[2696] | 1 | !> @file src/transform.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
[2718] | 3 | ! This file is part of the PALM model system. |
---|
[2696] | 4 | ! |
---|
[2718] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
[2696] | 8 | ! version. |
---|
| 9 | ! |
---|
[2718] | 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
[2696] | 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 2017-2018 Leibniz Universitaet Hannover |
---|
| 18 | ! Copyright 2017-2018 Deutscher Wetterdienst Offenbach |
---|
[2696] | 19 | !------------------------------------------------------------------------------! |
---|
| 20 | ! |
---|
| 21 | ! Current revisions: |
---|
| 22 | ! ----------------- |
---|
| 23 | ! |
---|
| 24 | ! |
---|
| 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: transform.f90 2718 2018-01-02 08:49:38Z raasch $ |
---|
| 28 | ! Initial revision |
---|
| 29 | ! |
---|
| 30 | ! |
---|
| 31 | ! |
---|
| 32 | ! Authors: |
---|
| 33 | ! -------- |
---|
| 34 | ! @author Eckhard Kadasch |
---|
| 35 | ! |
---|
| 36 | ! Description: |
---|
| 37 | ! ------------ |
---|
| 38 | !> The transform module provides INIFOR's low-level transformation and |
---|
| 39 | !> interpolation routines. The rotated-pole transformation routines phirot2phi, |
---|
| 40 | !> phi2phirot, rlarot2rla, rla2rlarot, uv2uvrot, and uvrot2uv are adapted from |
---|
| 41 | !> int2lm's utility routines. |
---|
| 42 | !------------------------------------------------------------------------------! |
---|
| 43 | MODULE transform |
---|
| 44 | |
---|
| 45 | USE control |
---|
| 46 | USE defs, & |
---|
| 47 | ONLY: TO_DEGREES, TO_RADIANS, PI, dp |
---|
| 48 | USE types |
---|
| 49 | USE util, & |
---|
| 50 | ONLY: real_to_str, str |
---|
| 51 | |
---|
| 52 | IMPLICIT NONE |
---|
| 53 | |
---|
| 54 | CONTAINS |
---|
| 55 | |
---|
| 56 | !------------------------------------------------------------------------------! |
---|
| 57 | ! Description: |
---|
| 58 | ! ------------ |
---|
| 59 | !> Interpolates linearly in the vertical direction in very column (i,j) of the |
---|
| 60 | !> output array outvar(i,j,:) using values of the source array invar. In cells |
---|
| 61 | !> that are outside the COSMO-DE domain, indicated by negative interpolation |
---|
| 62 | !> weights, extrapolate constantly from the cell above. |
---|
| 63 | !> |
---|
| 64 | !> Input parameters: |
---|
| 65 | !> ----------------- |
---|
| 66 | !> invar : Array of source data |
---|
| 67 | !> |
---|
| 68 | !> outgrid % kk : Array of vertical neighbour indices. kk(i,j,k,:) contain the |
---|
| 69 | !> indices of the two vertical neighbors of PALM-4U point (i,j,k) on the |
---|
| 70 | !> input grid corresponding to the source data invar. |
---|
| 71 | !> |
---|
| 72 | !> outgrid % w_verti : Array of weights for vertical linear interpolation |
---|
| 73 | !> corresponding to neighbour points indexed by kk. |
---|
| 74 | !> |
---|
| 75 | !> Output papameters: |
---|
| 76 | !> ------------------ |
---|
| 77 | !> outvar : Array of interpolated data |
---|
| 78 | !------------------------------------------------------------------------------! |
---|
| 79 | SUBROUTINE interpolate_1d(in_arr, out_arr, outgrid) |
---|
| 80 | TYPE(grid_definition), INTENT(IN) :: outgrid |
---|
| 81 | REAL(dp), INTENT(IN) :: in_arr(0:,0:,0:) |
---|
| 82 | REAL(dp), INTENT(OUT) :: out_arr(0:,0:,0:) |
---|
| 83 | |
---|
| 84 | INTEGER :: i, j, k, l, nx, ny, nz |
---|
| 85 | |
---|
| 86 | nx = UBOUND(out_arr, 1) |
---|
| 87 | ny = UBOUND(out_arr, 2) |
---|
| 88 | nz = UBOUND(out_arr, 3) |
---|
| 89 | |
---|
| 90 | DO j = 0, ny |
---|
| 91 | DO i = 0, nx |
---|
| 92 | DO k = nz, 0, -1 |
---|
| 93 | |
---|
| 94 | ! TODO: Remove IF clause and extrapolate based on a critical vertical |
---|
| 95 | ! TODO: index marking the lower bound of COSMO-DE data coverage. |
---|
| 96 | ! Check for negative interpolation weights indicating grid points |
---|
| 97 | ! below COSMO-DE domain and extrapolate from the top in such cells. |
---|
| 98 | IF (outgrid % w_verti(i,j,k,1) < -1.0_dp .AND. k < nz) THEN |
---|
| 99 | out_arr(i,j,k) = out_arr(i,j,k+1) |
---|
| 100 | ELSE |
---|
| 101 | out_arr(i,j,k) = 0.0_dp |
---|
| 102 | DO l = 1, 2 |
---|
| 103 | out_arr(i,j,k) = out_arr(i,j,k) + & |
---|
| 104 | outgrid % w_verti(i,j,k,l) * & |
---|
| 105 | in_arr(i,j,outgrid % kk(i,j,k, l) ) |
---|
| 106 | END DO |
---|
| 107 | END IF |
---|
| 108 | END DO |
---|
| 109 | END DO |
---|
| 110 | END DO |
---|
| 111 | END SUBROUTINE interpolate_1d |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | !------------------------------------------------------------------------------! |
---|
| 115 | ! Description: |
---|
| 116 | ! ------------ |
---|
| 117 | !> Interpolates bi-linearly in horizontal planes on every k level of the output |
---|
| 118 | !> array outvar(:,:,k) using values of the source array invar(:,:,:). The source |
---|
| 119 | !> (invar) and interpolation array (outvar) need to have matching dimensions. |
---|
| 120 | !> |
---|
| 121 | !> Input parameters: |
---|
| 122 | !> ----------------- |
---|
| 123 | !> invar : Array of source data |
---|
| 124 | !> |
---|
