1 | !> @file src/transform.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 2017-2018 Leibniz Universitaet Hannover |
---|
18 | ! Copyright 2017-2018 Deutscher Wetterdienst Offenbach |
---|
19 | !------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ----------------- |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: transform.f90 2718 2018-01-02 08:49:38Z gronemeier $ |
---|
28 | ! Initial revision |
---|
29 | ! |
---|
30 | ! |
---|
31 | ! |
---|
32 | ! Authors: |
---|
33 | ! -------- |
---|
34 | ! @author Eckhard Kadasch |
---|
35 | ! |
---|
36 | ! Description: |
---|
37 | ! ------------ |
---|
38 | !> The transform module provides INIFOR's low-level transformation and |
---|
39 | !> interpolation routines. The rotated-pole transformation routines phirot2phi, |
---|
40 | !> phi2phirot, rlarot2rla, rla2rlarot, uv2uvrot, and uvrot2uv are adapted from |
---|
41 | !> int2lm's utility routines. |
---|
42 | !------------------------------------------------------------------------------! |
---|
43 | MODULE transform |
---|
44 | |
---|
45 | USE control |
---|
46 | USE defs, & |
---|
47 | ONLY: TO_DEGREES, TO_RADIANS, PI, dp |
---|
48 | USE types |
---|
49 | USE util, & |
---|
50 | ONLY: real_to_str, str |
---|
51 | |
---|
52 | IMPLICIT NONE |
---|
53 | |
---|
54 | CONTAINS |
---|
55 | |
---|
56 | !------------------------------------------------------------------------------! |
---|
57 | ! Description: |
---|
58 | ! ------------ |
---|
59 | !> Interpolates linearly in the vertical direction in very column (i,j) of the |
---|
60 | !> output array outvar(i,j,:) using values of the source array invar. In cells |
---|
61 | !> that are outside the COSMO-DE domain, indicated by negative interpolation |
---|
62 | !> weights, extrapolate constantly from the cell above. |
---|
63 | !> |
---|
64 | !> Input parameters: |
---|
65 | !> ----------------- |
---|
66 | !> invar : Array of source data |
---|
67 | !> |
---|
68 | !> outgrid % kk : Array of vertical neighbour indices. kk(i,j,k,:) contain the |
---|
69 | !> indices of the two vertical neighbors of PALM-4U point (i,j,k) on the |
---|
70 | !> input grid corresponding to the source data invar. |
---|
71 | !> |
---|
72 | !> outgrid % w_verti : Array of weights for vertical linear interpolation |
---|
73 | !> corresponding to neighbour points indexed by kk. |
---|
74 | !> |
---|
75 | !> Output papameters: |
---|
76 | !> ------------------ |
---|
77 | !> outvar : Array of interpolated data |
---|
78 | !------------------------------------------------------------------------------! |
---|
79 | SUBROUTINE interpolate_1d(in_arr, out_arr, outgrid) |
---|
80 | TYPE(grid_definition), INTENT(IN) :: outgrid |
---|
81 | REAL(dp), INTENT(IN) :: in_arr(0:,0:,0:) |
---|
82 | REAL(dp), INTENT(OUT) :: out_arr(0:,0:,0:) |
---|
83 | |
---|
84 | INTEGER :: i, j, k, l, nx, ny, nz |
---|
85 | |
---|
86 | nx = UBOUND(out_arr, 1) |
---|
87 | ny = UBOUND(out_arr, 2) |
---|
88 | nz = UBOUND(out_arr, 3) |
---|
89 | |
---|
90 | DO j = 0, ny |
---|
91 | DO i = 0, nx |
---|
92 | DO k = nz, 0, -1 |
---|
93 | |
---|
94 | ! TODO: Remove IF clause and extrapolate based on a critical vertical |
---|
95 | ! TODO: index marking the lower bound of COSMO-DE data coverage. |
---|
96 | ! Check for negative interpolation weights indicating grid points |
---|
97 | ! below COSMO-DE domain and extrapolate from the top in such cells. |
---|
98 | IF (outgrid % w_verti(i,j,k,1) < -1.0_dp .AND. k < nz) THEN |
---|
99 | out_arr(i,j,k) = out_arr(i,j,k+1) |
---|
100 | ELSE |
---|
101 | out_arr(i,j,k) = 0.0_dp |
---|
102 | DO l = 1, 2 |
---|
103 | out_arr(i,j,k) = out_arr(i,j,k) + & |
---|
104 | outgrid % w_verti(i,j,k,l) * & |
---|
105 | in_arr(i,j,outgrid % kk(i,j,k, l) ) |
---|
106 | END DO |
---|
107 | END IF |
---|
108 | END DO |
---|
109 | END DO |
---|
110 | END DO |
---|
111 | END SUBROUTINE interpolate_1d |
---|
112 | |
---|
113 | |
---|
114 | !------------------------------------------------------------------------------! |
---|
115 | ! Description: |
---|
116 | ! ------------ |
---|
117 | !> Interpolates bi-linearly in horizontal planes on every k level of the output |
---|
118 | !> array outvar(:,:,k) using values of the source array invar(:,:,:). The source |
---|
119 | !> (invar) and interpolation array (outvar) need to have matching dimensions. |
---|
120 | !> |
---|
121 | !> Input parameters: |
---|
122 | !> ----------------- |
---|
123 | !> invar : Array of source data |
---|
124 | !> |
---|
125 | !> outgrid % ii, % jj : Array of neighbour indices in x and y direction. |
---|
126 | !> ii(i,j,k,:), and jj(i,j,k,:) contain the four horizontal neighbour points |
---|
127 | !> of PALM-4U point (i,j,k) on the input grid corresponding to the source |
---|
128 | !> data invar. (The outgrid carries the relationship with the ingrid in the |
---|
129 | ! form of the interpoaltion weights.) |
---|
