[2696] | 1 | !> @file src/transform.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
[2718] | 3 | ! This file is part of the PALM model system. |
---|
[2696] | 4 | ! |
---|
[2718] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
[2696] | 8 | ! version. |
---|
| 9 | ! |
---|
[2718] | 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
[2696] | 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 2017-2018 Leibniz Universitaet Hannover |
---|
| 18 | ! Copyright 2017-2018 Deutscher Wetterdienst Offenbach |
---|
[2696] | 19 | !------------------------------------------------------------------------------! |
---|
| 20 | ! |
---|
| 21 | ! Current revisions: |
---|
| 22 | ! ----------------- |
---|
[3183] | 23 | ! |
---|
| 24 | ! |
---|
| 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: transform.f90 3395 2018-10-22 17:32:49Z knoop $ |
---|
[3395] | 28 | ! Switched addressing of averaging regions from index bounds to list of columns |
---|
| 29 | ! Added routines for the computation of geostrophic winds including: |
---|
| 30 | ! - the downward extrapolation of density (linear) and |
---|
| 31 | ! - pressure (hydrostatic equation) and |
---|
| 32 | ! - rotation of geostrophic wind components to PALM frame of reference |
---|
| 33 | ! |
---|
| 34 | ! 3183 2018-07-27 14:25:55Z suehring |
---|
[3182] | 35 | ! Introduced new PALM grid stretching |
---|
| 36 | ! Removed unnecessary subroutine parameters |
---|
| 37 | ! Renamed kcur to k_intermediate |
---|
[2696] | 38 | ! |
---|
| 39 | ! |
---|
[3183] | 40 | ! 3182 2018-07-27 13:36:03Z suehring |
---|
[2696] | 41 | ! Initial revision |
---|
| 42 | ! |
---|
| 43 | ! |
---|
| 44 | ! |
---|
| 45 | ! Authors: |
---|
| 46 | ! -------- |
---|
| 47 | ! @author Eckhard Kadasch |
---|
| 48 | ! |
---|
| 49 | ! Description: |
---|
| 50 | ! ------------ |
---|
| 51 | !> The transform module provides INIFOR's low-level transformation and |
---|
| 52 | !> interpolation routines. The rotated-pole transformation routines phirot2phi, |
---|
| 53 | !> phi2phirot, rlarot2rla, rla2rlarot, uv2uvrot, and uvrot2uv are adapted from |
---|
| 54 | !> int2lm's utility routines. |
---|
| 55 | !------------------------------------------------------------------------------! |
---|
| 56 | MODULE transform |
---|
| 57 | |
---|
| 58 | USE control |
---|
| 59 | USE defs, & |
---|
[3395] | 60 | ONLY: G, TO_DEGREES, TO_RADIANS, PI, dp |
---|
[2696] | 61 | USE types |
---|
| 62 | USE util, & |
---|
| 63 | ONLY: real_to_str, str |
---|
| 64 | |
---|
| 65 | IMPLICIT NONE |
---|
| 66 | |
---|
| 67 | CONTAINS |
---|
| 68 | |
---|
| 69 | !------------------------------------------------------------------------------! |
---|
| 70 | ! Description: |
---|
| 71 | ! ------------ |
---|
| 72 | !> Interpolates linearly in the vertical direction in very column (i,j) of the |
---|
| 73 | !> output array outvar(i,j,:) using values of the source array invar. In cells |
---|
| 74 | !> that are outside the COSMO-DE domain, indicated by negative interpolation |
---|
| 75 | !> weights, extrapolate constantly from the cell above. |
---|
| 76 | !> |
---|
| 77 | !> Input parameters: |
---|
| 78 | !> ----------------- |
---|
| 79 | !> invar : Array of source data |
---|
| 80 | !> |
---|
| 81 | !> outgrid % kk : Array of vertical neighbour indices. kk(i,j,k,:) contain the |
---|
| 82 | !> indices of the two vertical neighbors of PALM-4U point (i,j,k) on the |
---|
| 83 | !> input grid corresponding to the source data invar. |
---|
| 84 | !> |
---|
| 85 | !> outgrid % w_verti : Array of weights for vertical linear interpolation |
---|
| 86 | !> corresponding to neighbour points indexed by kk. |
---|
| 87 | !> |
---|
| 88 | !> Output papameters: |
---|
| 89 | !> ------------------ |
---|
| 90 | !> outvar : Array of interpolated data |
---|
| 91 | !------------------------------------------------------------------------------! |
---|
| 92 | SUBROUTINE interpolate_1d(in_arr, out_arr, outgrid) |
---|
| 93 | TYPE(grid_definition), INTENT(IN) :: outgrid |
---|
| 94 | REAL(dp), INTENT(IN) :: in_arr(0:,0:,0:) |
---|
[3182] | 95 | REAL(dp), INTENT(OUT) :: out_arr(0:,0:,:) |
---|
[2696] | 96 | |
---|
[3182] | 97 | INTEGER :: i, j, k, l, nz |
---|
[2696] | 98 | |
---|
| 99 | nz = UBOUND(out_arr, 3) |
---|
| 100 | |
---|
[3182] | 101 | DO j = LBOUND(out_arr, 2), UBOUND(out_arr, 2) |
---|
| 102 | DO i = LBOUND(out_arr, 1), UBOUND(out_arr, 1) |
---|
| 103 | DO k = nz, LBOUND(out_arr, 3), -1 |
---|
[2696] | 104 | |
---|
| 105 | ! TODO: Remove IF clause and extrapolate based on a critical vertical |
---|
| 106 | ! TODO: index marking the lower bound of COSMO-DE data coverage. |
---|
| 107 | ! Check for negative interpolation weights indicating grid points |
---|
| 108 | ! below COSMO-DE domain and extrapolate from the top in such cells. |
---|
| 109 | IF (outgrid % w_verti(i,j,k,1) < -1.0_dp .AND. k < nz) THEN |
---|
| 110 | out_arr(i,j,k) = out_arr(i,j,k+1) |
---|
| 111 | ELSE |
---|
| 112 | out_arr(i,j,k) = 0.0_dp |
---|
| 113 | DO l = 1, 2 |
---|
[3182] | 114 | out_arr(i,j,k) = out_arr(i,j,k) + & |
---|
| 115 | outgrid % w_verti(i,j,k,l) * & |
---|
[2696] | 116 | in_arr(i,j,outgrid % kk(i,j,k, l) ) |
---|
| 117 | END DO |
---|
| 118 | END IF |
---|
| 119 | END DO |
---|
| 120 | END DO |
---|
| 121 | END DO |
---|
| 122 | END SUBROUTINE interpolate_1d |
---|
| 123 | |
---|
| 124 | |
---|
| 125 | !------------------------------------------------------------------------------! |
---|
| 126 | ! Description: |
---|
| 127 | ! ------------ |
---|
| 128 | !> Interpolates bi-linearly in horizontal planes on every k level of the output |
---|
| 129 | !> array outvar(:,:,k) using values of the source array invar(:,:,:). The source |
---|
| 130 | !> (invar) and interpolation array (outvar) need to have matching dimensions. |
---|
| 131 | !> |
---|
| 132 | !> Input parameters: |
---|
| 133 | !> ----------------- |
---|
| 134 | !> invar : Array of source data |
---|
| 135 | !> |
---|
| 136 | !> outgrid % ii, % jj : Array of neighbour indices in x and y direction. |
---|
| 137 | !> ii(i,j,k,:), and jj(i,j,k,:) contain the four horizontal neighbour points |
---|
| 138 | !> of PALM-4U point (i,j,k) on the input grid corresponding to the source |
---|
| 139 | !> data invar. (The outgrid carries the relationship with the ingrid in the |
---|
| 140 | ! form of the interpoaltion weights.) |
---|
| 141 | !> |
---|
| 142 | !> outgrid % w_horiz: Array of weights for horizontal bi-linear interpolation |
---|
| 143 | !> corresponding to neighbour points indexed by ii and jj. |
---|
| 144 | !> |
---|
| 145 | !> Output papameters: |
---|
| 146 | !> ------------------ |
---|
| 147 | !> outvar : Array of interpolated data |
---|
| 148 | !------------------------------------------------------------------------------! |
---|
| 149 | SUBROUTINE interpolate_2d(invar, outvar, outgrid, ncvar) |
---|
