Changeset 1493
 Timestamp:
 Nov 12, 2014 3:39:53 PM (9 years ago)
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

palm/trunk/TUTORIAL/SOURCE/canopy_model.tex
r1205 r1493 25 25 morecomment=[l]{!\ }% Comment only with space after ! 26 26 } 27 27 \usepackage{tabto} 28 28 29 29 \institute{Institut fÃŒr Meteorologie und Klimatologie, Leibniz UniversitÃ€t Hannover} … … 62 62 \subsection{The embedded Canopy Model} 63 63 64 64 65 %Folie 01 65 66 \begin{frame} … … 72 73 \item<4>{scalar exchange processes between canopy and atmosphere.} 73 74 \end{itemize} 74 \item<5>{ Within the canopy model, the plant canopy acts as a sink for momentum and as a source/sink for active (e.g. temperature) and passive (e.g. tracer) scalars.}75 \item<6>{The canopy model does not account for each plant element, but rather accounts for a volume averaged effect on the flow and scalar concentration, depending on:}75 \item<5>{The plant canopy acts as a sink for momentum and as a source/sink for active (e.g. temperature) and passive (e.g. tracer) scalars.} 76 \item<6>{The source/sink strength for momentum and scalars depends on e.g.:} 76 77 \begin{itemize} 77 78 \item<7>{leaf area density,} 78 \item<8>{drag coefficient.} 79 \item<8>{drag coefficient,} 80 \item<9>{wind speed.} 79 81 \end{itemize} 80 82 \end{itemize} … … 90 92 \item<1>{A plant canopy affects the flow by acting as a momentum sink due to form and viscous drag forces.} 91 93 \item<2>{The effectiveness of momentum absorption depends on the amount of leaf area per unit volume and the aerodynamic drag.} 92 \item<3>{Due to the aerodynamic drag, the flow is decelerated within the canopy, leading toan inflection point in the vertical profile of the horizontal velocity at the canopy top.94 \item<3>{Due to the aerodynamic drag, the flow is decelerated within the canopy, creating an inflection point in the vertical profile of the horizontal velocity at the canopy top. 93 95 \begin{center} 94 96 \includegraphics[width=0.5\textwidth]{canopy_model_figures/abb1.png} … … 132 134 } 133 135 \begin{itemize} 134 \item<3>{ $c_{d}$ 135 \item<4>{ $a $ :leaf area density $[m^{2}m^{3}]$}136 \item<5>{ $U$ :$(u^{2} + v^{2} + w^{2})^{1/2}$ $[m s^{1}]$}137 \item<6>{ $u_{i}$ 136 \item<3>{ $c_{d}$\tabto{.5cm}: drag coefficient} 137 \item<4>{ $a $\tabto{.5cm}: leaf area density $[m^{2}m^{3}]$} 138 \item<5>{ $U$\tabto{.5cm}: $(u^{2} + v^{2} + w^{2})^{1/2}$ $[m s^{1}]$} 139 \item<6>{ $u_{i}$\tabto{.5cm}: velocity component ($u_{1}=u$, $u_{2}=v$, $u_{3}=w$)} 138 140 \end{itemize} 139 141 \end{itemize} 140 \uncover<7>{Note: The canopy model does not resolve the effect of single plant elements.}142 \uncover<7>{Note: The canopy model does not resolve single plant elements, it rather models a volumeaveraged effect of the forest drag on the flow.} 141 143 \end{footnotesize} 142 144 \end{frame} … … 149 151 \begin{footnotesize} 150 152 \begin{itemize} 151 \item<1>{The effect of the canopy on the subgrid scale turbulence is accounted for by adding a sink term to the prognostic equation for the subgrid 153 \item<1>{The effect of the canopy on the subgrid scale turbulence is accounted for by adding a sink term to the prognostic equation for the subgridscale turbulent kinetic energy:\\ 152 154 \begin{align*} 153 155 \frac{\partial e}{\partial t} = \text{...