Changes between Version 400 and Version 401 of doc/app/initialization_parameters


Ignore:
Timestamp:
Sep 26, 2018 12:31:04 PM (6 years ago)
Author:
schwenkel
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/app/initialization_parameters

    v400 v401  
    5151However, at present it is computationally not feasible to simulate a realistic amount of particles. A single Lagrangian particle thus represents an ensemble of identical particles (i.e., same radius, velocity, mass of solute aerosol) and is referred to as "super-droplet". The number of particles in this ensemble is referred to as the "weighting factor".
    5252The LCM must be steered with the list of [../parpar Particle Parameters].
    53 }}}
    54 |----------------
    55 |----------------
    56 {{{#!td style="vertical-align:top"
    57 [=#cloud_physics '''cloud_physics''']
    58 }}}
    59 {{{#!td style="vertical-align:top"
    60 L
    61 }}}
    62 {{{#!td style="vertical-align:top"
    63 .F.
    64 }}}
    65 {{{#!td
    66 Parameter to switch on the condensation scheme.\\\\
    67 For '''cloud_physics''' = ''.T.'', equations for the total water mixing ratio and the liquid water potential temperature are solved instead of those for water vapor mixing ratio and potential temperature. The parameterization of cloud and precipitation physics can be steered with [#cloud_scheme cloud_scheme]. Also, cloud-top cooling by longwave radiation can be utilized (see [#cloud_top_radiation cloud_top_radiation]).\\\\
    68 '''cloud_physics''' = ''.T.'' requires [#humidity humidity] = ''.T.''.\\\\
    69 This condensation scheme is not allowed if cloud droplets are simulated explicitly (see [#cloud_droplets cloud_droplets]).
    70 }}}
    71 |----------------
    72 {{{#!td style="vertical-align:top"
    73 [=#cloud_scheme '''cloud_scheme''']
    74 }}}
    75 {{{#!td style="vertical-align:top"
    76 C*20
    77 }}}
    78 {{{#!td style="vertical-align:top"
    79 '' 'saturation_adjust' ''
    80 }}}
    81 {{{#!td
    82 Parameter to choose microphysics for bulk cloud physics (which requires [#cloud_physics cloud_physics] = .TRUE.).\\\\
    83 The following values are allowed:\\\\
    84 '' 'saturation_adjust' ''\\\\
    85       Simple saturation adjustment scheme (also known as 0%-or100% scheme), in which a grid volume is either saturated or subsaturated. Detailed information about the condensation scheme is given in the description of the [[cloud physics module]] (pdf-file). Supersaturations are instantaneously condensed to liquid water. No precipitation is produced. If precipitation is important, use 'kessler or 'seifert_beheng'. \\\\
    86 '' 'kessler' ''\\\\
    87       One-moment cloud microphysics according to Kessler (1969). It is also based on the saturation adjustment scheme to diagnose cloud water. However, it allows precipitation if the liquid cloud water exceeds a threshold value. This water is instantaneously removed from the model domain. Additionally,  liquid cloud water is allowed to sediment if [#cloud_water_sedimentation cloud_water_sedimentation] is set to true.