| 150 | ! I index 0-based for the indices of the outvar to be consistent with the |
---|
| 151 | ! outgrid indices and interpolation weights. |
---|
[3182] | 152 | TYPE(grid_definition), INTENT(IN) :: outgrid |
---|
| 153 | REAL(dp), INTENT(IN) :: invar(0:,0:,0:) |
---|
| 154 | REAL(dp), INTENT(OUT) :: outvar(0:,0:,0:) |
---|
[2696] | 155 | TYPE(nc_var), INTENT(IN), OPTIONAL :: ncvar |
---|
| 156 | |
---|
| 157 | INTEGER :: i, j, k, l |
---|
| 158 | |
---|
| 159 | ! TODO: check if input dimensions are consistent, i.e. ranges are correct |
---|
| 160 | IF (UBOUND(outvar, 3) .GT. UBOUND(invar, 3)) THEN |
---|
| 161 | message = "Output array for '" // TRIM(ncvar % name) // "' has ' more levels (" // & |
---|
| 162 | TRIM(str(UBOUND(outvar, 3))) // ") than input variable ("//& |
---|
| 163 | TRIM(str(UBOUND(invar, 3))) // ")." |
---|
| 164 | CALL abort('interpolate_2d', message) |
---|
| 165 | END IF |
---|
| 166 | |
---|
| 167 | DO k = 0, UBOUND(outvar, 3) |
---|
| 168 | DO j = 0, UBOUND(outvar, 2) |
---|
| 169 | DO i = 0, UBOUND(outvar, 1) |
---|
| 170 | outvar(i,j,k) = 0.0_dp |
---|
| 171 | DO l = 1, 4 |
---|
| 172 | |
---|
| 173 | outvar(i,j,k) = outvar(i,j,k) + & |
---|
| 174 | outgrid % w_horiz(i,j,l) * invar( outgrid % ii(i,j,l), & |
---|
| 175 | outgrid % jj(i,j,l), & |
---|
| 176 | k ) |
---|
| 177 | END DO |
---|
| 178 | END DO |
---|
| 179 | END DO |
---|
| 180 | END DO |
---|
| 181 | |
---|
| 182 | END SUBROUTINE interpolate_2d |
---|
| 183 | |
---|
| 184 | |
---|
[3395] | 185 | SUBROUTINE average_2d(in_arr, out_arr, ii, jj) |
---|
| 186 | REAL(dp), INTENT(IN) :: in_arr(0:,0:,0:) |
---|
| 187 | REAL(dp), INTENT(OUT) :: out_arr(0:) |
---|
| 188 | INTEGER, INTENT(IN), DIMENSION(:) :: ii, jj |
---|
[2696] | 189 | |
---|
[3395] | 190 | INTEGER :: i, j, k, l |
---|
[2696] | 191 | REAL(dp) :: ni |
---|
| 192 | |
---|
[3395] | 193 | IF (SIZE(ii) .NE. SIZE(jj)) THEN |
---|
| 194 | message = "Length of 'ii' and 'jj' index lists do not match." // & |
---|
| 195 | NEW_LINE(' ') // "ii has " // str(SIZE(ii)) // " elements, " // & |
---|
| 196 | NEW_LINE(' ') // "jj has " // str(SIZE(jj)) // "." |
---|
| 197 | CALL abort('average_2d', message) |
---|
| 198 | END IF |
---|
| 199 | |
---|
[2696] | 200 | DO k = 0, UBOUND(out_arr, 1) |
---|
| 201 | |
---|
| 202 | out_arr(k) = 0.0_dp |
---|
[3395] | 203 | DO l = 1, UBOUND(ii, 1) |
---|
| 204 | i = ii(l) |
---|
| 205 | j = jj(l) |
---|
| 206 | out_arr(k) = out_arr(k) +& |
---|
| 207 | in_arr(i, j, k) |
---|
[2696] | 208 | END DO |
---|
| 209 | |
---|
| 210 | END DO |
---|
[3395] | 211 | |
---|
| 212 | ni = 1.0_dp / SIZE(ii) |
---|
[2696] | 213 | out_arr(:) = out_arr(:) * ni |
---|
| 214 | |
---|
| 215 | END SUBROUTINE average_2d |
---|
| 216 | |
---|
| 217 | |
---|
| 218 | SUBROUTINE interpolate_3d(source_array, palm_array, palm_intermediate, palm_grid) |
---|
| 219 | TYPE(grid_definition), INTENT(IN) :: palm_intermediate, palm_grid |
---|
| 220 | REAL(dp), DIMENSION(:,:,:), INTENT(IN) :: source_array |
---|
| 221 | REAL(dp), DIMENSION(:,:,:), INTENT(OUT) :: palm_array |
---|
| 222 | REAL(dp), DIMENSION(:,:,:), ALLOCATABLE :: intermediate_array |
---|
[3395] | 223 | INTEGER :: nx, ny, nlev |
---|
[2696] | 224 | |
---|
| 225 | nx = palm_intermediate % nx |
---|
| 226 | ny = palm_intermediate % ny |
---|
[3395] | 227 | nlev = palm_intermediate % nz ! nlev |
---|
[2696] | 228 | |
---|
| 229 | ! Interpolate from COSMO-DE to intermediate grid. Allocating with one |
---|
| 230 | ! less point in the vertical, since scalars like T have 50 instead of 51 |
---|
| 231 | ! points in COSMO-DE. |
---|
[3395] | 232 | ALLOCATE(intermediate_array(0:nx, 0:ny, 0:nlev-1)) ! |
---|
[2696] | 233 | |
---|
| 234 | CALL interpolate_2d(source_array, intermediate_array, palm_intermediate) |
---|
| 235 | |
---|
| 236 | ! Interpolate from intermediate grid to palm_grid grid, includes |
---|
| 237 | ! extrapolation for cells below COSMO-DE domain. |
---|
| 238 | CALL interpolate_1d(intermediate_array, palm_array, palm_grid) |
---|
| 239 | |
---|
| 240 | DEALLOCATE(intermediate_array) |
---|
| 241 | |
---|
| 242 | END SUBROUTINE interpolate_3d |
---|
| 243 | |
---|
| 244 | |
---|
[3395] | 245 | SUBROUTINE average_profile(source_array, profile_array, avg_grid) |
---|
| 246 | TYPE(grid_definition), INTENT(IN) :: avg_grid |
---|
[2696] | 247 | REAL(dp), DIMENSION(:,:,:), INTENT(IN) :: source_array |
---|
[3395] | 248 | REAL(dp), DIMENSION(:), INTENT(OUT) :: profile_array |
---|
[2696] | 249 | |
---|
[3395] | 250 | INTEGER :: i_source, j_source, k_profile, k_source, l, m |
---|
[2696] | 251 | |
---|
[3395] | 252 | REAL :: ni_columns |
---|
[2696] | 253 | |
---|
[3395] | 254 | profile_array(:) = 0.0_dp |
---|
[2696] | 255 | |
---|
[3395] | 256 | DO l = 1, avg_grid % n_columns |
---|
| 257 | i_source = avg_grid % iii(l) |
---|
| 258 | j_source = avg_grid % jjj(l) |
---|
[2696] | 259 | |
---|
[3395] | 260 | DO k_profile = avg_grid % k_min, UBOUND(profile_array, 1) ! PALM levels |
---|
| 261 | |
---|
| 262 | DO m = 1, 2 ! vertical interpolation neighbours |
---|
| 263 | |
---|
| 264 | k_source = avg_grid % kkk(l, k_profile, m) |
---|
| 265 | |
---|
| 266 | profile_array(k_profile) = profile_array(k_profile) & |
---|
| 267 | + avg_grid % w(l, k_profile, m) & |
---|
| 268 | * source_array(i_source, j_source, k_source) |
---|
| 269 | |
---|
| 270 | END DO ! m, vertical interpolation neighbours |
---|
| 271 | |
---|
| 272 | END DO ! k_profile, PALM levels |
---|
| 273 | |
---|
| 274 | END DO ! l, horizontal neighbours |
---|
| 275 | |
---|
| 276 | ni_columns = 1.0_dp / avg_grid % n_columns |
---|
| 277 | profile_array(:) = profile_array(:) * ni_columns |
---|
| 278 | |
---|
| 279 | ! Extrapolate constant to the bottom |
---|
| 280 | profile_array(1:avg_grid % k_min-1) = profile_array(avg_grid % k_min) |
---|
| 281 | |
---|
[2696] | 282 | END SUBROUTINE average_profile |
---|
| 283 | |
---|
| 284 | |
---|
[3395] | 285 | SUBROUTINE extrapolate_density(rho, avg_grid) |
---|
| 286 | REAL(dp), DIMENSION(:), INTENT(INOUT) :: rho |
---|
| 287 | TYPE(grid_definition), INTENT(IN) :: avg_grid |
---|
[2696] | 288 | |
---|
[3395] | 289 | REAL(dp) :: drhodz, dz, zk, rhok |
---|
| 290 | INTEGER :: k_min |
---|
| 291 | |
---|
| 292 | k_min = avg_grid % k_min |
---|
| 293 | zk = avg_grid % z(k_min) |
---|
| 294 | rhok = rho(k_min) |
---|
| 295 | dz = avg_grid % z(k_min + 1) - avg_grid % z(k_min) |
---|
| 296 | drhodz = (rho(k_min + 1) - rho(k_min)) / dz |
---|
| 297 | |
---|
| 298 | rho(1:k_min-1) = rhok + drhodz * (avg_grid % z(1:k_min-1) - zk) |
---|
| 299 | |
---|
| 300 | END SUBROUTINE extrapolate_density |
---|
| 301 | |
---|
| 302 | |
---|
| 303 | SUBROUTINE extrapolate_pressure(p, rho, avg_grid) |
---|
| 304 | REAL(dp), DIMENSION(:), INTENT(IN) :: rho |
---|
| 305 | REAL(dp), DIMENSION(:), INTENT(INOUT) :: p |
---|
| 306 | TYPE(grid_definition), INTENT(IN) :: avg_grid |