130 | !> |
---|
131 | !> outgrid % w_horiz: Array of weights for horizontal bi-linear interpolation |
---|
132 | !> corresponding to neighbour points indexed by ii and jj. |
---|
133 | !> |
---|
134 | !> Output papameters: |
---|
135 | !> ------------------ |
---|
136 | !> outvar : Array of interpolated data |
---|
137 | !------------------------------------------------------------------------------! |
---|
138 | SUBROUTINE interpolate_2d(invar, outvar, outgrid, ncvar) |
---|
139 | ! I index 0-based for the indices of the outvar to be consistent with the |
---|
140 | ! outgrid indices and interpolation weights. |
---|
141 | TYPE(grid_definition), INTENT(IN) :: outgrid |
---|
142 | REAL(dp), INTENT(IN) :: invar(0:,0:,0:) |
---|
143 | REAL(dp), INTENT(OUT) :: outvar(0:,0:,0:) |
---|
144 | TYPE(nc_var), INTENT(IN), OPTIONAL :: ncvar |
---|
145 | |
---|
146 | INTEGER :: i, j, k, l |
---|
147 | |
---|
148 | ! TODO: check if input dimensions are consistent, i.e. ranges are correct |
---|
149 | IF (UBOUND(outvar, 3) .GT. UBOUND(invar, 3)) THEN |
---|
150 | message = "Output array for '" // TRIM(ncvar % name) // "' has ' more levels (" // & |
---|
151 | TRIM(str(UBOUND(outvar, 3))) // ") than input variable ("//& |
---|
152 | TRIM(str(UBOUND(invar, 3))) // ")." |
---|
153 | CALL abort('interpolate_2d', message) |
---|
154 | END IF |
---|
155 | |
---|
156 | DO k = 0, UBOUND(outvar, 3) |
---|
157 | DO j = 0, UBOUND(outvar, 2) |
---|
158 | DO i = 0, UBOUND(outvar, 1) |
---|
159 | outvar(i,j,k) = 0.0_dp |
---|
160 | DO l = 1, 4 |
---|
161 | |
---|
162 | outvar(i,j,k) = outvar(i,j,k) + & |
---|
163 | outgrid % w_horiz(i,j,l) * invar( outgrid % ii(i,j,l), & |
---|
164 | outgrid % jj(i,j,l), & |
---|
165 | k ) |
---|
166 | END DO |
---|
167 | END DO |
---|
168 | END DO |
---|
169 | END DO |
---|
170 | |
---|
171 | END SUBROUTINE interpolate_2d |
---|
172 | |
---|
173 | |
---|
174 | SUBROUTINE average_2d(in_arr, out_arr, imin, imax, jmin, jmax) |
---|
175 | REAL(dp), INTENT(IN) :: in_arr(0:,0:,0:) |
---|
176 | REAL(dp), INTENT(OUT) :: out_arr(0:) |
---|
177 | INTEGER, INTENT(IN) :: imin, imax, jmin, jmax |
---|
178 | |
---|
179 | INTEGER :: i, j, k |
---|
180 | REAL(dp) :: ni |
---|
181 | |
---|
182 | IF (imin < 0) CALL abort('average_2d', "imin < 0.") |
---|
183 | IF (jmin < 0) CALL abort('average_2d', "jmin < 0.") |
---|
184 | IF (imax > UBOUND(in_arr, 1)) CALL abort('average_2d', "imax out of i bound.") |
---|
185 | IF (jmax > UBOUND(in_arr, 2)) CALL abort('average_2d', "jmax out of j bound.") |
---|
186 | |
---|
187 | DO k = 0, UBOUND(out_arr, 1) |
---|
188 | |
---|
189 | out_arr(k) = 0.0_dp |
---|
190 | DO j = jmin, jmax |
---|
191 | DO i = imin, imax |
---|
192 | out_arr(k) = out_arr(k) + in_arr(i, j, k) |
---|
193 | END DO |
---|
194 | END DO |
---|
195 | |
---|
196 | END DO |
---|
197 | |
---|
198 | ! devide by number of grid points |
---|
199 | ni = 1.0_dp / ( (imax - imin + 1) * (jmax - jmin + 1) ) |
---|
200 | out_arr(:) = out_arr(:) * ni |
---|
201 | |
---|
202 | END SUBROUTINE average_2d |
---|
203 | |
---|
204 | |
---|
205 | SUBROUTINE interpolate_3d(source_array, palm_array, palm_intermediate, palm_grid) |
---|
206 | TYPE(grid_definition), INTENT(IN) :: palm_intermediate, palm_grid |
---|
207 | REAL(dp), DIMENSION(:,:,:), INTENT(IN) :: source_array |
---|
208 | REAL(dp), DIMENSION(:,:,:), INTENT(OUT) :: palm_array |
---|
209 | REAL(dp), DIMENSION(:,:,:), ALLOCATABLE :: intermediate_array |
---|
210 | INTEGER :: nx, ny, nz |
---|
211 | |
---|
212 | nx = palm_intermediate % nx |
---|
213 | ny = palm_intermediate % ny |
---|
214 | nz = palm_intermediate % nz ! nlev |
---|
215 | |
---|
216 | ! Interpolate from COSMO-DE to intermediate grid. Allocating with one |
---|
217 | ! less point in the vertical, since scalars like T have 50 instead of 51 |
---|
218 | ! points in COSMO-DE. |
---|
219 | ALLOCATE(intermediate_array(0:nx, 0:ny, 0:nz-1)) ! |
---|
220 | |
---|
221 | CALL interpolate_2d(source_array, intermediate_array, palm_intermediate) |
---|
222 | |
---|
223 | ! Interpolate from intermediate grid to palm_grid grid, includes |
---|
224 | ! extrapolation for cells below COSMO-DE domain. |
---|
225 | CALL interpolate_1d(intermediate_array, palm_array, palm_grid) |
---|
226 | |
---|
227 | DEALLOCATE(intermediate_array) |
---|
228 | |
---|
229 | END SUBROUTINE interpolate_3d |
---|
230 | |
---|
231 | |
---|
232 | SUBROUTINE average_profile(source_array, profile_array, imin, imax, jmin, jmax,& |
---|
233 | palm_intermediate, palm_grid) |
---|
234 | TYPE(grid_definition), INTENT(IN) :: palm_intermediate, palm_grid |
---|
235 | REAL(dp), DIMENSION(:,:,:), INTENT(IN) :: source_array |
---|
236 | INTEGER, INTENT(IN) :: imin, imax, jmin, jmax |
---|
237 | REAL(dp), DIMENSION(0:,0:,0:), INTENT(OUT) :: profile_array |
---|
238 | REAL(dp), DIMENSION(:,:,:), ALLOCATABLE :: intermediate_array |
---|
239 | INTEGER :: nx, ny, nz |
