Changes between Version 3 and Version 4 of doc/tec/aerosol


Ignore:
Timestamp:
Jan 28, 2019 12:55:12 PM (6 years ago)
Author:
westbrink
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/aerosol

    v3 v4  
    33This page is under construction. For now, please have a look at the related [https://www.geosci-model-dev-discuss.net/gmd-2018-282/ article] (under revision).\\\\
    44The steering of this model is described [wiki:doc/app/salsa here].
    5 
    6 
    7 
    8 
    95
    106
     
    2016[[Image(button_code_structure.png,120px,link=wiki:doc/tec/mas/implementation)]]  \\\\\\\\   
    2117
     18
     19= SALSA Parameters =
     20[[TracNav(doc/app/partoc|nocollapse)]]
     21
     22== Overview ==
     23The aerosol module SALSA (Kokkola et al., 2008) embedded in PALM can be used to simulate the aerosol particle concentrations, size distributions and chemical compositions. In SALSA, the aerosol size distribution is represented as a discrete set of size bins (by default 10 bins). The number n,,i,, (m^-3^) and mass concentration m,,c,i,, (kg m^-3^) of each size bin i and chemical component c are the model prognostic variables. Currently, the following chemical components can be included: sulphuric acid (H2SO4), organic carbon (OC), black carbon (BC), nitric acid (HNO3), ammonium (NH3), sea salt, dust and water (H2O). Furthermore, the gaseous concentrations of H2SO4, HNO3, NH3 and semi- and non-volatile organics (OCNV and OCSV) are also default prognostic variables. The aerosol dynamic processes included are coagulation, condensation of H2SO4, organics and water vapour, dissolutional growth by HNO3 and NH3, nucleation and dry deposition on horizontal and vertical surfaces and resolved vegetation.
     24
     25SALSA can be coupled with the [/wiki/doc/app/chempar#chemistrymodule "chemistry module"]. In that case, the five gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) will be imported to SALSA from the chemistry module and should thus be included in the chemical mechanism applied.
     26
     27SALSA is enabled by adding the NAMELIST {{{salsa_parameters}}} with appropriate parameters to the INPUT parameter file ({{{<run_identifier>_p3d}}}). Available parameters are listed below.
     28
     29SALSA runs with the default parameter values. By default, the aerosol particle and gaseous concentrations are initially constant everywhere ([#isdtyp isdtyp] = 0 and [#igctyp igctyp] = 0). A minimum set of input parameters to be applied when this initialisation type is used, is:
     30
     31* [#dpg dpg], [#n_lognorm n_lognorm] and [#sigmag sigmag] to describe the initial aerosol size distribution '''plus'''
     32
     33* [#listspec listspec], [#mass_fracs_a mass_fracs_a] to include chemical compounds '''plus'''
     34
     35* [#H2SO4_init H2SO4_init], [#HNO3_init HNO3_init], [#NH3_init NH3_init], [#OCNV_init OCNV_init], [#OCSV_init OCSV_init] to set the initial concentrations of gaseous compounds '''plus'''
     36
     37* [#nlcnd nlcnd], [#nlcndgas nlcndgas], [#nlcndgash2oae nlcndgash2oae], [#nlcoag nlcoag], [#nldepo nldepo], [#nldepo_topo nldepo_topo], [#nldepo_vege nldepo_vege], [#nsnucl nsnucl] to switch on aerosol dynamic processes.
     38
     39Alternatively, the initial aerosol particle concentrations, size distributions and chemical compositions and gaseous concentrations as well as emission/source information of aerosol particles and gases can be provided in NetCDF input files {{{<run_identifier>_salsa}}} (for aerosol particles) and {{{<run_identifier>_chemistry}}} (for gaseous compounds). Aerosol particle emissions can be provided applying three levels of detail (LOD): parametrised (LOD1, units kg m^-2^ s^-1^) or detailed (LOD2, units m^-2^ s^-1^) 2-dimensional surface fluxes, or 3-dimensional sources (LOD3, units m^-3^ s^-1^). Gaseous emissions, instead, should currently be specified as gas-specific surface fluxes (LOD2) if the chemistry module is not applied. The time dependency of the aerosol emissions has not yet been implemented. Example files for each LOD is provided in the attached [#test_salsa test_salsa] example set-up.