| 125 | !> outgrid % ii, % jj : Array of neighbour indices in x and y direction. |
---|
| 126 | !> ii(i,j,k,:), and jj(i,j,k,:) contain the four horizontal neighbour points |
---|
| 127 | !> of PALM-4U point (i,j,k) on the input grid corresponding to the source |
---|
| 128 | !> data invar. (The outgrid carries the relationship with the ingrid in the |
---|
| 129 | ! form of the interpoaltion weights.) |
---|
| 130 | !> |
---|
| 131 | !> outgrid % w_horiz: Array of weights for horizontal bi-linear interpolation |
---|
| 132 | !> corresponding to neighbour points indexed by ii and jj. |
---|
| 133 | !> |
---|
| 134 | !> Output papameters: |
---|
| 135 | !> ------------------ |
---|
| 136 | !> outvar : Array of interpolated data |
---|
| 137 | !------------------------------------------------------------------------------! |
---|
| 138 | SUBROUTINE interpolate_2d(invar, outvar, outgrid, ncvar) |
---|
| 139 | ! I index 0-based for the indices of the outvar to be consistent with the |
---|
| 140 | ! outgrid indices and interpolation weights. |
---|
| 141 | TYPE(grid_definition), INTENT(IN) :: outgrid |
---|
| 142 | REAL(dp), INTENT(IN) :: invar(0:,0:,0:) |
---|
| 143 | REAL(dp), INTENT(OUT) :: outvar(0:,0:,0:) |
---|
| 144 | TYPE(nc_var), INTENT(IN), OPTIONAL :: ncvar |
---|
| 145 | |
---|
| 146 | INTEGER :: i, j, k, l |
---|
| 147 | |
---|
| 148 | ! TODO: check if input dimensions are consistent, i.e. ranges are correct |
---|
| 149 | IF (UBOUND(outvar, 3) .GT. UBOUND(invar, 3)) THEN |
---|
| 150 | message = "Output array for '" // TRIM(ncvar % name) // "' has ' more levels (" // & |
---|
| 151 | TRIM(str(UBOUND(outvar, 3))) // ") than input variable ("//& |
---|
| 152 | TRIM(str(UBOUND(invar, 3))) // ")." |
---|
| 153 | CALL abort('interpolate_2d', message) |
---|
| 154 | END IF |
---|
| 155 | |
---|
| 156 | DO k = 0, UBOUND(outvar, 3) |
---|
| 157 | DO j = 0, UBOUND(outvar, 2) |
---|
| 158 | DO i = 0, UBOUND(outvar, 1) |
---|
| 159 | outvar(i,j,k) = 0.0_dp |
---|
| 160 | DO l = 1, 4 |
---|
| 161 | |
---|
| 162 | outvar(i,j,k) = outvar(i,j,k) + & |
---|
| 163 | outgrid % w_horiz(i,j,l) * invar( outgrid % ii(i,j,l), & |
---|
| 164 | outgrid % jj(i,j,l), & |
---|
| 165 | k ) |
---|
| 166 | END DO |
---|
| 167 | END DO |
---|
| 168 | END DO |
---|
| 169 | END DO |
---|
| 170 | |
---|
| 171 | END SUBROUTINE interpolate_2d |
---|
| 172 | |
---|
| 173 | |
---|
| 174 | SUBROUTINE average_2d(in_arr, out_arr, imin, imax, jmin, jmax) |
---|
| 175 | REAL(dp), INTENT(IN) :: in_arr(0:,0:,0:) |
---|
| 176 | REAL(dp), INTENT(OUT) :: out_arr(0:) |
---|
| 177 | INTEGER, INTENT(IN) :: imin, imax, jmin, jmax |
---|
| 178 | |
---|
| 179 | INTEGER :: i, j, k |
---|
| 180 | REAL(dp) :: ni |
---|
| 181 | |
---|
| 182 | IF (imin < 0) CALL abort('average_2d', "imin < 0.") |
---|
| 183 | IF (jmin < 0) CALL abort('average_2d', "jmin < 0.") |
---|
| 184 | IF (imax > UBOUND(in_arr, 1)) CALL abort('average_2d', "imax out of i bound.") |
---|
| 185 | IF (jmax > UBOUND(in_arr, 2)) CALL abort('average_2d', "jmax out of j bound.") |
---|
| 186 | |
---|
| 187 | DO k = 0, UBOUND(out_arr, 1) |
---|
| 188 | |
---|
| 189 | out_arr(k) = 0.0_dp |
---|
| 190 | DO j = jmin, jmax |
---|
| 191 | DO i = imin, imax |
---|
| 192 | out_arr(k) = out_arr(k) + in_arr(i, j, k) |
---|
| 193 | END DO |
---|
| 194 | END DO |
---|
| 195 | |
---|
| 196 | END DO |
---|
| 197 | |
---|
| 198 | ! devide by number of grid points |
---|
| 199 | ni = 1.0_dp / ( (imax - imin + 1) * (jmax - jmin + 1) ) |
---|
| 200 | out_arr(:) = out_arr(:) * ni |
---|
| 201 | |
---|
| 202 | END SUBROUTINE average_2d |
---|
| 203 | |
---|
| 204 | |
---|
| 205 | SUBROUTINE interpolate_3d(source_array, palm_array, palm_intermediate, palm_grid) |
---|
| 206 | TYPE(grid_definition), INTENT(IN) :: palm_intermediate, palm_grid |
---|
| 207 | REAL(dp), DIMENSION(:,:,:), INTENT(IN) :: source_array |
---|
| 208 | REAL(dp), DIMENSION(:,:,:), INTENT(OUT) :: palm_array |
---|
| 209 | REAL(dp), DIMENSION(:,:,:), ALLOCATABLE :: intermediate_array |
---|
| 210 | INTEGER :: nx, ny, nz |
---|
| 211 | |
---|
| 212 | nx = palm_intermediate % nx |
---|
| 213 | ny = palm_intermediate % ny |
---|
| 214 | nz = palm_intermediate % nz ! nlev |
---|
| 215 | |
---|
| 216 | ! Interpolate from COSMO-DE to intermediate grid. Allocating with one |
---|
| 217 | ! less point in the vertical, since scalars like T have 50 instead of 51 |
---|
| 218 | ! points in COSMO-DE. |
---|
| 219 | ALLOCATE(intermediate_array(0:nx, 0:ny, 0:nz-1)) ! |
---|
| 220 | |
---|
| 221 | CALL interpolate_2d(source_array, intermediate_array, palm_intermediate) |
---|
| 222 | |
---|
| 223 | ! Interpolate from intermediate grid to palm_grid grid, includes |
---|
| 224 | ! extrapolation for cells below COSMO-DE domain. |
---|
| 225 | CALL interpolate_1d(intermediate_array, palm_array, palm_grid) |
---|
| 226 | |
---|
| 227 | DEALLOCATE(intermediate_array) |
---|
| 228 | |
---|
| 229 | END SUBROUTINE interpolate_3d |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | SUBROUTINE average_profile(source_array, profile_array, imin, imax, jmin, jmax,& |
---|
| 233 | palm_intermediate, palm_grid) |
---|
| 234 | TYPE(grid_definition), INTENT(IN) :: palm_intermediate, palm_grid |