}  2 c_{d} a U e 154 156 \end{align*} 155 157 } 156 \item<2>{It is assumed that the subgrid scale turbulent kinetic energy is dissipated by the canopy due to the rapid dissipation of wake turbulence in the lee of canopyelements (e.g. Watanabe, 2004).}158 \item<2>{It is assumed that the subgrid scale turbulent kinetic energy is dissipated by the canopy due to the rapid dissipation of wake turbulence in the lee of plant elements (e.g. Watanabe, 2004).} 157 159 \end{itemize} 158 160 \end{footnotesize} … … 171 173 \end{align*} 172 174 } 173 \item<2>{It is assumed that the foliage is warmed by the penetrating solar radiation and, in turn,warms the surrounding air.}175 \item<2>{It is assumed that the foliage is warmed by the penetrating solar radiation. In turn, the heated foliage warms the surrounding air.} 174 176 \item<3>{The source strength $S_{\theta}$ is defined as the vertical derivative of the upward kinematic vertical heat flux $Q_{\theta}$, given by (Shaw and Schumann, 1992):\\ 175 177 \begin{align*} … … 211 213 \frametitle{Basics (I)} 212 214 \begin{itemize} 213 \item<1>{The canopy model is switched on by setting the parameter {\small \texttt{plant\_canopy = .TRUE.}} within the \&inipar {\small \texttt{NAMELIST}} in the parameter file ({\small \texttt{PARIN}}).}215 \item<1>{The canopy model is enabled by adding {\small \texttt{NAMELIST}} group {\small \texttt{\&canopy\_par}} to the parameter file ({\small \texttt{PARIN}}), subsequently to {\small \texttt{NAMELIST}} group {\small \texttt{\&d3par}}.} 214 216 \item<2>{All parameters for steering the canopy model are described in:\\ 215 {\scriptsize Documentation $\rightarrow$ Model steering $\rightarrow$ Parameters $\rightarrow$ Initialization $\rightarrow$ Canopy}\\217 {\scriptsize Documentation $\rightarrow$ Model steering $\rightarrow$ Parameters $\rightarrow$ Plant canopy}\\ 216 218 (http://palm.muk.unihannover.de) 217 219 } 218 \item<3>{The following slides will describe how to set up a simulation with a simple horizontally homogeneous canopy block covering the entire model domain surface. In this case, {\small \texttt{canopy\_mode = 'block'}} must be set in \&inipar{\small \texttt{NAMELIST}}.}220 \item<3>{The following slides will describe how to set up a simulation with a simple horizontally homogeneous canopy block, covering the entire model domain surface. In this case, {\small \texttt{canopy\_mode = 'block'}} must be set in {\small \texttt{\&canopy\_par}} {\small \texttt{NAMELIST}}.} 219 221 \end{itemize} 220 222 \end{frame} … … 224 226 %Folie 09 225 227 \begin{frame} 226 \frametitle{Basic canopy parameter (I)}227 The parameters for steering the canopy model have to be added to the \&inipar{\small \texttt{NAMELIST}} in the parameter file ({\small \texttt{PARIN}}).\\228 \frametitle{Basic canopy parameters (I)} 229 The parameters for steering the canopy model have to be added to the {\small \texttt{\&canopy\_par}} {\small \texttt{NAMELIST}} in the parameter file ({\small \texttt{PARIN}}).\\ 228 230 \begin{itemize} 229 \item<1>{Step I: Define the upper boundary of the plant canopy layer using the parameter {\small \texttt{pch\_index (grid point index, default 0)}}. {\small \texttt{pch\_index}} specifies the number of grid points resolving the canopy layer in the vertical direction.