---|
240 | |
---|
241 | nx = palm_intermediate % nx |
---|
242 | ny = palm_intermediate % ny |
---|
243 | nz = palm_intermediate % nz |
---|
244 | ALLOCATE(intermediate_array(0:nx, 0:ny, 0:nz-1)) |
---|
245 | intermediate_array(:,:,:) = 0.0_dp |
---|
246 | |
---|
247 | ! average input array to intermediate profile |
---|
248 | CALL average_2d(source_array, intermediate_array(0,0,:), imin, imax, jmin, jmax) |
---|
249 | |
---|
250 | ! vertically interpolate to ouput array |
---|
251 | CALL interpolate_1d(intermediate_array, profile_array, palm_grid) |
---|
252 | |
---|
253 | DEALLOCATE(intermediate_array) |
---|
254 | |
---|
255 | END SUBROUTINE average_profile |
---|
256 | |
---|
257 | |
---|
258 | |
---|
259 | !-----------------------------------------------------------------------------! |
---|
260 | ! Description: |
---|
261 | ! ----------- |
---|
262 | !> This routine computes the inverse Plate Carree projection, i.e. in projects |
---|
263 | !> Cartesian coordinates (x,y) onto a sphere. It returns the latitude and |
---|
264 | !> lngitude of a geographical system centered at x0 and y0. |
---|
265 | !-----------------------------------------------------------------------------! |
---|
266 | SUBROUTINE inv_plate_carree(x, y, x0, y0, r, lat, lon) |
---|
267 | REAL(dp), INTENT(IN) :: x(:), y(:), x0, y0, r |
---|
268 | REAL(dp), INTENT(OUT) :: lat(:), lon(:) |
---|
269 | |
---|
270 | REAL(dp) :: ri |
---|
271 | |
---|
272 | ! TODO check dimensions of lat/lon and y/x match |
---|
273 | |
---|
274 | ri = 1.0_dp / r |
---|
275 | |
---|
276 | lat(:) = (y(:) - y0) * ri |
---|
277 | lon(:) = (x(:) - x0) * ri |
---|
278 | END SUBROUTINE |
---|
279 | |
---|
280 | |
---|
281 | !-----------------------------------------------------------------------------! |
---|
282 | ! Description: |
---|
283 | ! ------------ |
---|
284 | !> Computes the reverse Plate-Carree projection of a x or y position on a |
---|
285 | !> Cartesian grid. |
---|
286 | !> |
---|
287 | !> Input parameters: |
---|
288 | !> ----------------- |
---|
289 | !> xy : x or y coordinate of the Cartasian grid point [m]. |
---|
290 | !> |
---|
291 | !> xy0 : x or y coordinate that coincides with the origin of the underlying |
---|
292 | !> sperical system (crossing point of the equator and prime meridian) [m]. |
---|
293 | !> |
---|
294 | !> r : Radius of the of the underlying sphere, e.g. EARTH_RADIUS [m]. |
---|
295 | !> |
---|
296 | !> Returns: |
---|
297 | !> -------- |
---|
298 | !> project : Longitude (in case xy = x) or latitude (xy = y) of the given input |
---|
299 | !> coordinate xy. |
---|
300 | !------------------------------------------------------------------------------! |
---|
301 | ELEMENTAL REAL(dp) FUNCTION project(xy, xy0, r) |
---|
302 | REAL(dp), INTENT(IN) :: xy, xy0, r |
---|
303 | REAL(dp) :: ri |
---|
304 | |
---|
305 | ! If this elemental function is called with a large array as xy, it is |
---|
306 | ! computationally more efficient to precompute the inverse radius and |
---|
307 | ! then muliply. |
---|
308 | ri = 1.0_dp / r |
---|
309 | |
---|
310 | project = (xy - xy0) * ri |
---|
311 | |
---|
312 | END FUNCTION project |
---|
313 | |
---|
314 | |
---|
315 | REAL(dp) FUNCTION phic_to_phin(phi_c) |
---|
316 | REAL(dp), INTENT(IN) :: phi_c |
---|
317 | |
---|
318 | phic_to_phin = 0.5_dp * PI - ABS(phi_c) |
---|
319 | |
---|
320 | END FUNCTION phic_to_phin |
---|
321 | |
---|
322 | |
---|
323 | REAL(dp) FUNCTION lamc_to_lamn(phi_c, lam_c) |
---|
324 | REAL(dp), INTENT(IN) :: phi_c, lam_c |
---|
325 | |
---|
326 | lamc_to_lamn = lam_c |
---|
327 | IF (phi_c > 0.0_dp) THEN |
---|
328 | lamc_to_lamn = lam_c - SIGN(PI, lam_c) |
---|
329 | END IF |
---|
330 | |
---|
331 | END FUNCTION lamc_to_lamn |
---|
332 | |
---|
333 | |
---|
334 | REAL(dp) FUNCTION gamma_from_hemisphere(phi_cg, phi_ref) |
---|
335 | REAL(dp), INTENT(IN) :: phi_cg, phi_ref |
---|
336 | LOGICAL :: palm_centre_is_south_of_cosmo_origin |
---|
337 | |
---|
338 | palm_centre_is_south_of_cosmo_origin = (phi_cg < phi_ref) |
---|
339 | |
---|
340 | IF (palm_centre_is_south_of_cosmo_origin) THEN |
---|
341 | gamma_from_hemisphere = PI |
---|
342 | ELSE |
---|
343 | gamma_from_hemisphere = 0.0_dp |
---|
344 | END IF |
---|
345 | END FUNCTION gamma_from_hemisphere |
---|
346 | |
---|
347 | |
---|
348 | !------------------------------------------------------------------------------! |
---|
349 | ! Description: |
---|
350 | ! ------------ |
---|
351 | !> Computes the geographical coordinates corresponding to the given rotated-pole |
---|
352 | !> coordinates. |
---|
353 | !> |
---|
354 | !> In INIFOR, this routine is used to convert coordinates between two |
---|
355 | !> rotated-pole systems: COSMO-DE's rotated-pole system, and one centred at the |
---|
356 | !> PALM-4U domain centre. In this case, the PALM-4U system is thought of as the |
---|