     40
     41The attached test_salsa example includes:
     42    * {{{test_salsa_p3d}}}: ASCII parameter file
     43    * {{{test_salsa_static}}}: NetCDF static-information file with topography information (so-called static driver)
     44    * {{{test_salsa_chemistry}}}: a NetCDF information file including the initial vertical profiles and surface emissions of gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV)
     45    * '''LODX_'''{{{test_salsa_salsa}}}: a NetCDF information including the initial vertical profiles and emissions of aerosol particles for each level of detail X = 1, 2, 3. NOTE! Copy the chosen file to {{{test_salsa_salsa}}}
     46
     47
     48
     49\\\\
     50== Parameter list ==
     51'''NAMELIST group name: {{{salsa_parameters}}}''' \\
     52
     53||='''Parameter Name'''  =||='''[../fortrantypes FORTRAN Type]'''  =||='''Default Value'''  =||='''Explanation'''  =||
     54|----------------
     55{{{#!td style="vertical-align:top"
     56[=#advect_particle_water '''advect_particle_water''']
     57}}}
     58{{{#!td style="vertical-align:top"
     59L
     60}}}
     61{{{#!td style="vertical-align:top"
     62.T.
     63}}}
     64{{{#!td
     65Parameter to switch on the advection of condensed water in aerosol particles.
     66
     67If '''advect_particle_water''' = .F., the aerosol particle water content is calculated at each dt_salsa based on the equilibrium solution using the ZSR
     68method (Stokes and Robinson, 1966).
     69}}}
     70|----------------
     71{{{#!td style="vertical-align:top"
     72[=#bc_salsa_b '''bc_salsa_b''']
     73}}}
     74{{{#!td style="vertical-align:top"
     75C(20)
     76}}}
     77{{{#!td style="vertical-align:top"
     78'neumann'
     79}}}
     80{{{#!td
     81The bottom boundary condition of the aerosol (and gas) concentrations.
     82
     83Allowed are the values '' 'dirichlet' '' (constant surface concentration over the entire simulation) and 'neumann' (zero concentration gradient).
     84
     85If the aerosol (ans gaseous) emissions are defined as surface fluxes, '''bc_salsa_b''' = '' 'neumann' '' is required.
     86}}}
     87|----------------
     88{{{#!td style="vertical-align:top"
     89[=#bc_salsa_t '''bc_salsa_t''']
     90}}}
     91{{{#!td style="vertical-align:top"
     92C(20)
     93}}}
     94{{{#!td style="vertical-align:top"
     95'neumann'
     96}}}
     97{{{#!td
     98The top boundary condition of the aerosol (and gas) concentrations.
     99
     100Allowed are the values '' 'dirichlet' '' (constant top boundary concentration over the entire simulation) and '' 'neumann' '' (zero concentration gradient).
     101}}}
     102|----------------
     103{{{#!td style="vertical-align:top"
     104[=#decycle_lr '''decycle_lr''']
     105}}}
     106{{{#!td style="vertical-align:top"
     107L
     108}}}
     109{{{#!td style="vertical-align:top"
     110.F.
     111}}}
     112{{{#!td
     113Parameter to the switch on the decycling of aerosol particles along x. The switch applies also for gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) if the chemistry model is not applied.
     114
     115The decycling method per each lateral boundary is set by [#decycle_method decycle_method].
     116}}}
     117|----------------
     118{{{#!td style="vertical-align:top"
     119[=#decycle_method '''decycle_method''']
     120}}}
     121{{{#!td style="vertical-align:top"
     122C(20) * 4
     123}}}
     124{{{#!td style="vertical-align:top"
     125'dirichlet','dirichlet',\\'dirichlet','dirichlet'
     126}}}
     127{{{#!td
     128The decycling method at lateral boundaries, in the following order: left, right, south, north.
     129
     130If '''decycle_method''' = 'dirichlet', the initial aerosol (and gas) concentrations are copied to the ghost layers and the first three grid points at the boundary.
     131
     132If '''decycle_method''' = 'neumann', a zero concentration gradient is set at the boundary.
     133}}}
     134|----------------
     135{{{#!td style="vertical-align:top"
     136[=#decycle_ns '''decycle_ns''']
     137}}}
     138{{{#!td style="vertical-align:top"
     139L
     140}}}
     141{{{#!td style="vertical-align:top"
     142.F.
     143}}}
     144{{{#!td
     145Parameter to the switch on the decycling of aerosol particles along y. The switch applies also for gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) if the chemistry model is not applied.
     146
     147The decycling method per each lateral boundary is set by [#decycle_method decycle_method].
     148}}}
     149|----------------
     150{{{#!td style="vertical-align:top"
     151[=#depo_topo_type '''depo_topo_type''']
     152}}}
     153{{{#!td style="vertical-align:top"
     154C(20)
     155}}}
     156{{{#!td style="vertical-align:top"
     157'zhang2001'
     158}}}
     159{{{#!td
     160The method to solve the aerosol size specific dry deposition velocity (in m s-1) over an urban surface.
