsa '''skip_time_do_salsa''']
    650 }}}
    651 {{{#!td style="vertical-align:top"
    652 R
    653 }}}
    654 {{{#!td style="vertical-align:top"
    655 0.0
    656 }}}
    657 {{{#!td
    658 Time after which SALSA is switched on. This parameter can be used to allow the LES model to develop turbulence before aerosol particles and their processes are switched on.
    659 }}}
    660 |----------------
    661 {{{#!td style="vertical-align:top"
    662 [=#van_der_waals_coagc '''van_der_waals_coagc''']
    663 }}}
    664 {{{#!td style="vertical-align:top"
    665 L
    666 }}}
    667 {{{#!td style="vertical-align:top"
    668 .F.
    669 }}}
    670 {{{#!td
    671 Parameter to switch on the van der Waals forces when calculating the collision kernel in the coagulation subroutine. Parametrisation follows Karl et al. (2016).
    672 }}}
    673 |----------------
    674 {{{#!td style="vertical-align:top"
    675 [=#write_binary_salsa '''write_binary_salsa''']
    676 }}}
    677 {{{#!td style="vertical-align:top"
    678 L
    679 }}}
    680 {{{#!td style="vertical-align:top"
    681 .F.
    682 }}}
    683 {{{#!td
    684 Write the binary restart data for the salsa module.
    685 }}}
    686 
    687 \\\\
    688 
    689 The following quantities can be additionally output when the aerosol module SALSA is used:
    69044
    69145
    692 \\\\
    69346
    69447
    695 ||='''Quantity name'''  =||='''Meaning'''  =||='''Unit'''  =||='''Remarks'''  =||
    696 |----------------
    697 {{{#!td style="vertical-align:top"
    698 ['''g_<gaseous_compound>''']
    699 }}}
    700 {{{#!td style="vertical-align:top"
    701 Concentration of <gaseous_compound>
    702 }}}
    703 {{{#!td style="vertical-align:top"
    704 # m^-3^
    705 }}}
    706 {{{#!td
    707 Options: 'g_H2SO4', 'g_HNO3', 'g_NH3', 'g_OCNV','g_OCSV'.
    708 
    709 Time-averaged output not available.
    710 }}}
    711 |----------------
    712 {{{#!td style="vertical-align:top"
    713 [=#LDSA '''LDSA''']
    714 }}}
    715 {{{#!td style="vertical-align:top"
    716 Total lung-deposited surface area
    717 }}}
    718 {{{#!td style="vertical-align:top"
    719 µm^2^ cm^-3^
    720 
    721 }}}
    722 {{{#!td
    723 
    724 }}}
    725 |----------------
    726 {{{#!td style="vertical-align:top"
    727 ['''N_bin<bin number>''']
    728 }}}
    729 {{{#!td style="vertical-align:top"
    730 Aerosol number concentration in the aerosol size bin <bin number>
    731 }}}
    732 {{{#!td style="vertical-align:top"
    733 # m^-3^
    734 
    735 }}}
    736 {{{#!td
    737 Time-averaged output not available.
    738 }}}
    739 |----------------
    740 {{{#!td style="vertical-align:top"
    741 [=#Ntot '''Ntot''']
    742 }}}
    743 {{{#!td style="vertical-align:top"
    744 Total aerosol number concentration
    745 }}}
    746 {{{#!td style="vertical-align:top"
    747 # m^-3^
    748 
    749 }}}
    750 {{{#!td
    751 
    752 }}}
    753 |----------------
    754 {{{#!td style="vertical-align:top"
    755 [=#PM2.5 '''PM2.5''']
    756 }}}
    757 {{{#!td style="vertical-align:top"
    758 Total mass concentration of particulate matter smaller than 2.5 µm in diameter
    759 
    760 }}}
    761 {{{#!td style="vertical-align:top"
    762 kg m^-3^
    763 
    764 }}}
    765 {{{#!td
    766 
    767 }}}
    768 |----------------
    769 {{{#!td style="vertical-align:top"
    770 [=#PM10 '''PM10''']
    771 }}}
    772 {{{#!td style="vertical-align:top"
    773 Total mass concentration of particulate matter smaller than 10 µm in diameter
    774 
    775 }}}
    776 {{{#!td style="vertical-align:top"
    777 kg m^-3^
    778 
    779 }}}
    780 {{{#!td
    781 
    782 }}}
    783 |----------------
    784 {{{#!td style="vertical-align:top"
    785 ['''s_<chemical_compound>''']
    786 }}}
    787 {{{#!td style="vertical-align:top"
    788 Mass concentration of <chemical_compound> in the aerosol phase
    789 
    790 }}}
    791 {{{#!td style="vertical-align:top"