357 | !> rotated-pole system and the routine is used to rotate back to COSMO-DE's |
---|
358 | !> system which is thought of as the geographical one. |
---|
359 | !> |
---|
360 | !> Input parameters: |
---|
361 | !> ----------------- |
---|
362 | !> phir(:), lamr(: ): latitudes and longitudes of the rotated-pole grid |
---|
363 | !> |
---|
364 | !> phip, lamp: latitude and longitude of the rotated north pole |
---|
365 | !> |
---|
366 | !> gam: "angle between the north poles. If [gam] is not present, the other |
---|
367 | !> system is the real geographical system." (original phiro2rot |
---|
368 | !> description) |
---|
369 | !> |
---|
370 | !> Output parameters: |
---|
371 | !> ------------------ |
---|
372 | !> phi(:,:), lam(:,:): geographical latitudes and logitudes |
---|
373 | !------------------------------------------------------------------------------! |
---|
374 | SUBROUTINE rotate_to_cosmo(phir, lamr, phip, lamp, phi, lam, gam) |
---|
375 | REAL(dp), INTENT(IN) :: phir(0:), lamr(0:), phip, lamp, gam |
---|
376 | REAL(dp), INTENT(OUT) :: phi(0:,0:), lam(0:,0:) |
---|
377 | |
---|
378 | INTEGER :: i, j |
---|
379 | |
---|
380 | IF ( SIZE(phi, 1) .NE. SIZE(lam, 1) .OR. & |
---|
381 | SIZE(phi, 2) .NE. SIZE(lam, 2) ) THEN |
---|
382 | PRINT *, "inifor: rotate_to_cosmo: Dimensions of phi and lambda do not match. Dimensions are:" |
---|
383 | PRINT *, "inifor: rotate_to_cosmo: phi: ", SIZE(phi, 1), SIZE(phi, 2) |
---|
384 | PRINT *, "inifor: rotate_to_cosmo: lam: ", SIZE(lam, 1), SIZE(lam, 2) |
---|
385 | STOP |
---|
386 | END IF |
---|
387 | |
---|
388 | IF ( SIZE(phir) .NE. SIZE(phi, 2) .OR. & |
---|
389 | SIZE(lamr) .NE. SIZE(phi, 1) ) THEN |
---|
390 | PRINT *, "inifor: rotate_to_cosmo: Dimensions of phir and lamr do not match. Dimensions are:" |
---|
391 | PRINT *, "inifor: rotate_to_cosmo: phir: ", SIZE(phir), SIZE(phi, 2) |
---|
392 | PRINT *, "inifor: rotate_to_cosmo: lamr: ", SIZE(lamr), SIZE(phi, 1) |
---|
393 | STOP |
---|
394 | END IF |
---|
395 | |
---|
396 | DO j = 0, UBOUND(phir, 1) |
---|
397 | DO i = 0, UBOUND(lamr, 1) |
---|
398 | |
---|
399 | phi(i,j) = phirot2phi(phir(j) * TO_DEGREES, & |
---|
400 | lamr(i) * TO_DEGREES, & |
---|
401 | phip * TO_DEGREES, & |
---|
402 | lamp * TO_DEGREES, & |
---|
403 | gam * TO_DEGREES) * TO_RADIANS |
---|
404 | |
---|
405 | lam(i,j) = rlarot2rla(phir(j) * TO_DEGREES, & |
---|
406 | lamr(i) * TO_DEGREES, & |
---|
407 | phip * TO_DEGREES, & |
---|
408 | lamp * TO_DEGREES, & |
---|
409 | gam * TO_DEGREES) * TO_RADIANS |
---|
410 | |
---|
411 | END DO |
---|
412 | END DO |
---|
413 | |
---|
414 | END SUBROUTINE rotate_to_cosmo |
---|
415 | |
---|
416 | |
---|
417 | !------------------------------------------------------------------------------! |
---|
418 | ! Description: |
---|
419 | ! ------------ |
---|
420 | !> Compute indices of PALM-4U grid point neighbours in the target |
---|
421 | !> system (COSMO-DE) by rounding up and down. (i,j) are the indices of |
---|
422 | !> the PALM-4U grid and (ii(i,j,1-4), jj(i,j,1-4)) contain the indices |
---|
423 | !> of the its four neigbouring points in the COSMO-DE grid. |
---|
424 | !> |
---|
425 | !> |
---|
426 | !> COSMO-DE grid |
---|
427 | !> ------------- |
---|
428 | !> jj, lat |
---|
429 | !> ^ j |
---|
430 | !> | \ i |
---|
431 | !> jj(i,j,2/3) + ... 2 ---\--------/------ 3 |
---|
432 | !> | | ^ \ / | |
---|
433 | !> | | |wp \ / | |
---|
434 | !> | | v \ / | |
---|
435 | !> latpos + ............ o/ (i,j) | |
---|
436 | !> | | : | |
---|
437 | !> | | :<----wl---->| |
---|
438 | !> jj(i,j,1/4) + ... 1 -------:----------- 4 |
---|
439 | !> | : : : |
---|
440 | !> | : : : |
---|
441 | !> | : lonpos : |
---|
442 | !> L-----+--------+------------+------> ii, lon |
---|
443 | !> ii(i,j,1/2) ii(i,j,3/4) |
---|
444 | !> |
---|
445 | !> |
---|
446 | !> Input parameters: |
---|
447 | !> ----------------- |
---|
448 | !> source_lat, source_lon : (rotated-pole) coordinates of the source grid (e.g. |
---|
449 | !> COSMO-DE) |
---|
450 | !> |
---|
451 | !> source_dxi, source_dyi : inverse grid spacings of the source grid. |
---|
452 | !> |
---|
453 | !> target_lat, target_lon : (rotated-pole) coordinates of the target grid (e.g. |
---|
454 | !> COSMO-DE) |
---|
455 | !> |
---|
456 | !> Output parameters: |
---|
457 | !> ------------------ |
---|
458 | !> palm_ii, palm_jj : x and y index arrays of horizontal neighbour columns |
---|
459 | !> |
---|
460 | !------------------------------------------------------------------------------! |
---|
461 | SUBROUTINE find_horizontal_neighbours(cosmo_lat, cosmo_lon, cosmo_dxi, & |
---|
462 | cosmo_dyi, palm_clat, palm_clon, palm_ii, palm_jj) |
---|
463 | |
---|
464 | REAL(dp), DIMENSION(0:), INTENT(IN) :: cosmo_lat, cosmo_lon |
---|
465 | REAL(dp), DIMENSION(0:,0:), INTENT(IN) :: palm_clat, palm_clon |
---|
466 | REAL(dp), INTENT(IN) :: cosmo_dxi, cosmo_dyi |
---|
