1 | !> @file surface_output_merge.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: surface_output_to_vtk.f90 3496 2018-11-06 15:59:50Z suehring $ |
---|
27 | ! Use subroutine call for fseek instead of function call. gfortran has some |
---|
28 | ! problems with this. |
---|
29 | ! |
---|
30 | ! 3494 2018-11-06 14:51:27Z suehring |
---|
31 | ! Initial version |
---|
32 | ! |
---|
33 | ! Authors: |
---|
34 | ! -------- |
---|
35 | ! @author Matthias Suehring and Klaus Ketelsen |
---|
36 | ! |
---|
37 | !------------------------------------------------------------------------------! |
---|
38 | ! Description: |
---|
39 | ! ------------ |
---|
40 | !> This routine combines surface output from PALM-subdomains into one file. |
---|
41 | !> Output from every processor element is opened and read and output |
---|
42 | !> from all processor elements are written into one file for each timestep |
---|
43 | !> according to Paraview's VTK standard. |
---|
44 | !> Output is distinguished between instantaneous and time-averaged data. |
---|
45 | !------------------------------------------------------------------------------! |
---|
46 | PROGRAM surface_output_to_vtk |
---|
47 | |
---|
48 | IMPLICIT NONE |
---|
49 | |
---|
50 | CHARACTER(LEN=4) :: char_time !< string indicating simulated time |
---|
51 | CHARACTER(LEN=4) :: file_suffix = '.bin' !< string which contain the suffix indicating surface data |
---|
52 | |
---|
53 | CHARACTER(LEN=10) :: char_dum !< dummy string |
---|
54 | |
---|
55 | CHARACTER(LEN=30) :: myid_char !< combined string indicating binary file |
---|
56 | |
---|
57 | CHARACTER(LEN=100) :: path !< path to the binary data |
---|
58 | CHARACTER(LEN=100) :: run !< name of the run |
---|
59 | CHARACTER(LEN=100) :: variable_name !< name of the processed output variable |
---|
60 | |
---|
61 | INTEGER(4) :: ftell !< intrinsic function, get current position in file |
---|
62 | ! INTEGER(4) :: fseek !< intrinsic function, go to given position in file |
---|
63 | INTEGER(4) :: ndum !< return parameter of intrinsic function fseek |
---|
64 | |
---|
65 | INTEGER, PARAMETER :: iwp = 4 !< integer precision |
---|
66 | INTEGER, PARAMETER :: wp = 8 !< float precision |
---|
67 | |
---|
68 | INTEGER(iwp) :: cycle_number !< cycle number |
---|
69 | INTEGER(iwp) :: f !< running index over all binary files |
---|
70 | INTEGER(iwp) :: file_id_in = 18 !< file unit for input binaray file |
---|
71 | INTEGER(iwp) :: file_id_out = 20 !< file unit for output VTK file |
---|
72 | INTEGER(iwp) :: file_id_out_header = 19 !< file unit for temporary header file |
---|
73 | INTEGER(iwp) :: length !< length of string on file |
---|
74 | INTEGER(iwp) :: n !< running index over all points and polygons |
---|
75 | INTEGER(iwp) :: npoints_total !< total number of points |
---|
76 | INTEGER(iwp) :: ns_total !< total number of polygons |
---|
77 | INTEGER(iwp) :: num_pe !< number of processors of the run |
---|
78 | |
---|
79 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: filepos !< current fileposition in binary file |
---|
80 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: npoints !< number of points/vertices in a binaray file |
---|