    88 '' 'seifert_beheng' '' \\\\
    89       Two-moment cloud microphysics according to Seifert and Beheng (2006). It is also based on the saturation adjustment scheme to diagnose cloud water. The cloud drop number concentration is set via [#nc_const nc_const]. Rain water and hence precipitation is treated with two additional prognostic equations for rain water mixing ratio and rain drop concentration, including autoconversion, accretion, selfcollection, breakup, evaporation, and sedimentation. Ventilation effect on evaporation is steered by [#ventilation_effect ventilation_effect] and set to true per default. Sedimentation can be controlled via [#c_sedimentation c_sedimentation], [#limiter_sedimentation limiter_sedimentation]. Turbulence effects on accretion and autoconversion are steered via [#collision_turbulence collision_turbulence]. Additionally,  liquid cloud water is allowed to sediment too if [#cloud_water_sedimentation cloud_water_sedimentation] is set to true.\\\\
    90 '' 'morrison' '' \\\\
    91       Two-moment cloud microphysics according to Seifert and Beheng (2006), Khairoutdinov and Kogan (2000), Khvorostynaov and Curry (2006) and Morrison and Grabowski (2007). The 'morrison'-scheme can be understood as an extension of the implemented 'seifert_beheng'-scheme. In comparison to the 'seifert_beheng'-scheme there are three main differences. First, instead of saturation adjustment the diffusional growth is parametrized while calculating condensation/evaporation rates. Second, the activation is considered with a simple Twomey activation-scheme. For this also Koehler-theory can take into account with the parameter [#curvature_solution_effects_bulk curvature_solution_effects_bulk] = T. The background aerosol concentration, which also determines the maximum number of activated cloud droplets, can be prescribed with [#na_init na_init]. Thirdly, the number concentration of cloud droplets (nc) and the cloud water mixing ratio (qc) are prognostic quantities. This allows a change of the cloud droplet number which is also considered for all microphysical processes. \\\\
    92 }}}
    93 |----------------
    94 {{{#!td style="vertical-align:top"
    95 [=#cloud_top_radiation '''cloud_top_radiation''']
    96 }}}
    97 {{{#!td style="vertical-align:top"
    98 L
    99 }}}
    100 {{{#!td style="vertical-align:top"
    101 .F.
    102 }}}
    103 {{{#!td
    104 (until r1496 this parameter was named '''radiation'''). Parameter to switch on longwave radiation cooling at cloud-tops.\\\\
    105 Long-wave radiation processes are parameterized by the effective emissivity, which considers only the absorption and emission of long-wave radiation at cloud droplets. The radiation scheme can be used only with [#cloud_physics cloud_physics] = ''.T.''.
    10653}}}
    10754|----------------
     
    32203167Prescribing wall_scalarflux additionally requires setting of [#surface_scalarflux surface_scalarflux]. Furthermore, please note that wall_scalarflux(0) only describes the kinematic flux at non-zero height. At zero-height (surface) the kinematic flux is given by [#surface_scalarflux surface_scalarflux] instead.
    32213168}}}
    3222 
    3223 [[BR]]
    3224 
    3225 [=#cphys '''Cloud physics:]\\
    3226 ||='''Parameter Name'''  =||='''[../fortrantypes FORTRAN]\\[../fortrantypes Type]'''  =||='''Default\\Value'''  =||='''Explanation'''  =||
    3227 |----------------
    3228 {{{#!td style="vertical-align:top;width: 150px"
    3229 [=#aerosol_bulk '''aerosol_bulk''']
    3230 }}}
    3231 {{{#!td style="vertical-align:top;width: 50px"
    3232 C*20
    3233 }}}
    3234 {{{#!td style="vertical-align:top;width: 75px"
    3235 'nacl'
    3236 }}}
    3237 {{{#!td
    3238 Parameter to choose the used aerosol type. Currently three approximations are available:\\\\
    3239 '' 'nacl' ''\\
    3240       It is assumed that the aerosol is nacl. \\\\
    3241 '' 'c3h4o4' '' \\
    3242       It is assumed that the aerosol is malonic acid.\\\\
    3243 '' 'nh4no3' '' \\
    3244       It is assumed that the aerosol is ammonium sulfate. \\\\
    3245 The molecular weight, denisty and the solubility (vant Hoff factor)  of this specific type is considered.
    3246 }}}
    3247 |----------------
    3248 {{{#!td style="vertical-align:top;width: 150px"
    3249 [=#call_microphysics_at_all_substeps '''call_microphysics_at_all_substeps''']
    3250 }}}
    3251 {{{#!td style="vertical-align:top;width: 50px"
    3252 L
    3253 }}}
    3254 {{{#!td style="vertical-align:top;width: 75px"
    3255 .F.