467 | INTEGER, DIMENSION(0:,0:,1:), INTENT(OUT) :: palm_ii, palm_jj |
---|
468 | |
---|
469 | REAL(dp) :: lonpos, latpos, lon0, lat0 |
---|
470 | INTEGER :: i, j |
---|
471 | |
---|
472 | lon0 = cosmo_lon(0) |
---|
473 | lat0 = cosmo_lat(0) |
---|
474 | |
---|
475 | DO j = 0, UBOUND(palm_clon, 2)!palm_grid % ny |
---|
476 | DO i = 0, UBOUND(palm_clon, 1)!palm_grid % nx |
---|
477 | ! Compute the floating point index corrseponding to PALM-4U grid point |
---|
478 | ! location along target grid (COSMO-DE) axes. |
---|
479 | lonpos = (palm_clon(i,j) - lon0) * cosmo_dxi |
---|
480 | latpos = (palm_clat(i,j) - lat0) * cosmo_dyi |
---|
481 | |
---|
482 | IF (lonpos < 0.0 .OR. latpos < 0.0) THEN |
---|
483 | PRINT *, " Error while finding neighbours: lonpos or latpos out of bounds!" |
---|
484 | PRINT *, " (i,j) = (", i, ",",j,")" |
---|
485 | PRINT *, " lonpos ", lonpos*TO_DEGREES, ", latpos ", latpos*TO_DEGREES |
---|
486 | PRINT *, " lon0 ", lon0 *TO_DEGREES, ", lat0 ", lat0*TO_DEGREES |
---|
487 | PRINT *, " PALM lon ", palm_clon(i,j)*TO_DEGREES, ", PALM lat ",palm_clat(i,j)*TO_DEGREES |
---|
488 | STOP |
---|
489 | END IF |
---|
490 | |
---|
491 | palm_ii(i,j,1) = FLOOR(lonpos) |
---|
492 | palm_ii(i,j,2) = FLOOR(lonpos) |
---|
493 | palm_ii(i,j,3) = CEILING(lonpos) |
---|
494 | palm_ii(i,j,4) = CEILING(lonpos) |
---|
495 | |
---|
496 | palm_jj(i,j,1) = FLOOR(latpos) |
---|
497 | palm_jj(i,j,2) = CEILING(latpos) |
---|
498 | palm_jj(i,j,3) = CEILING(latpos) |
---|
499 | palm_jj(i,j,4) = FLOOR(latpos) |
---|
500 | END DO |
---|
501 | END DO |
---|
502 | |
---|
503 | END SUBROUTINE find_horizontal_neighbours |
---|
504 | |
---|
505 | |
---|
506 | SUBROUTINE find_vertical_neighbours_and_weights(palm_grid, palm_intermediate) |
---|
507 | TYPE(grid_definition), INTENT(INOUT) :: palm_grid |
---|
508 | TYPE(grid_definition), INTENT(IN) :: palm_intermediate |
---|
509 | |
---|
510 | INTEGER :: i, j, k, nx, ny, nz, nlev, kcur |
---|
511 | LOGICAL :: point_is_below_grid, point_is_above_grid, & |
---|
512 | point_is_in_current_cell |
---|
513 | REAL(dp) :: current_height, column_base, column_top, h_top, h_bottom, & |
---|
514 | weight |
---|
515 | |
---|
516 | nx = palm_grid % nx |
---|
517 | ny = palm_grid % ny |
---|
518 | nz = palm_grid % nz |
---|
519 | nlev = palm_intermediate % nz |
---|
520 | |
---|
521 | ! in each column of the fine grid, find vertical neighbours of every cell |
---|
522 | DO i = 0, nx |
---|
523 | DO j = 0, ny |
---|
524 | |
---|
525 | kcur = 0 |
---|
526 | |
---|
527 | column_base = palm_intermediate % h(i,j,0) |
---|
528 | column_top = palm_intermediate % h(i,j,nlev) |
---|
529 | |
---|
530 | ! scan through palm_grid column until and set neighbour indices in |
---|
531 | ! case current_height is either below column_base, in the current |
---|
532 | ! cell, or above column_top. Keep increasing current cell index until |
---|
533 | ! the current cell overlaps with the current_height. |
---|
534 | DO k = 0, nz |
---|
535 | |
---|
536 | ! Memorize the top and bottom boundaries of the coarse cell and the |
---|
537 | ! current height within it |
---|
538 | current_height = palm_grid % z(k) + palm_grid % z0 |
---|
539 | h_top = palm_intermediate % h(i,j,kcur+1) |
---|
540 | h_bottom = palm_intermediate % h(i,j,kcur) |
---|
541 | |
---|
542 | point_is_above_grid = (current_height > column_top) !22000m, very unlikely |
---|
543 | point_is_below_grid = (current_height < column_base) |
---|
544 | |
---|
545 | point_is_in_current_cell = ( & |
---|
546 | current_height >= h_bottom .AND. & |
---|
547 | current_height < h_top & |
---|
548 | ) |
---|
549 | |
---|
550 | ! set default weights |
---|
551 | palm_grid % w_verti(i,j,k,1:2) = 0.0_dp |
---|
552 | |
---|
553 | IF (point_is_above_grid) THEN |
---|
554 | |
---|
555 | palm_grid % kk(i,j,k,1:2) = nlev |
---|
556 | palm_grid % w_verti(i,j,k,1:2) = - 2.0_dp |
---|
557 | |
---|
558 | ELSE IF (point_is_below_grid) THEN |
---|
559 | |
---|
560 | palm_grid % kk(i,j,k,1:2) = 0 |
---|
561 | palm_grid % w_verti(i,j,k,1:2) = - 2.0_dp |
---|
562 | |
---|
563 | ELSE |
---|
564 | ! cycle through intermediate levels until current |
---|
565 | ! intermediate-grid cell overlaps with current_height |
---|
566 | DO WHILE (.NOT. point_is_in_current_cell .AND. kcur <= nlev-1) |
---|
567 | kcur = kcur + 1 |
---|
568 | |
---|
569 | h_top = palm_intermediate % h(i,j,kcur+1) |
---|
570 | h_bottom = palm_intermediate % h(i,j,kcur) |
---|
571 | point_is_in_current_cell = ( & |
---|
572 | current_height >= h_bottom .AND. & |
---|
573 | current_height < h_top & |
---|
574 | ) |
---|
575 | END DO |
---|
576 | |
---|
577 | ! kcur = 48 indicates the last section (indices 48 and 49), i.e. |
---|
578 | ! kcur = 49 is not the beginning of a valid cell. |
---|
579 | IF (kcur > nlev-1) THEN |
---|
580 | message = "Index " // TRIM(str(kcur)) // " is above intermediate grid range." |
---|