}231 \item<1>{Step I: Define the upper boundary of the plant canopy volume using the parameter {\small \texttt{pch\_index}} (grid point index, default 0). {\small \texttt{pch\_index}} specifies the number of grid points resolving the canopy layer in the vertical direction.} 230 232 \end{itemize} 231 233 \vspace{10pt} … … 363 365 %Folie 10 364 366 \begin{frame} 365 \frametitle{Basic canopy parameter (II)}367 \frametitle{Basic canopy parameters (II)} 366 368 \begin{itemize} 367 369 \item<1>{ Step II: Construct the vertical profile of the leaf area density (lad) to prescribe the distribution of leaf area within the plant canopy volume.\\ 368 The canopy top is located between {\small \texttt{zu(pch\_index)}} and {\small \texttt{zu(pch\_index + 1)}} because this is the transition between the incanopy grid point and the abovecanopy grid point. 369 } 370 Two methods are available to prescribe an lad profile:} 371 \begin{itemize} 372 \item<2>{Create piecewise linear segments by prescribing vertical lad gradients,} 373 \item<3>{Prescribe a beta probability distribution.} 374 \end{itemize} 375 376 \end{itemize} 377 \vspace{10pt} 378 379 \tikzstyle{background} = [rectangle, fill=gray!10, text width=1\textwidth, text centered, rounded corners, minimum height=10em] 380 \tikzstyle{Key1} = [rectangle, draw, fill=gray!70, text width=0.05, minimum size=0.05, font=\tiny] 381 \tikzstyle{Key2} = [rectangle, draw, fill=green!90, text width=0.05, minimum size=0.05, font=\tiny] 382 \tikzstyle{Key3} = [rectangle, text width=4.5cm, minimum size=16pt, font=\tiny] 383 \tikzstyle{label} = [rectangle, text width=2.0cm, align=center, minimum size=16pt, font=\tiny] 384 385 \begin{tikzpicture}[>=latex'] 386 %%% Edit the following coordinate to change the shape of your 387 %%% cuboid 388 389 %% Vanishing points for perspective handling 390 \coordinate (P1) at (4cm,1.5cm); % left vanishing point (To pick) 391 \coordinate (P2) at (10cm,1.5cm); % right vanishing point (To pick) 392 393 %% (A1) and (A2) defines the 2 central points of the cuboid 394 \coordinate (A1) at (0cm,0cm); % central top point (To pick) 395 \coordinate (A2) at (0cm,2cm); % central bottom point (To pick) 396 397 %% (A3) to (A8) are computed given a unique parameter (or 2) .8 398 % You can vary .8 from 0 to 1 to change perspective on left side 399 \coordinate (A3) at ($(P1)!.8!(A2)$); % To pick for perspective 400 \coordinate (A4) at ($(P1)!.8!(A1)$); 401 402 % You can vary .8 from 0 to 1 to change perspective on right side 403 \coordinate (A7) at ($(P2)!.7!(A2)$); 404 \coordinate (A8) at ($(P2)!.7!(A1)$); 405 406 %% Automatically compute the last 2 points with intersections 407 \coordinate (A5) at 408 (intersection cs: first line={(A8)  (P1)}, 409 second line={(A4)  (P2)}); 410 \coordinate (A6) at 411 (intersection cs: first line={(A7)  (P1)}, 412 second line={(A3)  (P2)}); 413 414 %% Drawing the canopy layer 415 \coordinate (A9) at (0em,1.7cm); % central bottom point (To pick) 416 \coordinate (A10) at ($(P2)!.7!(A9)$); 417 \coordinate (A12) at ($(P1)!.8!