Changes between Version 9 and Version 10 of doc/app/iofiles


Ignore:
Timestamp:
Sep 14, 2010 8:02:45 AM (14 years ago)
Author:
fricke
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/app/iofiles

    v9 v10  
    6060{{{#!td
    6161Binary data, which are written by the model at the end of the run and possibly needed by restart runs [wiki:chapter_33 chapter 3.3] for the initialization. This output file is then read in as file [#BININ BININ]. It contains the initial parameters [wiki:chapter_41 chapter 4.1] of the model run, arrays of the prognostic and diagnostic variables as well as those parameters determined so far during a job chain and variables for plots of horizontally averaged vertical profiles (see [../d3par#data_output_pr data_output_pr]). With runs on several processors it has to be noted that each processing element writes its own file and the file content is processor-dependent. A specification of the file format can be found in the description of the file [#BININ BININ]. \\\\
    62 The file BINOUT is written by the model only if, with the help of the '''mrun'''-configuration file, the value ''true'' is assigned for the environment variable ''write_binary'' [wiki:chapter_33 chapter 3.3]. \\\\
     62The file BINOUT is written by the model only if, with the help of the '''mrun'''-configuration file, the value {{{true}}} is assigned for the environment variable ''write_binary'' [wiki:chapter_33 chapter 3.3]. \\\\
    6363With large grid point numbers the file BINOUT (or the files residing in directory BINOUT/) will be very large and should be stored (if available) on the archive system of the remote computer.
    6464}}}
     