---|
| 307 | |
---|
| 308 | REAL(dp) :: drhodz, dz, zk, rhok |
---|
| 309 | INTEGER :: k, k_min |
---|
| 310 | |
---|
| 311 | k_min = avg_grid % k_min |
---|
| 312 | zk = avg_grid % z(k_min) |
---|
| 313 | rhok = rho(k_min) |
---|
| 314 | dz = avg_grid % z(k_min + 1) - avg_grid % z(k_min) |
---|
| 315 | drhodz = 0.5_dp * (rho(k_min + 1) - rho(k_min)) / dz |
---|
| 316 | |
---|
| 317 | DO k = 1, k_min-1 |
---|
| 318 | p(k) = constant_density_pressure(p(k_min), zk, rhok, drhodz, & |
---|
| 319 | avg_grid % z(k), G) |
---|
| 320 | END DO |
---|
| 321 | |
---|
| 322 | END SUBROUTINE extrapolate_pressure |
---|
| 323 | |
---|
| 324 | |
---|
| 325 | !------------------------------------------------------------------------------! |
---|
| 326 | ! Description: |
---|
| 327 | ! ------------ |
---|
| 328 | !> Takes the averaged pressure profile <p> and sets the lowest entry to the |
---|
| 329 | !> extrapolated pressure at the surface. |
---|
| 330 | !------------------------------------------------------------------------------! |
---|
| 331 | SUBROUTINE get_surface_pressure(p, rho, avg_grid) |
---|
| 332 | REAL(dp), DIMENSION(:), INTENT(IN) :: rho |
---|
| 333 | REAL(dp), DIMENSION(:), INTENT(INOUT) :: p |
---|
| 334 | TYPE(grid_definition), INTENT(IN) :: avg_grid |
---|
| 335 | |
---|
| 336 | REAL(dp) :: drhodz, dz, zk, rhok |
---|
| 337 | INTEGER :: k, k_min |
---|
| 338 | |
---|
| 339 | k_min = avg_grid % k_min |
---|
| 340 | zk = avg_grid % z(k_min) |
---|
| 341 | rhok = rho(k_min) |
---|
| 342 | dz = avg_grid % z(k_min + 1) - avg_grid % z(k_min) |
---|
| 343 | drhodz = 0.5_dp * (rho(k_min + 1) - rho(k_min)) / dz |
---|
| 344 | |
---|
| 345 | p(1) = constant_density_pressure(p(k_min), zk, rhok, drhodz, & |
---|
| 346 | 0.0, G) |
---|
| 347 | |
---|
| 348 | END SUBROUTINE get_surface_pressure |
---|
| 349 | |
---|
| 350 | |
---|
| 351 | FUNCTION constant_density_pressure(pk, zk, rhok, drhodz, z, g) RESULT(p) |
---|
| 352 | |
---|
| 353 | REAL(dp), INTENT(IN) :: pk, zk, rhok, drhodz, g, z |
---|
| 354 | REAL(dp) :: p |
---|
| 355 | |
---|
| 356 | p = pk + ( zk - z ) * g * ( rhok + 0.5*drhodz * (zk - z) ) |
---|
| 357 | |
---|
| 358 | END FUNCTION constant_density_pressure |
---|
| 359 | |
---|
[2696] | 360 | !-----------------------------------------------------------------------------! |
---|
| 361 | ! Description: |
---|
| 362 | ! ----------- |
---|
[3395] | 363 | !> This routine computes profiles of the two geostrophic wind components ug and |
---|
| 364 | !> vg. |
---|
| 365 | !-----------------------------------------------------------------------------! |
---|
| 366 | SUBROUTINE geostrophic_winds(p_north, p_south, p_east, p_west, rho, f3, & |
---|
| 367 | Lx, Ly, phi_n, lam_n, phi_g, lam_g, ug, vg) |
---|
| 368 | |
---|
| 369 | REAL(dp), DIMENSION(:), INTENT(IN) :: p_north, p_south, p_east, p_west, & |
---|
| 370 | rho |
---|
| 371 | REAL(dp), INTENT(IN) :: f3, Lx, Ly, phi_n, lam_n, phi_g, lam_g |
---|
| 372 | REAL(dp), DIMENSION(:), INTENT(OUT) :: ug, vg |
---|
| 373 | REAL(dp) :: facx, facy |
---|
| 374 | |
---|
| 375 | facx = 1.0_dp / (Lx * f3) |
---|
| 376 | facy = 1.0_dp / (Ly * f3) |
---|
| 377 | ug(:) = - facy / rho(:) * (p_north(:) - p_south(:)) |
---|
| 378 | vg(:) = facx / rho(:) * (p_east(:) - p_west(:)) |
---|
| 379 | |
---|
| 380 | CALL rotate_vector_field( & |
---|
| 381 | ug, vg, angle = meridian_convergence_rotated(phi_n, lam_n, phi_g, lam_g)& |
---|
| 382 | ) |
---|
| 383 | |
---|
| 384 | END SUBROUTINE geostrophic_winds |
---|
| 385 | |
---|
| 386 | |
---|
| 387 | !-----------------------------------------------------------------------------! |
---|
| 388 | ! Description: |
---|
| 389 | ! ----------- |
---|
[2696] | 390 | !> This routine computes the inverse Plate Carree projection, i.e. in projects |
---|
| 391 | !> Cartesian coordinates (x,y) onto a sphere. It returns the latitude and |
---|
| 392 | !> lngitude of a geographical system centered at x0 and y0. |
---|
| 393 | !-----------------------------------------------------------------------------! |
---|
| 394 | SUBROUTINE inv_plate_carree(x, y, x0, y0, r, lat, lon) |
---|
| 395 | REAL(dp), INTENT(IN) :: x(:), y(:), x0, y0, r |
---|
| 396 | REAL(dp), INTENT(OUT) :: lat(:), lon(:) |
---|
| 397 | |
---|
| 398 | REAL(dp) :: ri |
---|
| 399 | |
---|
| 400 | ! TODO check dimensions of lat/lon and y/x match |
---|
| 401 | |
---|
| 402 | ri = 1.0_dp / r |
---|
| 403 | |
---|
| 404 | lat(:) = (y(:) - y0) * ri |
---|
| 405 | lon(:) = (x(:) - x0) * ri |
---|
| 406 | END SUBROUTINE |
---|
| 407 | |
---|
| 408 | |
---|
| 409 | !-----------------------------------------------------------------------------! |
---|
| 410 | ! Description: |
---|
| 411 | ! ------------ |
---|
| 412 | !> Computes the reverse Plate-Carree projection of a x or y position on a |
---|
| 413 | !> Cartesian grid. |
---|
| 414 | !> |
---|
| 415 | !> Input parameters: |
---|
| 416 | !> ----------------- |
---|
| 417 | !> xy : x or y coordinate of the Cartasian grid point [m]. |
---|
| 418 | !> |
---|
| 419 | !> xy0 : x or y coordinate that coincides with the origin of the underlying |
---|
| 420 | !> sperical system (crossing point of the equator and prime meridian) [m]. |
---|
| 421 | !> |
---|
| 422 | !> r : Radius of the of the underlying sphere, e.g. EARTH_RADIUS [m]. |
---|
| 423 | !> |
---|
| 424 | !> Returns: |
---|
| 425 | !> -------- |
---|
| 426 | !> project : Longitude (in case xy = x) or latitude (xy = y) of the given input |
---|
| 427 | !> coordinate xy. |
---|
| 428 | !------------------------------------------------------------------------------! |
---|
| 429 | ELEMENTAL REAL(dp) FUNCTION project(xy, xy0, r) |
---|
| 430 | REAL(dp), INTENT(IN) :: xy, xy0, r |
---|
| 431 | REAL(dp) :: ri |
---|
| 432 | |
---|
| 433 | ! If this elemental function is called with a large array as xy, it is |
---|
| 434 | ! computationally more efficient to precompute the inverse radius and |
---|
| 435 | ! then muliply. |
---|
| 436 | ri = 1.0_dp / r |
---|
| 437 | |
---|
| 438 | project = (xy - xy0) * ri |
---|
| 439 | |
---|
| 440 | END FUNCTION project |
---|
| 441 | |
---|
| 442 | |
---|
| 443 | REAL(dp) FUNCTION phic_to_phin(phi_c) |
---|
| 444 | REAL(dp), INTENT(IN) :: phi_c |
---|
| 445 | |
---|
| 446 | phic_to_phin = 0.5_dp * PI - ABS(phi_c) |
---|
| 447 | |
---|
| 448 | END FUNCTION phic_to_phin |
---|
| 449 | |
---|
| 450 | |
---|
| 451 | REAL(dp) FUNCTION lamc_to_lamn(phi_c, lam_c) |
---|
| 452 | REAL(dp), INTENT(IN) :: phi_c, lam_c |
---|
| 453 | |
---|
| 454 | lamc_to_lamn = lam_c |
---|
| 455 | IF (phi_c > 0.0_dp) THEN |
---|
| 456 | lamc_to_lamn = lam_c - SIGN(PI, lam_c) |
---|
| 457 | END IF |
---|
| 458 | |
---|
| 459 | END FUNCTION lamc_to_lamn |
---|
| 460 | |
---|
| 461 | |
---|
| 462 | REAL(dp) FUNCTION gamma_from_hemisphere(phi_cg, phi_ref) |
---|
| 463 | REAL(dp), INTENT(IN) :: phi_cg, phi_ref |