---|
| 235 | REAL(dp), DIMENSION(:,:,:), INTENT(IN) :: source_array |
---|
| 236 | INTEGER, INTENT(IN) :: imin, imax, jmin, jmax |
---|
| 237 | REAL(dp), DIMENSION(0:,0:,0:), INTENT(OUT) :: profile_array |
---|
| 238 | REAL(dp), DIMENSION(:,:,:), ALLOCATABLE :: intermediate_array |
---|
| 239 | INTEGER :: nx, ny, nz |
---|
| 240 | |
---|
| 241 | nx = palm_intermediate % nx |
---|
| 242 | ny = palm_intermediate % ny |
---|
| 243 | nz = palm_intermediate % nz |
---|
| 244 | ALLOCATE(intermediate_array(0:nx, 0:ny, 0:nz-1)) |
---|
| 245 | intermediate_array(:,:,:) = 0.0_dp |
---|
| 246 | |
---|
| 247 | ! average input array to intermediate profile |
---|
| 248 | CALL average_2d(source_array, intermediate_array(0,0,:), imin, imax, jmin, jmax) |
---|
| 249 | |
---|
| 250 | ! vertically interpolate to ouput array |
---|
| 251 | CALL interpolate_1d(intermediate_array, profile_array, palm_grid) |
---|
| 252 | |
---|
| 253 | DEALLOCATE(intermediate_array) |
---|
| 254 | |
---|
| 255 | END SUBROUTINE average_profile |
---|
| 256 | |
---|
| 257 | |
---|
| 258 | |
---|
| 259 | !-----------------------------------------------------------------------------! |
---|
| 260 | ! Description: |
---|
| 261 | ! ----------- |
---|
| 262 | !> This routine computes the inverse Plate Carree projection, i.e. in projects |
---|
| 263 | !> Cartesian coordinates (x,y) onto a sphere. It returns the latitude and |
---|
| 264 | !> lngitude of a geographical system centered at x0 and y0. |
---|
| 265 | !-----------------------------------------------------------------------------! |
---|
| 266 | SUBROUTINE inv_plate_carree(x, y, x0, y0, r, lat, lon) |
---|
| 267 | REAL(dp), INTENT(IN) :: x(:), y(:), x0, y0, r |
---|
| 268 | REAL(dp), INTENT(OUT) :: lat(:), lon(:) |
---|
| 269 | |
---|
| 270 | REAL(dp) :: ri |
---|
| 271 | |
---|
| 272 | ! TODO check dimensions of lat/lon and y/x match |
---|
| 273 | |
---|
| 274 | ri = 1.0_dp / r |
---|
| 275 | |
---|
| 276 | lat(:) = (y(:) - y0) * ri |
---|
| 277 | lon(:) = (x(:) - x0) * ri |
---|
| 278 | END SUBROUTINE |
---|
| 279 | |
---|
| 280 | |
---|
| 281 | !-----------------------------------------------------------------------------! |
---|
| 282 | ! Description: |
---|
| 283 | ! ------------ |
---|
| 284 | !> Computes the reverse Plate-Carree projection of a x or y position on a |
---|
| 285 | !> Cartesian grid. |
---|
| 286 | !> |
---|
| 287 | !> Input parameters: |
---|
| 288 | !> ----------------- |
---|
| 289 | !> xy : x or y coordinate of the Cartasian grid point [m]. |
---|
| 290 | !> |
---|
| 291 | !> xy0 : x or y coordinate that coincides with the origin of the underlying |
---|
| 292 | !> sperical system (crossing point of the equator and prime meridian) [m]. |
---|
| 293 | !> |
---|
| 294 | !> r : Radius of the of the underlying sphere, e.g. EARTH_RADIUS [m]. |
---|
| 295 | !> |
---|
| 296 | !> Returns: |
---|
| 297 | !> -------- |
---|
| 298 | !> project : Longitude (in case xy = x) or latitude (xy = y) of the given input |
---|
| 299 | !> coordinate xy. |
---|
| 300 | !------------------------------------------------------------------------------! |
---|
| 301 | ELEMENTAL REAL(dp) FUNCTION project(xy, xy0, r) |
---|
| 302 | REAL(dp), INTENT(IN) :: xy, xy0, r |
---|
| 303 | REAL(dp) :: ri |
---|
| 304 | |
---|
| 305 | ! If this elemental function is called with a large array as xy, it is |
---|
| 306 | ! computationally more efficient to precompute the inverse radius and |
---|
| 307 | ! then muliply. |
---|
| 308 | ri = 1.0_dp / r |
---|
| 309 | |
---|
| 310 | project = (xy - xy0) * ri |
---|
| 311 | |
---|
| 312 | END FUNCTION project |
---|
| 313 | |
---|
| 314 | |
---|
| 315 | REAL(dp) FUNCTION phic_to_phin(phi_c) |
---|
| 316 | REAL(dp), INTENT(IN) :: phi_c |
---|
| 317 | |
---|
| 318 | phic_to_phin = 0.5_dp * PI - ABS(phi_c) |
---|
| 319 | |
---|
| 320 | END FUNCTION phic_to_phin |
---|
| 321 | |
---|
| 322 | |
---|
| 323 | REAL(dp) FUNCTION lamc_to_lamn(phi_c, lam_c) |
---|
| 324 | REAL(dp), INTENT(IN) :: phi_c, lam_c |
---|
| 325 | |
---|
| 326 | lamc_to_lamn = lam_c |
---|
| 327 | IF (phi_c > 0.0_dp) THEN |
---|
| 328 | lamc_to_lamn = lam_c - SIGN(PI, lam_c) |
---|
| 329 | END IF |
---|
| 330 | |
---|
| 331 | END FUNCTION lamc_to_lamn |
---|
| 332 | |
---|
| 333 | |
---|
| 334 | REAL(dp) FUNCTION gamma_from_hemisphere(phi_cg, phi_ref) |
---|
| 335 | REAL(dp), INTENT(IN) :: phi_cg, phi_ref |
---|
| 336 | LOGICAL :: palm_centre_is_south_of_cosmo_origin |
---|
| 337 | |
---|
| 338 | palm_centre_is_south_of_cosmo_origin = (phi_cg < phi_ref) |
---|
| 339 | |
---|
| 340 | IF (palm_centre_is_south_of_cosmo_origin) THEN |
---|
| 341 | gamma_from_hemisphere = PI |
---|
| 342 | ELSE |
---|
| 343 | gamma_from_hemisphere = 0.0_dp |
---|
| 344 | END IF |
---|
| 345 | END FUNCTION gamma_from_hemisphere |
---|
| 346 | |
---|
| 347 | |
---|
| 348 | !------------------------------------------------------------------------------! |
---|
| 349 | ! Description: |
---|
| 350 | ! ------------ |
---|
| 351 | !> Computes the geographical coordinates corresponding to the given rotated-pole |
---|
| 352 | !> coordinates. |
---|
| 353 | !> |
---|