     161Available options:
     162'zhang2001' (Zhang et al. 2001)
     163'petroff2010' (Petroff & Zhang, 2010).
     164
     165Note that the surface material is not specified in the included parametrisations.
     166}}}
     167|----------------
     168{{{#!td style="vertical-align:top"
     169[=#depo_vege_type '''depo_vege_type''']
     170}}}
     171{{{#!td style="vertical-align:top"
     172C(20)
     173}}}
     174{{{#!td style="vertical-align:top"
     175'zhang2001'
     176}}}
     177{{{#!td
     178The method to solve the aerosol size specific dry deposition velocity (in m s-1).
     179Available options:
     180'zhang2001' (Zhang et al. 2001)
     181'petroff2010' (Petroff & Zhang, 2010)
     182
     183Note that currently the deposition velocity is calculated by default for deciduous broadleaf trees.
     184}}}
     185|----------------
     186{{{#!td style="vertical-align:top"
     187[=#dpg '''dpg''']
     188}}}
     189{{{#!td style="vertical-align:top"
     190R(7)
     191}}}
     192{{{#!td style="vertical-align:top"
     1930.013, 0.054, 0.86, 0.2, 0.2, 0.2, 0.2
     194}}}
     195{{{#!td
     196The number geometric mean diameter per aerosol mode (in µm). A total of 7 different aerosol modes can be applied.  Example modes: nucleation, Aitken, accumulation and coarse mode.
     197
     198If [#isdtyp isdtyp]= 1, the initial aerosol size distribution is described by input parameters '''dpg''', [#sigmag sigmag] and [#n_lognorm n_lognorm].
     199}}}
     200|----------------
     201{{{#!td style="vertical-align:top"
     202[=#dt_salsa '''dt_salsa''']
     203}}}
     204{{{#!td style="vertical-align:top"
     205R
     206}}}
     207{{{#!td style="vertical-align:top"
     2080.1
     209}}}
     210{{{#!td
     211Time step for calling aerosol dynamic processes of SALSA. For switching on individual processes, see [#nlcnd nlcnd], [#nlcndgas nlcndgas], [#nlcndh2oae nlcndh2oae], [#nlcoag nlcoag], [#nldepo nldepo], [#nldepo_vege nldepo_vege], [#nldepo_topo nldepo_topo], [#nldistupdate nldistupdate] and [#nsnucl nsnucl].
     212}}}
     213|----------------
     214{{{#!td style="vertical-align:top"
     215[=#feedback_to_palm '''feedback_to_palm''']
     216}}}
     217{{{#!td style="vertical-align:top"
     218L
     219}}}
     220{{{#!td style="vertical-align:top"
     221.F.
     222}}}
     223{{{#!td
     224Parameter to switch on the dynamic feedback to the flow due to condensation of water vapour on aerosol particles.
     225
     226If '''feedback_to_palm''' = .F., the salsa module does not interact with the flow.
     227}}}
     228|----------------
     229{{{#!td style="vertical-align:top"
     230[=#H2SO4_init '''H2SO4_init''']
     231}}}
     232{{{#!td style="vertical-align:top"
     233R
     234}}}
     235{{{#!td style="vertical-align:top"
     2361.0
     237}}}
     238{{{#!td
     239Initial number concentration (in m^-3^) of gaseous sulphuric acid H2SO4 (g).
     240}}}
     241|----------------
     242{{{#!td style="vertical-align:top"
     243[=#HNO3_init '''HNO3_init''']
     244}}}
     245{{{#!td style="vertical-align:top"
     246R
     247}}}
     248{{{#!td style="vertical-align:top"
     2491.0
     250}}}
     251{{{#!td
     252Initial number concentration (in m^-3^) of gaseous nitric acid HNO3 (g).
     253}}}
     254|----------------
     255{{{#!td style="vertical-align:top"
     256[=#igctyp '''igctyp''']
     257}}}
     258{{{#!td style="vertical-align:top"
     259I
     260}}}
     261{{{#!td style="vertical-align:top"
     2621
     263}}}
     264{{{#!td
     265Gas concentration initialisation type.
     266
     267If '''igctyp''' = 1, the whole modelling domain is initialised with values given in [#H2SO4_init H2SO4_init], [#HNO3_init HNO3_init], [#NH3_init NH3_init], [#OCNV_init OCNV_init] and [#OCSV_init OCSV_init].
     268
     269If '''igctyp''' = 2, the initial gas concentrations are read from the input file PIDS_CHEM. In this case, also vertical profiles can be provided.
