966 | | The Bott scheme modified by Chlond (1994, Mon. Wea. Rev., 122, 111-125). This is a conservative monotonous scheme with very small numerical diffusion and therefore very good conservation of scalar flow features. The scheme however, is computationally very expensive both because it is expensive itself and because it does (so far) not allow specific code optimizations (e.g. cache optimization). Choice of this scheme forces the Euler timestep scheme to be used for the scalar quantities. For output of horizontally averaged profiles of the resolved / total heat flux, [../d3par#data_output_pr data_output_pr] = '' 'w*pt*BC' '' / '' 'wptBC' '' should be used, instead of the standard profiles ('' 'w*pt*' '' and '' 'wpt' '') because these are too inaccurate with this scheme. However, for subdomain analysis (see [../d3par#statistic_regions statistic_regions]) exactly the reverse holds: here '' 'w*pt*BC' '' and '' 'wptBC' '' show very large errors and should not be used.\\\\ |
| 966 | The Bott scheme modified by Chlond (1994, Mon. Wea. Rev., 122, 111-125). This is a conservative monotonous scheme with very small numerical diffusion and therefore very good conservation of scalar flow features. The scheme however, is computationally very expensive both because it is expensive itself and because it does (so far) not allow specific code optimizations (e.g. cache optimization). Choice of this scheme forces the Euler timestep scheme to be used for the scalar quantities. For output of horizontally averaged profiles of the resolved / total heat flux, [../d3par#data_output_pr data_output_pr] = '' 'w*pt*BC' '' / '' 'wptBC' '' should be used, instead of the standard profiles ('' 'w*pt*' '' and '' 'wpt' '') because these are too inaccurate with this scheme. However, for subdomain analysis (see [#statistic_regions statistic_regions]) exactly the reverse holds: here '' 'w*pt*BC' '' and '' 'wptBC' '' show very large errors and should not be used.\\\\ |