    3256 }}}
    3257 {{{#!td
    3258 Parameter to control how often 2-moment cloud microphysics ([#cloud_scheme cloud_scheme] = 'seifert_beheng') are computed during a model time step. Using the default, cloud microphysics are computed once before the time step. Using call_microphysics_at_all_substeps = .T., cloud microphysics are computed before every substep of the applied time step scheme, which is, however, not necessary to gain acceptable results. Note that advection and diffusion of rainwater mixing ratio (qr) and rain drop concentration (nr) are not affected by this parameter (these processes are computed as any other scalar).
    3259 }}}
    3260 |----------------
    3261 {{{#!td style="vertical-align:top;width: 150px"
    3262 [=#c_sedimentation '''c_sedimentation''']
    3263 }}}
    3264 {{{#!td style="vertical-align:top;width: 50px"
    3265 R
    3266 }}}
    3267 {{{#!td style="vertical-align:top;width: 75px"
    3268 2.0
    3269 }}}
    3270 {{{#!td
    3271 Courant number for sedimentation process.
    3272 
    3273 A Courant number that is too big inhibits microphysical interactions of the sedimented quantity. There is no need to use the limiter ([#limiter_sedimentation limiter_sedimentation]) if [#c_sedimentation c_sedimentation] <= 1.0.
    3274 
    3275 This parameter only comes into effect if the microphysical cloud scheme according to Seifert and Beheng (2006) is used ([#cloud_scheme cloud_scheme] = 'seifert_beheng').
    3276 }}}
    3277 |----------------
    3278 {{{#!td style="vertical-align:top"
    3279 [=#curvature_solution_effects_bulk '''curvature_solution_effects_bulk''']
    3280 }}}
    3281 {{{#!td style="vertical-align:top"
    3282 L
    3283 }}}
    3284 {{{#!td style="vertical-align:top"
    3285 .F.
    3286 }}}
    3287 {{{#!td
    3288 Parameter to switch on an activation scheme which considers curvature and solution effects of cloud droplet activation. Therefore a parameterization of Khvorostyanov and Curry, 2006 is used. The physio-chemical aerosol properties can be prescribed with [#aerosol_bulk aerosol_bulk], [#dry_aerosol_radius dry_aerosol_radius] and [#sigma_bulk sigma_bulk].
    3289 }}}
    3290 |----------------
    3291 {{{#!td style="vertical-align:top;width: 150px"
    3292 [=#cloud_water_sedimentation '''cloud_water_sedimentation''']
    3293 }}}
    3294 {{{#!td style="vertical-align:top;width: 50px"
    3295 L
    3296 }}}
    3297 {{{#!td style="vertical-align:top;width: 75px"
    3298 .F.
    3299 }}}
    3300 {{{#!td
    3301 Parameter to consider sedimentation of cloud water according to Ackermann et al. (2009, MWR).
    3302 
    3303 This parameter only comes into effect if the microphysical cloud scheme according to Seifert and Beheng (2006) ([#cloud_scheme cloud_scheme] = 'seifert_beheng') or by Kessler (1969)  ([#cloud_scheme cloud_scheme] = 'kessler') is used.
    3304 }}}
    3305 |----------------
    3306 {{{#!td style="vertical-align:top"
    3307 [=#dry_aerosol_radius '''dry_aerosol_radius''']
    3308 }}}
    3309 {{{#!td style="vertical-align:top"
    3310 R
    3311 }}}
    3312 {{{#!td style="vertical-align:top"
    3313 0.05E-6
    3314 }}}
    3315 {{{#!td
    3316 The mean geometric radius of the dry aerosol spectrum.
    3317 }}}
    3318 |----------------
    3319 {{{#!td style="vertical-align:top;width: 150px"
    3320 [=#limiter_sedimentation '''limiter_sedimentation''']
    3321 }}}
    3322 {{{#!td style="vertical-align:top;width: 50px"
    3323 L
    3324 }}}
    3325 {{{#!td style="vertical-align:top;width: 75px"
    3326 .T.
