| 1855 | |---------------- |
| 1856 | {{{#!td style="vertical-align:top" |
| 1857 | [=#zeta_max '''zeta_max'''] |
| 1858 | }}} |
| 1859 | {{{#!td style="vertical-align:top" |
| 1860 | R |
| 1861 | }}} |
| 1862 | {{{#!td style="vertical-align:top" |
| 1863 | 20.0 |
| 1864 | }}} |
| 1865 | {{{#!td |
| 1866 | Upper limit of the stability parameter {{{[zeta = z_mo/L}}}, with {{{z_mo}}} being the height of the constant flux layer, and {{{L}}} being the Obukhov length.\\\\ |
| 1867 | With a constant flux layer switched on (see [#constant_flux_layer constant_flux_layer]), the Obukhov length ('''ol''') is calculated for {{{z=z_mo (k=1)}}} in the 3d-model (in the [../../tec/1dmodel 1d-model] for all heights) for each horizontal grid point. Its particular values determine the values of the friction velocity (1d- and 3d-model) and the values of the eddy diffusivity (1d-model). With small wind velocities at the top of the constant flux layer or small vertical wind shears in the 1d-model, the stability parameter '''zeta = z_mo/ol''' can take up unrealistic values. They are limited by an upper ('''zeta_max''') and lower limit (see [#zeta_min zeta_min]). The condition '''zeta_max''' > zeta_min must be met. |
| 1868 | }}} |
| 1869 | |---------------- |
| 1870 | {{{#!td style="vertical-align:top" |
| 1871 | [=#zeta_min '''zeta_min'''] |
| 1872 | }}} |
| 1873 | {{{#!td style="vertical-align:top" |
| 1874 | R |
| 1875 | }}} |
| 1876 | {{{#!td style="vertical-align:top" |
| 1877 | -9990.0 |
| 1878 | }}} |
| 1879 | {{{#!td |
| 1880 | Lower limit of the stability parameter {{{[zeta = z_mo/L}}}, with {{{z_mo}}} being the height of the constant flux layer, and {{{L}}} being the Obukhov length.\\\\ |
| 1881 | For further explanations see [#zeta_max zeta_max]. The condition zeta_max > '''zeta_min''' must be met. |
| 1882 | }}} |
2781 | | |---------------- |
2782 | | {{{#!td style="vertical-align:top" |
2783 | | [=#zeta_max '''zeta_max'''] |
2784 | | }}} |
2785 | | {{{#!td style="vertical-align:top" |
2786 | | R |
2787 | | }}} |
2788 | | {{{#!td style="vertical-align:top" |
2789 | | 20.0 |
2790 | | }}} |
2791 | | {{{#!td |
2792 | | Upper limit of the stability parameter {{{[zeta = z_mo/L}}}, with {{{z_mo}}} being the height of the constant flux layer, and {{{L}}} being the Obukhov length.\\\\ |
2793 | | With a constant flux layer switched on (see [#constant_flux_layer constant_flux_layer]), the Obukhov length ('''ol''') is calculated for {{{z=z_mo (k=1)}}} in the 3d-model (in the [../../tec/1dmodel 1d-model] for all heights) for each horizontal grid point. Its particular values determine the values of the friction velocity (1d- and 3d-model) and the values of the eddy diffusivity (1d-model). With small wind velocities at the top of the constant flux layer or small vertical wind shears in the 1d-model, the stability parameter '''zeta = z_mo/ol''' can take up unrealistic values. They are limited by an upper ('''zeta_max''') and lower limit (see [#zeta_min zeta_min]). The condition '''zeta_max''' > zeta_min must be met. |
2794 | | }}} |
2795 | | |---------------- |
2796 | | {{{#!td style="vertical-align:top" |
2797 | | [=#zeta_min '''zeta_min'''] |
2798 | | }}} |
2799 | | {{{#!td style="vertical-align:top" |
2800 | | R |
2801 | | }}} |
2802 | | {{{#!td style="vertical-align:top" |
2803 | | -9990.0 |
2804 | | }}} |
2805 | | {{{#!td |
2806 | | Lower limit of the stability parameter {{{[zeta = z_mo/L}}}, with {{{z_mo}}} being the height of the constant flux layer, and {{{L}}} being the Obukhov length.\\\\ |
2807 | | For further explanations see [#zeta_max zeta_max]. The condition zeta_max > '''zeta_min''' must be met. |
2808 | | }}} |