    8282By default, the file RUN_CONTROL only lists information about the selected model parameters at the beginning of the initial run. These informations are written at the beginnning of a run. They correspond to those of the file [#HEADER HEADER] (however without data concerning the consumed CPU time, because these are only known at the end of a run). With the run parameter [../d3par#force_print_header force_print_header] it can be achieved that this information is also written at the beginning of the file RUN_CONTROL at restart runs. \\\\
    8383The individual columns of the 1D - time step control output have the following meaning (listed by the respective heading of the appropriate column in the file):  \\\\
    84      
    85 }}}
    86 |----------------
     84{{{#!table style="border:none"
     85{{{#!td style="vertical-align:top;border:none"
     86ITER.
     87}}}
     88{{{#!td style="vertical-align:top;border:none"
     89Number of time steps accomplished so far
     90}}}
     91|------
     92{{{#!td style="vertical-align:top;border:none"
     93HH:MM:SS
     94}}}
     95{{{#!td style="vertical-align:top;border:none"
     96Time (in hours: minutes: seconds)
     97}}}
     98|------
     99{{{#!td style="vertical-align:top;border:none"
     100DT
     101}}}
     102{{{#!td style="vertical-align:top;border:none"
     103Time step (in s)
     104}}}
     105|------
     106{{{#!td style="vertical-align:top;border:none"
     107UMAX
     108}}}
     109{{{#!td style="vertical-align:top;border:none"
     110Maximum absolute wind velocity (u-component) (in m/s)
     111}}}
     112|------
     113{{{#!td style="vertical-align:top;border:none"
     114VMAX
     115}}}
     116{{{#!td style="vertical-align:top;border:none"
     117Maximum absolute wind velocity (v-component) (in m/s)
     118}}}
     119|------
     120{{{#!td style="vertical-align:top;border:none"
     121U*
     122}}}
     123{{{#!td style="vertical-align:top;border:none"
     124Friction velocity (in m/s)
     125}}}
     126|------
     127{{{#!td style="vertical-align:top;border:none"
     128ALPHA
     129}}}
     130{{{#!td style="vertical-align:top;border:none"
     131Angle of the wind vector (to the x-axis) at the top of the Prandtl layer (k=1) (in degrees)
     132}}}
     133|------
     134{{{#!td style="vertical-align:top;border:none"
     135ENERG.
     136}}}
     137{{{#!td style="vertical-align:top;border:none"
     138Kinetic energy of the 1D-model (in m^2^/s^2^), averaged over all grid points
     139}}}
     140}}}
     141The individual columns of the 3D - time step control output have the following meaning (listed by the respective heading of the appropriate column in the file): \\\\
     142{{{#!table style="border:none"
     143{{{#!td style="vertical-align:top;border:none"
     144RUN
     145}}}
     146{{{#!td style="vertical-align:top;border:none"
     147Serial-number of the job in the job chain. The initial run has the number 0, restart runs accordingly have larger numbers.
     148}}}
     149|------
     150{{{#!td style="vertical-align:top;border:none"
     151ITER.
     152}}}
     153{{{#!td style="vertical-align:top;border:none"
     154Number of time steps accomplished since starting time t=0 of the initial run.
     155}}}
     156|------
     157{{{#!td style="vertical-align:top;border:none"
     158HH:MM:SS
     159}}}
     160{{{#!td style="vertical-align:top;border:none"
     161Time (in hours: minutes: seconds) since starting time t=0 of the initial run.
     162}}}
     163|------
     164{{{#!td style="vertical-align:top;border:none"
     165DT (E)
     166}}}
     167{{{#!td style="vertical-align:top;border:none"
     168Time step (in s). The following character indicates whether the time step is limited by the advection criterion (A) or the diffusion criterion (D). After changes of the time step a further character follows, which indicates with which time step procedure the changed time step was accomplished (L: Leapfrog, E: Euler). This does not apply for the default Runge-Kutta timestep scheme.
     169}}}
     170|------
     171{{{#!td style="vertical-align:top;border:none"
     172UMAX
     173}}}
     174{{{#!td style="vertical-align:top;border:none"
     175Maximum absolute wind velocity (u-component) (in m/s). If at the appropriate output time a random disturbance was added to the horizontal velocity field (see [../d3par#create_disturbances create_disturbances]), the character D will appear directly after the velocity value.
     176}}}
     177|------
     178{{{#!td style="vertical-align:top;border:none"
     179VMAX
     180}}}
     181{{{#!td style="vertical-align:top;border:none"
     182Maximum absolute wind velocity (v-component) (in m/s). If at the appropriate output time a random disturbance was added to the horizontal velocity field (see [../d3par#create_disturbances create_disturbances]), the character D will appear directly after the velocity value.
     183}}}
     184|------
     185{{{#!td style="vertical-align:top;border:none"
     186WMAX
     187}}}
     188{{{#!td style="vertical-align:top;border:none"
     189Maximum absolute wind velocity (w-component) (in m/s).
     190}}}
     191|------
     192{{{#!td style="vertical-align:top;border:none"
     193U*
     194}}}
     195{{{#!td style="vertical-align:top;border:none"
     196Horizontal average of the friction velocity (in m/s).
     197}}}
     198|------
     199{{{#!td style="vertical-align:top;border:none"
     200W*
     201}}}
     202{{{#!td style="vertical-align:top;border:none"
     203Convective velocity scale (in m/s). The assumed boundary layer height is determined via the heat flux minimum criterion.
     204}}}
     205|------
     206{{{#!td style="vertical-align:top;border:none"
     207THETA*
     208}}}
     209{{{#!td style="vertical-align:top;border:none"
     210Characteristic temperature of the Prandtl - layer (in K).
     211}}}
     212|------
     213{{{#!td style="vertical-align:top;border:none"
     214Z_I
     215}}}
     216{{{#!td style="vertical-align:top;border:none"
     217Height of the convective boundary layer (in m), determined via the criterion of the heat flux minimum.
     218}}}
     219|------
     220{{{#!td style="vertical-align:top;border:none"
     221ENERG.
     222}}}
     223{{{#!td style="vertical-align:top;border:none"
     224Average resolved total energy of the flow field (in m^2^/s^2^), normalized with the total number of grid points.
     225}}}
     226|------
     227{{{#!td style="vertical-align:top;border:none"
     228DISTENERG
     229}}}
     230{{{#!td style="vertical-align:top;border:none"
     231Average resolved disturbance energy of flow field (in m^2^/s^2^), normalized with the total number of grid points.
     232}}}
     233|------
     234{{{#!td style="vertical-align:top;border:none"
     235DIVOLD
     236}}}
     237{{{#!td style="vertical-align:top;border:none"
     238Divergence of the velocity field (sum of the absolute values) (in 1/s) before call of the pressure solver, normalized with the total number of grid points.
     239}}}
     240|------
     241{{{#!td style="vertical-align:top;border:none"
     242DIVNEW
     243}}}
     244{{{#!td style="vertical-align:top;border:none"
     245Divergence of the velocity field (sum of the absolute values) (in 1/s) after call of the pressure solver, normalized with the total number of grid points.
     246}}}
     247|------
     248{{{#!td style="vertical-align:top;border:none"
     249UMAX (KJI)
     250}}}
     251{{{#!td style="vertical-align:top;border:none"
     252Indices of the grid point with the maximum absolute u-component of the wind velocity (sequence: k, j, i).
     253}}}
     254|------
     255{{{#!td style="vertical-align:top;border:none"
     256VMAX (KJI)
     257}}}
     258{{{#!td style="vertical-align:top;border:none"
     259Indices of the grid point with the maximum absolute v-component of the wind velocity (sequence: k, j, i).
     260}}}
     261|------
     262{{{#!td style="vertical-align:top;border:none"
     263WMAX (KJI)
     264}}}
     265{{{#!td style="vertical-align:top;border:none"
     266Indices of the grid point with the maximum absolute w-component of the wind velocity (sequence: k, j, i).
     267}}}
     268|------
     269{{{#!td style="vertical-align:top;border:none"
     270ADVECX
     271}}}
     272{{{#!td style="vertical-align:top;border:none"
     273Distance (in km) the coordinate system has been moved in x-direction with Galilei-Transformation switched on (see [../inipar#galilei_transformation galilei_transformation]).
     274}}}
     275|------
     276{{{#!td style="vertical-align:top;border:none"
     277ADVECY
     278}}}
     279{{{#!td style="vertical-align:top;border:none"
     280Distance (in km) the coordinate system has been moved in y-direction with Galilei-Transformation switched on (see [../inipar#galilei_transformation galilei_transformation]).
     281}}}
     282}}}   
     283}}}
     284|----------------