81 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ns !< number of surface elements in a binaray file |
---|
82 | |
---|
83 | LOGICAL :: convert_average_data = .FALSE. !< namelist parameter to decide whether average or instantaneous data should be converted |
---|
84 | LOGICAL, DIMENSION(:), ALLOCATABLE :: eof !< flag indicating that end of binary file is reached |
---|
85 | |
---|
86 | REAL(wp) :: simulated_time !< output time |
---|
87 | |
---|
88 | REAL(wp), DIMENSION(:), ALLOCATABLE :: var !< actual surface data |
---|
89 | |
---|
90 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: points !< point / vertex data |
---|
91 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: polygons !< polygon data |
---|
92 | |
---|
93 | logical :: flag |
---|
94 | |
---|
95 | ! |
---|
96 | !-- Read namelist. |
---|
97 | CALL surface_output_parin |
---|
98 | ! |
---|
99 | !-- Allocate array which contains the file position in each output file, |
---|
100 | !-- in order to skip some reading. |
---|
101 | ALLOCATE( eof( 0:num_pe-1 ) ) |
---|
102 | ALLOCATE( filepos( 0:num_pe-1 ) ) |
---|
103 | ALLOCATE( npoints( 0:num_pe-1 ) ) |
---|
104 | ALLOCATE( ns( 0:num_pe-1 ) ) |
---|
105 | ! |
---|
106 | !-- Initialize file position. |
---|
107 | filepos = 0 |
---|
108 | ! |
---|
109 | !-- Open a temporary file which contains all necessary header information for the |
---|
110 | !-- VTK format. |
---|
111 | OPEN ( file_id_out_header, FILE = 'HEADER', STATUS = 'REPLACE', & |
---|
112 | FORM = 'FORMATTED' ) |
---|
113 | ! |
---|
114 | !-- READ grid setup, i.e. the number and position of vertices and surface elements |
---|
115 | !-- and merge all this information into one file. Further, create all the required |
---|
116 | !-- header information of the VTK file. |
---|
117 | !-- Note, PARAVIEW expects one VTK file for each variable and each timestep. |
---|
118 | !-- Hence, header information needs to be duplicated multiple times, which will be |
---|
119 | !-- be done later in a bash script. |
---|
120 | !-- Moreover, Paraview expects consecutive vertex and polygon data, which are |
---|
121 | !-- all distributed over the binaray files. Hence, first read vertex data from |
---|
122 | !-- binary file, write this to the HEADER file, close the binary file and read |
---|
123 | !-- data from the next binary file and so on. This requires several openenings |
---|
124 | !-- and closings of the binary files and temporarily storage of the |
---|
125 | !-- file-positions. |
---|
126 | DO f = 0, num_pe - 1 |
---|
127 | ! |
---|
128 | !-- Create filename of the treated binary file. |
---|
129 | CALL surface_output_create_file_string |
---|
130 | ! |
---|
131 | !-- Open file with surface output for processor f. |
---|
132 | OPEN ( file_id_in, FILE = TRIM( path ) // TRIM( run ) // & |
---|
133 | TRIM( myid_char ), FORM = 'UNFORMATTED' ) |
---|
134 | ! |
---|
135 | !-- Read number of vertices / points and surface elements |
---|
136 | READ ( file_id_in ) npoints(f) |
---|
137 | READ ( file_id_in ) npoints_total |
---|
138 | READ ( file_id_in ) ns(f) |
---|
139 | READ ( file_id_in ) ns_total |
---|
140 | |
---|
141 | ! |
---|
142 | !-- Allocate arrays where all the surfaces and vertices will be stored. |