     270}}}
     271|----------------
     272{{{#!td style="vertical-align:top"
     273[=#isdtyp '''isdtyp''']
     274}}}
     275{{{#!td style="vertical-align:top"
     276I
     277}}}
     278{{{#!td style="vertical-align:top"
     2791
     280}}}
     281{{{#!td
     282Aerosol size distribution initialisation type.
     283
     284If '''isdtyp''' = 1, the whole modelling domain is initialised with a constant log-normal aerosol size distribution described by input parameters [#dpg dpg], [#sigmag sigmag] and [#n_lognorm n_lognorm].
     285
     286If '''isdtyp''' = 2, the initial aerosol size distribution is read from the input file PIDS_AERO. In this case, also a vertical profile of the aerosol size distribution can be provided.
     287}}}
     288|----------------
     289{{{#!td style="vertical-align:top"
     290[=#listspec '''listspec''']
     291}}}
     292{{{#!td style="vertical-align:top"
     293C*3(7)
     294}}}
     295{{{#!td style="vertical-align:top"
     296'SO4',
     2976 * '   '
     298}}}
     299{{{#!td
     300List of activated aerosol chemical components.
     301Available options: \\
     302
     303SO4 = Sulphates\\
     304OC = Organic carbon\\
     305BC = Black carbon\\
     306DU = Dust\\
     307SS = Sea salt\\
     308NH =  Ammonia\\
     309NO = Nitrates\\
     310
     311All chemical components included in the simulation must be activated here.
     312}}}
     313|----------------
     314{{{#!td style="vertical-align:top"
     315[=#mass_fracs_a '''mass_fracs_a''']
     316}}}
     317{{{#!td style="vertical-align:top"
     318R(7)
     319}}}
     320{{{#!td style="vertical-align:top"
     3211.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
     322}}}
     323{{{#!td
     324Mass fractions of soluble chemical components (subrange 2a).
     325
     326Given in the same order as the list of activated aerosol chemical components [#listspec listspec].
     327}}}
     328|----------------
     329{{{#!td style="vertical-align:top"
     330[=#mass_fracs_b '''mass_fracs_b''']
     331}}}
     332{{{#!td style="vertical-align:top"
     333R(7)
     334}}}
     335{{{#!td style="vertical-align:top"
     3360.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
     337}}}
     338{{{#!td
     339Mass fractions of insoluble chemical components (subrange 2b).
     340
     341Given in the same order as the list of activated aerosol chemical components [#listspec listspec].
     342
     343Setting '''mass_fracs_b''' > 0.0 and [#nf2a nf2a] < 1.0 allows for the description of externally mixed aerosol particle populations in the subrange 2. However, this notably increases the computational demand.
     344
     345If the sum of SUM('''mass_fracs_b''') = 0.0, all aerosol particles are assumed to be soluble and the subrange 2b is not initialised.
     346}}}
     347|----------------
     348{{{#!td style="vertical-align:top"
     349[=#n_lognorm '''n_lognorm''']
     350}}}
     351{{{#!td style="vertical-align:top"
     352R(7)
     353}}}
     354{{{#!td style="vertical-align:top"
     3551.04E5, 3.23E4, 5.4, 0.0, 0.0, 0.0, 0.0
     356}}}
     357{{{#!td
     358The total aerosol number concentration per aerosol mode (in cm^-3^). A total of 7 different aerosol modes can be applied.  Example modes: nucleation, Aitken, accumulation and coarse mode.
     359
     360If [#isdtyp isdtyp] = 1, the initial aerosol size distribution is described by input parameters [#dpg dpg], [#sigmag sigmag] and '''n_lognorm'''.
     361}}}
     362|----------------
     363{{{#!td style="vertical-align:top"
     364[=#nbin '''nbin''']
     365}}}
     366{{{#!td style="vertical-align:top"
     367I(2)
     368}}}
     369{{{#!td style="vertical-align:top"
     3703, 7
     371}}}
     372{{{#!td
     373Number of aerosol size bins per subrange.
     374}}}
     375|----------------
     376{{{#!td style="vertical-align:top"
     377[=#nf2a '''nf2a''']
     378}}}
     379{{{#!td style="vertical-align:top"
     380R
     381}}}
     382{{{#!td style="vertical-align:top"
     3831.0
     384}}}
     385{{{#!td
     386The number fraction allocated to subrange 2a. The number fraction allocated to the subrange 2b will be then 1.0-nf2a.
     387}}}
     388|----------------
     389{{{#!td style="vertical-align:top"
     390[=#NH3_init '''NH3_init''']
     391}}}
     392{{{#!td style="vertical-align:top"
     393R
     394}}}
     395{{{#!td style="vertical-align:top"
     3961.0
     397}}}
     398{{{#!td
     399Initial number concentration (in m^-3^) of gaseous ammonia NH3 (g).