| 354 | !> In INIFOR, this routine is used to convert coordinates between two |
---|
| 355 | !> rotated-pole systems: COSMO-DE's rotated-pole system, and one centred at the |
---|
| 356 | !> PALM-4U domain centre. In this case, the PALM-4U system is thought of as the |
---|
| 357 | !> rotated-pole system and the routine is used to rotate back to COSMO-DE's |
---|
| 358 | !> system which is thought of as the geographical one. |
---|
| 359 | !> |
---|
| 360 | !> Input parameters: |
---|
| 361 | !> ----------------- |
---|
| 362 | !> phir(:), lamr(: ): latitudes and longitudes of the rotated-pole grid |
---|
| 363 | !> |
---|
| 364 | !> phip, lamp: latitude and longitude of the rotated north pole |
---|
| 365 | !> |
---|
| 366 | !> gam: "angle between the north poles. If [gam] is not present, the other |
---|
| 367 | !> system is the real geographical system." (original phiro2rot |
---|
| 368 | !> description) |
---|
| 369 | !> |
---|
| 370 | !> Output parameters: |
---|
| 371 | !> ------------------ |
---|
| 372 | !> phi(:,:), lam(:,:): geographical latitudes and logitudes |
---|
| 373 | !------------------------------------------------------------------------------! |
---|
| 374 | SUBROUTINE rotate_to_cosmo(phir, lamr, phip, lamp, phi, lam, gam) |
---|
| 375 | REAL(dp), INTENT(IN) :: phir(0:), lamr(0:), phip, lamp, gam |
---|
| 376 | REAL(dp), INTENT(OUT) :: phi(0:,0:), lam(0:,0:) |
---|
| 377 | |
---|
| 378 | INTEGER :: i, j |
---|
| 379 | |
---|
| 380 | IF ( SIZE(phi, 1) .NE. SIZE(lam, 1) .OR. & |
---|
| 381 | SIZE(phi, 2) .NE. SIZE(lam, 2) ) THEN |
---|
| 382 | PRINT *, "inifor: rotate_to_cosmo: Dimensions of phi and lambda do not match. Dimensions are:" |
---|
| 383 | PRINT *, "inifor: rotate_to_cosmo: phi: ", SIZE(phi, 1), SIZE(phi, 2) |
---|
| 384 | PRINT *, "inifor: rotate_to_cosmo: lam: ", SIZE(lam, 1), SIZE(lam, 2) |
---|
| 385 | STOP |
---|
| 386 | END IF |
---|
| 387 | |
---|
| 388 | IF ( SIZE(phir) .NE. SIZE(phi, 2) .OR. & |
---|
| 389 | SIZE(lamr) .NE. SIZE(phi, 1) ) THEN |
---|
| 390 | PRINT *, "inifor: rotate_to_cosmo: Dimensions of phir and lamr do not match. Dimensions are:" |
---|
| 391 | PRINT *, "inifor: rotate_to_cosmo: phir: ", SIZE(phir), SIZE(phi, 2) |
---|
| 392 | PRINT *, "inifor: rotate_to_cosmo: lamr: ", SIZE(lamr), SIZE(phi, 1) |
---|
| 393 | STOP |
---|
| 394 | END IF |
---|
| 395 | |
---|
| 396 | DO j = 0, UBOUND(phir, 1) |
---|
| 397 | DO i = 0, UBOUND(lamr, 1) |
---|
| 398 | |
---|
| 399 | phi(i,j) = phirot2phi(phir(j) * TO_DEGREES, & |
---|
| 400 | lamr(i) * TO_DEGREES, & |
---|
| 401 | phip * TO_DEGREES, & |
---|
| 402 | lamp * TO_DEGREES, & |
---|
| 403 | gam * TO_DEGREES) * TO_RADIANS |
---|
| 404 | |
---|
| 405 | lam(i,j) = rlarot2rla(phir(j) * TO_DEGREES, & |
---|
| 406 | lamr(i) * TO_DEGREES, & |
---|
| 407 | phip * TO_DEGREES, & |
---|
| 408 | lamp * TO_DEGREES, & |
---|
| 409 | gam * TO_DEGREES) * TO_RADIANS |
---|
| 410 | |
---|
| 411 | END DO |
---|
| 412 | END DO |
---|
| 413 | |
---|
| 414 | END SUBROUTINE rotate_to_cosmo |
---|
| 415 | |
---|
| 416 | |
---|
| 417 | !------------------------------------------------------------------------------! |
---|
| 418 | ! Description: |
---|
| 419 | ! ------------ |
---|
| 420 | !> Compute indices of PALM-4U grid point neighbours in the target |
---|
| 421 | !> system (COSMO-DE) by rounding up and down. (i,j) are the indices of |
---|
| 422 | !> the PALM-4U grid and (ii(i,j,1-4), jj(i,j,1-4)) contain the indices |
---|
| 423 | !> of the its four neigbouring points in the COSMO-DE grid. |
---|
| 424 | !> |
---|
| 425 | !> |
---|
| 426 | !> COSMO-DE grid |
---|
| 427 | !> ------------- |
---|
| 428 | !> jj, lat |
---|
| 429 | !> ^ j |
---|
| 430 | !> | \ i |
---|
| 431 | !> jj(i,j,2/3) + ... 2 ---\--------/------ 3 |
---|
| 432 | !> | | ^ \ / | |
---|
| 433 | !> | | |wp \ / | |
---|
| 434 | !> | | v \ / | |
---|
| 435 | !> latpos + ............ o/ (i,j) | |
---|
| 436 | !> | | : | |
---|
| 437 | !> | | :<----wl---->| |
---|
| 438 | !> jj(i,j,1/4) + ... 1 -------:----------- 4 |
---|
| 439 | !> | : : : |
---|
| 440 | !> | : : : |
---|
| 441 | !> | : lonpos : |
---|
| 442 | !> L-----+--------+------------+------> ii, lon |
---|
| 443 | !> ii(i,j,1/2) ii(i,j,3/4) |
---|
| 444 | !> |
---|
| 445 | !> |
---|
| 446 | !> Input parameters: |
---|
| 447 | !> ----------------- |
---|
| 448 | !> source_lat, source_lon : (rotated-pole) coordinates of the source grid (e.g. |
---|
| 449 | !> COSMO-DE) |
---|
| 450 | !> |
---|
| 451 | !> source_dxi, source_dyi : inverse grid spacings of the source grid. |
---|
| 452 | !> |
---|
| 453 | !> target_lat, target_lon : (rotated-pole) coordinates of the target grid (e.g. |
---|
| 454 | !> COSMO-DE) |
---|
| 455 | !> |
---|
| 456 | !> Output parameters: |
---|
| 457 | !> ------------------ |
---|
| 458 | !> palm_ii, palm_jj : x and y index arrays of horizontal neighbour columns |
---|
| 459 | !> |
---|
| 460 | !------------------------------------------------------------------------------! |
---|
| 461 | SUBROUTINE find_horizontal_neighbours(cosmo_lat, cosmo_lon, cosmo_dxi, & |
---|
| 462 | cosmo_dyi, palm_clat, palm_clon, palm_ii, palm_jj) |
---|
| 463 | |
---|
| 464 | REAL(dp), DIMENSION(0:), INTENT(IN) :: cosmo_lat, cosmo_lon |