581 | CALL abort('find_vertical_neighbours', message) |
---|
582 | END IF |
---|
583 | |
---|
584 | palm_grid % kk(i,j,k,1) = kcur |
---|
585 | palm_grid % kk(i,j,k,2) = kcur + 1 |
---|
586 | |
---|
587 | ! copmute vertical weights |
---|
588 | weight = (h_top - current_height) / (h_top - h_bottom) |
---|
589 | palm_grid % w_verti(i,j,k,1) = weight |
---|
590 | palm_grid % w_verti(i,j,k,2) = 1.0_dp - weight |
---|
591 | END IF |
---|
592 | |
---|
593 | END DO |
---|
594 | |
---|
595 | END DO |
---|
596 | END DO |
---|
597 | |
---|
598 | END SUBROUTINE find_vertical_neighbours_and_weights |
---|
599 | |
---|
600 | !------------------------------------------------------------------------------! |
---|
601 | ! Description: |
---|
602 | ! ------------ |
---|
603 | !> Compute the four weights for horizontal bilinear interpolation given the |
---|
604 | !> coordinates clon(i,j) clat(i,j) of the PALM-4U grid in the COSMO-DE |
---|
605 | !> rotated-pole grid and the neightbour indices ii(i,j,1-4) and jj(i,j,1-4). |
---|
606 | !> |
---|
607 | !> Input parameters: |
---|
608 | !> ----------------- |
---|
609 | !> palm_grid % clon : longitudes of PALM-4U scalars (cell centres) in COSMO-DE's rotated-pole grid [rad] |
---|
610 | !> |
---|
611 | !> palm_grid % clat : latitudes of PALM-4U cell centres in COSMO-DE's rotated-pole grid [rad] |
---|
612 | !> |
---|
613 | !> cosmo_grid % lon : rotated-pole longitudes of scalars (cell centres) of the COSMO-DE grid [rad] |
---|
614 | !> |
---|
615 | !> cosmo_grid % lat : rotated-pole latitudes of scalars (cell centers) of the COSMO-DE grid [rad] |
---|
616 | !> |
---|
617 | !> cosmo_grid % dxi : inverse grid spacing in the first dimension [m^-1] |
---|
618 | !> |
---|
619 | !> cosmo_grid % dyi : inverse grid spacing in the second dimension [m^-1] |
---|
620 | !> |
---|
621 | !> Output parameters: |
---|
622 | !> ------------------ |
---|
623 | !> palm_grid % w_horiz(:,:,1-4) : weights for bilinear horizontal interpolation |
---|
624 | ! |
---|
625 | ! COSMO-DE grid |
---|
626 | ! ------------- |
---|
627 | ! jj, lat |
---|
628 | ! ^ j |
---|
629 | ! | \ i |
---|
630 | ! jj(i,j,2/3) + ... 2 ---\--------/------ 3 |
---|
631 | ! | | ^ \ / | |
---|
632 | ! | | |wp \ / | |
---|
633 | ! | | v \ / | |
---|
634 | ! latpos + ............ o/ (i,j) | |
---|
635 | ! | | : | |
---|
636 | ! | | :<----wl---->| |
---|
637 | ! jj(i,j,1/4) + ... 1 -------:----------- 4 |
---|
638 | ! | : : : |
---|
639 | ! | : : : |
---|
640 | ! | : lonpos : |
---|
641 | ! L-----+--------+------------+------> ii, lon |
---|
642 | ! ii(i,j,1/2) ii(i,j,3/4) |
---|
643 | ! |
---|
644 | SUBROUTINE compute_horizontal_interp_weights(cosmo_lat, cosmo_lon, & |
---|
645 | cosmo_dxi, cosmo_dyi, palm_clat, palm_clon, palm_ii, palm_jj, palm_w_horiz) |
---|
646 | |
---|
647 | REAL(dp), DIMENSION(0:), INTENT(IN) :: cosmo_lat, cosmo_lon |
---|
648 | REAL(dp), INTENT(IN) :: cosmo_dxi, cosmo_dyi |
---|
649 | REAL(dp), DIMENSION(0:,0:), INTENT(IN) :: palm_clat, palm_clon |
---|
650 | INTEGER, DIMENSION(0:,0:,1:), INTENT(IN) :: palm_ii, palm_jj |
---|
651 | |
---|
652 | REAL(dp), DIMENSION(0:,0:,1:), INTENT(OUT) :: palm_w_horiz |
---|
653 | |
---|
654 | REAL(dp) :: wl, wp |
---|
655 | INTEGER :: i, j |
---|
656 | |
---|
657 | DO j = 0, UBOUND(palm_clon, 2) |
---|
658 | DO i = 0, UBOUND(palm_clon, 1) |
---|
659 | |
---|
660 | ! weight in lambda direction |
---|
661 | wl = ( cosmo_lon(palm_ii(i,j,4)) - palm_clon(i,j) ) * cosmo_dxi |
---|
662 | |
---|
663 | ! weight in phi direction |
---|
664 | wp = ( cosmo_lat(palm_jj(i,j,2)) - palm_clat(i,j) ) * cosmo_dyi |
---|
665 | |
---|
666 | IF (wl > 1.0_dp .OR. wl < 0.0_dp) THEN |
---|
667 | message = "Horizontal weight wl = " // TRIM(real_to_str(wl)) // & |
---|
668 | " is out bounds." |
---|
669 | CALL abort('compute_horizontal_interp_weights', message) |
---|
670 | END IF |
---|
671 | IF (wp > 1.0_dp .OR. wp < 0.0_dp) THEN |
---|
672 | message = "Horizontal weight wp = " // TRIM(real_to_str(wp)) // & |
---|
673 | " is out bounds." |
---|
674 | CALL abort('compute_horizontal_interp_weights', message) |
---|
675 | END IF |
---|
676 | |
---|
677 | palm_w_horiz(i,j,1) = wl * wp |
---|
678 | palm_w_horiz(i,j,2) = wl * (1.0_dp - wp) |
---|
679 | palm_w_horiz(i,j,3) = (1.0_dp - wl) * (1.0_dp - wp) |
---|
680 | palm_w_horiz(i,j,4) = 1.0_dp - SUM( palm_w_horiz(i,j,1:3) ) |
---|
681 | |
---|
682 | END DO |
---|
683 | END DO |
---|
684 | |
---|
685 | END SUBROUTINE compute_horizontal_interp_weights |
---|
686 | |
---|
687 | |
---|
688 | !------------------------------------------------------------------------------! |
---|
689 | ! Description: |
---|
690 | ! ------------ |
---|
691 | !> Interpolates u and v components of velocities located at cell faces to the |
---|
692 | !> cell centres by averaging neighbouring values. |
---|
693 | !> |
---|
694 | !> This routine is designed to be used with COSMO-DE arrays where there are the |