---|
143 | ALLOCATE( points(3,1:npoints(f)) ) |
---|
144 | |
---|
145 | ! |
---|
146 | !-- Read polygon data and store them in a temporary file. |
---|
147 | READ ( file_id_in ) points |
---|
148 | ! |
---|
149 | !-- Obtain current file position. Will be stored for next file opening. |
---|
150 | filepos(f) = ftell( file_id_in ) |
---|
151 | ! CALL FTELL( file_id_in, filepos(f) ) |
---|
152 | ! |
---|
153 | !-- Write header information. Only one time required. |
---|
154 | IF ( f == 0 ) THEN |
---|
155 | WRITE( file_id_out_header,'(A)' ) "# vtk DataFile Version 3.0" |
---|
156 | WRITE( file_id_out_header,'(A,F8.2,A)' ) "legacy vtk File generated by PALM, simulation time = xxx sec" |
---|
157 | WRITE( file_id_out_header,'(A)') "ASCII" |
---|
158 | |
---|
159 | WRITE( file_id_out_header,'(A)') "DATASET POLYDATA" |
---|
160 | WRITE( file_id_out_header,'(A,I5,A)') "POINTS ", npoints_total, " float" |
---|
161 | ENDIF |
---|
162 | ! |
---|
163 | !-- Write the vertex data into header file. |
---|
164 | DO n = 1, npoints(f) |
---|
165 | WRITE( file_id_out_header, '(8F10.1)' ) points(1:3,n) |
---|
166 | ENDDO |
---|
167 | ! |
---|
168 | !-- Deallocate vertex data and close binary file. |
---|
169 | DEALLOCATE( points ) |
---|
170 | |
---|
171 | CLOSE ( file_id_in ) |
---|
172 | ENDDO |
---|
173 | ! |
---|
174 | !-- Now, treat polygon data. |
---|
175 | DO f = 0, num_pe - 1 |
---|
176 | ! |
---|
177 | !-- Create filename of the treated binary file . |
---|
178 | CALL surface_output_create_file_string |
---|
179 | ! |
---|
180 | !-- Open file with surface output for processor f. |
---|
181 | OPEN ( file_id_in, FILE = TRIM( path ) // TRIM( run ) // & |
---|
182 | TRIM( myid_char ), FORM = 'UNFORMATTED' ) |
---|
183 | ! |
---|
184 | !-- Move to last postion. |
---|
185 | ! ndum = fseek( file_id_in, filepos(f), 0 ) |
---|
186 | CALL FSEEK( file_id_in, filepos(f), 0, ndum ) |
---|
187 | ! |
---|
188 | !-- Allocate array for polygon data |
---|
189 | ALLOCATE( polygons(5,1:ns(f)) ) |
---|
190 | ! |
---|
191 | !-- Read polygon data and store them in a temporary file. |
---|
192 | READ ( file_id_in ) polygons |
---|
193 | ! |
---|
194 | !-- Obtain current file position after reading the local polygon data. |
---|
195 | !-- Will be used for next file opening. |
---|
196 | filepos(f) = ftell( file_id_in ) |
---|
197 | ! CALL FTELL( file_id_in, filepos(f) ) |
---|
198 | ! |
---|
199 | !-- Write further header information. Only one time required. |
---|
200 | IF ( f == 0 ) & |
---|
201 | WRITE ( file_id_out_header, '(A,8I10)') "POLYGONS ", & |
---|
202 | ns_total, 5 * ns_total |
---|
203 | ! |
---|
204 | !-- Write the polygons into the header file. Note, polygon data is of type |
---|
205 | !-- integer, as it just connects the point-indices which describe the given |
---|
206 | !-- surface element. |
---|
207 | DO n = 1, ns(f) |
---|
208 | WRITE ( file_id_out_header, '(8I10)' ) INT( polygons(1:5,n) ) |
---|
209 | ENDDO |
---|
210 | ! |
---|
211 | !-- Deallocate array for polygon data and close the file. |
---|
212 | DEALLOCATE( polygons ) |
---|
213 | |
---|
214 | CLOSE ( file_id_in ) |
---|
215 | |
---|
216 | ENDDO |
---|
