1166 | | A so-called Rayleigh damping is applied to all prognostic variables if a non-zero value is assigned to '''rayleigh_damping_factor'''. If switched on, horizontal velocities, temperature, humidity/scalar (if switched on) and salinity (in case of ocean mode) are forced towards the value of their respective basic states (defined by the initial profiles of the geostrophic wind, temperature, etc.). In case of large-scale subsidence (see [#subs_vertical_gradient subs_vertical_gradient]) the basic state of temperature and humidity is adjusted with respect to the subsidence. Scalar quantities can be excluded from the damping (see [#scalar_rayleigh_damping scalar_rayleigh_damping]). The intensity of damping is controlled by the value the '''rayleigh_damping_factor''' is assigned to. The damping starts weakly at a height defined by [#rayleigh_damping_height rayleigh_damping_height] and rises according to a sin^2^-function to its maximum value at the top (ocean: bottom) boundary.\\\\ |
| 1166 | A so-called Rayleigh damping is applied to all prognostic variables if a non-zero value is assigned to '''rayleigh_damping_factor'''. If switched on, horizontal velocities, temperature, humidity/scalar (if switched on) and salinity (in case of ocean mode) are forced towards the value of their respective basic states (defined by the initial profiles of the geostrophic wind, temperature, etc., or in case of offline nesting, defined by the current mean of wind components, temperature, etc. of the mesoscale model). In case of large-scale subsidence (see [#subs_vertical_gradient subs_vertical_gradient]) the basic state of temperature and humidity is adjusted with respect to the subsidence. Scalar quantities can be excluded from the damping (see [#scalar_rayleigh_damping scalar_rayleigh_damping]). The intensity of damping is controlled by the value the '''rayleigh_damping_factor''' is assigned to. The damping starts weakly at a height defined by [#rayleigh_damping_height rayleigh_damping_height] and rises according to a sin^2^-function to its maximum value at the top (ocean: bottom) boundary.\\\\ |