---|
695 | !> same number of grid points for scalars (centres) and velocities (faces). In |
---|
696 | !> COSMO-DE the velocity points are staggared one half grid spaceing up-grid |
---|
697 | !> which means the first centre point has to be omitted and is set to zero. |
---|
698 | SUBROUTINE centre_velocities(u_face, v_face, u_centre, v_centre) |
---|
699 | REAL(dp), DIMENSION(0:,0:,0:), INTENT(IN) :: u_face, v_face |
---|
700 | REAL(dp), DIMENSION(0:,0:,0:), INTENT(OUT) :: u_centre, v_centre |
---|
701 | INTEGER :: nx, ny |
---|
702 | |
---|
703 | nx = UBOUND(u_face, 1) |
---|
704 | ny = UBOUND(u_face, 2) |
---|
705 | |
---|
706 | u_centre(0,:,:) = 0.0_dp |
---|
707 | u_centre(1:,:,:) = 0.5_dp * ( u_face(0:nx-1,:,:) + u_face(1:,:,:) ) |
---|
708 | |
---|
709 | v_centre(:,0,:) = 0.0_dp |
---|
710 | v_centre(:,1:,:) = 0.5_dp * ( v_face(:,0:ny-1,:) + v_face(:,1:,:) ) |
---|
711 | END SUBROUTINE centre_velocities |
---|
712 | |
---|
713 | |
---|
714 | FUNCTION phirot2phi (phirot, rlarot, polphi, pollam, polgam) |
---|
715 | |
---|
716 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
717 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
718 | REAL(dp), INTENT (IN) :: phirot !< latitude in the rotated system |
---|
719 | REAL(dp), INTENT (IN) :: rlarot !< longitude in the rotated system |
---|
720 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
721 | |
---|
722 | REAL(dp) :: phirot2phi !< latitude in the geographical system |
---|
723 | |
---|
724 | REAL(dp) :: zsinpol, zcospol, zphis, zrlas, zarg, zgam |
---|
725 | |
---|
726 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
727 | zcospol = COS(polphi * TO_RADIANS) |
---|
728 | zphis = phirot * TO_RADIANS |
---|
729 | |
---|
730 | IF (rlarot > 180.0_dp) THEN |
---|
731 | zrlas = rlarot - 360.0_dp |
---|
732 | ELSE |
---|
733 | zrlas = rlarot |
---|
734 | END IF |
---|
735 | zrlas = zrlas * TO_RADIANS |
---|
736 | |
---|
737 | IF (polgam /= 0.0_dp) THEN |
---|
738 | zgam = polgam * TO_RADIANS |
---|
739 | zarg = zsinpol * SIN (zphis) + & |
---|
740 | zcospol * COS(zphis) * ( COS(zrlas) * COS(zgam) - & |
---|
741 | SIN(zgam) * SIN(zrlas) ) |
---|
742 | ELSE |
---|
743 | zarg = zcospol * COS (zphis) * COS (zrlas) + zsinpol * SIN (zphis) |
---|
744 | END IF |
---|
745 | |
---|
746 | phirot2phi = ASIN (zarg) * TO_DEGREES |
---|
747 | |
---|
748 | END FUNCTION phirot2phi |
---|
749 | |
---|
750 | |
---|
751 | FUNCTION phi2phirot (phi, rla, polphi, pollam) |
---|
752 | |
---|
753 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
754 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
755 | REAL(dp), INTENT (IN) :: phi !< latitude in the geographical system |
---|
756 | REAL(dp), INTENT (IN) :: rla !< longitude in the geographical system |
---|
757 | |
---|
758 | REAL(dp) :: phi2phirot !< longitude in the rotated system |
---|
759 | |
---|
760 | REAL(dp) :: zsinpol, zcospol, zlampol, zphi, zrla, zarg1, zarg2, zrla1 |
---|
761 | |
---|
762 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
763 | zcospol = COS(polphi * TO_RADIANS) |
---|
764 | zlampol = pollam * TO_RADIANS |
---|
765 | zphi = phi * TO_RADIANS |
---|
766 | |
---|
767 | IF (rla > 180.0_dp) THEN |
---|
768 | zrla1 = rla - 360.0_dp |
---|
769 | ELSE |
---|
770 | zrla1 = rla |
---|
771 | END IF |
---|
772 | zrla = zrla1 * TO_RADIANS |
---|
773 | |
---|
774 | zarg1 = SIN(zphi) * zsinpol |
---|
775 | zarg2 = COS(zphi) * zcospol * COS(zrla - zlampol) |
---|
776 | |
---|
777 | phi2phirot = ASIN(zarg1 + zarg2) * TO_DEGREES |
---|
778 | |
---|
779 | END FUNCTION phi2phirot |
---|
780 | |
---|
781 | |
---|
782 | FUNCTION rlarot2rla(phirot, rlarot, polphi, pollam, polgam) |
---|
783 | |
---|
784 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
785 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
786 | REAL(dp), INTENT (IN) :: phirot !< latitude in the rotated system |
---|
787 | REAL(dp), INTENT (IN) :: rlarot !< longitude in the rotated system |
---|
788 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
789 | |
---|
790 | REAL(dp) :: rlarot2rla !< latitude in the geographical system |
---|
791 | |
---|
792 | REAL(dp) :: zsinpol, zcospol, zlampol, zphis, zrlas, zarg1, zarg2, zgam |
---|
793 | |
---|
794 | zsinpol = SIN(TO_RADIANS * polphi) |
---|
795 | zcospol = COS(TO_RADIANS * polphi) |
---|
796 | zlampol = TO_RADIANS * pollam |
---|
797 | zphis = TO_RADIANS * phirot |
---|
798 | |
---|
799 | IF (rlarot > 180.0_dp) THEN |
---|
800 | zrlas = rlarot - 360.0_dp |
---|
801 | ELSE |
---|
802 | zrlas = rlarot |
---|
803 | END IF |
---|
804 | zrlas = TO_RADIANS * zrlas |
---|
805 | |
---|
806 | IF (polgam /= 0.0_dp) THEN |
---|
807 | zgam = TO_RADIANS * polgam |
---|
808 | zarg1 = SIN(zlampol) * (zcospol * SIN(zphis) - zsinpol*COS(zphis) * & |
---|
809 | (COS(zrlas) * COS(zgam) - SIN(zrlas) * SIN(zgam)) ) - & |
---|
810 | COS(zlampol) * COS(zphis) * ( SIN(zrlas) * COS(zgam) + & |