---|
| 464 | LOGICAL :: palm_centre_is_south_of_cosmo_origin |
---|
| 465 | |
---|
| 466 | palm_centre_is_south_of_cosmo_origin = (phi_cg < phi_ref) |
---|
| 467 | |
---|
| 468 | IF (palm_centre_is_south_of_cosmo_origin) THEN |
---|
| 469 | gamma_from_hemisphere = PI |
---|
| 470 | ELSE |
---|
| 471 | gamma_from_hemisphere = 0.0_dp |
---|
| 472 | END IF |
---|
| 473 | END FUNCTION gamma_from_hemisphere |
---|
| 474 | |
---|
| 475 | |
---|
| 476 | !------------------------------------------------------------------------------! |
---|
| 477 | ! Description: |
---|
| 478 | ! ------------ |
---|
| 479 | !> Computes the geographical coordinates corresponding to the given rotated-pole |
---|
| 480 | !> coordinates. |
---|
| 481 | !> |
---|
| 482 | !> In INIFOR, this routine is used to convert coordinates between two |
---|
| 483 | !> rotated-pole systems: COSMO-DE's rotated-pole system, and one centred at the |
---|
| 484 | !> PALM-4U domain centre. In this case, the PALM-4U system is thought of as the |
---|
| 485 | !> rotated-pole system and the routine is used to rotate back to COSMO-DE's |
---|
| 486 | !> system which is thought of as the geographical one. |
---|
| 487 | !> |
---|
| 488 | !> Input parameters: |
---|
| 489 | !> ----------------- |
---|
| 490 | !> phir(:), lamr(: ): latitudes and longitudes of the rotated-pole grid |
---|
| 491 | !> |
---|
| 492 | !> phip, lamp: latitude and longitude of the rotated north pole |
---|
| 493 | !> |
---|
| 494 | !> gam: "angle between the north poles. If [gam] is not present, the other |
---|
| 495 | !> system is the real geographical system." (original phiro2rot |
---|
| 496 | !> description) |
---|
| 497 | !> |
---|
| 498 | !> Output parameters: |
---|
| 499 | !> ------------------ |
---|
| 500 | !> phi(:,:), lam(:,:): geographical latitudes and logitudes |
---|
| 501 | !------------------------------------------------------------------------------! |
---|
| 502 | SUBROUTINE rotate_to_cosmo(phir, lamr, phip, lamp, phi, lam, gam) |
---|
| 503 | REAL(dp), INTENT(IN) :: phir(0:), lamr(0:), phip, lamp, gam |
---|
| 504 | REAL(dp), INTENT(OUT) :: phi(0:,0:), lam(0:,0:) |
---|
| 505 | |
---|
| 506 | INTEGER :: i, j |
---|
| 507 | |
---|
| 508 | IF ( SIZE(phi, 1) .NE. SIZE(lam, 1) .OR. & |
---|
| 509 | SIZE(phi, 2) .NE. SIZE(lam, 2) ) THEN |
---|
| 510 | PRINT *, "inifor: rotate_to_cosmo: Dimensions of phi and lambda do not match. Dimensions are:" |
---|
| 511 | PRINT *, "inifor: rotate_to_cosmo: phi: ", SIZE(phi, 1), SIZE(phi, 2) |
---|
| 512 | PRINT *, "inifor: rotate_to_cosmo: lam: ", SIZE(lam, 1), SIZE(lam, 2) |
---|
| 513 | STOP |
---|
| 514 | END IF |
---|
| 515 | |
---|
| 516 | IF ( SIZE(phir) .NE. SIZE(phi, 2) .OR. & |
---|
| 517 | SIZE(lamr) .NE. SIZE(phi, 1) ) THEN |
---|
| 518 | PRINT *, "inifor: rotate_to_cosmo: Dimensions of phir and lamr do not match. Dimensions are:" |
---|
| 519 | PRINT *, "inifor: rotate_to_cosmo: phir: ", SIZE(phir), SIZE(phi, 2) |
---|
| 520 | PRINT *, "inifor: rotate_to_cosmo: lamr: ", SIZE(lamr), SIZE(phi, 1) |
---|
| 521 | STOP |
---|
| 522 | END IF |
---|
| 523 | |
---|
| 524 | DO j = 0, UBOUND(phir, 1) |
---|
| 525 | DO i = 0, UBOUND(lamr, 1) |
---|
| 526 | |
---|
| 527 | phi(i,j) = phirot2phi(phir(j) * TO_DEGREES, & |
---|
| 528 | lamr(i) * TO_DEGREES, & |
---|
| 529 | phip * TO_DEGREES, & |
---|
| 530 | lamp * TO_DEGREES, & |
---|
| 531 | gam * TO_DEGREES) * TO_RADIANS |
---|
| 532 | |
---|
| 533 | lam(i,j) = rlarot2rla(phir(j) * TO_DEGREES, & |
---|
| 534 | lamr(i) * TO_DEGREES, & |
---|
| 535 | phip * TO_DEGREES, & |
---|
| 536 | lamp * TO_DEGREES, & |
---|
| 537 | gam * TO_DEGREES) * TO_RADIANS |
---|
| 538 | |
---|
| 539 | END DO |
---|
| 540 | END DO |
---|
| 541 | |
---|
| 542 | END SUBROUTINE rotate_to_cosmo |
---|
[3182] | 543 | |
---|
[2696] | 544 | |
---|
[3395] | 545 | SUBROUTINE rotate_vector_field(x, y, angle) |
---|
| 546 | REAL(dp), DIMENSION(:), INTENT(INOUT) :: x, y !< x and y coodrinate in arbitrary units |
---|
| 547 | REAL(dp), INTENT(IN) :: angle !< rotation angle [deg] |
---|
[2696] | 548 | |
---|
[3395] | 549 | INTEGER :: i |
---|
| 550 | REAL(dp) :: sine, cosine, v_rot(2), rotation(2,2) |
---|
| 551 | |
---|
| 552 | sine = SIN(angle * TO_RADIANS) |
---|
| 553 | cosine = COS(angle * TO_RADIANS) |
---|
| 554 | ! RESAHPE() fills columns first, so the rotation matrix becomes |
---|
| 555 | ! |
---|
| 556 | ! rotation = [ cosine -sine ] |
---|
| 557 | ! [ sine cosine ] |
---|
| 558 | rotation = RESHAPE( (/cosine, sine, -sine, cosine/), (/2, 2/) ) |
---|
| 559 | |
---|
| 560 | DO i = LBOUND(x, 1), UBOUND(x, 1) |
---|
| 561 | |
---|
| 562 | v_rot(:) = MATMUL(rotation, (/x(i), y(i)/)) |
---|
| 563 | |
---|
| 564 | x(i) = v_rot(1) |
---|
| 565 | y(i) = v_rot(2) |
---|
| 566 | |
---|
| 567 | END DO |
---|
| 568 | |
---|
| 569 | END SUBROUTINE rotate_vector_field |
---|
| 570 | |
---|
| 571 | |
---|
| 572 | |
---|
[2696] | 573 | !------------------------------------------------------------------------------! |
---|
| 574 | ! Description: |
---|
| 575 | ! ------------ |
---|
[3395] | 576 | !> This routine computes the local meridian convergence between a rotated-pole |
---|
| 577 | !> and a geographical system using the Eq. (6) given in the DWD manual |
---|
| 578 | !> |
---|
| 579 | !> Baldauf et al. (2018), Beschreibung des operationelle KuÌrzestfrist- |
---|
| 580 | !> vorhersagemodells COSMO-D2 und COSMO-D2-EPS und seiner Ausgabe in die |
---|
| 581 | !> Datenbanken des DWD. |
---|
| 582 | !> https://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/cosmo_d2/cosmo_d2_dbbeschr_aktuell.pdf?__blob=publicationFile&v=2 |
---|
| 583 | !> |
---|
| 584 | FUNCTION meridian_convergence_rotated(phi_n, lam_n, phi_g, lam_g) & |
---|
| 585 | RESULT(delta) |
---|
| 586 | |
---|
| 587 | REAL(dp), INTENT(IN) :: phi_n, lam_n, phi_g, lam_g |
---|
| 588 | REAL(dp) :: delta |
---|
| 589 | |
---|
| 590 | delta = atan2( COS(phi_n) * SIN(lam_n - lam_g), & |
---|
| 591 | COS(phi_g) * SIN(phi_n) - & |
---|
| 592 | SIN(phi_g) * COS(phi_n) * COS(lam_n - lam_g) ) |
---|
| 593 | |
---|
| 594 | END FUNCTION meridian_convergence_rotated |
---|
| 595 | |
---|
| 596 | !------------------------------------------------------------------------------! |
---|
| 597 | ! Description: |
---|
| 598 | ! ------------ |
---|
[2696] | 599 | !> Compute indices of PALM-4U grid point neighbours in the target |
---|
| 600 | !> system (COSMO-DE) by rounding up and down. (i,j) are the indices of |
---|
| 601 | !> the PALM-4U grid and (ii(i,j,1-4), jj(i,j,1-4)) contain the indices |
---|
| 602 | !> of the its four neigbouring points in the COSMO-DE grid. |
---|
| 603 | !> |
---|
| 604 | !> |
---|
| 605 | !> COSMO-DE grid |
---|
| 606 | !> ------------- |
---|
| 607 | !> jj, lat |
---|
[3182] | 608 | !> ^ j |
---|
| 609 | !> | \ i |
---|
[2696] | 610 | !> jj(i,j,2/3) + ... 2 ---\--------/------ 3 |