---|
| 465 | REAL(dp), DIMENSION(0:,0:), INTENT(IN) :: palm_clat, palm_clon |
---|
| 466 | REAL(dp), INTENT(IN) :: cosmo_dxi, cosmo_dyi |
---|
| 467 | INTEGER, DIMENSION(0:,0:,1:), INTENT(OUT) :: palm_ii, palm_jj |
---|
| 468 | |
---|
| 469 | REAL(dp) :: lonpos, latpos, lon0, lat0 |
---|
| 470 | INTEGER :: i, j |
---|
| 471 | |
---|
| 472 | lon0 = cosmo_lon(0) |
---|
| 473 | lat0 = cosmo_lat(0) |
---|
| 474 | |
---|
| 475 | DO j = 0, UBOUND(palm_clon, 2)!palm_grid % ny |
---|
| 476 | DO i = 0, UBOUND(palm_clon, 1)!palm_grid % nx |
---|
| 477 | ! Compute the floating point index corrseponding to PALM-4U grid point |
---|
| 478 | ! location along target grid (COSMO-DE) axes. |
---|
| 479 | lonpos = (palm_clon(i,j) - lon0) * cosmo_dxi |
---|
| 480 | latpos = (palm_clat(i,j) - lat0) * cosmo_dyi |
---|
| 481 | |
---|
| 482 | IF (lonpos < 0.0 .OR. latpos < 0.0) THEN |
---|
| 483 | PRINT *, " Error while finding neighbours: lonpos or latpos out of bounds!" |
---|
| 484 | PRINT *, " (i,j) = (", i, ",",j,")" |
---|
| 485 | PRINT *, " lonpos ", lonpos*TO_DEGREES, ", latpos ", latpos*TO_DEGREES |
---|
| 486 | PRINT *, " lon0 ", lon0 *TO_DEGREES, ", lat0 ", lat0*TO_DEGREES |
---|
| 487 | PRINT *, " PALM lon ", palm_clon(i,j)*TO_DEGREES, ", PALM lat ",palm_clat(i,j)*TO_DEGREES |
---|
| 488 | STOP |
---|
| 489 | END IF |
---|
| 490 | |
---|
| 491 | palm_ii(i,j,1) = FLOOR(lonpos) |
---|
| 492 | palm_ii(i,j,2) = FLOOR(lonpos) |
---|
| 493 | palm_ii(i,j,3) = CEILING(lonpos) |
---|
| 494 | palm_ii(i,j,4) = CEILING(lonpos) |
---|
| 495 | |
---|
| 496 | palm_jj(i,j,1) = FLOOR(latpos) |
---|
| 497 | palm_jj(i,j,2) = CEILING(latpos) |
---|
| 498 | palm_jj(i,j,3) = CEILING(latpos) |
---|
| 499 | palm_jj(i,j,4) = FLOOR(latpos) |
---|
| 500 | END DO |
---|
| 501 | END DO |
---|
| 502 | |
---|
| 503 | END SUBROUTINE find_horizontal_neighbours |
---|
| 504 | |
---|
| 505 | |
---|
| 506 | SUBROUTINE find_vertical_neighbours_and_weights(palm_grid, palm_intermediate) |
---|
| 507 | TYPE(grid_definition), INTENT(INOUT) :: palm_grid |
---|
| 508 | TYPE(grid_definition), INTENT(IN) :: palm_intermediate |
---|
| 509 | |
---|
| 510 | INTEGER :: i, j, k, nx, ny, nz, nlev, kcur |
---|
| 511 | LOGICAL :: point_is_below_grid, point_is_above_grid, & |
---|
| 512 | point_is_in_current_cell |
---|
| 513 | REAL(dp) :: current_height, column_base, column_top, h_top, h_bottom, & |
---|
| 514 | weight |
---|
| 515 | |
---|
| 516 | nx = palm_grid % nx |
---|
| 517 | ny = palm_grid % ny |
---|
| 518 | nz = palm_grid % nz |
---|
| 519 | nlev = palm_intermediate % nz |
---|
| 520 | |
---|
| 521 | ! in each column of the fine grid, find vertical neighbours of every cell |
---|
| 522 | DO i = 0, nx |
---|
| 523 | DO j = 0, ny |
---|
| 524 | |
---|
| 525 | kcur = 0 |
---|
| 526 | |
---|
| 527 | column_base = palm_intermediate % h(i,j,0) |
---|
| 528 | column_top = palm_intermediate % h(i,j,nlev) |
---|
| 529 | |
---|
| 530 | ! scan through palm_grid column until and set neighbour indices in |
---|
| 531 | ! case current_height is either below column_base, in the current |
---|
| 532 | ! cell, or above column_top. Keep increasing current cell index until |
---|
| 533 | ! the current cell overlaps with the current_height. |
---|
| 534 | DO k = 0, nz |
---|
| 535 | |
---|
| 536 | ! Memorize the top and bottom boundaries of the coarse cell and the |
---|
| 537 | ! current height within it |
---|
| 538 | current_height = palm_grid % z(k) + palm_grid % z0 |
---|
| 539 | h_top = palm_intermediate % h(i,j,kcur+1) |
---|
| 540 | h_bottom = palm_intermediate % h(i,j,kcur) |
---|
| 541 | |
---|
| 542 | point_is_above_grid = (current_height > column_top) !22000m, very unlikely |
---|
| 543 | point_is_below_grid = (current_height < column_base) |
---|
| 544 | |
---|
| 545 | point_is_in_current_cell = ( & |
---|
| 546 | current_height >= h_bottom .AND. & |
---|
| 547 | current_height < h_top & |
---|
| 548 | ) |
---|
| 549 | |
---|
| 550 | ! set default weights |
---|
| 551 | palm_grid % w_verti(i,j,k,1:2) = 0.0_dp |
---|
| 552 | |
---|
| 553 | IF (point_is_above_grid) THEN |
---|
| 554 | |
---|
| 555 | palm_grid % kk(i,j,k,1:2) = nlev |
---|
| 556 | palm_grid % w_verti(i,j,k,1:2) = - 2.0_dp |
---|
| 557 | |
---|
| 558 | ELSE IF (point_is_below_grid) THEN |
---|
| 559 | |
---|
| 560 | palm_grid % kk(i,j,k,1:2) = 0 |
---|
| 561 | palm_grid % w_verti(i,j,k,1:2) = - 2.0_dp |
---|
| 562 | |
---|
| 563 | ELSE |
---|
| 564 | ! cycle through intermediate levels until current |
---|
| 565 | ! intermediate-grid cell overlaps with current_height |
---|
| 566 | DO WHILE (.NOT. point_is_in_current_cell .AND. kcur <= nlev-1) |
---|
| 567 | kcur = kcur + 1 |
---|
| 568 | |
---|
| 569 | h_top = palm_intermediate % h(i,j,kcur+1) |
---|
| 570 | h_bottom = palm_intermediate % h(i,j,kcur) |
---|
| 571 | point_is_in_current_cell = ( & |
---|
| 572 | current_height >= h_bottom .AND. & |
---|
| 573 | current_height < h_top & |
---|
| 574 | ) |
---|
| 575 | END DO |
---|
| 576 | |
---|
| 577 | ! kcur = 48 indicates the last section (indices 48 and 49), i.e. |
---|
| 578 | ! kcur = 49 is not the beginning of a valid cell. |
---|
| 579 | IF (kcur > nlev-1) THEN |