(A9)$); % To pick for perspective 418 \coordinate (A11) at 419 (intersection cs: first line={(A10)  (P1)}, 420 second line={(A12)  (P2)}); 421 422 %%% Depending of what you want to display, you can comment/edit 423 %%% the following lines 424 425 {\node [background, right=0.8cm of A12] (background) {};} 426 427 %% Possibly draw back faces 428 429 \fill[gray!70] (A2)  (A3)  (A6)  (A7)  cycle; % face 6 430 \node at (barycentric cs:A2=1,A3=1,A6=1,A7=1) {\tiny }; 431 432 \fill[gray!30] (A3)  (A4)  (A5)  (A6)  cycle; % face 3 433 \node at (barycentric cs:A3=1,A4=1,A5=1,A6=1) {\tiny }; 434 435 \fill[gray!10] (A5)  (A6)  (A7)  (A8)  cycle; % face 4 436 \node at (barycentric cs:A5=1,A6=1,A7=1,A8=1) {\tiny }; 437 438 439 \fill[green!90] (A9)  (A10)  (A11)  (A12)  cycle; % face 7 440 \node at (barycentric cs:A9=1,A10=1,A11=1,A12=1) {\tiny }; 441 442 \fill[green!100] (A9)  (A12)  (A3)  (A2)  cycle; % face 8 443 \node at (barycentric cs:A9=1,A12=1,A3=1,A2=1) {\tiny }; 444 445 \fill[green!100] (A9)  (A10)  (A7)  (A2)  cycle; % face 9 446 \node at (barycentric cs:A9=1,A10=1,A7=1,A2=1) {\tiny }; 447 448 \draw[thin,dashed] (A5)  (A6); 449 \draw[thin,dashed] (A3)  (A6); 450 \draw[thin,dashed] (A7)  (A6); 451 452 \draw[thin,dashed] (A11)  (A12); 453 \draw[thin,dashed] (A10)  (A11); 454 455 %% Possibly draw front faces 456 457 % \fill[orange] (A1)  (A8)  (A7)  (A2)  cycle; % face 1 458 % \node at (barycentric cs:A1=1,A8=1,A7=1,A2=1) {\tiny f1}; 459 \fill[gray!50,opacity=0.2] (A1)  (A2)  (A3)  (A4)  cycle; % f2 460 \node at (barycentric cs:A1=1,A2=1,A3=1,A4=1) {\tiny }; 461 \fill[gray!90,opacity=0.2] (A1)  (A4)  (A5)  (A8)  cycle; % f5 462 \node at (barycentric cs:A1=1,A4=1,A5=1,A8=1) {\tiny }; 463 464 %% Possibly draw front lines 465 \draw[thin] (A1)  (A2); 466 \draw[thin] (A3)  (A4); 467 \draw[thin] (A7)  (A8); 468 \draw[thin] (A1)  (A4); 469 \draw[thin] (A1)  (A8); 470 \draw[thin] (A2)  (A3); 471 \draw[thin] (A2)  (A7); 472 \draw[thin] (A4)  (A5); 473 \draw[thin] (A8)  (A5); 474 475 \draw[thin] (A9)  (A10); 476 \draw[thin] (A9)  (A12); 477 478 % Possibly draw points 479 % (it can help you understand the cuboid structure) 480 \foreach \i in {1,2,...,12} 481 { 482 % \draw[fill=black] (A\i) circle (0.05em) 483 % node[above right] {\tiny \i}; 484 } 485 % \draw[fill=black] (P1) circle (0.1em) node[below] {\tiny p1}; 486 % \draw[fill=black] (P2) circle (0.1em) node[below] {\tiny p2}; 487 488 %Key 489 \coordinate (K1) at (0.5cm,2.3cm); 490 \coordinate (K2) at (0.5cm,2.7cm); 491 492 493 \node [Key1, right=0.0cm of K1] (key1) {}; 494 \node [Key2, right=0.0cm of K2] (key2) {}; 495 \node [Key3, right=0.4cm of K1] (key11) {Total model domain}; 496 \node [Key3, right=0.4cm of K2] (key21) {Plant canopy volume}; 497 498 %% frame specific elements 499 500 %% boundary layer profile 2D 501 \coordinate (B1) at (4.0cm,0.3cm); 502 \coordinate (B2) at (4.0cm,2.5cm); 503 504 \coordinate (B3) at (4.0cm,0.6cm); 505 \coordinate (B4) at (6.6cm,2.5cm); 506 507 \draw[thin, dotted] (A10)  (B1); 508 \draw[thin, dotted] (A7)  (B2); 509 \draw[<] (B3)  (B2); 510 \draw[<] (B4)  (B2); 511 512 \coordinate (xlab) at (5.3cm,2.5cm); 513 \coordinate (ylab) at (4.0cm,1.1cm); 514 \node [label, below=0.0cm of xlab] (xlabel) {lad $[m^{2}m^{3}]$}; 515 \node [label, rotate=90, above=0.0cm of ylab] (ylabel) {z$[m]$}; 516 517 518 \coordinate (B5) at (4.5cm,2.5cm); 519 % \draw [,color=red] (B1) to [out=10,in=90,looseness=2.0, relative=false] .. controls (4,0) and (5,0) .. (B5); 520 \draw {(B1) .. controls (8.0,0.2) and (4.5,1.0) .. (B5)}; 521 522 523 \end{tikzpicture} 524 525 526 \end{frame} 527 528 529 530 %Folie 11 531 \begin{frame} 532 \frametitle{Basic canopy parameters (II)} 533 \begin{itemize} 534 \item<1>{ Method I: Create lad profile from piecewise linear segments by prescribing vertical lad gradients.