---|
| 611 | !> | | ^ \ / | |
---|
| 612 | !> | | |wp \ / | |
---|
| 613 | !> | | v \ / | |
---|
| 614 | !> latpos + ............ o/ (i,j) | |
---|
| 615 | !> | | : | |
---|
| 616 | !> | | :<----wl---->| |
---|
| 617 | !> jj(i,j,1/4) + ... 1 -------:----------- 4 |
---|
| 618 | !> | : : : |
---|
| 619 | !> | : : : |
---|
| 620 | !> | : lonpos : |
---|
| 621 | !> L-----+--------+------------+------> ii, lon |
---|
| 622 | !> ii(i,j,1/2) ii(i,j,3/4) |
---|
| 623 | !> |
---|
| 624 | !> |
---|
| 625 | !> Input parameters: |
---|
| 626 | !> ----------------- |
---|
| 627 | !> source_lat, source_lon : (rotated-pole) coordinates of the source grid (e.g. |
---|
| 628 | !> COSMO-DE) |
---|
| 629 | !> |
---|
| 630 | !> source_dxi, source_dyi : inverse grid spacings of the source grid. |
---|
| 631 | !> |
---|
| 632 | !> target_lat, target_lon : (rotated-pole) coordinates of the target grid (e.g. |
---|
| 633 | !> COSMO-DE) |
---|
| 634 | !> |
---|
| 635 | !> Output parameters: |
---|
| 636 | !> ------------------ |
---|
| 637 | !> palm_ii, palm_jj : x and y index arrays of horizontal neighbour columns |
---|
| 638 | !> |
---|
| 639 | !------------------------------------------------------------------------------! |
---|
[3182] | 640 | SUBROUTINE find_horizontal_neighbours(cosmo_lat, cosmo_lon, & |
---|
| 641 | palm_clat, palm_clon, & |
---|
| 642 | palm_ii, palm_jj) |
---|
[2696] | 643 | |
---|
| 644 | REAL(dp), DIMENSION(0:), INTENT(IN) :: cosmo_lat, cosmo_lon |
---|
| 645 | REAL(dp), DIMENSION(0:,0:), INTENT(IN) :: palm_clat, palm_clon |
---|
[3182] | 646 | REAL(dp) :: cosmo_dxi, cosmo_dyi |
---|
[2696] | 647 | INTEGER, DIMENSION(0:,0:,1:), INTENT(OUT) :: palm_ii, palm_jj |
---|
| 648 | |
---|
| 649 | REAL(dp) :: lonpos, latpos, lon0, lat0 |
---|
| 650 | INTEGER :: i, j |
---|
| 651 | |
---|
| 652 | lon0 = cosmo_lon(0) |
---|
| 653 | lat0 = cosmo_lat(0) |
---|
[3182] | 654 | cosmo_dxi = 1.0_dp / (cosmo_lon(1) - cosmo_lon(0)) |
---|
| 655 | cosmo_dyi = 1.0_dp / (cosmo_lat(1) - cosmo_lat(0)) |
---|
[2696] | 656 | |
---|
| 657 | DO j = 0, UBOUND(palm_clon, 2)!palm_grid % ny |
---|
| 658 | DO i = 0, UBOUND(palm_clon, 1)!palm_grid % nx |
---|
| 659 | ! Compute the floating point index corrseponding to PALM-4U grid point |
---|
| 660 | ! location along target grid (COSMO-DE) axes. |
---|
| 661 | lonpos = (palm_clon(i,j) - lon0) * cosmo_dxi |
---|
| 662 | latpos = (palm_clat(i,j) - lat0) * cosmo_dyi |
---|
| 663 | |
---|
| 664 | IF (lonpos < 0.0 .OR. latpos < 0.0) THEN |
---|
| 665 | PRINT *, " Error while finding neighbours: lonpos or latpos out of bounds!" |
---|
| 666 | PRINT *, " (i,j) = (", i, ",",j,")" |
---|
| 667 | PRINT *, " lonpos ", lonpos*TO_DEGREES, ", latpos ", latpos*TO_DEGREES |
---|
| 668 | PRINT *, " lon0 ", lon0 *TO_DEGREES, ", lat0 ", lat0*TO_DEGREES |
---|
| 669 | PRINT *, " PALM lon ", palm_clon(i,j)*TO_DEGREES, ", PALM lat ",palm_clat(i,j)*TO_DEGREES |
---|
| 670 | STOP |
---|
| 671 | END IF |
---|
| 672 | |
---|
| 673 | palm_ii(i,j,1) = FLOOR(lonpos) |
---|
| 674 | palm_ii(i,j,2) = FLOOR(lonpos) |
---|
| 675 | palm_ii(i,j,3) = CEILING(lonpos) |
---|
| 676 | palm_ii(i,j,4) = CEILING(lonpos) |
---|
| 677 | |
---|
| 678 | palm_jj(i,j,1) = FLOOR(latpos) |
---|
| 679 | palm_jj(i,j,2) = CEILING(latpos) |
---|
| 680 | palm_jj(i,j,3) = CEILING(latpos) |
---|
| 681 | palm_jj(i,j,4) = FLOOR(latpos) |
---|
| 682 | END DO |
---|
| 683 | END DO |
---|
| 684 | |
---|
| 685 | END SUBROUTINE find_horizontal_neighbours |
---|
| 686 | |
---|
| 687 | |
---|
[3395] | 688 | SUBROUTINE find_vertical_neighbours_and_weights_interp( palm_grid, & |
---|
| 689 | palm_intermediate ) |
---|
[2696] | 690 | TYPE(grid_definition), INTENT(INOUT) :: palm_grid |
---|
| 691 | TYPE(grid_definition), INTENT(IN) :: palm_intermediate |
---|
| 692 | |
---|
[3182] | 693 | INTEGER :: i, j, k, nx, ny, nz, nlev, k_intermediate |
---|
[2696] | 694 | LOGICAL :: point_is_below_grid, point_is_above_grid, & |
---|
| 695 | point_is_in_current_cell |
---|
| 696 | REAL(dp) :: current_height, column_base, column_top, h_top, h_bottom, & |
---|
| 697 | weight |
---|
| 698 | |
---|
| 699 | nx = palm_grid % nx |
---|
| 700 | ny = palm_grid % ny |
---|
| 701 | nz = palm_grid % nz |
---|
| 702 | nlev = palm_intermediate % nz |
---|
| 703 | |
---|
| 704 | ! in each column of the fine grid, find vertical neighbours of every cell |
---|
[3395] | 705 | DO j = 0, ny |
---|
[2696] | 706 | DO i = 0, nx |
---|
| 707 | |
---|
[3182] | 708 | k_intermediate = 0 |
---|
[2696] | 709 | |
---|
| 710 | column_base = palm_intermediate % h(i,j,0) |
---|
| 711 | column_top = palm_intermediate % h(i,j,nlev) |
---|
| 712 | |
---|
[3395] | 713 | ! scan through palm_grid column and set neighbour indices in |
---|
[2696] | 714 | ! case current_height is either below column_base, in the current |
---|
| 715 | ! cell, or above column_top. Keep increasing current cell index until |
---|
| 716 | ! the current cell overlaps with the current_height. |
---|
[3182] | 717 | DO k = 1, nz |
---|
[2696] | 718 | |
---|
| 719 | ! Memorize the top and bottom boundaries of the coarse cell and the |
---|
| 720 | ! current height within it |
---|
| 721 | current_height = palm_grid % z(k) + palm_grid % z0 |
---|
[3182] | 722 | h_top = palm_intermediate % h(i,j,k_intermediate+1) |
---|
| 723 | h_bottom = palm_intermediate % h(i,j,k_intermediate) |
---|
[2696] | 724 | |
---|
| 725 | point_is_above_grid = (current_height > column_top) !22000m, very unlikely |
---|
| 726 | point_is_below_grid = (current_height < column_base) |
---|
| 727 | |
---|
| 728 | point_is_in_current_cell = ( & |
---|
| 729 | current_height >= h_bottom .AND. & |
---|
| 730 | current_height < h_top & |
---|
| 731 | ) |
---|
| 732 | |
---|
| 733 | ! set default weights |
---|
| 734 | palm_grid % w_verti(i,j,k,1:2) = 0.0_dp |
---|
| 735 | |
---|
| 736 | IF (point_is_above_grid) THEN |
---|
| 737 | |
---|
| 738 | palm_grid % kk(i,j,k,1:2) = nlev |
---|
| 739 | palm_grid % w_verti(i,j,k,1:2) = - 2.0_dp |
---|
| 740 | |
---|
[3182] | 741 | message = "PALM-4U grid extends above COSMO-DE model top." |
---|
| 742 | CALL abort('find_vertical_neighbours_and_weights', message) |
---|
| 743 | |
---|
[2696] | 744 | ELSE IF (point_is_below_grid) THEN |
---|
| 745 | |
---|
| 746 | palm_grid % kk(i,j,k,1:2) = 0 |
---|
| 747 | palm_grid % w_verti(i,j,k,1:2) = - 2.0_dp |
---|
| 748 | |
---|
| 749 | ELSE |
---|
| 750 | ! cycle through intermediate levels until current |
---|
| 751 | ! intermediate-grid cell overlaps with current_height |
---|
[3182] | 752 | DO WHILE (.NOT. point_is_in_current_cell .AND. k_intermediate <= nlev-1) |
---|
| 753 | k_intermediate = k_intermediate + 1 |
---|
[2696] | 754 | |
---|
[3182] | 755 | h_top = palm_intermediate % h(i,j,k_intermediate+1) |
---|
| 756 | h_bottom = palm_intermediate % h(i,j,k_intermediate) |
---|
