Changes between Version 161 and Version 162 of doc/app/initialization_parameters


Ignore:
Timestamp:
Jun 15, 2011 9:25:53 AM (14 years ago)
Author:
witha
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/app/initialization_parameters

    v161 v162  
    11171117Boundary condition along x (for all quantities).\\\\
    11181118By default, a cyclic boundary condition is used along x.\\\\
    1119 '''bc_lr''' may also be assigned the values '' 'dirichlet/radiation' '' (inflow from left, outflow to the right) or '' 'radiation/dirichlet' '' (inflow from right, outflow to the left). This requires the multi-grid method to be used for solving the Poisson equation for perturbation pressure (see [../d3par#psolver psolver]) and it also requires cyclic boundary conditions along y (see [#bc_ns bc_ns]).\\\\
     1119'''bc_lr''' may also be assigned the values '' 'dirichlet/radiation' '' (inflow from left, outflow to the right) or '' 'radiation/dirichlet' '' (inflow from right, outflow to the left). This requires the multi-grid method to be used for solving the Poisson equation for perturbation pressure (see [#psolver psolver]) and it also requires cyclic boundary conditions along y (see [#bc_ns bc_ns]).\\\\
    11201120In case of these non-cyclic lateral boundaries, a Dirichlet condition is used at the inflow for all quantities (initial vertical profiles - see [#initializing_actions initializing_actions] - are fixed during the run) except u, to which a Neumann (zero gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero gradient) condition is used for the scalars. For perturbation pressure Neumann (zero gradient) conditions are assumed both at the inflow and at the outflow.\\\\
    11211121When using non-cyclic lateral boundaries, a filter is applied to the velocity field in the vicinity of the outflow in order to suppress any reflections of outgoing disturbances (see [#km_damp_max km_damp_max] and [#outflow_damping_width outflow_damping_width]).\\\\
     
    11381138Boundary condition along y (for all quantities).\\\\
    11391139By default, a cyclic boundary condition is used along y.\\\\
    1140 '''bc_ns''' may also be assigned the values '' 'dirichlet/radiation' '' (inflow from rear ("north"), outflow to the front ("south")) or '' 'radiation/dirichlet' '' (inflow from front ("south"), outflow to the rear ("north")). This requires the multi-grid method to be used for solving the Poisson equation for perturbation pressure (see [../d3par#psolver psolver]) and it also requires cyclic boundary conditions along x (see
     1140'''bc_ns''' may also be assigned the values '' 'dirichlet/radiation' '' (inflow from rear ("north"), outflow to the front ("south")) or '' 'radiation/dirichlet' '' (inflow from front ("south"), outflow to the rear ("north")). This requires the multi-grid method to be used for solving the Poisson equation for perturbation pressure (see [#psolver psolver]) and it also requires cyclic boundary conditions along x (see
    11411141[#bc_lr bc_lr]).\\\\
    11421142In case of these non-cyclic lateral boundaries, a Dirichlet condition is used at the inflow for all quantities (initial vertical profiles - see [#initializing_actions initializing_actions] - are fixed during the run) except u, to which a Neumann (zero gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero gradient) condition is used for the scalars. For perturbation pressure Neumann (zero gradient) conditions are assumed both at the inflow and at the outflow.\\\\