     400}}}
     401|----------------
     402{{{#!td style="vertical-align:top"
     403[=#nj3 '''nj3''']
     404}}}
     405{{{#!td style="vertical-align:top"
     406I
     407}}}
     408{{{#!td style="vertical-align:top"
     4091
     410}}}
     411{{{#!td
     412Parametrisation for calculating the apparent formation rate of 3 nm sized aerosol particles (J,,3,,, in # s^-1^). \\
     413Available options:\\
     4141 = condensational sink (Kerminen and Kulmala, 2002)\\
     4152 = coagulational sink (Lehtinen et al. 2007)\\
     4163 = coagS+self-coagulation (Anttila et al. 2010)
     417}}}
     418|----------------
     419{{{#!td style="vertical-align:top"
     420[=#nlcnd '''nlcnd''']
     421}}}
     422{{{#!td style="vertical-align:top"
     423L
     424}}}
     425{{{#!td style="vertical-align:top"
     426.F.
     427}}}
     428{{{#!td
     429Parameter to switch on the condensation of gaseous compounds on aerosol particles.
     430}}}
     431|----------------
     432{{{#!td style="vertical-align:top"
     433[=#nlcndgas '''nlcndgas''']
     434}}}
     435{{{#!td style="vertical-align:top"
     436L
     437}}}
     438{{{#!td style="vertical-align:top"
     439.F.
     440}}}
     441{{{#!td
     442Parameter to switch on the condensation of gaseous compounds, excluding water vapour, on aerosol particles.
     443
     444Requires [#nlcnd nlcnd] = .T..
     445}}}
     446|----------------
     447{{{#!td style="vertical-align:top"
     448[=#nlcndgash2oae '''nlcndgash2oae''']
     449}}}
     450{{{#!td style="vertical-align:top"
     451L
     452}}}
     453{{{#!td style="vertical-align:top"
     454.F.
     455}}}
     456{{{#!td
     457Parameter to switch on the condensation of water vapour on aerosol particles.
     458
     459Requires [#nlcnd nlcnd] = .T..
     460}}}
     461|----------------
     462{{{#!td style="vertical-align:top"
     463[=#nlcoag '''nlcoag''']
     464}}}
     465{{{#!td style="vertical-align:top"
     466L
     467}}}
     468{{{#!td style="vertical-align:top"
     469.F.
     470}}}
     471{{{#!td
     472Parameter to switch on the coagulation of aerosol particles.
     473}}}
     474|----------------
     475{{{#!td style="vertical-align:top"
     476[=#nldepo '''nldepo''']
     477}}}
     478{{{#!td style="vertical-align:top"
     479L
     480}}}
     481{{{#!td style="vertical-align:top"
     482.F.
     483}}}
     484{{{#!td
     485Parameter to switch of the dry deposition and sedimentation of aerosol particles.
     486}}}
     487|----------------
     488{{{#!td style="vertical-align:top"
     489[=#nldepo_topo '''nldepo_topo''']
     490}}}
     491{{{#!td style="vertical-align:top"
     492L
     493}}}
     494{{{#!td style="vertical-align:top"
     495.F.
     496}}}
     497{{{#!td
     498Parameter to switch aerosol dry deposition on topography elements (ground, wall, roofs). The parametrisation to calculate the size-dependent deposition velocity is set by parameter [#depo_topo_type depo_topo_type].
     499
     500Requires [#nldepo nldepo] = .T..
     501}}}
     502|----------------
     503{{{#!td style="vertical-align:top"
     504[=#nldepo_vege '''nldepo_vege''']
     505}}}
     506{{{#!td style="vertical-align:top"
     507L
     508}}}
     509{{{#!td style="vertical-align:top"
     510.F.
     511}}}
     512{{{#!td
     513Parameter to switch on aerosol dry deposition on resolved scale vegetation. The parametrisation to calculate the size-dependent deposition velocity is set by parameter [#depo_vege_type depo_vege_type].
     514
     515Note that currently the deposition velocity is calculated by default for deciduous broadleaf trees.
     516
     517Requires [#nldepo nldepo] = .T..
     518}}}
     519|----------------
     520{{{#!td style="vertical-align:top"
     521[=#nldistupdate '''nldistupdate''']
     522}}}
     523{{{#!td style="vertical-align:top"
     524L
     525}}}
     526{{{#!td style="vertical-align:top"
     527.T.
     528}}}
     529{{{#!td
     530Parameter to switch on the aerosol number size distribution update switch.