[2696] | 757 | point_is_in_current_cell = ( & |
---|
| 758 | current_height >= h_bottom .AND. & |
---|
| 759 | current_height < h_top & |
---|
| 760 | ) |
---|
| 761 | END DO |
---|
| 762 | |
---|
[3182] | 763 | IF (k_intermediate > nlev-1) THEN |
---|
| 764 | message = "Index " // TRIM(str(k_intermediate)) // & |
---|
| 765 | " is above intermediate grid range." |
---|
[2696] | 766 | CALL abort('find_vertical_neighbours', message) |
---|
| 767 | END IF |
---|
| 768 | |
---|
[3182] | 769 | palm_grid % kk(i,j,k,1) = k_intermediate |
---|
| 770 | palm_grid % kk(i,j,k,2) = k_intermediate + 1 |
---|
[2696] | 771 | |
---|
| 772 | ! copmute vertical weights |
---|
| 773 | weight = (h_top - current_height) / (h_top - h_bottom) |
---|
| 774 | palm_grid % w_verti(i,j,k,1) = weight |
---|
| 775 | palm_grid % w_verti(i,j,k,2) = 1.0_dp - weight |
---|
| 776 | END IF |
---|
| 777 | |
---|
| 778 | END DO |
---|
| 779 | |
---|
| 780 | END DO |
---|
| 781 | END DO |
---|
| 782 | |
---|
[3395] | 783 | END SUBROUTINE find_vertical_neighbours_and_weights_interp |
---|
[2696] | 784 | |
---|
[3395] | 785 | |
---|
| 786 | SUBROUTINE find_vertical_neighbours_and_weights_average( avg_grid ) |
---|
| 787 | TYPE(grid_definition), INTENT(INOUT) :: avg_grid |
---|
| 788 | |
---|
| 789 | INTEGER :: i, j, k_palm, k_intermediate, l, nlev |
---|
| 790 | LOGICAL :: point_is_below_grid, point_is_above_grid, & |
---|
| 791 | point_is_in_current_cell |
---|
| 792 | REAL(dp) :: current_height, column_base, column_top, h_top, h_bottom, & |
---|
| 793 | weight |
---|
| 794 | |
---|
| 795 | |
---|
| 796 | avg_grid % k_min = LBOUND(avg_grid % z, 1) |
---|
| 797 | |
---|
| 798 | nlev = SIZE(avg_grid % cosmo_h, 3) |
---|
| 799 | |
---|
| 800 | ! in each column of the fine grid, find vertical neighbours of every cell |
---|
| 801 | DO l = 1, avg_grid % n_columns |
---|
| 802 | |
---|
| 803 | i = avg_grid % iii(l) |
---|
| 804 | j = avg_grid % jjj(l) |
---|
| 805 | |
---|
| 806 | column_base = avg_grid % cosmo_h(i,j,1) |
---|
| 807 | column_top = avg_grid % cosmo_h(i,j,nlev) |
---|
| 808 | |
---|
| 809 | ! scan through avg_grid column until and set neighbour indices in |
---|
| 810 | ! case current_height is either below column_base, in the current |
---|
| 811 | ! cell, or above column_top. Keep increasing current cell index until |
---|
| 812 | ! the current cell overlaps with the current_height. |
---|
| 813 | k_intermediate = 1 !avg_grid % cosmo_h is indezed 1-based. |
---|
| 814 | DO k_palm = 1, avg_grid % nz |
---|
| 815 | |
---|
| 816 | ! Memorize the top and bottom boundaries of the coarse cell and the |
---|
| 817 | ! current height within it |
---|
| 818 | current_height = avg_grid % z(k_palm) + avg_grid % z0 |
---|
| 819 | h_top = avg_grid % cosmo_h(i,j,k_intermediate+1) |
---|
| 820 | h_bottom = avg_grid % cosmo_h(i,j,k_intermediate) |
---|
| 821 | |
---|
| 822 | point_is_above_grid = (current_height > column_top) !22000m, very unlikely |
---|
| 823 | point_is_below_grid = (current_height < column_base) |
---|
| 824 | |
---|
| 825 | point_is_in_current_cell = ( & |
---|
| 826 | current_height >= h_bottom .AND. & |
---|
| 827 | current_height < h_top & |
---|
| 828 | ) |
---|
| 829 | |
---|
| 830 | ! set default weights |
---|
| 831 | avg_grid % w(l,k_palm,1:2) = 0.0_dp |
---|
| 832 | |
---|
| 833 | IF (point_is_above_grid) THEN |
---|
| 834 | |
---|
| 835 | avg_grid % kkk(l,k_palm,1:2) = nlev |
---|
| 836 | avg_grid % w(l,k_palm,1:2) = - 2.0_dp |
---|
| 837 | |
---|
| 838 | message = "PALM-4U grid extends above COSMO-DE model top." |
---|
| 839 | CALL abort('find_vertical_neighbours_and_weights_average', message) |
---|
| 840 | |
---|
| 841 | ELSE IF (point_is_below_grid) THEN |
---|
| 842 | |
---|
| 843 | avg_grid % kkk(l,k_palm,1:2) = 0 |
---|
| 844 | avg_grid % w(l,k_palm,1:2) = - 2.0_dp |
---|
| 845 | avg_grid % k_min = MAX(k_palm + 1, avg_grid % k_min) |
---|
| 846 | ELSE |
---|
| 847 | ! cycle through intermediate levels until current |
---|
| 848 | ! intermediate-grid cell overlaps with current_height |
---|
| 849 | DO WHILE (.NOT. point_is_in_current_cell .AND. k_intermediate <= nlev-1) |
---|
| 850 | k_intermediate = k_intermediate + 1 |
---|
| 851 | |
---|
| 852 | h_top = avg_grid % cosmo_h(i,j,k_intermediate+1) |
---|
| 853 | h_bottom = avg_grid % cosmo_h(i,j,k_intermediate) |
---|
| 854 | point_is_in_current_cell = ( & |
---|
| 855 | current_height >= h_bottom .AND. & |
---|
| 856 | current_height < h_top & |
---|
| 857 | ) |
---|
| 858 | END DO |
---|
| 859 | |
---|
| 860 | ! k_intermediate = 48 indicates the last section (indices 48 and 49), i.e. |
---|
| 861 | ! k_intermediate = 49 is not the beginning of a valid cell. |
---|
| 862 | IF (k_intermediate > nlev-1) THEN |
---|
| 863 | message = "Index " // TRIM(str(k_intermediate)) // & |
---|
| 864 | " is above intermediate grid range." |
---|
| 865 | CALL abort('find_vertical_neighbours', message) |
---|
| 866 | END IF |
---|
| 867 | |
---|
| 868 | avg_grid % kkk(l,k_palm,1) = k_intermediate |
---|
| 869 | avg_grid % kkk(l,k_palm,2) = k_intermediate + 1 |
---|
| 870 | |
---|
| 871 | ! copmute vertical weights |
---|
| 872 | weight = (h_top - current_height) / (h_top - h_bottom) |
---|
| 873 | avg_grid % w(l,k_palm,1) = weight |
---|
| 874 | avg_grid % w(l,k_palm,2) = 1.0_dp - weight |
---|
| 875 | END IF |
---|
| 876 | |
---|
| 877 | END DO ! k, PALM levels |
---|
| 878 | END DO ! l, averaging columns |
---|
| 879 | |
---|
| 880 | END SUBROUTINE find_vertical_neighbours_and_weights_average |
---|
| 881 | |
---|
[2696] | 882 | !------------------------------------------------------------------------------! |
---|
| 883 | ! Description: |
---|
| 884 | ! ------------ |
---|
| 885 | !> Compute the four weights for horizontal bilinear interpolation given the |
---|
| 886 | !> coordinates clon(i,j) clat(i,j) of the PALM-4U grid in the COSMO-DE |
---|
| 887 | !> rotated-pole grid and the neightbour indices ii(i,j,1-4) and jj(i,j,1-4). |
---|
| 888 | !> |
---|
| 889 | !> Input parameters: |
---|
| 890 | !> ----------------- |
---|
| 891 | !> palm_grid % clon : longitudes of PALM-4U scalars (cell centres) in COSMO-DE's rotated-pole grid [rad] |
---|
| 892 | !> |
---|
| 893 | !> palm_grid % clat : latitudes of PALM-4U cell centres in COSMO-DE's rotated-pole grid [rad] |
---|
| 894 | !> |
---|
| 895 | !> cosmo_grid % lon : rotated-pole longitudes of scalars (cell centres) of the COSMO-DE grid [rad] |
---|
| 896 | !> |
---|
| 897 | !> cosmo_grid % lat : rotated-pole latitudes of scalars (cell centers) of the COSMO-DE grid [rad] |
---|
| 898 | !> |
---|
| 899 | !> cosmo_grid % dxi : inverse grid spacing in the first dimension [m^-1] |
---|
| 900 | !> |
---|
| 901 | !> cosmo_grid % dyi : inverse grid spacing in the second dimension [m^-1] |
---|
| 902 | !> |
---|
| 903 | !> Output parameters: |
---|
| 904 | !> ------------------ |
---|