} 535 \item[]{The canopy top is located at {\small \texttt{zw(pch\_index)}} (wgrid), which is in the center between {\small \texttt{zu(pch\_index)}} and {\small \texttt{zu(pch\_index + 1)}} (ugrid).} 370 536 \end{itemize} 371 537 \vspace{10pt} … … 559 725 560 726 561 562 %Folie 11 563 \begin{frame} 564 \frametitle{Basic canopy parameter (III)} 727 %Folie 12 728 \begin{frame} 729 \frametitle{Basic canopy parameters (II)} 730 \begin{itemize} 731 \item<1>{ Method II: Create \textit{lad} profile by prescribing a distribution, following this beta probability density function:} 732 \end{itemize} 733 734 735 %equation for beta distribution: 736 \vspace{3pt} 737 \scriptsize 738 \begin{equation*} 739 f_{PDF}(\frac{z}{H},\alpha,\beta) = \frac{(\frac{z}{H})^{\alpha1}\;(1\frac{z}{H})^{\beta1}}{\int_{0}^{1}\;(\frac{z}{H})^{\alpha1}\;(1\frac{z}{H})^{\beta1}\;d(\frac{z}{H})} 740 \end{equation*} 741 \vspace{5pt} 742 \begin{equation*} 743 \rightarrow \hspace{5pt} lad(z) = LAI\cdot f_{PDF}(\frac{z}{H})\cdot H 744 \end{equation*} 745 \normalsize 746 747 748 749 %draw figure: 750 \tikzstyle{background} = [rectangle, fill=gray!10, text width=1\textwidth, text centered, rounded corners, minimum height=10em] 751 \tikzstyle{Key1} = [rectangle, draw, fill=gray!70, text width=0.05, minimum size=0.05, font=\tiny] 752 \tikzstyle{Key2} = [rectangle, draw, fill=green!90, text width=0.05, minimum size=0.05, font=\tiny] 753 \tikzstyle{Key3} = [rectangle, text width=4.5cm, minimum size=16pt, font=\tiny] 754 \tikzstyle{label} = [rectangle, text width=2.0cm, align=center, minimum size=16pt, font=\tiny] 755 756 \begin{tikzpicture}[>=latex'] 757 %%% Edit the following coordinate to change the shape of your 758 %%% cuboid 759 760 %% Vanishing points for perspective handling 761 \coordinate (P1) at (4cm,1.5cm); % left vanishing point (To pick) 762 \coordinate (P2) at (10cm,1.5cm); % right vanishing point (To pick) 763 764 %% (A1) and (A2) defines the 2 central points of the cuboid 765 \coordinate (A1) at (0cm,0cm); % central top point (To pick) 766 \coordinate (A2) at (0cm,2cm); % central bottom point (To pick) 767 768 %% (A3) to (A8) are computed given a unique parameter (or 2) .8 769 % You can vary .8 from 0 to 1 to change perspective on left side 770 \coordinate (A3) at ($(P1)!.8!(A2)$); % To pick for perspective 771 \coordinate (A4) at ($(P1)!.8!(A1)$); 772 773 % You can vary .8 from 0 to 1 to change perspective on right side 774 \coordinate (A7) at ($(P2)!.7!(A2)$); 775 \coordinate (A8) at ($(P2)!.7!(A1)$); 776 777 %% Automatically compute the last 2 points with intersections 778 \coordinate (A5) at 779 (intersection cs: first line={(A8)  (P1)}, 780 second line={(A4)  (P2)}); 781 \coordinate (A6) at 782 (intersection cs: first line={(A7)  (P1)}, 783 second line={(A3)  (P2)}); 784 785 %% Drawing the canopy layer 786 \coordinate (A9) at (0em,1.7cm); % central bottom point (To pick) 787 \coordinate (A10) at ($(P2)!.7!(A9)$); 788 \coordinate (A12) at ($(P1)!.8!