---|
| 580 | message = "Index " // TRIM(str(kcur)) // " is above intermediate grid range." |
---|
| 581 | CALL abort('find_vertical_neighbours', message) |
---|
| 582 | END IF |
---|
| 583 | |
---|
| 584 | palm_grid % kk(i,j,k,1) = kcur |
---|
| 585 | palm_grid % kk(i,j,k,2) = kcur + 1 |
---|
| 586 | |
---|
| 587 | ! copmute vertical weights |
---|
| 588 | weight = (h_top - current_height) / (h_top - h_bottom) |
---|
| 589 | palm_grid % w_verti(i,j,k,1) = weight |
---|
| 590 | palm_grid % w_verti(i,j,k,2) = 1.0_dp - weight |
---|
| 591 | END IF |
---|
| 592 | |
---|
| 593 | END DO |
---|
| 594 | |
---|
| 595 | END DO |
---|
| 596 | END DO |
---|
| 597 | |
---|
| 598 | END SUBROUTINE find_vertical_neighbours_and_weights |
---|
| 599 | |
---|
| 600 | !------------------------------------------------------------------------------! |
---|
| 601 | ! Description: |
---|
| 602 | ! ------------ |
---|
| 603 | !> Compute the four weights for horizontal bilinear interpolation given the |
---|
| 604 | !> coordinates clon(i,j) clat(i,j) of the PALM-4U grid in the COSMO-DE |
---|
| 605 | !> rotated-pole grid and the neightbour indices ii(i,j,1-4) and jj(i,j,1-4). |
---|
| 606 | !> |
---|
| 607 | !> Input parameters: |
---|
| 608 | !> ----------------- |
---|
| 609 | !> palm_grid % clon : longitudes of PALM-4U scalars (cell centres) in COSMO-DE's rotated-pole grid [rad] |
---|
| 610 | !> |
---|
| 611 | !> palm_grid % clat : latitudes of PALM-4U cell centres in COSMO-DE's rotated-pole grid [rad] |
---|
| 612 | !> |
---|
| 613 | !> cosmo_grid % lon : rotated-pole longitudes of scalars (cell centres) of the COSMO-DE grid [rad] |
---|
| 614 | !> |
---|
| 615 | !> cosmo_grid % lat : rotated-pole latitudes of scalars (cell centers) of the COSMO-DE grid [rad] |
---|
| 616 | !> |
---|
| 617 | !> cosmo_grid % dxi : inverse grid spacing in the first dimension [m^-1] |
---|
| 618 | !> |
---|
| 619 | !> cosmo_grid % dyi : inverse grid spacing in the second dimension [m^-1] |
---|
| 620 | !> |
---|
| 621 | !> Output parameters: |
---|
| 622 | !> ------------------ |
---|
| 623 | !> palm_grid % w_horiz(:,:,1-4) : weights for bilinear horizontal interpolation |
---|
| 624 | ! |
---|
| 625 | ! COSMO-DE grid |
---|
| 626 | ! ------------- |
---|
| 627 | ! jj, lat |
---|
| 628 | ! ^ j |
---|
| 629 | ! | \ i |
---|
| 630 | ! jj(i,j,2/3) + ... 2 ---\--------/------ 3 |
---|
| 631 | ! | | ^ \ / | |
---|
| 632 | ! | | |wp \ / | |
---|
| 633 | ! | | v \ / | |
---|
| 634 | ! latpos + ............ o/ (i,j) | |
---|
| 635 | ! | | : | |
---|
| 636 | ! | | :<----wl---->| |
---|
| 637 | ! jj(i,j,1/4) + ... 1 -------:----------- 4 |
---|
| 638 | ! | : : : |
---|
| 639 | ! | : : : |
---|
| 640 | ! | : lonpos : |
---|
| 641 | ! L-----+--------+------------+------> ii, lon |
---|
| 642 | ! ii(i,j,1/2) ii(i,j,3/4) |
---|
| 643 | ! |
---|
| 644 | SUBROUTINE compute_horizontal_interp_weights(cosmo_lat, cosmo_lon, & |
---|
| 645 | cosmo_dxi, cosmo_dyi, palm_clat, palm_clon, palm_ii, palm_jj, palm_w_horiz) |
---|
| 646 | |
---|
| 647 | REAL(dp), DIMENSION(0:), INTENT(IN) :: cosmo_lat, cosmo_lon |
---|
| 648 | REAL(dp), INTENT(IN) :: cosmo_dxi, cosmo_dyi |
---|
| 649 | REAL(dp), DIMENSION(0:,0:), INTENT(IN) :: palm_clat, palm_clon |
---|
| 650 | INTEGER, DIMENSION(0:,0:,1:), INTENT(IN) :: palm_ii, palm_jj |
---|
| 651 | |
---|
| 652 | REAL(dp), DIMENSION(0:,0:,1:), INTENT(OUT) :: palm_w_horiz |
---|
| 653 | |
---|
| 654 | REAL(dp) :: wl, wp |
---|
| 655 | INTEGER :: i, j |
---|
| 656 | |
---|
| 657 | DO j = 0, UBOUND(palm_clon, 2) |
---|
| 658 | DO i = 0, UBOUND(palm_clon, 1) |
---|
| 659 | |
---|
| 660 | ! weight in lambda direction |
---|
| 661 | wl = ( cosmo_lon(palm_ii(i,j,4)) - palm_clon(i,j) ) * cosmo_dxi |
---|
| 662 | |
---|
| 663 | ! weight in phi direction |
---|
| 664 | wp = ( cosmo_lat(palm_jj(i,j,2)) - palm_clat(i,j) ) * cosmo_dyi |
---|
| 665 | |
---|
| 666 | IF (wl > 1.0_dp .OR. wl < 0.0_dp) THEN |
---|
| 667 | message = "Horizontal weight wl = " // TRIM(real_to_str(wl)) // & |
---|
| 668 | " is out bounds." |
---|
| 669 | CALL abort('compute_horizontal_interp_weights', message) |
---|
| 670 | END IF |
---|
| 671 | IF (wp > 1.0_dp .OR. wp < 0.0_dp) THEN |
---|
| 672 | message = "Horizontal weight wp = " // TRIM(real_to_str(wp)) // & |
---|
| 673 | " is out bounds." |
---|
| 674 | CALL abort('compute_horizontal_interp_weights', message) |
---|
| 675 | END IF |
---|
| 676 | |
---|
| 677 | palm_w_horiz(i,j,1) = wl * wp |
---|
| 678 | palm_w_horiz(i,j,2) = wl * (1.0_dp - wp) |
---|
| 679 | palm_w_horiz(i,j,3) = (1.0_dp - wl) * (1.0_dp - wp) |
---|
| 680 | palm_w_horiz(i,j,4) = 1.0_dp - SUM( palm_w_horiz(i,j,1:3) ) |
---|
| 681 | |
---|
| 682 | END DO |
---|
| 683 | END DO |
---|
| 684 | |
---|
| 685 | END SUBROUTINE compute_horizontal_interp_weights |
---|
| 686 | |
---|
| 687 | |
---|
| 688 | !------------------------------------------------------------------------------! |
---|
| 689 | ! Description: |
---|
| 690 | ! ------------ |
---|
| 691 | !> Interpolates u and v components of velocities located at cell faces to the |
---|
| 692 | !> cell centres by averaging neighbouring values. |
---|
| 693 | !> |
---|