| 905 | !> palm_grid % w_horiz(:,:,1-4) : weights for bilinear horizontal interpolation |
---|
| 906 | ! |
---|
| 907 | ! COSMO-DE grid |
---|
| 908 | ! ------------- |
---|
| 909 | ! jj, lat |
---|
| 910 | ! ^ j |
---|
| 911 | ! | \ i |
---|
| 912 | ! jj(i,j,2/3) + ... 2 ---\--------/------ 3 |
---|
| 913 | ! | | ^ \ / | |
---|
| 914 | ! | | |wp \ / | |
---|
| 915 | ! | | v \ / | |
---|
| 916 | ! latpos + ............ o/ (i,j) | |
---|
| 917 | ! | | : | |
---|
| 918 | ! | | :<----wl---->| |
---|
| 919 | ! jj(i,j,1/4) + ... 1 -------:----------- 4 |
---|
| 920 | ! | : : : |
---|
| 921 | ! | : : : |
---|
| 922 | ! | : lonpos : |
---|
| 923 | ! L-----+--------+------------+------> ii, lon |
---|
| 924 | ! ii(i,j,1/2) ii(i,j,3/4) |
---|
| 925 | ! |
---|
| 926 | SUBROUTINE compute_horizontal_interp_weights(cosmo_lat, cosmo_lon, & |
---|
[3182] | 927 | palm_clat, palm_clon, palm_ii, palm_jj, palm_w_horiz) |
---|
[2696] | 928 | |
---|
| 929 | REAL(dp), DIMENSION(0:), INTENT(IN) :: cosmo_lat, cosmo_lon |
---|
[3182] | 930 | REAL(dp) :: cosmo_dxi, cosmo_dyi |
---|
[2696] | 931 | REAL(dp), DIMENSION(0:,0:), INTENT(IN) :: palm_clat, palm_clon |
---|
| 932 | INTEGER, DIMENSION(0:,0:,1:), INTENT(IN) :: palm_ii, palm_jj |
---|
| 933 | |
---|
| 934 | REAL(dp), DIMENSION(0:,0:,1:), INTENT(OUT) :: palm_w_horiz |
---|
| 935 | |
---|
| 936 | REAL(dp) :: wl, wp |
---|
| 937 | INTEGER :: i, j |
---|
| 938 | |
---|
[3182] | 939 | cosmo_dxi = 1.0_dp / (cosmo_lon(1) - cosmo_lon(0)) |
---|
| 940 | cosmo_dyi = 1.0_dp / (cosmo_lat(1) - cosmo_lat(0)) |
---|
| 941 | |
---|
[2696] | 942 | DO j = 0, UBOUND(palm_clon, 2) |
---|
| 943 | DO i = 0, UBOUND(palm_clon, 1) |
---|
| 944 | |
---|
| 945 | ! weight in lambda direction |
---|
| 946 | wl = ( cosmo_lon(palm_ii(i,j,4)) - palm_clon(i,j) ) * cosmo_dxi |
---|
| 947 | |
---|
| 948 | ! weight in phi direction |
---|
| 949 | wp = ( cosmo_lat(palm_jj(i,j,2)) - palm_clat(i,j) ) * cosmo_dyi |
---|
| 950 | |
---|
| 951 | IF (wl > 1.0_dp .OR. wl < 0.0_dp) THEN |
---|
| 952 | message = "Horizontal weight wl = " // TRIM(real_to_str(wl)) // & |
---|
| 953 | " is out bounds." |
---|
| 954 | CALL abort('compute_horizontal_interp_weights', message) |
---|
| 955 | END IF |
---|
| 956 | IF (wp > 1.0_dp .OR. wp < 0.0_dp) THEN |
---|
| 957 | message = "Horizontal weight wp = " // TRIM(real_to_str(wp)) // & |
---|
| 958 | " is out bounds." |
---|
| 959 | CALL abort('compute_horizontal_interp_weights', message) |
---|
| 960 | END IF |
---|
| 961 | |
---|
| 962 | palm_w_horiz(i,j,1) = wl * wp |
---|
| 963 | palm_w_horiz(i,j,2) = wl * (1.0_dp - wp) |
---|
| 964 | palm_w_horiz(i,j,3) = (1.0_dp - wl) * (1.0_dp - wp) |
---|
| 965 | palm_w_horiz(i,j,4) = 1.0_dp - SUM( palm_w_horiz(i,j,1:3) ) |
---|
| 966 | |
---|
| 967 | END DO |
---|
| 968 | END DO |
---|
| 969 | |
---|
| 970 | END SUBROUTINE compute_horizontal_interp_weights |
---|
| 971 | |
---|
| 972 | |
---|
| 973 | !------------------------------------------------------------------------------! |
---|
| 974 | ! Description: |
---|
| 975 | ! ------------ |
---|
| 976 | !> Interpolates u and v components of velocities located at cell faces to the |
---|
| 977 | !> cell centres by averaging neighbouring values. |
---|
| 978 | !> |
---|
| 979 | !> This routine is designed to be used with COSMO-DE arrays where there are the |
---|
| 980 | !> same number of grid points for scalars (centres) and velocities (faces). In |
---|
| 981 | !> COSMO-DE the velocity points are staggared one half grid spaceing up-grid |
---|
| 982 | !> which means the first centre point has to be omitted and is set to zero. |
---|
| 983 | SUBROUTINE centre_velocities(u_face, v_face, u_centre, v_centre) |
---|
| 984 | REAL(dp), DIMENSION(0:,0:,0:), INTENT(IN) :: u_face, v_face |
---|
| 985 | REAL(dp), DIMENSION(0:,0:,0:), INTENT(OUT) :: u_centre, v_centre |
---|
| 986 | INTEGER :: nx, ny |
---|
| 987 | |
---|
| 988 | nx = UBOUND(u_face, 1) |
---|
| 989 | ny = UBOUND(u_face, 2) |
---|
| 990 | |
---|
| 991 | u_centre(0,:,:) = 0.0_dp |
---|
| 992 | u_centre(1:,:,:) = 0.5_dp * ( u_face(0:nx-1,:,:) + u_face(1:,:,:) ) |
---|
| 993 | |
---|
| 994 | v_centre(:,0,:) = 0.0_dp |
---|
| 995 | v_centre(:,1:,:) = 0.5_dp * ( v_face(:,0:ny-1,:) + v_face(:,1:,:) ) |
---|
| 996 | END SUBROUTINE centre_velocities |
---|
| 997 | |
---|
| 998 | |
---|
| 999 | FUNCTION phirot2phi (phirot, rlarot, polphi, pollam, polgam) |
---|
| 1000 | |
---|
| 1001 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
| 1002 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
| 1003 | REAL(dp), INTENT (IN) :: phirot !< latitude in the rotated system |
---|
| 1004 | REAL(dp), INTENT (IN) :: rlarot !< longitude in the rotated system |
---|
| 1005 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
| 1006 | |
---|
| 1007 | REAL(dp) :: phirot2phi !< latitude in the geographical system |
---|
| 1008 | |
---|
| 1009 | REAL(dp) :: zsinpol, zcospol, zphis, zrlas, zarg, zgam |
---|
| 1010 | |
---|
| 1011 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
| 1012 | zcospol = COS(polphi * TO_RADIANS) |
---|
| 1013 | zphis = phirot * TO_RADIANS |
---|
| 1014 | |
---|
| 1015 | IF (rlarot > 180.0_dp) THEN |
---|
| 1016 | zrlas = rlarot - 360.0_dp |
---|
| 1017 | ELSE |
---|
| 1018 | zrlas = rlarot |
---|
| 1019 | END IF |
---|
| 1020 | zrlas = zrlas * TO_RADIANS |
---|
| 1021 | |
---|
| 1022 | IF (polgam /= 0.0_dp) THEN |
---|
| 1023 | zgam = polgam * TO_RADIANS |
---|
| 1024 | zarg = zsinpol * SIN (zphis) + & |
---|
| 1025 | zcospol * COS(zphis) * ( COS(zrlas) * COS(zgam) - & |
---|
| 1026 | SIN(zgam) * SIN(zrlas) ) |
---|
| 1027 | ELSE |
---|
| 1028 | zarg = zcospol * COS (zphis) * COS (zrlas) + zsinpol * SIN (zphis) |
---|
| 1029 | END IF |
---|
| 1030 | |
---|
| 1031 | phirot2phi = ASIN (zarg) * TO_DEGREES |
---|
| 1032 | |
---|
| 1033 | END FUNCTION phirot2phi |
---|
| 1034 | |
---|
| 1035 | |
---|
| 1036 | FUNCTION phi2phirot (phi, rla, polphi, pollam) |
---|
| 1037 | |
---|
| 1038 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
| 1039 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
| 1040 | REAL(dp), INTENT (IN) :: phi !< latitude in the geographical system |
---|
| 1041 | REAL(dp), INTENT (IN) :: rla !< longitude in the geographical system |
---|
| 1042 | |
---|
| 1043 | REAL(dp) :: phi2phirot !< longitude in the rotated system |
---|
| 1044 | |
---|
| 1045 | REAL(dp) :: zsinpol, zcospol, zlampol, zphi, zrla, zarg1, zarg2, zrla1 |
---|
| 1046 | |
---|
| 1047 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
| 1048 | zcospol = COS(polphi * TO_RADIANS) |
---|
| 1049 | zlampol = pollam * TO_RADIANS |
---|
| 1050 | zphi = phi * TO_RADIANS |
---|
| 1051 | |
---|
| 1052 | IF (rla > 180.0_dp) THEN |
---|
| 1053 | zrla1 = rla - 360.0_dp |
---|
| 1054 | ELSE |
---|
| 1055 | zrla1 = rla |
---|
| 1056 | END IF |
---|
| 1057 | zrla = zrla1 * TO_RADIANS |
---|
| 1058 | |
---|