(A9)$); % To pick for perspective 789 \coordinate (A11) at 790 (intersection cs: first line={(A10)  (P1)}, 791 second line={(A12)  (P2)}); 792 793 %%% Depending of what you want to display, you can comment/edit 794 %%% the following lines 795 796 {\node [background, right=0.8cm of A12] (background) {};} 797 798 %% Possibly draw back faces 799 800 \fill[gray!70] (A2)  (A3)  (A6)  (A7)  cycle; % face 6 801 \node at (barycentric cs:A2=1,A3=1,A6=1,A7=1) {\tiny }; 802 803 \fill[gray!30] (A3)  (A4)  (A5)  (A6)  cycle; % face 3 804 \node at (barycentric cs:A3=1,A4=1,A5=1,A6=1) {\tiny }; 805 806 \fill[gray!10] (A5)  (A6)  (A7)  (A8)  cycle; % face 4 807 \node at (barycentric cs:A5=1,A6=1,A7=1,A8=1) {\tiny }; 808 809 810 \fill[green!90] (A9)  (A10)  (A11)  (A12)  cycle; % face 7 811 \node at (barycentric cs:A9=1,A10=1,A11=1,A12=1) {\tiny }; 812 813 \fill[green!100] (A9)  (A12)  (A3)  (A2)  cycle; % face 8 814 \node at (barycentric cs:A9=1,A12=1,A3=1,A2=1) {\tiny }; 815 816 \fill[green!100] (A9)  (A10)  (A7)  (A2)  cycle; % face 9 817 \node at (barycentric cs:A9=1,A10=1,A7=1,A2=1) {\tiny }; 818 819 \draw[thin,dashed] (A5)  (A6); 820 \draw[thin,dashed] (A3)  (A6); 821 \draw[thin,dashed] (A7)  (A6); 822 823 \draw[thin,dashed] (A11)  (A12); 824 \draw[thin,dashed] (A10)  (A11); 825 826 %% Possibly draw front faces 827 828 % \fill[orange] (A1)  (A8)  (A7)  (A2)  cycle; % face 1 829 % \node at (barycentric cs:A1=1,A8=1,A7=1,A2=1) {\tiny f1}; 830 \fill[gray!50,opacity=0.2] (A1)  (A2)  (A3)  (A4)  cycle; % f2 831 \node at (barycentric cs:A1=1,A2=1,A3=1,A4=1) {\tiny }; 832 \fill[gray!90,opacity=0.2] (A1)  (A4)  (A5)  (A8)  cycle; % f5 833 \node at (barycentric cs:A1=1,A4=1,A5=1,A8=1) {\tiny }; 834 835 %% Possibly draw front lines 836 \draw[thin] (A1)  (A2); 837 \draw[thin] (A3)  (A4); 838 \draw[thin] (A7)  (A8); 839 \draw[thin] (A1)  (A4); 840 \draw[thin] (A1)  (A8); 841 \draw[thin] (A2)  (A3); 842 \draw[thin] (A2)  (A7); 843 \draw[thin] (A4)  (A5); 844 \draw[thin] (A8)  (A5); 845 846 \draw[thin] (A9)  (A10); 847 \draw[thin] (A9)  (A12); 848 849 % Possibly draw points 850 % (it can help you understand the cuboid structure) 851 \foreach \i in {1,2,...,12} 852 { 853 % \draw[fill=black] (A\i) circle (0.05em) 854 % node[above right] {\tiny \i}; 855 } 856 % \draw[fill=black] (P1) circle (0.1em) node[below] {\tiny p1}; 857 % \draw[fill=black] (P2) circle (0.1em) node[below] {\tiny p2}; 858 859 %Key 860 \coordinate (K1) at (0.5cm,2.3cm); 861 \coordinate (K2) at (0.5cm,2.7cm); 862 863 864 \node [Key1, right=0.0cm of K1] (key1) {}; 865 \node [Key2, right=0.0cm of K2] (key2) {}; 866 \node [Key3, right=0.4cm of K1] (key11) {Total model domain}; 867 \node [Key3, right=0.4cm of K2] (key21) {Plant canopy volume}; 868 869 %% frame specific elements 870 871 %% boundary layer profile 2D 872 \coordinate (B1) at (4.0cm,0.3cm); 873 \coordinate (B2) at (4.0cm,2.5cm); 874 875 \coordinate (B3) at (4.0cm,0.6cm); 876 \coordinate (B4) at (6.6cm,2.5cm); 877 878 \draw[thin, dotted] (A10)  (B1); 879 \draw[thin, dotted] (A7)  (B2); 880 \draw[<] (B3)  (B2); 881 \draw[<] (B4)  (B2); 882 883 \coordinate (xlab) at (5.3cm,2.5cm); 884 \coordinate (ylab) at (4.0cm,1.1cm); 885 \node [label, below=0.0cm of xlab] (xlabel) {lad $[m^{2}m^{3}]$}; 886 \node [label, rotate=90, above=0.0cm of ylab] (ylabel) {z$[m]$}; 887 888 889 \coordinate (B5) at (4.5cm,2.5cm); 890 % \draw [,color=red] (B1) to [out=10,in=90,looseness=2.0, relative=false] .. controls (4,0) and (5,0) .. (B5); 891 \draw {(B1) .. controls (8.0,0.2) and (4.5,1.0) .. (B5)}; 892 893 %parameters to be prescribed: 894 \node [Key3, right=2.1cm of B1] (label1) {Prescribe values for coefficients\\ $\alpha$, $\beta$ and for $LAI$:}; 895 896 \coordinate (curvelabel11) at (5.9cm,0.5cm); 897 \node [Key3, right=1.0cm of curvelabel11] (curvelabel12) {\texttt{alpha\_lad},\\ \texttt{beta\_lad},\\ \texttt{lai\_beta}.}; 898 \end{tikzpicture} 899 900 901 \end{frame} 902 903 904 905 %Folie 13 906 \begin{frame} 907 \frametitle{Basic canopy parameters (III)} 565 908 \begin{footnotesize} 566 909 \begin{itemize} 567 \item<1>{Step III: Prescribe a value for the parameter {\small \texttt{ drag\_coefficient(default 0.0)}}. The drag coefficient is a dimensionless factor describing the magnitude of the form drag by the canopy working against the flow. A larger form drag results in a greater momentum reduction.}910 \item<1>{Step III: Prescribe a value for the parameter {\small \texttt{canopy\_drag\_coeff (default 0.0)}}. The drag coefficient is a dimensionless factor describing the magnitude of the form drag by the canopy working against the flow. A larger form drag results in a greater momentum reduction.} 568 911 \end{itemize} 569 912 … … 599 942 600 943 601 %Folie 1 2602 \begin{frame} 603 \frametitle{Basic canopy parameter (IV)}944 %Folie 14 945 \begin{frame} 946 \frametitle{Basic canopy parameters (IV)} 604 947 \begin{itemize} 605 \item<1>{For steering the effect of the canopy sensible heat transfer, prescribe a value for the sensible heat flux at the canopy top, using the parameter \texttt{cthf} (see Methods (III)).}606 \item<2>{The sink/source effect of the canopy on other scalar quantities, such as humidity or a passive tracer can be steered by the parameters \texttt{leaf\_surface\_conc entration} and \texttt{scalar\_exchange\_coefficient} (see Methods (IV)).}948 \item<1>{For steering the effect of the sensible heat transfer inside the canopy, prescribe a value for the sensible heat flux at the canopy top, using the parameter \texttt{cthf} (see Methods (III)).} 949 \item<2>{The sink/source effect of the canopy on other scalar quantities, such as humidity or a passive tracer can be steered by the parameters \texttt{leaf\_surface\_conc} and \texttt{leaf\_scalar\_exch\_coeff} (see Methods (IV)).} 607 950 \end{itemize} 608 951 \end{frame} … … 610 953 611 954 612 %Folie 1 3955 %Folie 15 613 956 \begin{frame} 614 957 \frametitle{Userdefined canopy} … … 753 1096 754 1097 % % Text 755 \uncover<4>{\node [text1, right=0.7cm of A7] (text1) {{\footnotesize Note: You might have to make changes in other parts of your {\small \texttt{USER\_CODE}} according to the changes / used parametersin: \texttt{user\_init\_plant\_canopy.f90}}};}1098 \uncover<4>{\node [text1, right=0.7cm of A7] (text1) {{\footnotesize Note: You might have to make changes in other parts of your {\small \texttt{USER\_CODE}} according to the changes in: \texttt{user\_init\_plant\_canopy.f90}}};} 756 1099 \end{tikzpicture} 757 1100
Note: See TracChangeset
for help on using the changeset viewer.