| 694 | !> This routine is designed to be used with COSMO-DE arrays where there are the |
---|
| 695 | !> same number of grid points for scalars (centres) and velocities (faces). In |
---|
| 696 | !> COSMO-DE the velocity points are staggared one half grid spaceing up-grid |
---|
| 697 | !> which means the first centre point has to be omitted and is set to zero. |
---|
| 698 | SUBROUTINE centre_velocities(u_face, v_face, u_centre, v_centre) |
---|
| 699 | REAL(dp), DIMENSION(0:,0:,0:), INTENT(IN) :: u_face, v_face |
---|
| 700 | REAL(dp), DIMENSION(0:,0:,0:), INTENT(OUT) :: u_centre, v_centre |
---|
| 701 | INTEGER :: nx, ny |
---|
| 702 | |
---|
| 703 | nx = UBOUND(u_face, 1) |
---|
| 704 | ny = UBOUND(u_face, 2) |
---|
| 705 | |
---|
| 706 | u_centre(0,:,:) = 0.0_dp |
---|
| 707 | u_centre(1:,:,:) = 0.5_dp * ( u_face(0:nx-1,:,:) + u_face(1:,:,:) ) |
---|
| 708 | |
---|
| 709 | v_centre(:,0,:) = 0.0_dp |
---|
| 710 | v_centre(:,1:,:) = 0.5_dp * ( v_face(:,0:ny-1,:) + v_face(:,1:,:) ) |
---|
| 711 | END SUBROUTINE centre_velocities |
---|
| 712 | |
---|
| 713 | |
---|
| 714 | FUNCTION phirot2phi (phirot, rlarot, polphi, pollam, polgam) |
---|
| 715 | |
---|
| 716 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
| 717 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
| 718 | REAL(dp), INTENT (IN) :: phirot !< latitude in the rotated system |
---|
| 719 | REAL(dp), INTENT (IN) :: rlarot !< longitude in the rotated system |
---|
| 720 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
| 721 | |
---|
| 722 | REAL(dp) :: phirot2phi !< latitude in the geographical system |
---|
| 723 | |
---|
| 724 | REAL(dp) :: zsinpol, zcospol, zphis, zrlas, zarg, zgam |
---|
| 725 | |
---|
| 726 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
| 727 | zcospol = COS(polphi * TO_RADIANS) |
---|
| 728 | zphis = phirot * TO_RADIANS |
---|
| 729 | |
---|
| 730 | IF (rlarot > 180.0_dp) THEN |
---|
| 731 | zrlas = rlarot - 360.0_dp |
---|
| 732 | ELSE |
---|
| 733 | zrlas = rlarot |
---|
| 734 | END IF |
---|
| 735 | zrlas = zrlas * TO_RADIANS |
---|
| 736 | |
---|
| 737 | IF (polgam /= 0.0_dp) THEN |
---|
| 738 | zgam = polgam * TO_RADIANS |
---|
| 739 | zarg = zsinpol * SIN (zphis) + & |
---|
| 740 | zcospol * COS(zphis) * ( COS(zrlas) * COS(zgam) - & |
---|
| 741 | SIN(zgam) * SIN(zrlas) ) |
---|
| 742 | ELSE |
---|
| 743 | zarg = zcospol * COS (zphis) * COS (zrlas) + zsinpol * SIN (zphis) |
---|
| 744 | END IF |
---|
| 745 | |
---|
| 746 | phirot2phi = ASIN (zarg) * TO_DEGREES |
---|
| 747 | |
---|
| 748 | END FUNCTION phirot2phi |
---|
| 749 | |
---|
| 750 | |
---|
| 751 | FUNCTION phi2phirot (phi, rla, polphi, pollam) |
---|
| 752 | |
---|
| 753 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
| 754 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
| 755 | REAL(dp), INTENT (IN) :: phi !< latitude in the geographical system |
---|
| 756 | REAL(dp), INTENT (IN) :: rla !< longitude in the geographical system |
---|
| 757 | |
---|
| 758 | REAL(dp) :: phi2phirot !< longitude in the rotated system |
---|
| 759 | |
---|
| 760 | REAL(dp) :: zsinpol, zcospol, zlampol, zphi, zrla, zarg1, zarg2, zrla1 |
---|
| 761 | |
---|
| 762 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
| 763 | zcospol = COS(polphi * TO_RADIANS) |
---|
| 764 | zlampol = pollam * TO_RADIANS |
---|
| 765 | zphi = phi * TO_RADIANS |
---|
| 766 | |
---|
| 767 | IF (rla > 180.0_dp) THEN |
---|
| 768 | zrla1 = rla - 360.0_dp |
---|
| 769 | ELSE |
---|
| 770 | zrla1 = rla |
---|
| 771 | END IF |
---|
| 772 | zrla = zrla1 * TO_RADIANS |
---|
| 773 | |
---|
| 774 | zarg1 = SIN(zphi) * zsinpol |
---|
| 775 | zarg2 = COS(zphi) * zcospol * COS(zrla - zlampol) |
---|
| 776 | |
---|
| 777 | phi2phirot = ASIN(zarg1 + zarg2) * TO_DEGREES |
---|
| 778 | |
---|
| 779 | END FUNCTION phi2phirot |
---|
| 780 | |
---|
| 781 | |
---|
| 782 | FUNCTION rlarot2rla(phirot, rlarot, polphi, pollam, polgam) |
---|
| 783 | |
---|
| 784 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
| 785 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
| 786 | REAL(dp), INTENT (IN) :: phirot !< latitude in the rotated system |
---|
| 787 | REAL(dp), INTENT (IN) :: rlarot !< longitude in the rotated system |
---|
| 788 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
| 789 | |
---|
| 790 | REAL(dp) :: rlarot2rla !< latitude in the geographical system |
---|
| 791 | |
---|
| 792 | REAL(dp) :: zsinpol, zcospol, zlampol, zphis, zrlas, zarg1, zarg2, zgam |
---|
| 793 | |
---|
| 794 | zsinpol = SIN(TO_RADIANS * polphi) |
---|
| 795 | zcospol = COS(TO_RADIANS * polphi) |
---|
| 796 | zlampol = TO_RADIANS * pollam |
---|
| 797 | zphis = TO_RADIANS * phirot |
---|
| 798 | |
---|
| 799 | IF (rlarot > 180.0_dp) THEN |
---|
| 800 | zrlas = rlarot - 360.0_dp |
---|
| 801 | ELSE |
---|
| 802 | zrlas = rlarot |
---|
| 803 | END IF |
---|
| 804 | zrlas = TO_RADIANS * zrlas |
---|
| 805 | |
---|
| 806 | IF (polgam /= 0.0_dp) THEN |
---|
| 807 | zgam = TO_RADIANS * polgam |
---|
| 808 | zarg1 = SIN(zlampol) * (zcospol * SIN(zphis) - zsinpol*COS(zphis) * & |
---|
| 809 | (COS(zrlas) * COS(zgam) - SIN(zrlas) * SIN(zgam)) ) - & |
---|
| 810 | COS(zlampol) * COS(zphis) * ( SIN(zrlas) * COS(zgam) + & |