217 | |
---|
218 | f = 0 |
---|
219 | CALL surface_output_create_file_string |
---|
220 | ! |
---|
221 | !-- Write further header information. Only once required. |
---|
222 | WRITE ( file_id_out_header, '(A,I10)') "CELL_DATA ", ns_total |
---|
223 | WRITE ( file_id_out_header, '(A,I10)') "SCALARS cell_scalars float 1 " |
---|
224 | WRITE ( file_id_out_header, '(A,I10)') "LOOKUP_TABLE default " |
---|
225 | ! |
---|
226 | !-- Header creation has now been completed. File can be closed. |
---|
227 | CLOSE( file_id_out_header ) |
---|
228 | ! |
---|
229 | !-- Now, read all the actual data from the surface output. Please note, Paraview |
---|
230 | !-- VTK format expects 1 file per variable and time step. |
---|
231 | !-- The output file is only created once and includes the variable and the |
---|
232 | !-- simulated time. |
---|
233 | !-- In the binaray files, several variables and timesteps are stored, data for a |
---|
234 | !-- given variable, however, is distributed over all binary files. Hence, read |
---|
235 | !-- variable data for a given timestep from the binary file, write this data into |
---|
236 | !-- the target output file, remember file position in binary file and close it, |
---|
237 | !-- open nex binary file and read the variable, and so on, until all variables |
---|
238 | !-- for all timesteps are processed. |
---|
239 | eof = .FALSE. |
---|
240 | DO |
---|
241 | DO f = 0, num_pe - 1 |
---|
242 | ! |
---|
243 | !-- Clean up strings- |
---|
244 | char_time = '' |
---|
245 | variable_name = '' |
---|
246 | ! |
---|
247 | !-- Create filename of the treated binary file. |
---|
248 | CALL surface_output_create_file_string |
---|
249 | ! |
---|
250 | !-- Open binary file with surface output for processor f. |
---|
251 | OPEN ( file_id_in, FILE = TRIM( path ) // TRIM( run ) // & |
---|
252 | TRIM( myid_char ), FORM = 'UNFORMATTED' ) |
---|
253 | ! |
---|
254 | !-- Move to last postion. |
---|
255 | ! ndum = fseek( file_id_in, filepos(f), 0 ) |
---|
256 | CALL FSEEK( file_id_in, filepos(f), 0, ndum ) |
---|
257 | ! |
---|
258 | !-- Read string length and string indicating the output time step. |
---|
259 | READ ( file_id_in ) length |
---|
260 | READ ( file_id_in ) char_time(1:length) |
---|
261 | ! |
---|
262 | !-- If string for the output time indicates the end-of-file, set the eof |
---|
263 | !-- flag and skip the read of the loop. |
---|
264 | IF ( char_time(1:length) == 'END' ) THEN |
---|
265 | eof(f) = .TRUE. |
---|
266 | CLOSE ( file_id_in ) |
---|
267 | CYCLE |
---|
268 | ENDIF |
---|
269 | ! |
---|
270 | !-- Read output time, and variable name. |
---|
271 | READ ( file_id_in ) simulated_time |
---|
272 | READ ( file_id_in ) length |
---|
273 | READ ( file_id_in ) variable_name(1:length) |
---|
274 | ! |
---|
275 | !-- For first loop index, open the target output file. First create the |
---|
276 | !-- filename string. Further, copy HEADER file with the given filename |
---|
277 | !-- string. The header information must be given in each VTK file! |
---|
278 | IF ( f == 0 ) THEN |
---|
279 | IF ( simulated_time < 10.0_wp ) THEN |
---|
280 | WRITE( char_dum, '(I1)' ) INT( simulated_time ) |
---|