    792 kg m^-3^
    793 
    794 }}}
    795 {{{#!td
    796 Options: 's_BC', 's_DU', 's_NH', 's_NO', 's_OC', 's_SO4', 's_SS'.
    797 
    798 Time-averaged output available only for black carbon (BC).
    799 }}}
    800 
    801 
    802 \\\\
    803 == References ==
    804 
    805 Anttila, T., Kerminen, V.-M., and Lehtinen, K. E. J. (2010): Parameterizing the formation rate of new particles: The effect of nuclei self-coagulation. Journal of Aerosol Science, 41(7), 621–636, https://doi.org/10.1016/j.jaerosci.2010.04.008.\\
    806 
    807 Karl, M., Kukkonen, J., Keuken, M. P., Lützenkirchen, S., Pirjola, L. and Hussein, T. (2016): Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki, Atmospheric Chemistry and Physics, 16, 4817-4835, https://doi.org/10.5194/acp-16-4817-2016.\\
    808 
    809 Kerminen, V.-M. and Kulmala, M. (2002): Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. Journal of Aerosol Science, 33(4), 609–622, doi: https://doi.org/10.1016/S0021-8502(01)00194-X.\\
    810 
    811 
    812 Kokkola, H., Korhonen, H., Lehtinen, K. E. J., Makkonen, R., Asmi, A., Järvenoja, S., Anttila, T., Partanen, A.-I., Kulmala, M., Järvinen, H., Laaksonen, A., and Kerminen, V.-M. (2008): SALSA - a Sectional Aerosol module for Large Scale Applications, Atmospheric Chemistry and Physics, 8, 2469–2483, https://doi.org/10.5194/acp-8-2469-2008.\\
    813 
    814 
    815 Lehtinen, K. E., Maso, M. D., Kulmala, M., and Kerminen, V.-M. (2007): Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation, Journal of Aerosol Science, 38, 988–994, https://doi.org/10.1016/j.jaerosci.2007.06.009.\\
    816 
    817 
    818 Napari, I., Noppel, M., Vehkamäki, H., and Kulmala, M. (2002a): An improved model for ternary nucleation of sulfuric acid–ammonia–water, The Journal of Chemical Physics, 116, 4221–4227, https://doi.org/10.1063/1.1450557.\\
    819 
    820 
    821 Napari, I., Noppel, M., Vehkamäki, H., and Kulmala, M. (2002b): Parametrization of ternary nucleation rates for H2SO4-NH3-H2O vapors, Journal of Geophysical Research: Atmospheres, 107, AAC 6–1–AAC 6–6, https://doi.org/10.1029/2002JD002132, 4381.\\
    822 
    823 
    824 Paasonen, P., Nieminen, T., Asmi, E., Manninen, H. E., Petäjä, T., Plass-Dülmer, C., Flentje, H., Birmili, W., Wiedensohler, A., Hõrrak, U.,  Metzger, A., Hamed, A., Laaksonen, A., Facchini, M. C., Kerminen, V.-M. (2010): On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation, Atmospheric Chemistry and Physics, 10, 11223-11242.\\
    825 
    826 
    827 Petroff, A. and Zhang, L. (2010): Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models, Geoscientific Model Development, 3, 753–769, https://doi.org/10.5194/gmd-3-753-2010.\\
    828 
    829 
    830 Riipinen, I., Sihto, S.-L., Kulmala, M., Arnold, F., Dal Maso, M., Birmili, W., Saarnio, K., Teinilä, K., Kerminen, V.-M., Laaksonen, A., and Lehtinen, K. E. J. (2007): Connections between atmospheric sulphuric acid and new particle formation during QUEST III-IV campaigns in Heidelberg and Hyytiälä, Atmospheric Chemistry and Physics, 7, 1899–1914, https://doi.org/10.5194/acp-7-1899-2007.\\
    831 
    832 
    833 Sihto, S.-L., Kulmala, M., Kerminen, V.-M., Dal Maso, M., Petäjä, T., Riipinen, I., Korhonen, H., Arnold, F., Janson, R., Boy, M., Laaksonen, A., and Lehtinen, K. E. J. (2006): Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms, Atmospheric Chemistry and Physics, 6, 4079–4091, https://doi.org/10.5194/acp-6-4079-2006.\\
    834 
    835 
    836 Stokes, R. H. and Robinson, R. A. (1966): Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria, The Journal of Physical Chemistry, 70, 2126–2131, https://doi.org/10.1021/j100879a010.\\
    837 
    838 
    839 Vehkamäki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C., Noppel, M., and Laaksonen, A. (2002): An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions, Journal of Geophysical Research, 107, 4622, https://doi.org/10.1029/2002JD002184.\\
    840 
    841 
    842 Zhang, L., Gong, S., Padro, J., and Barrie, L. (2001): A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmospheric Environment, 35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5.