| 1059 | zarg1 = SIN(zphi) * zsinpol |
---|
| 1060 | zarg2 = COS(zphi) * zcospol * COS(zrla - zlampol) |
---|
| 1061 | |
---|
| 1062 | phi2phirot = ASIN(zarg1 + zarg2) * TO_DEGREES |
---|
| 1063 | |
---|
| 1064 | END FUNCTION phi2phirot |
---|
| 1065 | |
---|
| 1066 | |
---|
| 1067 | FUNCTION rlarot2rla(phirot, rlarot, polphi, pollam, polgam) |
---|
| 1068 | |
---|
| 1069 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
| 1070 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
| 1071 | REAL(dp), INTENT (IN) :: phirot !< latitude in the rotated system |
---|
| 1072 | REAL(dp), INTENT (IN) :: rlarot !< longitude in the rotated system |
---|
| 1073 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
| 1074 | |
---|
| 1075 | REAL(dp) :: rlarot2rla !< latitude in the geographical system |
---|
| 1076 | |
---|
| 1077 | REAL(dp) :: zsinpol, zcospol, zlampol, zphis, zrlas, zarg1, zarg2, zgam |
---|
| 1078 | |
---|
| 1079 | zsinpol = SIN(TO_RADIANS * polphi) |
---|
| 1080 | zcospol = COS(TO_RADIANS * polphi) |
---|
| 1081 | zlampol = TO_RADIANS * pollam |
---|
| 1082 | zphis = TO_RADIANS * phirot |
---|
| 1083 | |
---|
| 1084 | IF (rlarot > 180.0_dp) THEN |
---|
| 1085 | zrlas = rlarot - 360.0_dp |
---|
| 1086 | ELSE |
---|
| 1087 | zrlas = rlarot |
---|
| 1088 | END IF |
---|
| 1089 | zrlas = TO_RADIANS * zrlas |
---|
| 1090 | |
---|
| 1091 | IF (polgam /= 0.0_dp) THEN |
---|
| 1092 | zgam = TO_RADIANS * polgam |
---|
| 1093 | zarg1 = SIN(zlampol) * (zcospol * SIN(zphis) - zsinpol*COS(zphis) * & |
---|
| 1094 | (COS(zrlas) * COS(zgam) - SIN(zrlas) * SIN(zgam)) ) - & |
---|
| 1095 | COS(zlampol) * COS(zphis) * ( SIN(zrlas) * COS(zgam) + & |
---|
| 1096 | COS(zrlas) * SIN(zgam) ) |
---|
| 1097 | |
---|
| 1098 | zarg2 = COS (zlampol) * (zcospol * SIN(zphis) - zsinpol*COS(zphis) * & |
---|
| 1099 | (COS(zrlas) * COS(zgam) - SIN(zrlas) * SIN(zgam)) ) + & |
---|
| 1100 | SIN(zlampol) * COS(zphis) * ( SIN(zrlas) * COS(zgam) + & |
---|
| 1101 | COS(zrlas) * SIN(zgam) ) |
---|
| 1102 | ELSE |
---|
| 1103 | zarg1 = SIN (zlampol) * (-zsinpol * COS(zrlas) * COS(zphis) + & |
---|
| 1104 | zcospol * SIN(zphis)) - & |
---|
| 1105 | COS (zlampol) * SIN(zrlas) * COS(zphis) |
---|
| 1106 | zarg2 = COS (zlampol) * (-zsinpol * COS(zrlas) * COS(zphis) + & |
---|
| 1107 | zcospol * SIN(zphis)) + & |
---|
| 1108 | SIN (zlampol) * SIN(zrlas) * COS(zphis) |
---|
| 1109 | END IF |
---|
| 1110 | |
---|
| 1111 | IF (zarg2 == 0.0_dp) zarg2 = 1.0E-20_dp |
---|
| 1112 | |
---|
| 1113 | rlarot2rla = ATAN2(zarg1,zarg2) * TO_DEGREES |
---|
| 1114 | |
---|
| 1115 | END FUNCTION rlarot2rla |
---|
| 1116 | |
---|
| 1117 | |
---|
| 1118 | FUNCTION rla2rlarot ( phi, rla, polphi, pollam, polgam ) |
---|
| 1119 | |
---|
| 1120 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
| 1121 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
| 1122 | REAL(dp), INTENT (IN) :: phi !< latitude in geographical system |
---|
| 1123 | REAL(dp), INTENT (IN) :: rla !< longitude in geographical system |
---|
| 1124 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
| 1125 | |
---|
| 1126 | REAL (KIND=dp) :: rla2rlarot !< latitude in the the rotated system |
---|
| 1127 | |
---|
| 1128 | REAL (KIND=dp) :: zsinpol, zcospol, zlampol, zphi, zrla, zarg1, zarg2, zrla1 |
---|
| 1129 | |
---|
| 1130 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
| 1131 | zcospol = COS(polphi * TO_RADIANS) |
---|
| 1132 | zlampol = pollam * TO_RADIANS |
---|
| 1133 | zphi = phi * TO_RADIANS |
---|
| 1134 | |
---|
| 1135 | IF (rla > 180.0_dp) THEN |
---|
| 1136 | zrla1 = rla - 360.0_dp |
---|
| 1137 | ELSE |
---|
| 1138 | zrla1 = rla |
---|
| 1139 | END IF |
---|
| 1140 | zrla = zrla1 * TO_RADIANS |
---|
| 1141 | |
---|
| 1142 | zarg1 = - SIN (zrla-zlampol) * COS(zphi) |
---|
| 1143 | zarg2 = - zsinpol * COS(zphi) * COS(zrla-zlampol) + zcospol * SIN(zphi) |
---|
| 1144 | |
---|
| 1145 | IF (zarg2 == 0.0_dp) zarg2 = 1.0E-20_dp |
---|
| 1146 | |
---|
| 1147 | rla2rlarot = ATAN2 (zarg1,zarg2) * TO_DEGREES |
---|
| 1148 | |
---|
| 1149 | IF (polgam /= 0.0_dp ) THEN |
---|
| 1150 | rla2rlarot = polgam + rla2rlarot |
---|
| 1151 | IF (rla2rlarot > 180._dp) rla2rlarot = rla2rlarot - 360.0_dp |
---|
| 1152 | END IF |
---|
| 1153 | |
---|
| 1154 | END FUNCTION rla2rlarot |
---|
| 1155 | |
---|
| 1156 | |
---|
| 1157 | SUBROUTINE uv2uvrot(u, v, rlat, rlon, pollat, pollon, urot, vrot) |
---|
| 1158 | |
---|
| 1159 | REAL(dp), INTENT (IN) :: u, v !< wind components in the true geographical system |
---|
| 1160 | REAL(dp), INTENT (IN) :: rlat, rlon !< coordinates in the true geographical system |
---|
| 1161 | REAL(dp), INTENT (IN) :: pollat, pollon !< latitude and longitude of the north pole of the rotated grid |
---|
| 1162 | |
---|
| 1163 | REAL(dp), INTENT (OUT) :: urot, vrot !< wind components in the rotated grid |
---|
| 1164 | |
---|
| 1165 | REAL (dp) :: zsinpol, zcospol, zlonp, zlat, zarg1, zarg2, znorm |
---|
| 1166 | |
---|
| 1167 | zsinpol = SIN(pollat * TO_RADIANS) |
---|
| 1168 | zcospol = COS(pollat * TO_RADIANS) |
---|
| 1169 | zlonp = (pollon-rlon) * TO_RADIANS |
---|
| 1170 | zlat = rlat * TO_RADIANS |
---|
| 1171 | |
---|
| 1172 | zarg1 = zcospol * SIN(zlonp) |
---|
| 1173 | zarg2 = zsinpol * COS(zlat) - zcospol * SIN(zlat) * COS(zlonp) |
---|
| 1174 | znorm = 1.0_dp / SQRT(zarg1*zarg1 + zarg2*zarg2) |
---|
| 1175 | |
---|
| 1176 | urot = u * zarg2 * znorm - v * zarg1 * znorm |
---|
| 1177 | vrot = u * zarg1 * znorm + v * zarg2 * znorm |
---|
| 1178 | |
---|
| 1179 | END SUBROUTINE uv2uvrot |
---|
| 1180 | |
---|
| 1181 | |
---|
| 1182 | SUBROUTINE uvrot2uv (urot, vrot, rlat, rlon, pollat, pollon, u, v) |
---|
| 1183 | |
---|
| 1184 | REAL(dp), INTENT(IN) :: urot, vrot !< wind components in the rotated grid |
---|
| 1185 | REAL(dp), INTENT(IN) :: rlat, rlon !< latitude and longitude in the true geographical system |
---|
| 1186 | REAL(dp), INTENT(IN) :: pollat, pollon !< latitude and longitude of the north pole of the rotated grid |
---|
| 1187 | |
---|
| 1188 | REAL(dp), INTENT(OUT) :: u, v !< wind components in the true geographical system |
---|
| 1189 | |
---|
| 1190 | REAL(dp) :: zsinpol, zcospol, zlonp, zlat, zarg1, zarg2, znorm |
---|
| 1191 | |
---|
| 1192 | zsinpol = SIN(pollat * TO_RADIANS) |
---|
| 1193 | zcospol = COS(pollat * TO_RADIANS) |
---|
| 1194 | zlonp = (pollon-rlon) * TO_RADIANS |
---|
| 1195 | zlat = rlat * TO_RADIANS |
---|
| 1196 | |
---|
| 1197 | zarg1 = zcospol * SIN(zlonp) |
---|
| 1198 | zarg2 = zsinpol * COS(zlat) - zcospol * SIN(zlat) * COS(zlonp) |
---|
| 1199 | znorm = 1.0_dp / SQRT(zarg1*zarg1 + zarg2*zarg2) |
---|
| 1200 | |
---|
| 1201 | u = urot * zarg2 * znorm + vrot * zarg1 * znorm |
---|
| 1202 | v = - urot * zarg1 * znorm + vrot * zarg2 * znorm |
---|
| 1203 | |
---|
| 1204 | END SUBROUTINE uvrot2uv |
---|
| 1205 | |
---|
| 1206 | END MODULE |
---|
| 1207 | |
---|