281 | ELSEIF ( simulated_time < 100.0_wp ) THEN |
---|
282 | WRITE( char_dum, '(I2)' ) INT( simulated_time ) |
---|
283 | ELSEIF ( simulated_time < 1000.0_wp ) THEN |
---|
284 | WRITE( char_dum, '(I3)' ) INT( simulated_time ) |
---|
285 | ELSEIF ( simulated_time < 10000.0_wp ) THEN |
---|
286 | WRITE( char_dum, '(I4)' ) INT( simulated_time ) |
---|
287 | ELSEIF ( simulated_time < 100000.0_wp ) THEN |
---|
288 | WRITE( char_dum, '(I5)' ) INT( simulated_time ) |
---|
289 | ELSEIF ( simulated_time < 1000000.0_wp ) THEN |
---|
290 | WRITE( char_dum, '(I6)' ) INT( simulated_time ) |
---|
291 | ELSEIF ( simulated_time < 10000000.0_wp ) THEN |
---|
292 | WRITE( char_dum, '(I7)' ) INT( simulated_time ) |
---|
293 | ELSEIF ( simulated_time < 100000000.0_wp ) THEN |
---|
294 | WRITE( char_dum, '(I8)' ) INT( simulated_time ) |
---|
295 | ELSEIF ( simulated_time < 1000000000.0_wp ) THEN |
---|
296 | WRITE( char_dum, '(I9)' ) INT( simulated_time ) |
---|
297 | ENDIF |
---|
298 | ! |
---|
299 | !-- Copy HEADER file |
---|
300 | CALL system('cp HEADER ' // TRIM( path ) // TRIM( char_dum ) // & |
---|
301 | 's_' // TRIM( variable_name ) // '.vtk') |
---|
302 | !-- Open VTK file. |
---|
303 | OPEN ( file_id_out, FILE = TRIM( path ) // TRIM( char_dum ) // & |
---|
304 | 's_' // TRIM( variable_name ) // '.vtk', FORM='FORMATTED', & |
---|
305 | POSITION = 'APPEND' ) |
---|
306 | ENDIF |
---|
307 | ! |
---|
308 | !-- Allocate and read array for variable data. |
---|
309 | ALLOCATE( var(1:ns(f)) ) |
---|
310 | |
---|
311 | READ( file_id_in ) var |
---|
312 | ! |
---|
313 | !-- Write variable data into output VTK file. |
---|
314 | DO n = 1, ns(f) |
---|
315 | WRITE( file_id_out, * ) var(n) |
---|
316 | ENDDO |
---|
317 | ! |
---|
318 | !-- Remember file position in binary file and close it. |
---|
319 | filepos(f) = ftell( file_id_in ) |
---|
320 | ! CALL FTELL( file_id_in, filepos(f) ) |
---|
321 | |
---|
322 | CLOSE ( file_id_in ) |
---|
323 | ! |
---|
324 | !-- Deallocate temporary array for variable data. |
---|
325 | DEALLOCATE( var ) |
---|
326 | |
---|
327 | ENDDO |
---|
328 | ! |
---|
329 | !-- After data for a variable for one time step is read, close the output |
---|
330 | !-- VTK file and go to next variable or timestep. |
---|
331 | CLOSE ( file_id_out ) |
---|
332 | ! |
---|
333 | !-- If all files reached the end-of-file, exit the loop. |
---|
334 | IF ( ALL( eof ) ) EXIT |
---|
335 | |
---|
336 | ENDDO |
---|
337 | ! |
---|
338 | !-- Finally, remove HEADER file |
---|
339 | CALL system( 'rm HEADER' ) |
---|
340 | |
---|
341 | CONTAINS |
---|
342 | |
---|
343 | !------------------------------------------------------------------------------! |
---|
344 | ! Description: |
---|
345 | ! ------------ |
---|
346 | !> This subroutine read the namelist file. |
---|
347 | !------------------------------------------------------------------------------! |
---|
348 | SUBROUTINE surface_output_parin |
---|
349 | |
---|
350 | IMPLICIT NONE |
---|
351 | |
---|
352 | INTEGER(iwp) :: file_id_parin = 90 |
---|
353 | |
---|
354 | NAMELIST /surface_output/ convert_average_data, cycle_number, num_pe, & |
---|
355 | path, run |
---|
356 | |
---|
357 | ! |
---|
358 | !-- Open namelist file. |