---|
811 | COS(zrlas) * SIN(zgam) ) |
---|
812 | |
---|
813 | zarg2 = COS (zlampol) * (zcospol * SIN(zphis) - zsinpol*COS(zphis) * & |
---|
814 | (COS(zrlas) * COS(zgam) - SIN(zrlas) * SIN(zgam)) ) + & |
---|
815 | SIN(zlampol) * COS(zphis) * ( SIN(zrlas) * COS(zgam) + & |
---|
816 | COS(zrlas) * SIN(zgam) ) |
---|
817 | ELSE |
---|
818 | zarg1 = SIN (zlampol) * (-zsinpol * COS(zrlas) * COS(zphis) + & |
---|
819 | zcospol * SIN(zphis)) - & |
---|
820 | COS (zlampol) * SIN(zrlas) * COS(zphis) |
---|
821 | zarg2 = COS (zlampol) * (-zsinpol * COS(zrlas) * COS(zphis) + & |
---|
822 | zcospol * SIN(zphis)) + & |
---|
823 | SIN (zlampol) * SIN(zrlas) * COS(zphis) |
---|
824 | END IF |
---|
825 | |
---|
826 | IF (zarg2 == 0.0_dp) zarg2 = 1.0E-20_dp |
---|
827 | |
---|
828 | rlarot2rla = ATAN2(zarg1,zarg2) * TO_DEGREES |
---|
829 | |
---|
830 | END FUNCTION rlarot2rla |
---|
831 | |
---|
832 | |
---|
833 | FUNCTION rla2rlarot ( phi, rla, polphi, pollam, polgam ) |
---|
834 | |
---|
835 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
836 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
837 | REAL(dp), INTENT (IN) :: phi !< latitude in geographical system |
---|
838 | REAL(dp), INTENT (IN) :: rla !< longitude in geographical system |
---|
839 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
840 | |
---|
841 | REAL (KIND=dp) :: rla2rlarot !< latitude in the the rotated system |
---|
842 | |
---|
843 | REAL (KIND=dp) :: zsinpol, zcospol, zlampol, zphi, zrla, zarg1, zarg2, zrla1 |
---|
844 | |
---|
845 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
846 | zcospol = COS(polphi * TO_RADIANS) |
---|
847 | zlampol = pollam * TO_RADIANS |
---|
848 | zphi = phi * TO_RADIANS |
---|
849 | |
---|
850 | IF (rla > 180.0_dp) THEN |
---|
851 | zrla1 = rla - 360.0_dp |
---|
852 | ELSE |
---|
853 | zrla1 = rla |
---|
854 | END IF |
---|
855 | zrla = zrla1 * TO_RADIANS |
---|
856 | |
---|
857 | zarg1 = - SIN (zrla-zlampol) * COS(zphi) |
---|
858 | zarg2 = - zsinpol * COS(zphi) * COS(zrla-zlampol) + zcospol * SIN(zphi) |
---|
859 | |
---|
860 | IF (zarg2 == 0.0_dp) zarg2 = 1.0E-20_dp |
---|
861 | |
---|
862 | rla2rlarot = ATAN2 (zarg1,zarg2) * TO_DEGREES |
---|
863 | |
---|
864 | IF (polgam /= 0.0_dp ) THEN |
---|
865 | rla2rlarot = polgam + rla2rlarot |
---|
866 | IF (rla2rlarot > 180._dp) rla2rlarot = rla2rlarot - 360.0_dp |
---|
867 | END IF |
---|
868 | |
---|
869 | END FUNCTION rla2rlarot |
---|
870 | |
---|
871 | |
---|
872 | SUBROUTINE uv2uvrot(u, v, rlat, rlon, pollat, pollon, urot, vrot) |
---|
873 | |
---|
874 | REAL(dp), INTENT (IN) :: u, v !< wind components in the true geographical system |
---|
875 | REAL(dp), INTENT (IN) :: rlat, rlon !< coordinates in the true geographical system |
---|
876 | REAL(dp), INTENT (IN) :: pollat, pollon !< latitude and longitude of the north pole of the rotated grid |
---|
877 | |
---|
878 | REAL(dp), INTENT (OUT) :: urot, vrot !< wind components in the rotated grid |
---|
879 | |
---|
880 | REAL (dp) :: zsinpol, zcospol, zlonp, zlat, zarg1, zarg2, znorm |
---|
881 | |
---|
882 | zsinpol = SIN(pollat * TO_RADIANS) |
---|
883 | zcospol = COS(pollat * TO_RADIANS) |
---|
884 | zlonp = (pollon-rlon) * TO_RADIANS |
---|
885 | zlat = rlat * TO_RADIANS |
---|
886 | |
---|
887 | zarg1 = zcospol * SIN(zlonp) |
---|
888 | zarg2 = zsinpol * COS(zlat) - zcospol * SIN(zlat) * COS(zlonp) |
---|
889 | znorm = 1.0_dp / SQRT(zarg1*zarg1 + zarg2*zarg2) |
---|
890 | |
---|
891 | urot = u * zarg2 * znorm - v * zarg1 * znorm |
---|
892 | vrot = u * zarg1 * znorm + v * zarg2 * znorm |
---|
893 | |
---|
894 | END SUBROUTINE uv2uvrot |
---|
895 | |
---|
896 | |
---|
897 | SUBROUTINE uvrot2uv (urot, vrot, rlat, rlon, pollat, pollon, u, v) |
---|
898 | |
---|
899 | REAL(dp), INTENT(IN) :: urot, vrot !< wind components in the rotated grid |
---|
900 | REAL(dp), INTENT(IN) :: rlat, rlon !< latitude and longitude in the true geographical system |
---|
901 | REAL(dp), INTENT(IN) :: pollat, pollon !< latitude and longitude of the north pole of the rotated grid |
---|
902 | |
---|
903 | REAL(dp), INTENT(OUT) :: u, v !< wind components in the true geographical system |
---|
904 | |
---|
905 | REAL(dp) :: zsinpol, zcospol, zlonp, zlat, zarg1, zarg2, znorm |
---|
906 | |
---|
907 | zsinpol = SIN(pollat * TO_RADIANS) |
---|
908 | zcospol = COS(pollat * TO_RADIANS) |
---|
909 | zlonp = (pollon-rlon) * TO_RADIANS |
---|
910 | zlat = rlat * TO_RADIANS |
---|
911 | |
---|
912 | zarg1 = zcospol * SIN(zlonp) |
---|
913 | zarg2 = zsinpol * COS(zlat) - zcospol * SIN(zlat) * COS(zlonp) |
---|
914 | znorm = 1.0_dp / SQRT(zarg1*zarg1 + zarg2*zarg2) |
---|
915 | |
---|
916 | u = urot * zarg2 * znorm + vrot * zarg1 * znorm |
---|
917 | v = - urot * zarg1 * znorm + vrot * zarg2 * znorm |
---|
918 | |
---|
919 | END SUBROUTINE uvrot2uv |
---|
920 | |
---|
921 | END MODULE |
---|
922 | |
---|