     531
     532If '''nldistupdate''' = .F., aerosol particles that become too small or large in their size bin are not allowed to move to another size bin.
     533}}}
     534|----------------
     535{{{#!td style="vertical-align:top"
     536[=#nsnucl '''nsnucl''']
     537}}}
     538{{{#!td style="vertical-align:top"
     539I
     540}}}
     541{{{#!td style="vertical-align:top"
     5420
     543}}}
     544{{{#!td
     545The nucleation scheme applied.
     546If '''nsnucl''' = 0, nucleation is switched off.\\
     547
     548Available options:\\
     5491 = binary nucleation (Vehkamäki et al., 2002)\\
     5502 = activation type nucleation (Riipinen et al., 2007)\\
     5513 = kinetic nucleation (Sihto et al., 2006)\\
     5524 = ternary nucleation (Napari et al., 2002a,b)\\
     5535 = organic nucleation (Paasonen et al., 2010)\\
     5546 =  sum of binary and organic nucleation (Paasonen et al., 2010)\\
     5557 =  heteromolecular nucleation (Paasonen et al., 2010)\\
     5568 =  homomolecular nucleation of H2SO4 and heteromolecular nucleation of H2SO4 and organics (Paasonen et al., 2010)\\
     5579 =  homomolecular nucleation of H2SO4 and organics, and heteromolecular nucleation of H2SO4 and organics (Paasonen et al., 2010).
     558
     559Requires [#nlcnd nlcnd] = .T..
     560
     561Note that the nucleation schemes were not evaluated in Kurppa et al. (2018).
     562}}}
     563|----------------
     564{{{#!td style="vertical-align:top"
     565[=#OCNV_init '''OCNV_init''']
     566}}}
     567{{{#!td style="vertical-align:top"
     568R
     569}}}
     570{{{#!td style="vertical-align:top"
     5711.0
     572}}}
     573{{{#!td
     574Initial number concentration (in m^-3^) of gaseous non-volatile organic compounds.
     575}}}
     576|----------------
     577{{{#!td style="vertical-align:top"
     578[=#OCSV_init '''OCSV_init''']
     579}}}
     580{{{#!td style="vertical-align:top"
     581R
     582}}}
     583{{{#!td style="vertical-align:top"
     5841.0
     585}}}
     586{{{#!td
     587Initial number concentration (in m^-3^) of gaseous semi-volatile organic compounds.
     588}}}
     589|----------------
     590{{{#!td style="vertical-align:top"
     591[=#read_restart_data_salsa '''read_restart_data_salsa''']
     592}}}
     593{{{#!td style="vertical-align:top"
     594L
     595}}}
     596{{{#!td style="vertical-align:top"
     597.F.
     598}}}
     599{{{#!td
     600Read the restart data of the salsa module from the previous run.
     601}}}
     602|----------------
     603{{{#!td style="vertical-align:top"
     604[=#reglim '''reglim''']
     605}}}
     606{{{#!td style="vertical-align:top"
     607R(3)
     608}}}
     609{{{#!td style="vertical-align:top"
     6103.0E-9, 5.0E-8, 1.0E-5
     611}}}
     612{{{#!td
     613Aerosol diameter limits for the subranges (in m) in the following order: lower limit of 1, upper limit of 1 and lower limit of 2, upper limit of 2.
     614}}}
     615|----------------
     616{{{#!td style="vertical-align:top"
     617[=#salsa_source_mode '''salsa_source_mode''']
     618}}}
     619{{{#!td style="vertical-align:top"
     620C(20)
     621}}}
     622{{{#!td style="vertical-align:top"
     623'no_source'
     624}}}
     625{{{#!td
     626Source mode for aerosol and gaseous emissions.
     627
     628Setting '''salsa_source_mode''' = 'read_from_file' reads the source information from the NetCDF aero -information file.
     629
     630Note that all chemical components included in the simulation must be activated in [#listspec listspec].
     631}}}
     632|----------------
     633{{{#!td style="vertical-align:top"
     634[=#sigmag '''sigmag''']
     635}}}
     636{{{#!td style="vertical-align:top"
     637R(7)
     638}}}
     639{{{#!td style="vertical-align:top"
     6401.8, 2.16, 2.21, 2.0, 2.0, 2.0, 2.0
     641}}}
     642{{{#!td
     643The standard deviation of the log-normal aerosol number size distribution per aerosol mode. A total of 7 different aerosol modes can be applied.  Example modes: nucleation, Aitken, accumulation and coarse mode.
     644
     645If [#isdtyp isdtyp] = 1, the initial aerosol size distribution is described by input parameters [#dpg dpg], '''sigmag''' and [#n_lognorm n_lognorm].