---|
359 | OPEN( file_id_parin, FILE='surface_output_parin', & |
---|
360 | STATUS='OLD', FORM='FORMATTED') |
---|
361 | ! |
---|
362 | !-- Read namelist. |
---|
363 | READ ( file_id_parin, surface_output ) |
---|
364 | ! |
---|
365 | !-- Close namelist file. |
---|
366 | CLOSE( file_id_parin ) |
---|
367 | |
---|
368 | END SUBROUTINE surface_output_parin |
---|
369 | |
---|
370 | !------------------------------------------------------------------------------! |
---|
371 | ! Description: |
---|
372 | ! ------------ |
---|
373 | !> This subroutine creates the filename string of the treated binary file. |
---|
374 | !------------------------------------------------------------------------------! |
---|
375 | SUBROUTINE surface_output_create_file_string |
---|
376 | |
---|
377 | IMPLICIT NONE |
---|
378 | |
---|
379 | CHARACTER(LEN=3) :: char_av = '' |
---|
380 | CHARACTER(LEN=4) :: char_cycle = '' |
---|
381 | |
---|
382 | ! |
---|
383 | !-- Create substring for the cycle number. |
---|
384 | IF ( cycle_number /= 0 ) THEN |
---|
385 | IF ( cycle_number < 10 ) THEN |
---|
386 | WRITE( char_cycle, '(I1)') cycle_number |
---|
387 | char_cycle = '.00' // TRIM( char_cycle ) |
---|
388 | ELSEIF ( cycle_number < 100 ) THEN |
---|
389 | WRITE( char_cycle, '(I2)') cycle_number |
---|
390 | char_cycle = '.0' // TRIM( char_cycle ) |
---|
391 | ELSEIF ( cycle_number < 1000 ) THEN |
---|
392 | WRITE( char_cycle, '(I3)') cycle_number |
---|
393 | char_cycle = '.' // TRIM( char_cycle ) |
---|
394 | ENDIF |
---|
395 | ENDIF |
---|
396 | ! |
---|
397 | !-- Create substring for averaged data. |
---|
398 | IF ( convert_average_data ) char_av = '_av' |
---|
399 | ! |
---|
400 | !-- Create substring for the processor id and combine all substrings. |
---|
401 | IF ( f < 10 ) THEN |
---|
402 | WRITE( char_dum, '(I1)') f |
---|
403 | myid_char = TRIM( char_av ) // '_surf_00000' // TRIM( char_dum ) // & |
---|
404 | TRIM( char_cycle ) // file_suffix |
---|
405 | ELSEIF ( f < 100 ) THEN |
---|
406 | WRITE( char_dum, '(I2)') f |
---|
407 | myid_char = TRIM( char_av ) // '_surf_0000' // TRIM( char_dum ) // & |
---|
408 | TRIM( char_cycle ) // file_suffix |
---|
409 | ELSEIF ( f < 1000 ) THEN |
---|
410 | WRITE( char_dum, '(I3)') f |
---|
411 | myid_char = TRIM( char_av ) // '_surf_000' // TRIM( char_dum ) // & |
---|
412 | TRIM( char_cycle ) // file_suffix |
---|
413 | ELSEIF ( f < 10000 ) THEN |
---|
414 | WRITE( char_dum, '(I4)') f |
---|
415 | myid_char = TRIM( char_av ) // '_surf_00' // TRIM( char_dum ) // & |
---|
416 | TRIM( char_cycle ) // file_suffix |
---|
417 | ELSEIF ( f < 100000 ) THEN |
---|
418 | WRITE( char_dum, '(I5)') f |
---|
419 | myid_char = TRIM( char_av ) // '_surf_0' // TRIM( char_dum ) // & |
---|
420 | TRIM( char_cycle ) // file_suffix |
---|
421 | ELSEIF ( f < 1000000 ) THEN |
---|
422 | WRITE( char_dum, '(I6)') f |
---|
423 | myid_char = TRIM( char_av ) // '_surf_' // TRIM( char_dum ) // & |
---|
424 | TRIM( char_cycle ) // file_suffix |
---|
425 | ENDIF |
---|
426 | |
---|
427 | END SUBROUTINE surface_output_create_file_string |
---|
428 | |
---|
429 | END PROGRAM surface_output_to_vtk |
---|
430 | |
---|
431 | |
---|
432 | |
---|