    3327 }}}
    3328 {{{#!td
    3329 Slope limiter in sedimentation process according to Stevens and Seifert (2008).
    3330 
    3331 This parameter only comes into effect if the microphysical cloud scheme according to Seifert and Beheng (2006) is used ([#cloud_scheme cloud_scheme] = 'seifert_beheng').
    3332 
    3333 If [#c_sedimentation c_sedimentation] <= 1.0 there is no need to use the limiter.
    3334 }}}
    3335 |----------------
    3336 {{{#!td style="vertical-align:top;width: 150px"
    3337 [=#na_init '''na_init''']
    3338 }}}
    3339 {{{#!td style="vertical-align:top;width: 50px"
    3340 R
    3341 }}}
    3342 {{{#!td style="vertical-align:top;width: 75px"
    3343 100.0E6
    3344 }}}
    3345 {{{#!td
    3346 Background dry aerosol concentration. If [#cloud_scheme cloud_scheme] = 'morrison' is used this parameter replaces [#nc_const nc_const]. Activation is parameterized assuming that the number of activated CCN cannot be larger than na_init.
    3347 This parameter only comes into effect if the microphysical cloud scheme according to Morrison and Grabowski (2007) is used ([#cloud_scheme cloud_scheme] = 'morrison').
    3348 }}}
    3349 |----------------
    3350 {{{#!td style="vertical-align:top;width: 150px"
    3351 [=#nc_const '''nc_const''']
    3352 }}}
    3353 {{{#!td style="vertical-align:top;width: 50px"
    3354 R
    3355 }}}
    3356 {{{#!td style="vertical-align:top;width: 75px"
    3357 70.0E6
    3358 }}}
    3359 {{{#!td
    3360 Fixed cloud droplet number density (in 1/m^3^). The default value is applicable for marine conditions.
    3361 
    3362 This parameter only comes into effect if the microphysical cloud scheme according to Seifert and Beheng (2006) is used ([#cloud_scheme cloud_scheme] = 'seifert_beheng').
    3363 }}}
    3364 |----------------
    3365 {{{#!td style="vertical-align:top;width: 150px"
    3366 [=#collision_turbulence '''collision_turbulence''']
    3367 }}}
    3368 {{{#!td style="vertical-align:top;width: 50px"
    3369 L
    3370 }}}
    3371 {{{#!td style="vertical-align:top;width: 75px"
    3372 .F.
    3373 }}}
    3374 {{{#!td
    3375 Turbulence effects on the collision process, namely the autoconversion and accretion according to Seifert, Nuijens and Stevens (2010).
    3376 
    3377 This parameter only comes into effect if the microphysical cloud scheme according to Seifert and Beheng (2006) is used ([#cloud_scheme cloud_scheme] = 'seifert_beheng').
    3378 }}}
    3379 |----------------
    3380 {{{#!td style="vertical-align:top"
    3381 [=#sigma_bulk '''sigma_bulk''']
    3382 }}}
    3383 {{{#!td style="vertical-align:top"
    3384 R
    3385 }}}
    3386 {{{#!td style="vertical-align:top"
    3387 2.0
    3388 }}}
    3389 {{{#!td
    3390 The dispersion of the dry aerosol spectrum.
    3391 }}}
    3392 |----------------
    3393 {{{#!td style="vertical-align:top;width: 150px"
    3394 [=#ventilation_effect '''ventilation_effect''']
    3395 }}}
    3396 {{{#!td style="vertical-align:top;width: 50px"
    3397 L
    3398 }}}
    3399 {{{#!td style="vertical-align:top;width: 75px"
    3400 .T.
    3401 }}}
    3402 {{{#!td
    3403 Parameter to consider the ventilation effect on evaporation of raindrops according to Seifert (2008).
    3404 
    3405 This parameter only comes into effect if the microphysical cloud scheme according to Seifert and Beheng (2006) is used ([#cloud_scheme cloud_scheme] = 'seifert_beheng').
    3406 }}}
    3407 |----------------
    34083169[[BR]]
    34093170