---|
| 811 | COS(zrlas) * SIN(zgam) ) |
---|
| 812 | |
---|
| 813 | zarg2 = COS (zlampol) * (zcospol * SIN(zphis) - zsinpol*COS(zphis) * & |
---|
| 814 | (COS(zrlas) * COS(zgam) - SIN(zrlas) * SIN(zgam)) ) + & |
---|
| 815 | SIN(zlampol) * COS(zphis) * ( SIN(zrlas) * COS(zgam) + & |
---|
| 816 | COS(zrlas) * SIN(zgam) ) |
---|
| 817 | ELSE |
---|
| 818 | zarg1 = SIN (zlampol) * (-zsinpol * COS(zrlas) * COS(zphis) + & |
---|
| 819 | zcospol * SIN(zphis)) - & |
---|
| 820 | COS (zlampol) * SIN(zrlas) * COS(zphis) |
---|
| 821 | zarg2 = COS (zlampol) * (-zsinpol * COS(zrlas) * COS(zphis) + & |
---|
| 822 | zcospol * SIN(zphis)) + & |
---|
| 823 | SIN (zlampol) * SIN(zrlas) * COS(zphis) |
---|
| 824 | END IF |
---|
| 825 | |
---|
| 826 | IF (zarg2 == 0.0_dp) zarg2 = 1.0E-20_dp |
---|
| 827 | |
---|
| 828 | rlarot2rla = ATAN2(zarg1,zarg2) * TO_DEGREES |
---|
| 829 | |
---|
| 830 | END FUNCTION rlarot2rla |
---|
| 831 | |
---|
| 832 | |
---|
| 833 | FUNCTION rla2rlarot ( phi, rla, polphi, pollam, polgam ) |
---|
| 834 | |
---|
| 835 | REAL(dp), INTENT (IN) :: polphi !< latitude of the rotated north pole |
---|
| 836 | REAL(dp), INTENT (IN) :: pollam !< longitude of the rotated north pole |
---|
| 837 | REAL(dp), INTENT (IN) :: phi !< latitude in geographical system |
---|
| 838 | REAL(dp), INTENT (IN) :: rla !< longitude in geographical system |
---|
| 839 | REAL(dp), INTENT (IN) :: polgam !< angle between the north poles of the systems |
---|
| 840 | |
---|
| 841 | REAL (KIND=dp) :: rla2rlarot !< latitude in the the rotated system |
---|
| 842 | |
---|
| 843 | REAL (KIND=dp) :: zsinpol, zcospol, zlampol, zphi, zrla, zarg1, zarg2, zrla1 |
---|
| 844 | |
---|
| 845 | zsinpol = SIN(polphi * TO_RADIANS) |
---|
| 846 | zcospol = COS(polphi * TO_RADIANS) |
---|
| 847 | zlampol = pollam * TO_RADIANS |
---|
| 848 | zphi = phi * TO_RADIANS |
---|
| 849 | |
---|
| 850 | IF (rla > 180.0_dp) THEN |
---|
| 851 | zrla1 = rla - 360.0_dp |
---|
| 852 | ELSE |
---|
| 853 | zrla1 = rla |
---|
| 854 | END IF |
---|
| 855 | zrla = zrla1 * TO_RADIANS |
---|
| 856 | |
---|
| 857 | zarg1 = - SIN (zrla-zlampol) * COS(zphi) |
---|
| 858 | zarg2 = - zsinpol * COS(zphi) * COS(zrla-zlampol) + zcospol * SIN(zphi) |
---|
| 859 | |
---|
| 860 | IF (zarg2 == 0.0_dp) zarg2 = 1.0E-20_dp |
---|
| 861 | |
---|
| 862 | rla2rlarot = ATAN2 (zarg1,zarg2) * TO_DEGREES |
---|
| 863 | |
---|
| 864 | IF (polgam /= 0.0_dp ) THEN |
---|
| 865 | rla2rlarot = polgam + rla2rlarot |
---|
| 866 | IF (rla2rlarot > 180._dp) rla2rlarot = rla2rlarot - 360.0_dp |
---|
| 867 | END IF |
---|
| 868 | |
---|
| 869 | END FUNCTION rla2rlarot |
---|
| 870 | |
---|
| 871 | |
---|
| 872 | SUBROUTINE uv2uvrot(u, v, rlat, rlon, pollat, pollon, urot, vrot) |
---|
| 873 | |
---|
| 874 | REAL(dp), INTENT (IN) :: u, v !< wind components in the true geographical system |
---|
| 875 | REAL(dp), INTENT (IN) :: rlat, rlon !< coordinates in the true geographical system |
---|
| 876 | REAL(dp), INTENT (IN) :: pollat, pollon !< latitude and longitude of the north pole of the rotated grid |
---|
| 877 | |
---|
| 878 | REAL(dp), INTENT (OUT) :: urot, vrot !< wind components in the rotated grid |
---|
| 879 | |
---|
| 880 | REAL (dp) :: zsinpol, zcospol, zlonp, zlat, zarg1, zarg2, znorm |
---|
| 881 | |
---|
| 882 | zsinpol = SIN(pollat * TO_RADIANS) |
---|
| 883 | zcospol = COS(pollat * TO_RADIANS) |
---|
| 884 | zlonp = (pollon-rlon) * TO_RADIANS |
---|
| 885 | zlat = rlat * TO_RADIANS |
---|
| 886 | |
---|
| 887 | zarg1 = zcospol * SIN(zlonp) |
---|
| 888 | zarg2 = zsinpol * COS(zlat) - zcospol * SIN(zlat) * COS(zlonp) |
---|
| 889 | znorm = 1.0_dp / SQRT(zarg1*zarg1 + zarg2*zarg2) |
---|
| 890 | |
---|
| 891 | urot = u * zarg2 * znorm - v * zarg1 * znorm |
---|
| 892 | vrot = u * zarg1 * znorm + v * zarg2 * znorm |
---|
| 893 | |
---|
| 894 | END SUBROUTINE uv2uvrot |
---|
| 895 | |
---|
| 896 | |
---|
| 897 | SUBROUTINE uvrot2uv (urot, vrot, rlat, rlon, pollat, pollon, u, v) |
---|
| 898 | |
---|
| 899 | REAL(dp), INTENT(IN) :: urot, vrot !< wind components in the rotated grid |
---|
| 900 | REAL(dp), INTENT(IN) :: rlat, rlon !< latitude and longitude in the true geographical system |
---|
| 901 | REAL(dp), INTENT(IN) :: pollat, pollon !< latitude and longitude of the north pole of the rotated grid |
---|
| 902 | |
---|
| 903 | REAL(dp), INTENT(OUT) :: u, v !< wind components in the true geographical system |
---|
| 904 | |
---|
| 905 | REAL(dp) :: zsinpol, zcospol, zlonp, zlat, zarg1, zarg2, znorm |
---|
| 906 | |
---|
| 907 | zsinpol = SIN(pollat * TO_RADIANS) |
---|
| 908 | zcospol = COS(pollat * TO_RADIANS) |
---|
| 909 | zlonp = (pollon-rlon) * TO_RADIANS |
---|
| 910 | zlat = rlat * TO_RADIANS |
---|
| 911 | |
---|
| 912 | zarg1 = zcospol * SIN(zlonp) |
---|
| 913 | zarg2 = zsinpol * COS(zlat) - zcospol * SIN(zlat) * COS(zlonp) |
---|
| 914 | znorm = 1.0_dp / SQRT(zarg1*zarg1 + zarg2*zarg2) |
---|
| 915 | |
---|
| 916 | u = urot * zarg2 * znorm + vrot * zarg1 * znorm |
---|
| 917 | v = - urot * zarg1 * znorm + vrot * zarg2 * znorm |
---|
| 918 | |
---|
| 919 | END SUBROUTINE uvrot2uv |
---|
| 920 | |
---|
| 921 | END MODULE |
---|
| 922 | |
---|