     646}}}
     647|----------------
     648{{{#!td style="vertical-align:top"
     649[=#skip_time_do_salsa '''skip_time_do_salsa''']
     650}}}
     651{{{#!td style="vertical-align:top"
     652R
     653}}}
     654{{{#!td style="vertical-align:top"
     6550.0
     656}}}
     657{{{#!td
     658Time after which SALSA is switched on. This parameter can be used to allow the LES model to develop turbulence before aerosol particles and their processes are switched on.
     659}}}
     660|----------------
     661{{{#!td style="vertical-align:top"
     662[=#van_der_waals_coagc '''van_der_waals_coagc''']
     663}}}
     664{{{#!td style="vertical-align:top"
     665L
     666}}}
     667{{{#!td style="vertical-align:top"
     668.F.
     669}}}
     670{{{#!td
     671Parameter to switch on the van der Waals forces when calculating the collision kernel in the coagulation subroutine. Parametrisation follows Karl et al. (2016).
     672}}}
     673|----------------
     674{{{#!td style="vertical-align:top"
     675[=#write_binary_salsa '''write_binary_salsa''']
     676}}}
     677{{{#!td style="vertical-align:top"
     678L
     679}}}
     680{{{#!td style="vertical-align:top"
     681.F.
     682}}}
     683{{{#!td
     684Write the binary restart data for the salsa module.
     685}}}
     686
     687\\\\
     688
     689The following quantities can be additionally output when the aerosol module SALSA is used:
     690
     691
     692\\\\
     693
     694
     695||='''Quantity name'''  =||='''Meaning'''  =||='''Unit'''  =||='''Remarks'''  =||
     696|----------------
     697{{{#!td style="vertical-align:top"
     698['''g_<gaseous_compound>''']
     699}}}
     700{{{#!td style="vertical-align:top"
     701Concentration of <gaseous_compound>
     702}}}
     703{{{#!td style="vertical-align:top"
     704# m^-3^
     705}}}
     706{{{#!td
     707Options: 'g_H2SO4', 'g_HNO3', 'g_NH3', 'g_OCNV','g_OCSV'.
     708
     709Time-averaged output not available.
     710}}}
     711|----------------
     712{{{#!td style="vertical-align:top"
     713[=#LDSA '''LDSA''']
     714}}}
     715{{{#!td style="vertical-align:top"
     716Total lung-deposited surface area
     717}}}
     718{{{#!td style="vertical-align:top"
     719µm^2^ cm^-3^
     720
     721}}}
     722{{{#!td
     723
     724}}}
     725|----------------
     726{{{#!td style="vertical-align:top"
     727['''N_bin<bin number>''']
     728}}}
     729{{{#!td style="vertical-align:top"
     730Aerosol number concentration in the aerosol size bin <bin number>
     731}}}
     732{{{#!td style="vertical-align:top"
     733# m^-3^
     734
     735}}}
     736{{{#!td
     737Time-averaged output not available.
     738}}}
     739|----------------
     740{{{#!td style="vertical-align:top"
     741[=#Ntot '''Ntot''']
     742}}}
     743{{{#!td style="vertical-align:top"
     744Total aerosol number concentration
     745}}}
     746{{{#!td style="vertical-align:top"
     747# m^-3^
     748
     749}}}
     750{{{#!td
     751
     752}}}
     753|----------------
     754{{{#!td style="vertical-align:top"
     755[=#PM2.5 '''PM2.5''']
     756}}}
     757{{{#!td style="vertical-align:top"
     758Total mass concentration of particulate matter smaller than 2.5 µm in diameter
     759
     760}}}
     761{{{#!td style="vertical-align:top"
     762kg m^-3^
     763
     764}}}
     765{{{#!td
     766
     767}}}
     768|----------------
     769{{{#!td style="vertical-align:top"
     770[=#PM10 '''PM10''']
     771}}}
     772{{{#!td style="vertical-align:top"
     773Total mass concentration of particulate matter smaller than 10 µm in diameter
     774
     775}}}
     776{{{#!td style="vertical-align:top"
     777kg m^-3^
     778
     779}}}
     780{{{#!td
     781
     782}}}
     783|----------------
     784{{{#!td style="vertical-align:top"
     785['''s_<chemical_compound>''']
     786}}}
     787{{{#!td style="vertical-align:top"
     788Mass concentration of <chemical_compound> in the aerosol phase
     789
     790}}}
     791{{{#!td style="vertical-align:top"
     792kg m^-3^
     793
     794}}}
     795{{{#!td
     796Options: 's_BC', 's_DU', 's_NH', 's_NO', 's_OC', 's_SO4', 's_SS'.
