| 7 | |---------------- |
| 8 | {{{#!td style="vertical-align:top; text-align:left;width: 150px" |
| 9 | [=#aero_type '''aero_type'''] |
| 10 | }}} |
| 11 | {{{#!td style="vertical-align:top; text-align:left;style="width: 50px" |
| 12 | C*15 |
| 13 | }}} |
| 14 | {{{#!td style="vertical-align:top; text-align:left;style="width: 75px" |
| 15 | maritime |
| 16 | }}} |
| 17 | {{{#!td |
| 18 | Define a aerosol spectrum using three log-normal distributions and the values stated in Jaenicke (1993, doi: 10.1016/S0074-6142(08)60210-7). Possible values are 'polar', 'background', 'maritime', 'continental', 'desert', 'rural', and 'urban'. If 'user' is chosen, the aerosol spectrum is steered by [#rm rm], [#na na], and [#log_sigma log_sigma]. Note that [#curvature_solute_effects curvature_solute_effects] needs to be true to consider aerosol spectra. Note that this aerosol spectrum spectrum determines the aerosol mass, initial wet radius, and the weighting factor of all super-droplets. The weighting factors can be manipulated with [#aero_weight aero_weight]. |
| 19 | }}} |
| 20 | |---------------- |
| 21 | {{{#!td style="vertical-align:top; text-align:left;width: 150px" |
| 22 | [=#aero_weight '''aero_weight'''] |
| 23 | }}} |
| 24 | {{{#!td style="vertical-align:top; text-align:left;style="width: 50px" |
| 25 | R |
| 26 | }}} |
| 27 | {{{#!td style="vertical-align:top; text-align:left;style="width: 75px" |
| 28 | 1.0 |
| 29 | }}} |
| 30 | {{{#!td |
| 31 | Scale the number concentration defined by [#aero_type aero_type] to the desired amount of aerosols by keeping the typical shape of the spectrum. |
| 32 | }}} |