| 2055 | }}} |
| 2056 | |---------------- |
| 2057 | {{{#!td style="vertical-align:top" |
| 2058 | [=#use_free_convection_scaling '''use_free_convection_scaling'''] |
| 2059 | }}} |
| 2060 | {{{#!td style="vertical-align:top" |
| 2061 | L |
| 2062 | }}} |
| 2063 | {{{#!td style="vertical-align:top" |
| 2064 | .F. |
| 2065 | }}} |
| 2066 | {{{#!td |
| 2067 | Parameter to switch on the use of the local free convection velocity scale {{{w_lfc}}}. |
| 2068 | |
| 2069 | When switched on, {{{w_lfc}}} is added to the horizontal wind velocity for use in the constant flux layer parameterization to calculate the Obukhov length and the friction velocity {{{u_*}}} over horizontally-aligned surfaces. The horizontal velocity {{{u_h}}} at height of the first vertical grid level {{{z_mo}}} is then calculated as: |
| 2070 | {{{ |
| 2071 | #!Latex |
| 2072 | $$u_\mathrm{h} = \left(u(z_\mathrm{mo})^2 + v(z_\mathrm{mo})^2 + w_\mathrm{lfc}^2\right)^{1/2}$$ |
| 2073 | }}} |
| 2074 | with |
| 2075 | {{{ |
| 2076 | #!Latex |
| 2077 | $$w_\mathrm{lfc} = \left( \frac{g}{\thetaz_\mathrm{mo})} * z_\mathrm{mo} * \overline{w'\theta'}_0\right)^{1/3}$$ |
| 2078 | }}} |
| 2079 | This is particularly useful in simulations of convective boundary layers where the local near-surface wind is expected to close to zero, e.g. in urban environments when the present buildings create spots of stagnant air. {{{w_lfc}}} accounts for the dominant eddies close to the surface that cannot be resolved by the LES model and increases {{{u_h}}} by a small amount. When using the land surface scheme, this might prevent the surface sensible heat flux from dropping to zero under no-wind conditions. |