     797
     798Time-averaged output available only for black carbon (BC).
     799}}}
     800
     801
     802\\\\
     803== References ==
     804
     805Anttila, T., Kerminen, V.-M., and Lehtinen, K. E. J. (2010): Parameterizing the formation rate of new particles: The effect of nuclei self-coagulation. Journal of Aerosol Science, 41(7), 621–636, https://doi.org/10.1016/j.jaerosci.2010.04.008.\\
     806
     807Karl, M., Kukkonen, J., Keuken, M. P., Lützenkirchen, S., Pirjola, L. and Hussein, T. (2016): Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki, Atmospheric Chemistry and Physics, 16, 4817-4835, https://doi.org/10.5194/acp-16-4817-2016.\\
     808
     809Kerminen, V.-M. and Kulmala, M. (2002): Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. Journal of Aerosol Science, 33(4), 609–622, doi: https://doi.org/10.1016/S0021-8502(01)00194-X.\\
     810
     811
     812Kokkola, H., Korhonen, H., Lehtinen, K. E. J., Makkonen, R., Asmi, A., Järvenoja, S., Anttila, T., Partanen, A.-I., Kulmala, M., Järvinen, H., Laaksonen, A., and Kerminen, V.-M. (2008): SALSA - a Sectional Aerosol module for Large Scale Applications, Atmospheric Chemistry and Physics, 8, 2469–2483, https://doi.org/10.5194/acp-8-2469-2008.\\
     813
     814
     815Lehtinen, K. E., Maso, M. D., Kulmala, M., and Kerminen, V.-M. (2007): Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation, Journal of Aerosol Science, 38, 988–994, https://doi.org/10.1016/j.jaerosci.2007.06.009.\\
     816
     817
     818Napari, I., Noppel, M., Vehkamäki, H., and Kulmala, M. (2002a): An improved model for ternary nucleation of sulfuric acid–ammonia–water, The Journal of Chemical Physics, 116, 4221–4227, https://doi.org/10.1063/1.1450557.\\
     819
     820
     821Napari, I., Noppel, M., Vehkamäki, H., and Kulmala, M. (2002b): Parametrization of ternary nucleation rates for H2SO4-NH3-H2O vapors, Journal of Geophysical Research: Atmospheres, 107, AAC 6–1–AAC 6–6, https://doi.org/10.1029/2002JD002132, 4381.\\
     822
     823
     824Paasonen, P., Nieminen, T., Asmi, E., Manninen, H. E., Petäjä, T., Plass-Dülmer, C., Flentje, H., Birmili, W., Wiedensohler, A., Hõrrak, U.,  Metzger, A., Hamed, A., Laaksonen, A., Facchini, M. C., Kerminen, V.-M. (2010): On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation, Atmospheric Chemistry and Physics, 10, 11223-11242.\\
     825
     826
     827Petroff, A. and Zhang, L. (2010): Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models, Geoscientific Model Development, 3, 753–769, https://doi.org/10.5194/gmd-3-753-2010.\\
     828
     829
     830Riipinen, I., Sihto, S.-L., Kulmala, M., Arnold, F., Dal Maso, M., Birmili, W., Saarnio, K., Teinilä, K., Kerminen, V.-M., Laaksonen, A., and Lehtinen, K. E. J. (2007): Connections between atmospheric sulphuric acid and new particle formation during QUEST III-IV campaigns in Heidelberg and Hyytiälä, Atmospheric Chemistry and Physics, 7, 1899–1914, https://doi.org/10.5194/acp-7-1899-2007.\\
     831
     832
     833Sihto, S.-L., Kulmala, M., Kerminen, V.-M., Dal Maso, M., Petäjä, T., Riipinen, I., Korhonen, H., Arnold, F., Janson, R., Boy, M., Laaksonen, A., and Lehtinen, K. E. J. (2006): Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms, Atmospheric Chemistry and Physics, 6, 4079–4091, https://doi.org/10.5194/acp-6-4079-2006.\\
     834
     835
     836Stokes, R. H. and Robinson, R. A. (1966): Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria, The Journal of Physical Chemistry, 70, 2126–2131, https://doi.org/10.1021/j100879a010.\\
     837
     838
     839Vehkamäki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C., Noppel, M., and Laaksonen, A. (2002): An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions, Journal of Geophysical Research, 107, 4622, https://doi.org/10.1029/2002JD002184.\\
     840
     841
     842Zhang, L., Gong, S., Padro, J., and Barrie, L. (2001): A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmospheric Environment, 35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5.